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Abstract In this paper we study the jump-diffusion CIR process (shorted as JCIR),
which is an extension of the classical CIR model. The jumps of the JCIR are intro-
duced with the help of a pure-jump Lévy process (Jt , t ≥ 0). Under some suitable
conditions on the Lévy measure of (Jt , t ≥ 0), we derive a lower bound for the tran-
sition densities of the JCIR process. We also find some sufficient conditions under
which the function V (x) = x , x ≥ 0, is a Forster-Lyapunov function for the JCIR
process. This allows us to prove that the JCIR process is exponentially ergodic.
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1 Introduction

The Cox-Ingersoll-Ross model (or CIR model) was introduced in [1] by Cox et al.
in order to describe the random evolution of interest rates. The CIR model captures
many features of the real world interest rates. In particular, the interest rate in the
CIR model is non-negative and mean-reverting. Because of its vast applications in
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mathematical finance, some extensions of the CIR model have been introduced and
studied, see e.g. [2, 5, 15].

In this paper we study an extension of the CIR model including jumps, the so-
called jump-diffusion CIR process (shorted as JCIR). The JCIR process is defined as
the unique strong solution X := (Xt , t ≥ 0) to the following stochastic differential
equation

d Xt = a(θ − Xt )dt + σ
√

Xt dWt + d Jt , X0 ≥ 0, (1)

where a, σ > 0, θ ≥ 0 are constants, (Wt , t ≥ 0) is a 1-dimensional Brownian
motion and (Jt , t ≥ 0) is a pure-jump Lévy process with its Lévy measure ν con-
centrated on (0,∞) and satisfying

∫
(0,∞)

(ξ ∧ 1)ν(dξ) < ∞, (2)

independent of the Brownian motion (Wt , t ≥ 0). The initial value X0 is assumed
to be independent of (Wt , t ≥ 0) and (Jt , t ≥ 0). We assume that all the above
processes are defined on some filtered probability space (Ω,F , (F )t≥0, P). We
remark that the existence and uniqueness of strong solutions to (1) are guaranteed
by [7, Theorem 5.1].

The term a(θ − Xt ) in (1) defines a mean reverting drift pulling the process
towards its long-term value θ with a speed of adjustment equal to a. Since the
diffusion coefficient in the SDE (1) is degenerate at 0 and only positive jumps are
allowed, the JCIR process (Xt , t ≥ 0) stays non-negative if X0 ≥ 0. This fact can be
shown rigorously with the help of comparison theorems for SDEs, for more details
we refer the readers to [7].

The JCIR defined in (1) includes the basic affine jump-diffusion (or BAJD) as a
special case, in which the Lévy process (Jt , t ≥ 0) takes the form of a compound
Poisson process with exponentially distributed jumps. The BAJD was introduced by
Duffie and Gârleanu [2] to describe the dynamics of default intensity. It was also
used in [5, 12] as a short-rate model. Motivated by some applications in finance, the
long-time behavior of the BAJD has been well studied. According to [12, Theorem
3.16] and [10, Proposition 3.1], the BAJD possesses a unique invariant probability
measure,whose distributional propertieswere later investigated in [9, 11].We remark
that the results in [10, 11] are very general and hold for a large class of affine process
with state space R+, where R+ denotes the set of all non-negative real numbers. The
existence and some approximations of the transition densities of the BAJD can be
found in [6]. A closed formula of the transition densities of the BAJD was recently
derived in [9].

In this paper we are interested in two problems concerning the JCIR defined in (1).
The first one is to study the transition density estimates of the JCIR. Our first main
result of this paper is a lower bound on the transition densities of the JCIR. Our idea
to establish the lower bound of the transition densities is as follows. Like the BAJD,
the JCIR is also an affine processes in R+. Roughly speaking, affine processes are
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Markov processes forwhich the logarithmof the characteristic function of the process
is affine with respect to the initial state. Affine processes on the canonical state space
Rm+ × Rn have been investigated in [3, 5, 13, 14]. Based on the exponential-affine
structure of the JCIR, we are able to compute its characteristic function explicitly.
Moreover, this enables us to represent the distribution of the JCIR as the convolution
of two distributions. The first distribution is known and coincideswith the distribution
of the CIR model. However, the second distribution is more complicated. We will
give a sufficient condition such that the second distribution is singular at the point 0.
In this way we derive a lower bound estimate of the transition densities of the JCIR.

The other problem we consider in this paper is the exponential ergodicity of
the JCIR. According to the main results of [10] (see also [12]), the JCIR has a
unique invariant probability measure π , given that some integrability condition on
the Lévy measure of (Jt , t ≥ 0) is satisfied. Under some sharper assumptions we
show in this paper that the convergence of the law of the JCIR process to its invariant
probability measure under the total variation norm is exponentially fast, which is
called the exponential ergodicity. Our method is the same as in [9], namely we show
the existence of a Forster-Lyapunov function and then apply the general framework
of [16–18] to get the exponential ergodicity.

The remainder of this paper is organized as follows. In Sect. 2 we collect some
key facts on the JCIR and in particular derive its characteristic function. In Sect. 3 we
study the characteristic function of the JCIR and prove a lower bound of its transition
densities. In Sect. 4 we show the existence of a Forster-Lyapunov function and the
exponential ergodicity for the JCIR.

2 Preliminaries

In this section we use the exponential-affine structure of the JCIR process to derive
its characteristic functions.

We recall that the JCIR process (Xt , t ≥ 0) is defined to be the solution to (1) and
it depends obviously on its initial value X0. From now on we denote by (X x

t , t ≥ 0)
the JCIR process started from an initial point x ≥ 0, namely

d X x
t = a(θ − X x

t )dt + σ
√

X x
t dWt + d Jt , X x

0 = x . (3)

Since the JCIR process is an affine process, the corresponding characteristic func-
tions of (X x

t , t ≥ 0) is of exponential-affine form:

E
[
eu X x

t
] = eφ(t,u)+xψ(t,u), u ∈ U := {u ∈ C : �u ≤ 0}, (4)
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where �u denotes the real part of u and the functions φ(t, u) and ψ(t, u) in turn are
given as solutions of the generalized Riccati equations

{
∂tφ(t, u) = F

(
ψ(t, u)

)
, φ(0, u) = 0,

∂tψ(t, u) = R
(
ψ(t, u)

)
, ψ(0, u) = u ∈ U ,

(5)

with the functions F and R given by

F(u) = aθu +
∫

(0,∞)

(euξ − 1)ν(dξ),

R(u) = σ 2u2

2
− au.

Solving the system (5) gives φ(t, u) and ψ(t, u) in their explicit forms:

ψ(t, u) = ue−at

1 − σ 2

2a u(1 − e−at )
(6)

and

φ(t, u) = −2aθ

σ 2 log
(
1− σ 2

2a
u(1−e−at )

)+
∫ t

0

∫
(0,∞)

(
eξψ(s,u) −1

)
ν(dξ)ds. (7)

Here the complex-valued logarithmic function log(·) is understood to be its main
branch defined on C \ {0}. For t ≥ 0 and u ∈ U we define

ϕ1(t, u, x) := (
1 − σ 2

2a
u(1 − e−at )

)− 2aθ

σ2 exp
( xue−at

1 − σ 2

2a u(1 − e−at )

)
,

ϕ2(t, u) := exp
( ∫ t

0

∫ ∞

0

(
eξψ(s,u) − 1

)
ν(dξ)ds

)
, (8)

where the complex-valued power function z−2aθ/σ 2 := exp
( − (2aθ/σ 2) log z

)
is

also understood to be its main branch defined on C\{0}. One can notice that ϕ2(t, u)

resembles the characteristic function of a compound Poisson distribution.
It follows from (4), (6) and (7) that the characteristic functions of (X x

t , t ≥ 0) is
given by

E[eu X x
t ] = ϕ1(t, u, x)ϕ2(t, u), u ∈ U , (9)

where ϕ1(t, u, x) and ϕ2(t, u) are defined by (8).
According to the parameters of the JCIR process we look at two special cases:
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2.1 Special Case (i): ν = 0, No Jumps

Notice that the case ν = 0 corresponds to the classical CIR model (Yt , t ≥ 0)
satisfying the following stochastic differential equation

dY x
t = a(θ − Y x

t )dt + σ
√

Y x
t dWt , Y x

0 = x ≥ 0. (10)

It follows from (9) that the characteristic function of (Y x
t , t ≥ 0) coincides with

ϕ1(t, u, x), namely for u ∈ U

E[euY x
t ] = ϕ1(t, u, x). (11)

It is well known that the classical CIR model (Y x
t , t ≥ 0) has transition density

functions f (t, x, y) given by

f (t, x, y) = κe−u−v
( v

u

) q
2

Iq
(
2(uv)

1
2
)

(12)

for t > 0, x > 0 and y ≥ 0, where

κ ≡ 2a

σ 2
(
1 − e−at

) , u ≡ κxe−at ,

v ≡ κy, q ≡ 2aθ

σ 2 − 1,

and Iq(·) is the modified Bessel function of the first kind of order q. For x = 0 the
formula of the density function f (t, x, y) is given by

f (t, 0, y) = c

Γ (q + 1)
vqe−v (13)

for t > 0 and y ≥ 0.

2.2 Special Case (ii): θ = 0 and x = 0

We denote by (Zt , t ≥ 0) the JCIR process given by

d Zt = −aZt dt + σ
√

Zt dWt + d Jt , Z0 = 0. (14)

In this particular case the characteristic functions of (Zt , t ≥ 0) is equal toϕ2(t, u),
namely for u ∈ U

E[eu Zt ] = ϕ2(t, u). (15)
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3 A Lower Bound for the Transition Densities of JCIR

In this section we will find some conditions on the Lévy measure ν of (Jt , t ≥ 0)
such that an explicit lower bound for the transition densities of the JCIR process
given in (3) can be derived. As a first step we show that the law of X x

t , t > 0, in (3)
is absolutely continuous with respect to the Lebesgue measure and thus possesses a
density function.

Lemma 1 Consider the JCIR process (X x
t , t ≥ 0) (started from x ≥ 0) that is

defined in (3). Then for any t > 0 and x ≥ 0 the law of X x
t is absolutely contin-

uous with respect to the Lebesgue measure and thus possesses a density function
p(t, x, y), y ≥ 0.

Proof As shown in the previous section, it holds

E[eu X x
t ] = ϕ1(t, u, x)ϕ2(t, u) = E[euY x

t ]E[eu Zt ],

therefore the law of X x
t , denoted byμX x

t
, is the convolution of the laws of Y x

t and Zt .
Since (Y x

t , t ≥ 0) is the well-known CIR process and has transition density functions
f (t, x, y), t > 0, x, y ≥ 0 with respect to the Lebesgue measure, thus μX x

t
is also

absolutely continuous with respect to the Lebesgue measure and possesses a density
function.

In order to get a lower bound for the transition densities of the JCIR process we
need the following lemma.

Lemma 2 Suppose that
∫
(0,1) ξ ln(1/ξ)ν(dξ) < ∞. Then ϕ2 defined by (8) is the

characteristic function of a compound Poisson distribution. In particular, P(Zt =
0) > 0 for all t > 0, where (Zt , t ≥ 0) is defined by (14).

Proof It follows from (6), (8) and (15) that

E[eu Zt ] = ϕ2(t, u) = exp

( ∫ t

0

∫
(0,∞)

(
exp

(
ξue−as

1−(σ 2/2a)(1−e−as)u

) − 1
)
ν(dξ)ds

)
,

where u ∈ U . Define

Δ :=
∫ t

0

∫
(0,∞)

(
exp

( ξue−as

1 − (σ 2/2a)(1 − e−as)u

)
− 1

)
ν(dξ)ds.

If we rewrite

exp
( ξe−asu

1 − (σ 2/2a)(1 − e−as)u

)
= exp

( αu

β − u

)
, (16)
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where ⎧⎪⎪⎨
⎪⎪⎩

α := 2aξ

σ 2(eas − 1)
> 0,

β := 2aeas

σ 2(eas − 1)
> 0,

(17)

then we recognize that the right-hand side of (16) is the characteristic function of a
Bessel distribution with parameters α and β. Recall that a probability measure μα,β

on
(
R+,B(R+)

)
is called a Bessel distribution with parameters α and β if

μα,β(dx) = e−αδ0(dx) + βe−α−βx
√

α

βx
I1(2

√
αβx)dx, (18)

where δ0 is the Dirac measure at the origin and I1 is the modified Bessel function of
the first kind, namely

I1(r) = r

2

∞∑
k=0

( 1
4r2

)k

k!(k + 1)! , r ∈ R.

For more properties of Bessel distributions we refer the readers to [8, Sect. 3] (see
also [4, p. 438] and [9, Sect. 3]). Let μ̂α,β denote the characteristic function of the
Bessel distributionμα,β with parameters α and β which are defined in (17). It follows
from [9, Lemma 3.1] that

μ̂α,β(u) = exp
( αu

β − u

)
= exp

( ξe−asu

1 − (σ 2/2a)(1 − e−as)u

)
.

Therefore

Δ =
∫ t

0

∫
(0,∞)

(
μ̂α,β(u) − 1

)
ν(dξ)ds

=
∫ t

0

∫
(0,∞)

(
e

αu
β−u − e−α + e−α − 1

)
ν(dξ)ds.

Set

λ :=
∫ t

0

∫
(0,∞)

(
1 − e−α

)
ν(dξ)ds

=
∫ t

0

∫
(0,∞)

(
1 − e

− 2aξ

σ2(eas−1)

)
ν(dξ)ds. (19)
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If λ < ∞, then

Δ =
∫ t

0

∫
(0,∞)

(
e

αu
β−u − e−α

)
ν(dξ)ds − λ

= λ
(1
λ

∫ t

0

∫
(0,∞)

(
e

αu
β−u − e−α

)
ν(dξ)ds − 1

)
.

The fact that λ < ∞ will be shown later in this proof.
Nextwe show that the term (1/λ)

∫ t
0

∫
(0,∞)

(
exp

(
αu/(β−u)

)−exp(−α)
)
ν(dξ)ds

can be viewed as the characteristic function of a probability measure ρ. To define ρ,
we first construct the following measures

mα,β(dx) := βe−α−βx
√

α

βx
I1(2

√
αβx)dx, x ≥ 0,

where I1 is the modified Bessel function of the first kind. Noticing that the measure
mα,β is the absolute continuous component of the measure μα,β in (18), we easily
get

m̂α,β(u) = μ̂α,β(u) − e−α = e
αu

β−u − e−α,

where m̂α,β(u) := ∫ ∞
0 eux mα,β(dx) for u ∈ U . Recall that the parameters α and β

defined by (17) depend on the variables ξ and s. We can define a measure ρ on R+
as follows:

ρ := 1

λ

∫ t

0

∫
(0,∞)

mα,β ν(dξ)ds.

By the definition of the constant λ in (19) we get

ρ(R+) = 1

λ

∫ t

0

∫
(0,∞)

mα,β(R+)ν(dξ)ds

= 1

λ

∫ t

0

∫
(0,∞)

(1 − e−α)ν(dξ)ds

= 1,

i.e. ρ is a probability measure on R+, and for u ∈ U

ρ̂(u) =
∫

(0,∞)

euxρ(dx)

= 1

λ

∫ t

0

∫
(0,∞)

(e
αu

β−u − e−α)ν(dξ)ds.

Thus Δ = λ(ρ̂(u) − 1) and E[eu Zt ] = eλ(ρ̂(u)−1) is the characteristic function of a
compound Poisson distribution.
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Now we verify that λ < ∞. Noticing that

λ =
∫ t

0

∫
(0,∞)

(
1 − e−α

)
ν(dξ)ds

=
∫ t

0

∫
(0,∞)

(
1 − e

− 2aξ

σ2(eas−1)

)
ν(dξ)ds

=
∫

(0,∞)

∫ t

0

(
1 − e

− 2aξ

σ2(eas−1)

)
dsν(dξ),

we introduce the change of variables
2aξ

σ 2(eas − 1)
:= y and then get

dy = − 2aξ

σ 2(eas − 1)2
aeasds

= −y2
σ 2

2ξ

( 2aξ

σ 2y
+ 1

)
ds.

Therefore

λ =
∫

(0,∞)

ν(dξ)

∫ 2aξ

σ2(eat −1)

∞
(1 − e−y)

−2ξ

2aξ y + σ 2y2
dy

=
∫

(0,∞)

ν(dξ)

∫ ∞
2aξ

σ2(eat −1)

(1 − e−y)
2ξ

2aξ y + σ 2y2
dy

=
∫

(0,∞)

ν(dξ)

∫ ∞
ξ
δ

(1 − e−y)
2ξ

2aξ y + σ 2y2
dy,

where δ := σ 2(eat − 1)

2a
. Define

M(ξ) :=
∫ ∞

ξ
δ

(1 − e−y)
2ξ

2aξ y + σ 2y2
dy.

Then M(ξ) is continuous on (0,∞). As ξ → 0 we get

M(ξ) =
∫ 1

ξ
δ

(1 − e−y)
2ξ

2aξ y + σ 2y2
dy + 2ξ

∫ ∞

1
(1 − e−y)

dy

2aξ y + σ 2y2

≤ 2ξ
∫ 1

ξ
δ

y

2aξ y + σ 2y2
dy + 2ξ

∫ ∞

1

1

2aξ y + σ 2y2
dy

≤ 2ξ
∫ 1

ξ
δ

1

2aξ + σ 2y
dy + 2ξ

∫ ∞

1

1

σ 2y2
dy.
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Since

2ξ
∫ 1

ξ
δ

1

2aξ + σ 2y
dy = 2ξ

σ 2

[
ln(2aξ + σ 2y)

]1
ξ
δ

= 2ξ

σ 2 ln(2aξ + σ 2) − 2ξ

σ 2 ln(2aξ + σ 2ξ

δ
)

≤ c1ξ + c2ξ ln(
1

ξ
) ≤ c3ξ ln(

1

ξ
)

for sufficiently small ξ , we conclude that

M(ξ) ≤ c4ξ ln(
1

ξ
), as ξ → 0.

If ξ → ∞, then

M(ξ) ≤
∫ ∞

ξ
δ

(1 − e−y)
2ξ

2aξ y + σ 2y2
dy

≤
∫ ∞

ξ
δ

2ξ

2aξ y + σ 2y2
dy ≤ 2ξ

∫ ∞
ξ
δ

1

σ 2y2
dy

= 2ξ

σ 2

∫ ∞
ξ
δ

d(−1

y
) = 2ξ

σ 2

[
− 1

y

]∞
ξ
δ

= 2ξ

σ 2

δ

ξ
= 2δ

σ 2 := c5 < ∞.

Therefore,

λ ≤ c4

∫ 1

0
ξ ln(

1

ξ
)ν(dξ) + c5

∫ ∞

1
1ν(dξ) < ∞.

With the help of the Lemma 2 we can easily prove the following proposition.

Proposition 1 Let p(t, x, y), t > 0, x, y ≥ 0 denote the transition density of the
JCIR process (X x

t , t ≥ 0) defined in (3). Suppose that
∫
(0,1) ξ ln( 1

ξ
)ν(dξ) < ∞.

Then for all t > 0, x, y ≥ 0 we have

p(t, x, y) ≥ P(Zt = 0) f (t, x, y),

where P(Zt = 0) > 0 for all t > 0 and f (t, x, y) are transition densities of the CIR
process (without jumps).

Proof According to Lemma 2, we have P(Zt = 0) > 0. Since

E[eu X x
t ] = ϕ1(t, u, x)ϕ2(t, u) = E[euY x

t ]E[eu Zt ],
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the law of X x
t , denoted by μX x

t
, is the convolution of the laws of Y x

t and Zt . Thus
for all A ∈ B(R+)

μX x
t
(A) =

∫
R+

μY x
t
(A − y)μZt (dy)

≥
∫

{0}
μY x

t
(A − y)μZt (dy)

≥ μY x
t
(A)μZt ({0})

≥ P(Zt = 0)μY x
t
(A)

≥ P(Zt = 0)
∫

A
f (t, x, y)dy,

where f (t, x, y) are the transition densities of the classical CIR process given in
(12). Since A ∈ B(R+) is arbitrary, we get

p(t, x, y) ≥ P(Zt = 0) f (t, x, y)

for all t > 0, x, y ≥ 0.

4 Exponential Ergodicity of JCIR

In this section we find some sufficient conditions such that the JCIR process is
exponentially ergodic. We have derived a lower bound for the transition densities of
the JCIR process in the previous section. Next we show that the function V (x) = x ,
x ≥ 0, is a Forster-Lyapunov function for the JCIR process.

Lemma 3 Suppose that
∫
(1,∞)

ξν(dξ) < ∞. Then the function V (x) = x, x ≥ 0,
is a Forster-Lyapunov function for the JCIR process defined in (3), in the sense that
for all t > 0, x ≥ 0,

E[V (X x
t )] ≤ e−at V (x) + M,

where 0 < M < ∞ is a constant.

Proof We know that μX x
t

= μY x
t

∗ μZt , therefore

E[X x
t ] = E[Y x

t ] + E[Zt ].

Since (Y x
t , t ≥ 0) is the CIR process starting from x , it is known that μY x

t
is a

non-central Chi-squared distribution and thus E[Y x
t ] < ∞. Next we show that

E[Zt ] < ∞.
Let u ∈ (−∞, 0). By using Fatou’s Lemma we get
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E[Zt ] = E
[
lim
u→0

eu Zt − 1

u

]

≤ lim inf
u→0

E
[eu Zt − 1

u

]
= lim inf

u→0

E[eu Zt ] − 1

u
.

Recall that

E[eu Zt ] = ϕ2(t, u) = exp
( ∫ t

0

∫
(0,∞)

(
e

ξue−as

1−(σ2/2a)(1−e−as )u − 1
)
ν(dξ)ds

)
= eΔ(u).

Then we have for all u ≤ 0

∂

∂u

(
exp

( ξue−as

1 − (σ 2/2a)(1 − e−as)u

)
− 1

)

= ξe−as

(
1 − (σ 2/2a)(1 − e−as)u

)2 exp
( ξue−as

1 − (σ 2/2a)(1 − e−as)u

)

≤ ξe−as

(
1 − (σ 2/2a)(1 − e−as)u

)2 ≤ ξe−as

and further ∫ t

0

∫
(0,∞)

ξe−asν(dξ)ds < ∞.

Thus Δ(u) is differentiable in u and

Δ′(0) =
∫ t

0

∫
(0,∞)

ξe−asν(dξ)ds = 1 − e−at

a

∫
(0,∞)

ξν(dξ).

It follows that

E[Zt ] ≤ lim inf
u→0

ϕ2(t, u) − ϕ2(t, 0)

u

= ∂ϕ2(t, u)

∂u

∣∣∣
u=0

= eΔ(0)Δ′(0)

= 1 − e−at

a

∫
(0,∞)

ξν(dξ).

Therefore under the assumption
∫

(0,∞)

ξν(dξ) < ∞ we have proved that E[Zt ] <

∞. Furthermore,

E[Zt ] = ∂

∂u

(
E[eu Zt ]

)∣∣∣
u=0

= 1 − e−at

a

∫
(0,∞)

ξν(dξ).
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On the other hand,

E[euY x
t ] = (

1 − (σ 2/2a)u(1 − e−at )
)−2aθ/σ 2

exp
( xue−at

1 − (σ 2/2a)u(1 − e−at )

)
.

With a similar argument as above we get

E[Y x
t ] = ∂

∂u

(
E[euY x

t ]
)∣∣∣

u=0
= θ(1 − e−at ) + xe−at .

Altogether we get

E[X x
t ] = E[Y x

t ] + E[Zt ]
= (1 − e−at )

(
θ + 1 − e−at

a

) + xe−at

≤ θ + 1

a
+ xe−at ,

namely

E[V (X x
t )] ≤ θ + 1

a
+ e−at V (x).

Remark 1 If
∫
(1,∞)

ξν(dξ) < ∞, then there exists a unique invariant probability
measure for the JCIR process. This fact follows from [12, Theorem 3.16] and [10,
Proposition 3.1].

Let ‖ · ‖T V denote the total-variation norm for signed measures on R+, namely

‖μ‖T V = sup
A∈B(R+)

{|μ(A)|}.

Let Pt (x, ·) := P(X x
t ∈ ·) be the distribution of the JCIR process at time t started

from the initial point x ≥ 0. Now we prove the main result of this paper.

Theorem 1 Assume that
∫

(1,∞)

ξ ν(dξ) < ∞ and
∫

(0,1)
ξ ln(

1

ξ
)ν(dξ) < ∞.

Let π be the unique invariant probability measure for the JCIR process. Then the
JCIR process is exponentially ergodic, namely there exist constants 0 < β < 1 and
0 < B < ∞ such that

‖Pt (x, ·) − π‖T V ≤ B
(
x + 1

)
β t , t ≥ 0, x ∈ R+. (20)

Proof Basically, we follow the proof of [18, Theorem 6.1]. For any δ > 0 we
consider the δ-skeleton chain ηx

n := X x
nδ, n ∈ Z+, where Z+ denotes the set of all
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non-negative integers. Then (ηx
n )n∈Z+ is a Markov chain on the state space R+ with

transition kernel Pδ(x, ·) and starting point ηx
0 = x . It is easy to see that the measure

π is also an invariant probability measure for the chain (ηx
n )n∈Z+ , x ≥ 0.

Let V (x) = x , x ≥ 0. It follows from the Markov property and Lemma 3 that

E[V (ηx
n+1)|ηx

0 , η
x
1 , . . . , η

x
n ] =

∫
R+

V (y)Pδ(ηx
n , dy) ≤ e−aδV (ηx

n ) + M,

where M is a positive constant. If we set V0 := V and Vn := V (ηx
n ), n ∈ N, then

E[V1] ≤ e−aδV0(x) + M

and
E[Vn+1|ηx

0 , η
x
1 , . . . , η

x
n ] ≤ e−aδVn + M, n ∈ N.

Now we proceed to show that the chain (ηx
n )n∈Z+ , x ≥ 0, is λ-irreducible, strong

aperiodic, and all compact subsets of R+ are petite for the chain (ηx
n )n∈Z+ .

“λ-irreducibility”: We show that the Lebesgue measure λ on R+ is an irreducibil-
ity measure for (ηx

n )n∈Z+ . Let A ∈ B(R+) and λ(A) > 0. Then it follows from
Proposition 1 that

P[ηx
1 ∈ A|ηx

0 = x] = P(X x
δ ∈ A) ≥ P(Zδ = 0)

∫
A

f (δ, x, y)dy > 0,

since f (δ, x, y) > 0 for any x ∈ R+ and y > 0. This shows that the chain (ηx
n )n∈Z+

is irreducible with λ being an irreducibility measure.
“Strong aperiodicity”(see [16, p. 561] for a definition): To show the strong aperi-

odicity of (ηx
n )n∈Z0 , we need to find a set B ∈ B(R+), a probability measure m with

m(B) = 1, and ε > 0 such that

L(x, B) > 0, x ∈ R+, (21)

and
P(ηx

1 ∈ A) ≥ εm(A), x ∈ C, A ∈ B(R+), (22)

where L(x, B) := P(ηx
n ∈ B for some n ∈ N). To this end set B := [0, 1] and

g(y) := infx∈[0,1] f (δ, x, y), y > 0. Since for fixed y > 0 the function f (δ, x, y)

is strictly positive and continuous in x ∈ [0, 1], thus we have g(y) > 0 and 0 <∫
(0,1] g(y)dy ≤ 1. Define

m(A) := 1∫
(0,1] g(y)dy

∫
A∩(0,1]

g(y)dy, A ∈ B(R+).
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Then for any x ∈ [0, 1] and A ∈ B(R+) we get

P(ηx
1 ∈ A) = P(X x

δ ∈ A)

≥ P(Zδ = 0)
∫

A
f (δ, x, y)dy

≥ P(Zδ = 0)
∫

A∩(0,1]
g(y)dy

≥ P(Zδ = 0)m(A)

∫
(0,1]

g(y)dy,

so (22) holds with ε := P(Zδ = 0)
∫
(0,1] g(y)dy.

Obviously

L(x, [0, 1]) ≥ P(ηx
1 ∈ [0, 1]) = P(X x

δ ∈ [0, 1]) ≥ P(Zδ = 0)
∫

[0,1]
f (δ, x, y)dy > 0

for all x ∈ R+, which verifies (21).
“Compact subsets are petite”: We have shown that λ is an irreducibility measure

for (ηx
n )n∈Z+ . According to [16, Theorem 3.4(ii)], to show that all compact sets are

petite, it suffices to prove the Feller property of (ηx
n )n∈Z+ , x ≥ 0. But this follows

from the fact that (ηx
n )n∈Z+ is a skeleton chain of the JCIR process, which is an affine

process and possess the Feller property.
According to [16, Theorem 6.3] (see also the proof of [16, Theorem 6.1]), the

probabilitymeasureπ is the only invariant probabilitymeasure of the chain (ηx
n )n∈Z+ ,

x ≥ 0, and there exist constants β ∈ (0, 1) and C ∈ (0,∞) such that

‖Pδn(x, ·) − π‖T V ≤ C
(
x + 1

)
βn, n ∈ Z+, x ∈ R+.

Then for the rest of the proof we can proceed as in [18, p. 536] and get the
inequality (20).
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3. Duffie, D., Filipović, D., Schachermayer, W.: Affine processes and applications in finance.
Ann. Appl. Probab. 13(3), 984–1053 (2003)

4. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. Wiley,
New York (1971)
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