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Abstract According to theoretical arguments, a properly designed emission trad-
ing system should help reaching pollution reduction at low social burden based on
the theoretical work of environmental economists, cap-and-trade systems are put
into operations all over the world. However, the practice from emissions trading
yields a real stress test for the underlying theory and reveals a number of its weak
points. This paper aims to fill the gap between general welfare concepts underly-
ing understanding of liberalized market and specific issues of real-world emission
market operation. In our work, we present a novel technique to analyze emission
market equilibrium in order to address diverse questions in the setting of risk-averse
market players. Our contribution significantly upgrades all existing models in this
field, which neglect risk-aversion aspects at the cost of having a wide range of sin-
gularities in their conclusions, now resolved in our approach. Furthermore, we show
both how the architecture of an environmental market can be optimized under the
realistic assumption of risk-aversion.
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1 Practice of the EU ETS

A properly designed emission trading system should help reducing pollution reduc-
tion with low social burden.

In this paper we understand it as a burden to the society, caused by energy pro-
duction. We assume that it can be measured in monetary units including both, the
overall production costs and an appropriately quantified environmental impact of
energy production.

Originated from this idea, and based on the theoretical work of environmental
economists, cap-and-trade systems have been put into operations all over the world.

The problem of design optimization for emission trading schemes has been
addressed in [4]. This work shows that, in general, a traditional architecture of
environmental markets is far from being optimal, meaning that appropriate alter-
ations may provide significant improvements in emission reduction performances at
lower social burden. Such improvements can be achieved by extending a regulatory
framework, which we address below as extended scheme.

Let us explain this.
In the traditional scheme, it is assumed that the administrator allocates a pre-

determined allowance number to the market and sets a compliance date at which a
penalty must be paid for each unit of pollutant not covered by allowances. Hence,
the policy maker can exercise merely two controls, the so-called cap (total amount of
allowances allocated to themarket) and the penalty size. In theory, a desired pollution
reduction can be reached at some costs for the society by an appropriate choice of
these parameters. However, in practice, there is not much flexibility, since the cap
is motivated politically and the penalty is determined to provide enough incentives
for the required pollution reduction. As a result, the performance of the traditional
scheme could be very poor in terms of social burden for the achieved reduction.

In an extended scheme, the policy maker has much more influence. The regulator
can tax or subsidize the production in terms of monetary units or in terms of emission
certificates. These additional controls can be implemented in a technology-sensitive
way. Doing so, the merit order of technologies can be changed significantly. On this
account, emission savings, triggered by certificate prices, also become controllable.
The work [4] illustrates that, by an appropriate choice of additional controls, the
market can reach a targeted pollution reduction at much lower social burden.

Although these theoretical findings are sound, intuitive, and practically important,
the optimization of environmentalmarket architectures could not be brought to a level
suitable for practical implementation. There are two reasons for this.

(1) The existing approach [4] is based on the unrealistic assumption that each of
the market players is non-risk-averse in the sense that it realizes a linear utility
function. This assumption is not conform with the modern view and creates
a number of singularities in the model. A priori, it is not even clear which
conclusions of this work do hold under risk-aversion.
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(2) Although the practical advantage of such market design optimization is obvi-
ous, policy makers hardly can use the theoretical findings of [4], because their
quantitative assessment requires optimal control techniques whose numerics is
difficult.

In this work, we address both issues, namely:

(1′) We assume a non-linear utility function for market agents and show several
properties of the market equilibrium which make market design optimization
possible. With this, our model is brought in line with standard economic theory
and is appropriate for further developments. We also emphasize that, to capture
risk-aversion, a completely new argumentation has been developed.

(2′) We provide our study in a one-period setting. Being accessible without optimal
control techniques, the results become evident and potentially usable for a broad
audience, including practitioners and decision makers.

The paper is organized as follows. Section2 discusses the literature developed
concerning markets of emission certificates. In Sect. 3 we introduce our equilibrium
model. Section4 deepens the analysis of the equilibrium. Section5 studies the social
optimality of the equilibrium and proves that it corresponds to the overall minimum-
cost policy under a risk-neutral probability distribution. Section6 discusses some
perspectives of optimal market design. The final Sect. 7 provides conclusions.

2 Theory of Marketable Pollution Rights

The efficiency properties of environmental markets have been first addressed in
[6, 10], who first advocated the principle that the “environment” is a good that
can not be “consumed” for free. In particular, Montgomery describes a system of
tradable certificates issued by a public authority coupled with fixing a cap to the total
emissions, and, doing so, to force polluting companies paying proportionally to the
environmental damage generated by their production activity. An emission certificate
is representative of the permission to emit a given quantity of pollutant without being
penalized. Companies with low environmental impact can sell excess certificates and
the resulting revenue represents a general incentive to reduce pollution. Montgomery
shows that the equilibrium price for a certificate must be driven by the cost of the
most virtuous company to abate its marginal unit of pollutant. The key result of his
analysis is that such a system guarantees that the reduction of pollution is distributed
among the companies efficiently, that is minimizing their total costs.

After the seminal analysis of Montgomery, which is based on a deterministic and
static model, the following research has taken the direction to the stochastic and
multi-period settings. A literature review on the research which has developed after
Montgomery’swork can be found in [14]. A common result shared by all the analyses
developed so far is that cap-and-trade systems indeed represent themost efficient way
to reduce and control the environmental damage generated by the industrial activity.
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Let us mention the contributions which are directly related to our analysis. A
majority of relatively recent papers [1–5, 11, 13] are related to equilibrium models,
where risk-neutral individuals optimize the expected value of their profit or cost
function. The hypothesis of risk-neutrality of the agents is gracefully assumed in
those contributions, since it significantly simplifies the proof that environmental
markets are efficient. Some papers have considered explicitly risk-averse decision
makers. One of them, [9], develops a pricingmodel for the spot and derivative pricing
of environmental certificates in a single-period economy. In [7], the authors also
develop a (multi-period) equilibrium pricing model for contingent claims depending
on environmental certificates, where risk-averse agentsmaximize the expected utility
of their profit function.

3 One-Period Equilibrium of Emission Market

To explain the emission price mechanism, we present a market model where a finite
number of agents, indexed by the set I , is confronted with abatement of pollution.
The key assumptions are:

• We consider a trading scheme in isolation, within a time horizon [0, T ], without
credit transfer from and to other markets. That is, unused emission allowances
expire worthless.

• There is no production strategy adjustment within the compliance period [0, T ].
This means that the agents schedule their production plans for the entire period
[0, T ] at the beginning. Allowances can be traded twice: at time t = 0 at the
beginning and at time t = T immediately before emission reports are surrendered
to the regulator.

• For the sake of simplicity, we set the interest rate to zero.
• Each agent decides how much energy to produce and how many allowances to
trade.

Note that this one-period model is best suited for our needs to explain the core
mechanism of market operation and to discuss its properties. A generalization to a
multi-period framework is possible, but it gives no additional insights related to the
goal of this work.

The i th agent is specified by the set Ξ i of feasible production plans for the
generation of energy (electricity) within one time period from t = 0 to t = T.
Further, we consider the following mappings, defined on Ξ i , for each agent i ∈ I :

ξ i
0 �→ V i

0 (ξ
i
0), Ci

0(ξ
i
0), Ei

T (ξ i
0),

with the interpretation that for production plan ξ i
0 ∈ Ξ i , the values V i

0 (ξ
i
0), Ci

0(ξ
i
0),

and Ei
0(ξ

i
0) stand for the total production volume, the total production costs, and the

total carbon dioxide emission, respectively.
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Production: At time t = 0, each agent i ∈ I faces the energy demand D0 ∈ R+ of
the entire market, the realized electricity price P0 ∈ R+, and the emission allowance
price A0 ∈ R+. Based on this information, each agent decides on its production plan
ξ i
0 ∈ Ξ i , where Ξ i is the set of feasible production plans. Given ξ i

0 ∈ Ξ i , at time T ,
agent realizes the total production costs,

Ci
0(ξ

i
0) ∈ R, (1)

the production volume

V i
0 (ξ

i
0) ∈ R, (2)

and the total revenue, P0V i
0 (ξ

i
0), from the electricity sold.

Allowance allocation: We assume that the administrator allocates a pre-determined
number γ i

0 ∈ [0,∞[ of allowances to each agent i .

So far, we have introduced deterministic quantities. Let us now turn to uncertainties
modeled by random variables on the probability space (Ω,F ,P).

Emission from production: Following the production plan ξ i
0, the total pollution of

agent i is expressed as Ei
T (ξ i

0).

Remark (Randomness in demand and production) The question of randomness in
energy demand and production deserves a careful argumentation. The reader may
be confused by the assumption that in our one-period modeling, the time unit may
correspond to the entire compliance period (which suggests a rather long time), such
that our assumption on deterministic demand and unflexible production schedule
appears unrealistic. To ease understanding, one shall imagine an artificial emission
market model for short time period, say one day until compliance. The point of our
proposal is that the elements, the arguments and the techniques required to define the
optimal production plan on a daily basis are the same of those required to identify
the plan ξ i

0 over a generalized period [0, T ]. The value of this toy model is that it
allows a straight-forward generalization to the multi-period situation. In our one-
period modeling, we assume that the nominal energy demand D0 is non-random
and is observed at the time t = 0 when production decisions are made. We also
suppose that the production plan ξ i

0 of each agent is deterministically scheduled at
time t = 0. This view is in line with the current practice in energy business, where
a nominal energy production volume along with a detailed schedule of production
units is planed non-randomly in advance. Of course, the realized energy consump-
tion deviates from what has been predicted. However, based on our experience in
energymarkets, it does not make sense to include this random factor into equilibrium
modeling, since all decisions are made on the basis of a non-random demand antici-
pation and non-random customer’s requests for energy delivery. To maintain energy
consumption fluctuations in real-time, diverse auxiliary mechanisms are used. They
can be considered as purely technical measures (security of supply by reserve mar-
gins). For this reason, we believe that it is natural to assume that, although the energy
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demand D0 is known and production plan ξ i
0 is deterministically scheduled at time

t = 0, the total emission, associated with this production can not be predicted with
certainty at time t = 0when the production and trading decisions aremade. In fact, in
practice the producers have to manage diverse source of randomness while following
production, (demand fluctuation, outages of generators) which yields usually small
but unpredictable deviations N i from the nominal emission Ei

0(ξ
i
0) associated with

production plan ξ i
0. Thus, let us agree that Ei

T (ξ i
0) is modeled as a random variable

given as a sum
Ei

T (ξ i
0) = Ei

0(ξ
i
0) + N i , ξ i

0 ∈ Ξ i , i ∈ I (3)

with deterministic function

ξ i
0 : Ξ i → R, ξ i

0 �→ Ei
0(ξ

i
0)

describing the dependence of the nominal emission on the production plan and a
random variable N i standing for the deviation from the nominal emission. Note that
the random emission Ei

T (ξ i
0) will be the only source of uncertainty in our model.

To ease our analysis, let us agree on the natural assumption that for production
schedules ξ i

0 ∈ Ξi i ∈ I the total market emission
∑

i∈I Ei
T (ξ i

0) possesses no point
masses:

P(
∑
i∈I

Ei
T (ξ i

0) = z) = 0 for all z ∈ R. (4)

Allowance trading: At times t = 0, T the allowance permits can be exchanged
between agents by trading at the prices A0 and AT , respectively. Denote by ϑ i

0, ϑ
i
T

the change at times t = 0, T of the allowance number held by agent i ∈ I . Such
trading yields a revenue, which is

− ϑ i
0A0 − ϑ i

T AT . (5)

Note that ϑ i
0 and A0 are deterministic, whereas ϑ i

T and AT are modeled as random
variables. Observe that sales are described by negative values of ϑ i

0, ϑ
i
T , therefore

(5) is non-negative random variable, if permits are sold.

Penalty payment: As mentioned above, the penalty π ∈ [0,+∞[ must be paid at
maturity T for each unit of pollutant not covered by allowances. Given the changes
at times t = 0, T due to allowance trading, i.e. ϑ i

0 and ϑ i
T , the production ξ i

0, and
the total number γ i

0 of allowances allocated to agent i ∈ I , the loss of agent i due to
potential penalty payment is given by

π(Ei
0(ξ

i
T ) − ϑ i

0 − ϑ i
T − γ i

0)
+. (6)

Individual profit: In view of (1)–(6), the profit of agent i ∈ I following trading and
production strategy (ϑ i , ξ i ) = (ϑ i

0, ϑ
i
T , ξ i

0) depends on the market prices (A, P) =
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(A0, AT , P0) for allowances and energy and is given by

L A,P,i (ϑ i , ξ i ) = −ϑ i
0A0 − ϑ i

T AT − Ci
0(ξ

i
0) + P0V i

0 (ξ
i
0)

−π(Ei
T (ξ i

0) − ϑ i
0 − ϑ i

T − γ i
0)

+.

Note that the individual profit could be negative.

Risk-aversion and rational behavior: Suppose that the risk attitudes of each agent
i ∈ I are described by a pre-specified strictly increasing utility functionUi : R → R.
With this, the rational behavior of the agent i is targeted on the maximization of the
functional

(ϑ i , ξ i ) �→ E(Ui (L A,P,i (ϑ i , ξ i )))

over all the possible trading and production strategies (ϑ i , ξ i ) = (ϑ i
0, ϑ

i
T , ξ i

0).

Energy demand: Suppose that at time t = 0 all agents observe the total energy
demand, which is described by D0 ∈ R+. Let us agree that the demand must be
covered.

Market equilibrium: Following standard apprehension, a realistic market state is
described by the so-called equilibrium—a situation where all allowance prices, all
allowance positions, and all production decisions are such that each agent is satisfied
by its own policy and, at the same time, natural restrictions are fulfilled.

Definition 1 Given energy demand D0 ∈ R+, the prices (A∗, P∗) = (A∗
0, A∗

T ,

P∗
0 ) are called equilibrium prices, if, for each agent i ∈ I , there exists a strategy

(ϑ i∗, ξ i∗) = (ϑ i∗
0 , ϑ i∗

T , ξ i∗
0 ) such that:

(i) the energy demand is covered

∑
i∈I

V i
0 (ξ

i∗
0 ) = D0,

(ii) the emission certificates are in zero net supply

∑
i∈I

ϑ i∗
t = 0 almost surely for t = 0 and t = T, (7)

(iii) each agent i ∈ I is satisfied by its own policy in the sense that

E(Ui (L A∗,P∗,i (ϑ i∗, ξ i∗))) ≥ E(Ui (L A∗,P∗,i (ϑ i , ξ i ))) (8)

holds for any alternative strategy (ϑ i , ξ i ).

The main objective of this section is to prove that in the present model the electricity
price formation is determined by the usual merit order arguments, where the effect of
emission regulation causes emission allowance prices to enter the costs of production
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at the specific emission rate. This issue can be considered as the core mechanism of
any cap-and-trade system, since including pollution costs into final product prices
causes a change of the merit order of production technologies towards a cleaner
production. To formulate this result, let us elaborate on the opportunity costs and
introduce additional definitions.

Opportunity costs: In the economic literature, they stand for the forgone benefit
from using a certain strategy compared to the next best alternative. For example, the
opportunity costs of farming own land is the amount which could be obtained by
renting the land to someone else. Let us explain how the opportunity costs necessarily
lead to windfall profits.

When facing energy (electricity) generation, producers consider a profit, which
couldbepotentially realizedwhen, insteadof production, unused emission allowances
were sold to the market. For instance, if the price of the emission certificates is 12
e per tonne of CO2 and the production of one Megawatt-hour (MWh) emits two
tonnes of CO2 (say, using a coal-fired steam turbine), then the producer must decide
between two strategies which are equivalent in terms of their emission certificate
balance:

• produce and sell one MWh to the market,
• do not produce this MWh and sell allowances covering two tonnes of CO2.

In this situation, the opportunity costs of producing one MWh are 2 × 12 = 24 e.
Obviously, the agent produces energy only if the first strategy is at least as profitable
as the second one. Thereby, both the production and the opportunity costs must be
considered in the formation of the electricity market price. Clearly, if the production
costs of electricity are 30 e per MWh, then the energy will be produced only if its
price covers both the production and the opportunity costs. Thus electricity can only
be delivered at a price exceeding 30+ 2× 12 = 54 e. That is, in order to trigger the
electricity production, the opportunity costs must be added to the production costs.

In the scientific community, this phenomenon is well-known under the name of
cost-pass-through. An empirical analysis, see [12] confirms that the strategy of cost-
pass-through is currently followed by the European energy producers. Furthermore,
the detailed investigation of mathematical market models shows that the cost-pass-
through is the only possible strategy in the so-called equilibrium state of the market.
This can be interpreted as follows: when behaving optimally, the energy producers
must pass the allowance price on to the consumers. Note that the producer obtains a
windfall profit of 24 e in anycase: if electricity price is higher than 54, by passing-
through the price of the certificates (that he has received for free); if the price is less
than 54, by selling 2 certificates at 12 e on the emission market.

More importantly, it turns out that the cost-pass-through is nothing but the core
mechanism responsible for the emission savings. Namely, due to the opportunity
costs, clean technologies appear cheaper than emission-intense production strategies.
For instance, the alternative generation technology represented by a gas turbine,
which yields energy at the price of 40 e and emits only one tonne of CO2, hardly
competes with a coal-fired steam turbine under generic regime (without emissions
regulation). Namely, if there is no regulatory framework, then the coal-fired steam
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turbine is scheduled first and the gas turbine has to wait until the energy demand
can not be covered by coal-fired steam technologies. However, given an emission
regulation, the opposite is true: say, if the allowance price is equal to 12 e per tonne
of CO2 as above, then the gas technology appears cheaper, operating at full costs
of 40 + 1 × 12 = 52 e. Thus, the gas turbine is scheduled first, followed by the
coal-fired steam turbine, which runs only if the installed gas turbine capacity does
not cover the energy demand.

In the next section, we will show that the only rational behavior in equilibrium
is to pass the opportunity costs on to the consumers. For this, we require additional
notions.

Definition 2 Consider a given energy amount d ∈ R+ and a given allowance price
a ∈ R+.
(i) Introduce the individual opportunity merit order costs of agent i ∈ I as

C i (d, a) = inf{Ci
0(ξ

i
0) + aEi

0(ξ
i
0) : ξ i

0 ∈ Ξ i , V i
0 (ξ

i
0) ≥ d}.

An individual production plan ξ i
0 ∈ Ξ i is called conform with opportunity costs at

emission price a ∈ R+ if

C i (V i
0 (ξ

i
0), a) = Ci

0(ξ
i
0) + aEi

0(ξ
i
0).

that is to say ξ i
0 is confirm if it minimizes the production and emission costs among

all the alternative plans offering the same generation and given emission price a.
(ii) Introduce the cumulative opportunity merit order costs as

C (d, a) = inf{
∑
i∈I

(Ci
0(ξ

i
0) + aEi

0(ξ
i
0)) : ξ i

0 ∈ Ξ i , i ∈ I,
∑
i∈I

V i
0 (ξ

i
0) ≥ d}.

The production plans ξ i
0 ∈ Ξ i , i ∈ I , are called conform with opportunity costs at

emission price a ∈ R+ if

C (
∑
i∈I

V i
0 (ξ

i
0), a) =

∑
i∈I

(
Ci
0(ξ

i
0) + aEi

0(ξ
i
0)

)
.

(iii) Any price p ∈ R+ with the property that

− C (d̃, a) + pd̃ ≤ −C (d, a) + pd for all d̃ ∈ R+ (9)

is referred to as an opportunity merit order electricity price at (d, a) and it can be
understand as the marginal cost for the entire generation sector given the level of
demand d and emission price a.



274 P. Falbo and J. Hinz

4 Properties of Equilibrium

With these definitions, we now show that, within any equilibrium, the production
plans are always conform with opportunity costs. Furthermore, the equilibrium elec-
tricity price is always an opportunity merit order price.

Proposition 1 Given energy demand D0, let (A∗, P∗) = (A∗
0, A∗

T , P∗
0 ) be the equi-

librium prices with the corresponding strategies (ϑ i∗, ξ i∗), i ∈ I , then the following
points hold:
(i) For each agent i ∈ I , the individual production plan ξ i∗

0 is conform with oppor-
tunity costs at emission price A∗

0:

C i (V i
0 (ξ

i∗
0 ), A∗

0) = Ci
0(ξ

i∗
0 ) + A∗

0Ei
0(ξ

i∗
0 ). (10)

(ii) The market production schedule ξ i∗
0 , i ∈ I , is conform with opportunity costs at

emission price A∗
0:

C (
∑
i∈I

V i
0 (ξ

i∗
0 ), A∗

0) =
∑
i∈I

(Ci
0(ξ

i∗
0 ) + A∗

0Ei
0(ξ

i∗
0 )). (11)

(iii) P∗
0 is an opportunity merit order price at (

∑
i∈I V i

0 (ξ
i∗
0 ), A∗

0).

The direct economic consequence of this mathematical result is that each individual
will organize its own production strategy by scheduling power production units in
an increasing price order. Thereby their variable costs (which include the opportu-
nity costs of using the emission certificates) are considered. Within such a schedule,
a demand d is satisfied by gradually turning on the most economic plants, until a
generation level matching d is reached. Furthermore, the above proposition states
that such schedule is reached not only on the individual level, but also for the entire
market.Namely, anoverall demandd is satisfiedbygradually turningon themost eco-
nomic plants until reaching a production which covers the demand d. Such aggregate
ordering is usually called merit order, for this reason we call C i (d, a) and C (d, a)

(agent’s i) opportunity merit order costs and cumulative opportunity merit order
costs, respectively.

It is worth noticing that the opportunity merit order electricity price as defined in
(9) is equal to the marginal cost of generating electricity when the level of demand is
d given certificate price a. Coupling this property with the merit order production in
the electricity sector, implies that the most expensive production in the plan ξ i

0 will
determine the marginal cost at demand level d and emission price a. The opportunity
merit order electricity price at (d, a) is defined as the lowest price, which is able to
trigger the required production level.

Proof (i) Consider the equilibrium strategy (ϑ i∗
0 , ξ i∗

0 ) of agent i ∈ I. Assume that the
agent deviates from this strategy following an alternative production plan ξ i

0 ∈ Ξ i.
However, to keep the same emission credit balance, the difference Ei

0(ξ
i
0)− Ei

0(ξ
i∗
0 )
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is traded at the market in addition to ϑ i∗
0 . That is, we change the equilibrium trading

strategy (ϑ i∗
0 , ϑ i∗

T ) to an alternative trading strategy (ϑ i
0, ϑ

i
T ) given by

ϑ i
0 = ϑ i∗

0 + Ei
0(ξ

i
0) − Ei

0(ξ
i∗
0 ), ϑ i

T = ϑ i∗
T .

Note that we have changed only the initial position, from ϑ i∗
0 to ϑ i

0, whereas the
final position is the same ϑ i

T = ϑ i∗
T . A direct calculation shows that the profit of this

alternative strategy (ϑ i , ξ i ) = (ϑ i
0, ϑ

i
T , ξ i

0) can be written as

L A∗,P∗,i (ϑ i , ξ i ) = L A∗,P∗,i (ϑ i∗, ξ i∗) + R(ξ i
0, ξ

i∗
0 ),

i.e. it differs form the original profit L A∗,P∗,i (ϑ i∗, ξ i∗) by the amount

R(ξ i
0, ξ

i∗
0 ) = P∗

0 (V i
0 (ξ

i
0)− V i

0 (ξ
i∗
0 ))+ (Ci

0(ξ
i∗
0 )−Ci

0(ξ
i
0))+ A∗

0(Ei
0(ξ

i∗
0 )− Ei

0(ξ
i
0)).

Note that R(ξ i
0, ξ

i∗
0 ) can not be positive, since otherwise

L A∗,P∗,i (ϑ i , ξ i ) > L A∗,P∗,i (ϑ i∗, ξ i∗)

would yield

E(Ui (L A∗,P∗,i (ϑ i , ξ i ))) > E(Ui (L A∗,P∗,i (ϑ i∗, ξ i∗))),

thus contradicting the optimality of the equilibrium strategy (ϑ i∗, ξ i∗) (see (8)). Now,
from R(ξ i

0, ξ
i∗
0 ) ≤ 0 we conclude that

− Ci
0(ξ

i∗
0 ) − A∗

0Ei
0(ξ

i∗
0 ) + P∗

0 V i
0 (ξ i∗

0 ) ≥ −Ci
0(ξ

i
0) − A∗

0Ei
0(ξ

i
0) + P∗

0 V i
0 (ξ i

0) (12)

for each ξ i
0 ∈ Ξ i . With this, we conclude the desired assertion (10) as follows:

any alternative production plan ξ i
0 which produces an energy amount V i

0 (ξ
i
0) at least

equal to V i
0 (ξ

i∗
0 ) must satisfy

Ci
0(ξ

i∗
0 ) + A∗

0Ei
0(ξ

i∗
0 ) ≤ Ci

0(ξ
i
0) + A∗

0Ei
0(ξ

i
0).

Thus,

Ci
0(ξ

i∗
0 ) + A∗

0Ei
0(ξ

i∗
0 ) = inf{Ci

0(ξ
i
0) + A∗

0Ei
0(ξ

i
0) : ξ i

0 ∈ Ξ i , V i
0 (ξ

i
0) ≥ V i

0 (ξ
i∗
0 )}.

(ii) Summing up (12) over i ∈ I , yields, for arbitrary choices of ξ i
0 ∈ Ξ i , i ∈ I ,
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−
∑
i∈I

(
Ci
0(ξ

i∗
0 ) + A∗

0Ei
0(ξ

i∗
0 )

)
+ P∗

0

∑
i∈I

V i
0 (ξ

i∗
0 )

≥ −
∑
i∈I

(
Ci
0(ξ

i
0) + A∗

0Ei
0(ξ

i
0)

)
+ P∗

0

∑
i∈I

V i
0 (ξ

i
0). (13)

From this, we conclude that, for any choice ξ i
0 ∈ Ξ i , i ∈ I , of production plans

satisfying

∑
i∈I

V i
0 (ξ

i
0) ≥

∑
i∈I

V i
0 (ξ

i∗
0 ),

it holds

∑
i∈I

(
Ci
0(ξ

i∗
0 ) + A∗

0Ei
0(ξ

i∗
0 )

)
≤

∑
i∈I

(
Ci
0(ξ

i
0) + A∗

0Ei
0(ξ

i
0)

)
,

implying the desired assertion (11).
(iii) We need to prove that, for any d̃ ∈ R+,

−C (d̃, A∗
0) + P∗

0 d̃ ≤ −C (
∑
i∈I

V i
0 (ξ

i∗
0 ), A∗

0) + P∗
0

∑
i∈I

V i
0 (ξ

i∗
0 ).

For each choice of production strategies ξ i
0 ∈ Ξ i , i ∈ I , estimate (13), combined

with (11), gives

−C (
∑
i∈I

V i
0 (ξ

i∗
0 ), A∗

0) + P∗
0

∑
i∈I

V i
0 (ξ

i∗
0 )

≥ −
∑
i∈I

(
Ci
0(ξ

i
0) + A∗

0Ei
0(ξ

i
0)

)
+ P∗

0

∑
i∈I

V i
0 (ξ

i
0).

In particular, if the strategies are chosen from

{(ξ i
0)i∈I : ξ i

0 ∈ Ξ i , i ∈ I,
∑
i∈I

V i
0 (ξ

i
0) ≥ d̃},

then it holds that

−C (
∑
i∈I

V i
0 (ξ

i∗
0 ), A∗

0) + P∗
0

∑
i∈I

V i
0 (ξ

i∗
0 ) ≥ −

∑
i∈I

(
Ci
0(ξ

i
0) + A∗

0Ei
0(ξ

i
0)

)
+ P∗

0 d̃.

Passing on the right-hand side of this inequality to

C (d̃, A∗
0) := inf{

∑
i∈I

(Ci
0(ξ

i
0) + A∗

0Ei
0(ξ

i
0)) : ξ i

0 ∈ Ξ i , i ∈ I,
∑
i∈I

V i
0 (ξ

i
0) ≥ d̃},
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yields the desired assertion

−C (
∑
i∈I

V i
0 (ξ

i∗
0 ), A∗

0) + P∗
0

∑
i∈I

V i
0 (ξ

i∗
0 ) ≥ −C (d̃, A∗

0) + P∗
0 d̃.

Remark The statement (ii) of the above proposition characterizes equilibrium in
terms of aggregated quantities. Once the equilibrium is reached, the production
schedule represents the cheapest way to satisfy the demand. From this perspective,
the reader may conclude that the equilibrium production schedule can be obtained
as a production plan which minimizes the overall costs among those which cover
a given demand, indicating that only aggregated quantities do influence the equi-
librium. However, we shall emphasize that the equilibrium still heavily depends on
individual ingredients (such as initial endowments and risk aversion), which enter
through the initial allowance price.

Now, we show another natural property of the equilibrium allowance prices. It
turns out that there is no arbitrage allowance trading and that the terminal allowance
price is digital.

Proposition 2 Given energy demand D0, let (A∗, P∗) = (A∗
0, A∗

T , P∗
0 ) be the equi-

librium prices with the corresponding strategies (ϑ i∗, ξ i∗), i ∈ I ,. It holds:
(i) There exists a risk-neutral measure Q

∗ ∼ P such that A∗ = (A∗
0, A∗

T ) follows a
martingale with respect to Q

∗.
(ii) The terminal allowance price in equilibrium is digital

A∗
T = π1{∑i∈I Ei

T (ξ i∗
0 )−γ0≥0}. (14)

Proof (i) According to the first fundamental theorem of asset pricing, see [8] in
discrete-time setting, the existence of the so-called equivalent martingale measure
satisfying A∗

0 = E
Q

∗
(AT ) is ensured by the absence of arbitrage. Fortunately, in

our framework, the absence of arbitrage follows from the equilibrium notion, as we
show next.We thus conclude (i) of the above theorem and it remains to verify that the
equilibrium rules out all arbitrage opportunities for allowance trading. Let us follow
an indirect proof, assuming that ν0 is an arbitrage allowance trading, meaning that

P(ν0(A∗
T − A∗

0) ≥ 0) = 1, P(ν0(A∗
T − A∗

0) > 0) > 0. (15)

Based on this we obtain a contradiction by showing that each agent i can change its
own policy (ϑ i∗, ξ i∗) to an improved strategy (ϑ̃ i , ξ i∗) satisfying

E

(
Ui

(
L A∗,i (ϑ i∗, ξ i∗)

))
< E

(
Ui (L A∗,i (ϑ̃ i , ξ i∗))

)
. (16)

The improvement is achieved by incorporating arbitrage ν0 into the allowance trading
of each agent i as follows:

ϑ̃ i
0 := ϑ i∗

0 + ν0, ϑ̃ i
T := ϑ i∗

T − ν0.
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Indeed, the revenue improvement from allowance trading is

−ϑ̃ i
0A∗

0 − ϑ̃ i
T A∗

T = −ϑ i
0A∗

0 − ϑ i
T A∗

T + ν0(A∗
T − A∗

0),

which we combine with (15) to see that

P

(
L A,i (ϑ i∗, ξ i∗) ≤ L A,i (ϑ̃ i , ξ i∗)

)
= 1, P

(
L A,i (ϑ i∗, ξ i ) < L A,i (ϑ̃ i , ξ i∗)

)
> 0,

which implies (16), therefore contradicting the optimality of (ϑ i∗, ξ i∗).
(ii) From equilibrium property (8), it follows that for almost eachω ∈ Ω the terminal
allowance position adjustment ϑT (ω) is a maximizer on R to

z �→ −z A∗
T (ω) − π(Ei

T (ξ i∗
0 )(ω) − ϑ i∗

0 − γ i
0 − z)+. (17)

Note that a maximizer of this mapping exists only if 0 ≤ A∗
T (ω) ≤ π . That is, the

terminal allowance price in equilibrium must be within the interval A∗
T ∈ [0, π ]

almost surely. Let us show now that the price actually attains only boundary values
almost surely, i.e.

A∗
T ∈ {0, π} almost surely. (18)

Suppose that an intermediate value A∗
T (ω) ∈]0, π [ is taken, then the unique

maximizer of function (17) is attained on Ei
T (ξ i∗

T )(ω) − ϑ i∗
0 − γ i

0 . This implies that
ϑ i∗

T (ω) = Ei
T (ξ i∗

0 )(ω) − ϑ i∗
0 − γ i

0 holds for each i ∈ I , and a summation over i
yields

∑
i∈I

ϑ i∗
T (ω) =

∑
i∈I

(
Ei

T (ξ i∗
0 )(ω) − ϑ i∗

0 − γ i
0

)
=

∑
i∈I

Ei
T (ξ i∗

0 )(ω) − γ0.

Note that equilibrium property (7) ensures that the random variable on the left-hand
side of the above equality is zero almost surely. Thus, the inclusion

{ω :A∗
T ∈]0, π [} ⊆ {ω :

∑
i∈I

Ei
T (ξ i∗

0 ) − γ0 = 0} (19)

holds almost surely. Because of (4), the probability of the event on the right-hand
side of the above inclusion is zero, which shows (18).

If A∗
T (ω) = 0, then a maximizer ϑ i∗

T (ω) to the function (17) is attained on
[Ei

T (ξ i∗
0 )(ω) − ϑ i∗

0 − γ i
0 ,+∞[. Hence

{ω :A∗
T = 0} ⊆ {ω :Ei

T (ξ i∗
0 ) − ϑ i∗

0 − γ i
0 ≤ ϑ i∗

T }

holds almost surely for each i ∈ I , which implies that
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{ω :A∗
T = 0} ⊆ {ω :

∑
i∈I

Ei
T (ξ i∗

0 ) − γ0 ≤
∑
i∈I

ϑ i∗
T }

holds almost surely. Now, because of the equilibrium property (7), we obtain the
almost sure inclusion

{ω :A∗
T = 0} ⊆ {ω :

∑
i∈I

Ei
T (ξ i∗

0 ) − γ0 ≤ 0}.

Since the probability of A∗
T ∈]0, π [ is zero (19), we conclude for the complementary

event that
{ω :A∗

T = π} ⊇ {ω :
∑
i∈I

Ei
T (ξ i∗

0 ) − γ0 ≥ 0} (20)

holds almost surely. Let us show the opposite inclusion. If A∗
T (ω) = π , then a

maximizer ϑ i∗
T (ω) to function (17) is attained on ] − ∞, Ei

T (ξ i∗
0 )(ω) − ϑ i∗

0 − γ i
0 ].

Hence,

{ω :A∗
T = π} ⊆ {Ei

T (ξ i∗
0 ) − ϑ i∗

0 − γ i
0 ≥ ϑ i∗

T }

holds almost surely for each i ∈ I , which implies that

{ω :A∗
T = π} ⊆ {ω :

∑
i∈I

Ei
T (ξ i∗

0 ) − γ0 ≥
∑
i∈I

ϑ i∗
T }

holds almost surely. Now, because of the equilibrium property (7), we obtain

{ω :A∗
T = π} ⊆ {ω :

∑
i∈I

Ei
T (ξ i∗

0 ) − γ0 ≥ 0}. (21)

Finally, combine inclusions (20) and (21) to obtain assertion (14).

5 Social Optimality

To formulate social optimality, we require additional notations. Given production
strategies ξ i

0 ∈ Ξ i , i ∈ I , we denote the overall market production schedule by
ξ0 = (ξ i

0)i∈I and introduce the total production costsC0, the total production volume
V0, and the total carbon dioxide emission ET and the total nominal carbon dioxide
emission, defined by

C0(ξ0) =
∑
i∈I

Ci
0(ξ

i
0), V (ξ0) =

∑
i∈I

V i
0 (ξ i

0), ET (ξ0) =
∑
i∈I

Ei
T (ξ i

0), E0(ξ0) =
∑
i∈I

Ei
0(ξ

i
0).
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Having in mind that C0(ξ0) stands for the overall costs of the production and inter-
preting π(ET (ξ0) − γ0)

+ as a proxy of the environmental impact of the production
schedule ξ0, let us agree that

B(ξ0) = C0(ξ0) + π(ET (ξ0) − γ0)
+

expresses the social burden caused by the overall production plan ξ0 ∈ ×i∈I Ξ
i .

It turns out that the equilibrium strategy minimizes the social burden among all
production strategies which cover a given demand.

Proposition 3 Given energy demand D0, let (A∗, P∗) = (A∗
0, A∗

T , P∗
0 ) be the equi-

librium prices with the corresponding strategies (ϑ i∗, ξ i∗), i ∈ I . Let Q∗ be a
risk-neutral measure whose existence is shown in Proposition 2. Then

EQ
∗

0 (B(ξ∗
0 )) ≤ EQ

∗
0 (B(ξ0)) (22)

holds for each production schedule ξ0 = (ξ i
0)i∈I ∈ ×i∈I Ξ

i which yields at least the
same production volume, V0(ξ0) ≥ V0(ξ

∗
0 ) = D0.

Proof For each convex function f : R → R, x �→ f (x), it holds f (x)+∇ f (x)h ≤
f (x + h), h ∈ R, where ∇ f (x) stands for one of the sub-gradients of f at the
point x . In particular, for convex function f : R → R+, x �→ x+, we obtain
x+ +1{x≥0}h ≤ (x + h)+ for all x, h ∈ R. With the equilibrium production strategy
ξ∗
0 = (ξ i∗

0 )i∈I , we conclude that

(ET (ξ∗
0 ) − γ0)

+ + 1{ET (ξ∗
0 )−γ0≥0}(ET (ξ0) − ET (ξ∗

0 )) ≤ (ET (ξ0) − γ0)
+

holds almost surely for any production strategy ξ0 ∈ ×i∈I Ξ
i . Using our model

assumption (3) we deduce ET (ξ0) − ET (ξ∗
0 ) = E0(ξ0) − E0(ξ

∗
0 ) which gives

(ET (ξ∗
0 ) − γ0)

+ + 1{ET (ξ∗
0 )−γ0≥0}(E0(ξ0) − E0(ξ

∗
0 )) ≤ (ET (ξ0) − γ0)

+.

Calculating the expectations with respect to Q
∗ on both sides and multiplying both

sides by π , we obtain

πEQ
∗ (

(ET (ξ∗
0 ) − γ0)

+) + πEQ
∗ (

1{ET (ξ∗
0 )−γ0≥0}

)
(E0(ξ0) − E0(ξ

∗
0 )) ≤

≤ πEQ
∗ (

(ET (ξ0) − γ0)
+)

.

Using the martingale property and the digital terminal value of the equilibrium
allowance prices shown in Proposition 2, we finally obtain

πEQ
∗ (

(ET (ξ∗
0 ) − γ0)

+) + A∗
0(E0(ξ0) − E0(ξ

∗
0 )) ≤ πEQ

∗ (
(ET (ξ0) − γ0)

+)
.

(23)
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For the case that the strategy ξ0 yields at least the total production volume of the
equilibrium strategy, V0(ξ0) ≥ V0(ξ

∗
0 ), assertion (11) in Proposition 1 yields the

estimate

C0(ξ
∗
0 ) + A∗

0E0(ξ
∗
0 ) ≤ C0(ξ0) + A∗

0E0(ξ0),

which is equivalent to

C0(ξ
∗
0 ) − C0(ξ0) ≤ A∗

0(E0(ξ0) − E0(ξ
∗
0 )).

Now, combining the last inequality with (23), we obtain

C0(ξ
∗
0 ) + πEQ

∗ (
(ET (ξ∗

0 ) − γ0)
+) ≤ C0(ξ0) + πEQ

∗ (
(ET (ξ0) − γ0)

+)
,

which proves our claim (22).

In Proposition 3, the equilibrium production schedule ξ∗
0 was characterized as a

solution to the minimization problem

min{EQ
∗
(B(ξ0)) : ξ0 ∈ ×i∈I Ξ

i , V0(ξ0) ≥ D0}. (24)

Although this fact is about minimization of social burden, it should not be interpreted
as one of the classical welfare results, which typically follow from equilibrium con-
siderations.

An interesting point here is that this type of cost-optimality needs to be taken with
great care: due to the opportunity cost-pass-through, the consumers can not expect
that an (inappropriately designed) cap-and-trade mechanism indeed implements the
cheapest way of emission reduction, from their perspective.

To see this point, remember that the price per unit of electricity under the merit
order system includes the opportunity costs of consuming the emission certificates.
Therefore, given emission price A0 and an overall production schedule ξ0, the con-
sumers pay the costs

∑
i∈I A0Ei (ξ i

0) to switch in the merit order and to reduce
emissions. From a global perspective, this costs stands for a wealth re-distribution.
From the consumer’s perspective, it is associated with a burden.

6 Equilibrium-Like Risk-Neutral Modeling

Another interesting observation from Proposition 3 is that the expectation
E
Q

∗
(B(ξ0)) of the social burden B(ξ0) is minimized with respect to a risk-neutral

measure Q
∗ which differs from the objective measure P. The measure Q

∗ is an
outcome of the equilibrium, and, as such, it heavily depends on the many model
components, for instance on the risk-aversions, on the certificate endowments, and
on the production technologies of the agents. However, it is surprising that, once the
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measure Q∗ is known, other important equilibrium outcomes can be deduced from
aggregated quantities only.

In particular, givenQ∗, the equilibrium production schedule ξ∗
0 can be obtained as

the solution of optimization problem (24). Such solution is determined by aggregated
quantities, since the social burden is by definition B(ξ0) = C0(ξ0) + π(ET (ξ0) −
γ0)

+ and, apart the quantities γ0 and π decided by the authority, it depends only
on technologies present in the market. Having obtained the equilibrium production
schedule ξ∗

0 as the solution of optimization problem (24), the equilibrium allowance
price A∗

0 is calculated applying martingale pricing:

A∗
0 = πEQ

∗
(1{ET (ξ0)−γ0≥0}).

Finally, given the production schedule ξ∗
0 and the allowance price A∗

0, also the elec-
tricity price P∗

0 is determined as themarginal price of themost expensive technology,
which is active in the schedule ξ∗

0 . Note that the opportunity costs must be included
when identifying the most expensive active technology.

Summarizing, we conclude that given Q
∗, merely aggregated market parameters

are needed to obtain ξ∗
0 , A∗

0, and P∗
0 . This observation can be used to establish and to

analyze realistic equilibrium-like emission market models. Such models are needed,
since in real emission trading it is nearly impossible to estimate the equilibrium from
a market model, because the individual parameters are highly undetermined. For
instance, within the EU ETS, there are more than 25, 000 agents, each with a specific
production, its own certificate endowment, and a completely unknown risk-aversion.
On the contrary, the aggregated quantities are well-known, since high-quality market
data on total allowance allocation and electricity production, including capacities,
costs, and emission rates, are available.

In view of this, we suggest an alternative way to estimate the market equilib-
rium based on aggregated quantities and using an exogenously specified proxy for
risk-neutral measure Q∗. This general approach follows the standard methodology
of financial mathematics, which successfully describes the stochastic evolution of
equilibrium prices on financial markets under an appropriately chosen risk-neutral
measure.

6.1 Market Equilibrium Under a Risk-Neutral Measure

Wesketch the followingprogram for equilibrium-typemodeling of emissionmarkets:
(1) Determine a risk-neutral measure Q∗, which corresponds to an equilibrium situ-
ation of the emission market in the sense of (i) of Proposition 2.
(2) Observe that, because of Proposition 3, the equilibrium production schedule ξ∗

0
must be a solution to the deterministic optimization problem
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minimizeC0(ξ0) + πEQ
∗
((ET (ξ0) − γ0)

+)

subject to V0(ξ0) ≥ D0, over ξ0 ∈ ×i∈I Ξ
i .

(25)

To address the problem further, a specification of the space ×i∈I Ξ
i of market pro-

duction strategies along with the functions C0, V0 and ET is required.
(3) Given the equilibrium production schedule, calculate the total production costs
C0(ξ

∗
0 ), the total carbon dioxide emission ET (ξ∗

0 ), and the energy price P∗ to assess
the performance in emission reduction of the current market architecture.

Remark Note that a risk neutral measure is not unique. Clearly, finding a realistic
candidate for the risk-neutral measure Q∗ can be difficult. However, notice that one
merely needs to specify the fluctuations of the non-predictable emissions under a
risk-neutral measure. This distribution can be described in a parameter-dependent
way, which adds flexibility to the model. For instance, having assumed a Gaussian
framework under objectivemeasure andmodeling the density of the risk-neutralmea-
sure in terms of a Girsanov kernel. Given theoretical initial emission price depending
on the parameters of the Girsanov kernel, these parameters shall be adjusted to match
the observed emission prices. Similar techniques have been applied in financial mod-
eling under the framework of implicit model calibration. Being one of the central
questions in quantitative finance, the connection between risk-neutral and objective
measures has been successfully addressed over the recent decades. In view of this
development, modeling from a risk-neutral measure perspective can be based on a
variety of different methods, ranging from benchmark approach, estimation of risk
premia, state price density from portfolio optimization theory, to several econometric
methods for the estimation of the so-called market price of risk.

Finally, the performance of the cap-and-trademechanismcan be examined leveraging
on the dependence of the major economic indicators, i.e. total consumers’ costs
P∗
0 D0, total (producers’) production costsC0(ξ

i∗
0 ), and total carbon dioxide emission

E0(ξ
i∗
0 ), on the controls available to the regulator.

Note that in the standard scheme the regulator controls two key parameters: the
total allowance allocation γ0 and the penalty size π . The performance of regulation
could be assessed in terms of relation between the increase of consumers’ costs versus
the achieved emission reduction. Such analysis may uncover and visualize inappro-
priate market architectures, where unlucky choices of γ0 and π cause consumers
to pay too much, compared to emission savings. Complementary or supplementary
policies can be evaluated at this point next to the cap-and-trade system. In particular,
different forms of subsidies and carbon tax mechanisms can have a strong impact on
the merit order of different technologies.

7 Conclusions

In this paper,we showhowequilibriumanalysis andoptimization of an environmental
market can be carried out under the realistic assumption of risk-aversemarket players.
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This generalization is based on a novel approach. Thereby, we obtain a number of
interesting observations, which allow studying equilibriummarket situations in terms
of aggregated market quantities under a risk-neutral measure. Our findings show
how market design optimization can be achieved incorporating risk-aversion. The
choice to develop our approach in one-period setting, yields explicit results which
constructively contribute to better understand the working principles of financial
instruments and to improve both effectiveness and efficiency of environmental policy.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

References

1. Barrieu, P., Fehr, M.: Integrated EUA and CER price modeling and application for spread
option pricing. Centre for Climate Change Economics and Policy Working Papers 50, Centre
for Climate Change Economics and Policy, London, UK (2011)

2. Carmona, R., Fehr, M.: The clean development mechanism and joint price formation for
allowances and CERs. In: Dalang, R., Dozzi, M., Russo, F. (eds.) Seminar on Stochastic Analy-
sis, RandomFields andApplicationsVI. Progress in Probability, vol. 63, pp. 341–383. Springer,
Basel (2011)

3. Carmona, R., Fehr, M., Hinz, J.: Optimal stochastic control and carbon price formation. SIAM
J. Control Optim. 48(4), 2168–2190 (2009)

4. Carmona, R., Fehr, M., Hinz, J., Porchet, A.: Market design for emission trading schemes.
SIAM Rev. 52(3), 403–452 (2010)

5. Chesney, M., Taschini, L.: The endogenous price dynamics of the emission allowances and
an application to CO2 option pricing. Swiss Finance Institute Research Papers 08-02, Swiss
Finance Institute, Zurich, Switzerland (2008)

6. Dales, J.H.: Land, water, and ownership. Can. J. Econ. 1(4), 791–804 (1968)
7. Hinz, J., Novikov, A.: On fair pricing of emission-related derivatives. Bernoulli 16(4), 1240–

1261 (2010)
8. Kabanov, Y., Sticker, C.: A teachers’ note on no-arbitrage criteria. In: Azéma, J., Émery, M.,

Ledoux, M., Yor, M. (eds.) Séminaire de Probabilités XXXV. Lecture Notes in Mathematics,
vol. 1755, pp. 149–152. Springer, Berlin (2001)

9. Kijima,M.,Maeda, A., Nishide, K.: Equilibrium pricing of contingent claims in tradable permit
markets. J. Futures Mark. 30(6), 559–589 (2010)

10. Montgomery, W.D.: Markets in licenses and efficient pollution control programs. J. Econ.
Theory 5(3), 395–418 (1972)

11. Seifert, J., Uhrig-Homburg, M., Wagner, M.: Dynamic behavior of CO2 spot prices. J. Environ.
Econ. Manage. 56(2), 180–194 (2008)

12. Sijm, J., Neuhoff, K., Chen, Y.: CO2 cost pass-through and windfall profits in the power sector.
Clim. Policy 6, 49–72 (2006)

13. Stevens,B.,Rose,A.:Adynamic analysis of themarketable permits approach to globalwarming
policy: a comparison of spatial and temporal flexibility. J. Environ. Econ.Manage. 44(1), 45–69
(2002)

14. Taschini, L.: Environmental economics and modeling marketable permits. Asia-Pac. Finan.
Mark. 17(4), 325–343 (2010)




