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1 Introduction

In optimal control problems for diffusions of mean-field type the performance func-
tional, drift and diffusion coefficient depend not only on the state and the control but
also on the probability distribution of the state-control pair. The mean-field coupling
makes the control problem time-inconsistent in the sense that the Bellman Princi-
ple is no longer valid, which motivates the use of the stochastic maximum (SMP)
approach to solve this type of optimal control problems instead of trying extensions of
the dynamic programming principle (DPP). This class of control problems has been
studied by many authors including [1, 2, 5, 7, 15, 20]. The performance functionals
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considered in these papers have been of risk-neutral type i.e. the running cost/profit
terms are expected values of stage-additive payoff functions. Not all behavior, how-
ever, can be captured by risk-neutral performance. One way of capturing risk-averse
and risk-seeking behaviors is by exponentiating the performance functional before
expectation (see [17]).

The first paper that we are aware of and which deals with risk-sensitive optimal
control in a mean field context is [24]. Using a matching argument, the authors
derive a verification theorem for a risk-sensitive mean-field game whose underlying
dynamics is a Markov diffusion. This matching argument freezes the mean-field
coupling in the dynamics, which yields a standard risk-sensitive HJB equation for
the value-function. The mean-field coupling is then retrieved through the Fokker-
Planck equation satisfied by the marginal law of the optimal state.

In a recent paper [11], the authors have established a risk-sensitive SMP for
mean-field type control. The risk-sensitive control problem was first reformulated
in terms of an augmented state process and terminal payoff problem. An intermedi-
ate stochastic maximum principle was then obtained by applying the SMP of ([5],
Theorem 2.1.) for loss functionals without running cost but with augmented state
in higher dimension and complete observation of the state. Then, the intermediate
first- and second-order adjoint processes are transformed into a simpler form using
a logarithmic transformation derived in [12].

Optimal control of partially observed diffusions (withoutmean-field coupling) has
been studied by many authors including the non-exhaustive references [3, 4, 8–10,
13, 14, 16, 19, 21, 23, 26, 27], using both the DPP and SMP approaches. Reference
[23] derives an SMP for the most general model of optimal control of partially
observed diffusions under risk-neutral performance functionals. Recently,Wang et al.
[25], extended the SMP for partially observable optimal control of diffusions for risk-
neutral performance functionals of mean-field type.

The purpose of this paper is to establish a stochastic maximum principle for a
class of risk-sensitive mean-field type control problems under partial observation.
Following the above mentioned papers of optimal control under partial observation,
in particular [23], our strategy is to transform the partially observable control problem
into a completely observable one and then apply the approach suggested in [11] to
derive a suitable risk-sensitive SMP. To the best to our knowledge, the risk-sensitive
maximum principle under partial observation without passing through the DPP, and
in particular, for mean-field type controls was not established in earlier works.

The paper is organized as follows. In Sect. 2, we present the model and state the
partially observable risk-sensitive SMP which constitutes the main result, whose
proof is given in Sect. 3. Finally, in Sect. 4, we apply the risk-sensitive SMP to
the linear-exponential-quadratic setup under partial observation. To streamline the
presentation, we only consider the one-dimensional case. The extension to the mul-
tidimensional case is by now straightforward. Furthermore, we consider diffusion
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models where the control enters only the drift coefficient, which leads to an SMP
with only one pair of adjoint processes. The general Peng-type SMP can be derived
following e.g. [11, 23].

2 Statement of the Problem

Let T > 0 be a fixed time horizon and (Ω,F , lF, lP) be a given filtered probability
space on which there are defined two independent standard one-dimensional Brown-
ian motions W = {Ws}s≥0 and Y = {Ys}s≥0. Let FW

t and F Y
t be the lP-completed

natural filtrations generated by W and Y , respectively. Set lFY := {F Y
t , 0 ≤ s ≤ T }

and lF := {Fs, 0 ≤ s ≤ T }, where, Ft = FW
t ∨ F Y

t .

We consider amean-field type version the stochastic controlled systemwith partial
observation considered in [23] which is an extension of the model considered by
[4, 14] to which we refer for further details.

The model is defined as follows.

(i) An admissible control u is an lFY -adapted process with values in a non-empty
subset (not necessarily convex) U of lR and satisfies E[∫ T

0 |u(t)|2dt] < ∞. We
denote the set of all admissible controls by U . The control u is called partially
observable.

(i i) Given a control process u ∈ U , we consider the signal-observation pair
(xu, Y ) which satisfies the following SDE of mean-field type

⎧⎨
⎩

dxu(t) = b(t, xu(t), E[xu(t)], u(t))dt + σ(t, xu(t), E[xu(t)])dWt

+ α(t, xu(t), E[xu(t)])dW̃ u
t , xu(0) = x0,

dYt = β(t, xu(t))dt + dW̃ u
t , Y0 = 0,

(1)

where,
b(t, x, m, u) : [0, T ] × lR × lR × U −→ lR,

α(t, x, m), σ (t, x, m) : [0, T ] × lR × lR −→ lR

and β(t, x) : [0, T ] × lR −→ lR are Borel measurable function.

In this model, the observation process Y , which carries out the controls u, is assumed
to be a given Brownian motion independent of W and is supposed to admit a decom-
position as a trend

∫ ·
0 β(t, xu(t))dt (a functional of the state process xu) corrupted

by a process W̃ u which are a priori not observable. The case α = 0 corresponds to
the model considered in [4, 14]. A more general model of the function β would be
to let it depend on the control u and be of mean-field type. To keep the presentation
simpler, we skip this case in this paper. But, the main results do extend to this case.
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Before we formulate the control problem, we show that the system (1) has a weak
solution. Introduce the density process defined on (Ω,F , lF, lP) by

ρu(t) := exp

{∫ t

0
β(s, xu(s))dYs − 1

2

∫ t

0
|β(s, xu(s))|2ds

}
,

which solves the linear SDE

dρu(t) = ρu(t)β(t, xu(t))dYt , ρu(0) = 1.

Assuming the function β bounded (see Assumption 1, below), ρ is a uniformly
integrable martingale such that, for every p ≥ 2,

E[ sup
0≤t≤T

ρ
p
t ] ≤ C, (2)

where, C is a constant which depends only on the bound of β, p and T . Define
dlPu = ρu(T )dlP. By Girsanov’s Theorem, lPu is a probability measure. Moreover,
W̃ u is a lPu-standard Brownian motion independent of W . This in turn entails that
(lPu, xu, Y, W, W̃ u) is a weak solution of (1).

The objective is to characterize admissible controls which minimize the risk-
sensitive cost functional given by

J θ (u(·)) = Eu
[
exp

(
θ

[∫ T

0
f (t, xu(t), Eu[xu(t)], u(t)) dt + h(xu(T ), Eu[xu(T )])

])]
,

where, θ is the risk-sensitivity index,

f (t, x, m, u) : [0, T ] × lR × lR × U −→ lR,

h(x, m) : lR × lR −→ lR.

Any ū(·) ∈ U which satisfies

J θ (ū(·)) = inf
u(·)∈U

J θ (u(·)) (3)

is called a risk-sensitive optimal control under partial observation.
Let ΨT = ∫ T

0 f (t, x(t), Eu[x(t)], u(t))dt + h(x(T ), Eu[x(T )]) and consider
the payoff functional given by

Ψ̃θ := 1

θ
log EueθΨT .

When the risk-sensitive index θ is small, the loss functional Ψ̃θ can be expanded as

Eu[ΨT ] + θ

2
varu(ΨT ) + O(θ2),
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where, varu(ΨT ) denotes the variance of ΨT w.r.t. lPu . If θ < 0 , the variance of ΨT ,
as a measure of risk, improves the performance Ψ̃θ , in which case the optimizer is
called risk seeker. But, when θ > 0, the variance of ΨT worsens the performance
Ψ̃θ , in which case the optimizer is called risk averse. The risk-neutral loss functional
Eu[ΨT ] can be seen as a limit of risk-sensitive functional Ψ̃θ when θ → 0.

Since dlPu = ρu(T )dlP, the associated risk-sensitive cost functional becomes

J θ (u(·)) = E

[
ρu(T )e

θ
[∫ T

0 f (t,xu(t),E[ρu(t)xu(t)],u(t)) dt+h(xu(T ),E[ρu(T )xu(T )])
]]

,

(4)
where, on (Ω,F , lF, lP), the process (ρu, xu) satisfies the following dynamics:

⎧⎪⎪⎨
⎪⎪⎩

dρu(t) = ρu(t)β(s, xu(s))dYt ,

dxu(t) = {b(t, xu(t), E[xu(t)], u(t)) − α(t, xu(t), E[xu(t)])β(t, xu(t))} dt
+ σ(t, xu(t), E[xu(t)])dWt + α(t, xu(t), E[xu(t)])dYt ,

ρu(0) = 1, xu(0) = x0.
(5)

Wehave recast the partially observable control problem into the following completely
observable control problem: Minimize J θ (u(·)) defined by (4) subject to (5).

The main result of this paper is a stochastic maximum principle (SMP) in terms of
necessary optimality conditions for the problem (3) subject to (5).

We will only consider the case where the risk-sensitive parameter is positive, θ > 0.
The case θ < 0 can be treated in a similar fashion by considering θ = −θ̄ , θ̄ > 0,
and f̄ = − f, h̄ = −h in the performance functional (4).

We will make the following assumption.

Assumption 1 The functions b, σ, α, β, f, h are twice continuously differentiable
with respect to (x, m). Moreover, these functions and their first derivatives with
respect to (x, m) are bounded and continuous in (x, m, u).

To keep the presentation less technical, we impose these assumptions although they
are restrictive and can be made weaker.
Under these assumptions, in view of Girsanov’s theorem and [18], Proposition1.2.,
for each u ∈ U , the SDE (5) admits a unique weak solution (ρu, xu).
We now state an SMP to characterize optimal controls ū(·) ∈ U which minimize
(4), subject to (5). Let (ρ̄, x̄) := (ρ ū, xū) denote the corresponding state process,
defined as the solution of (5).

http://dx.doi.org/10.1007/978-3-319-23425-0_1
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We introduce the following notation.

X :=
(

ρ

x

)
, X̄ :=

(
ρ̄

x̄

)
, X0 = X̄0 :=

(
1
x0

)
, Bt :=

(
Yt

Wt

)
,

F(t, X, m, u) :=
(
0
c(t, x, m, u)

)
, G(t, X, m) :=

(
ρβ(t, x) 0
α(t, x, m) σ (t, x, m)

)
,

c(t, x, m, u) := b(t, x, m, u) − α(t, x, m)β(t, x), φ(X) := x, φ̃(X) := ρx,

φ(X̄) := x̄, φ̃(X̄) := ρ̄ x̄ .

(6)
We define the risk-neutral Hamiltonian as follows. For (p, q) ∈ lR2 × lR2×2,

H(t, X, m, p, q, u) := 〈F(t, X, m, u), p〉+ tr(G∗(t, X, m)q)− f (t, x, m, u), (7)

where, ′∗′ denotes the transposition operation of a matrix or a vector.

We also introduce the risk-sensitive Hamiltonian: (p, q, 
) ∈ lR2 × lR2×2 × lR2,

H θ (t, X, m, u, p, q, 
) := 〈F(t, X, m, u), p〉 − f (t, x, m, u)

+ tr(G∗(t, X, m)(q + θ
p∗)). (8)

We have H = H0.

Setting


 :=
(


1

2

)
, p :=

(
p1
p2

)
, q :=

(
q11 q12
q21 q22

)
,

the explicit form of the Hamiltonian (8) reads

H θ (t, X, m, u, p, q, 
) := c(t, x, m, u)p2 − f (t, x, m, u) + ρβ(t, x)(q11 + θ
1 p1)
+ α(t, x, m)(q21 + θ
2 p1) + σ(t, x, m)(q22 + θ
2 p2).

Setting θ = 0, we obtain the explicit form of the Hamiltonian (7):

H(t, X, m, u, p, q) := c(t, x, m, u)p2 − f (t, x, m, u) + ρβ(t, x)q11
+ α(t, x, m)q21 + σ(t, x, m)q22.

With the obvious notation for the derivatives of the functions b, α, β, σ, f, h, w.r.t.
the arguments x and m, we further set

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Hθ
x (t, X, m, u, p, q) := cx (t, x, m, u)p2 − fx (t, x, m, u) + ρβx (t, x)(q11 + θ
1 p1)

+ αx (t, x, m)(q21 + θ
2 p1) + σx (t, x, m)(q22 + θ
2 p2),
Ȟθ

m(t, X, m, u, p, q) := cm(t, x, m, u)p2 + αm(t, x, m)(q21 + θ
2 p1)
+ σm(t, x, m)(q22 + θ
2 p2),

Hθ
ρ (t, X, m, u, p, q) := β(t, x)(q11 + θ
1 p1).
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With this notation, the system (5) can be rewritten in the following compact form

{
d X (t) = F(t, X (t), E[φ(X (t))], u(t))dt + G(t, X (t), E[φ(X (t))])d Bt ,

X (0) = X0.
(9)

We define the risk-neutral Hamiltonian associated with random variables X such that
φ(X) and φ̃(X) are L1(Ω,F , lP) as follows (with the obvious abuse of notation):
For (p, q) ∈ lR2 × lR2×2,

H(t, X, p, q, u) := 〈F(t, X, E[φ(X)], u), p〉 − f (t, x, E[φ̃(X)], u)

+ tr(G∗(t, X, E[φ(X)])q).
(10)

We also introduce the risk-sensitive Hamiltonian: (p, q, 
) ∈ lR2 × lR2×2 × lR2,

H θ (t, X, u, p, q, 
) := 〈F(t, X, E[φ(X)], u), p〉 − f (t, x, E[φ̃(X)], u)

+ tr(G∗(t, X, E[φ(X)])(q + θ
p∗)). (11)

For g ∈ {b, c, σ, α, β} and u ∈ U , we set

gx (t) := gx (t, x̄(t), E[x̄(t)], ū(t)), gm(t) := gm(t, x̄(t), E[x̄(t)], ū(t)) (12)

and
{

fx (t) := fx (t, x̄(t), E[ρ̄(t)x̄(t)], ū(t)), fm(t) := fm(t, x̄(t), E[ρ̄(t)x̄(t)], ū(t)),
hx (t) := hx (x̄(t), E[ρ̄(t)x̄(t)]), hm(t) := hm(x̄(t), E[ρ̄(t)x̄(t)]).

(13)
Let

ψθ
T := ρ̄(T ) exp θ

[∫ T

0
f (t, x̄(t), E[ρ̄(t)x̄(t)], ū(t))dt + h(x̄(T ), E[ρ̄(T )x̄(T )])

]
.

We introduce the adjoint equations involved in the risk-sensitive SMP for our
control problem.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d p̂(t) = −
(

H θ
ρ (t) + 1

vθ (t)
E[vθ (t)Ȟ θ

m(t)] − x̄(t)
vθ (t)

E[vθ (t) fm(t)]
H θ

x (t) + 1
vθ (t)

E[vθ (t)Ȟ θ
m(t)] − ρ̄(t)

vθ (t)
E[vθ (t) fm(t)]]

)
dt

+ q̂(t)(−θ
(t)dt + d Bt ),

dvθ (t) = θvθ (t)〈
(t), d Bt 〉,
p̂(T ) = −

(
(θρ̄(T ))−1

hx (T )

)
−
(

x̄(T )

ρ̄(T )

)
1

ψθ
T

E[ψθ
T hm(T )],

vθ (T ) = ψθ
T ,

(14)

where, in view of (2) and (13), for k ∈ {ρ, x},
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H θ
k (t) := 〈Fk(t, X̄(t), E[φ(X̄(t))], ū(t)), p̂(t)〉 − fk(t, x̄(t), E[φ̃(X̄(t))], ū(t))

+ tr(G∗
k(t, X̄(t), E[φ(X̄(t))])(q̂(t) + θ
 p̂∗(t))

and

Ȟ θ
m(t) := 〈Fm(t, X̄(t), E[φ(X̄(t))], ū(t)), p̂(t)〉

+ tr(G∗
m(t, X̄(t), E[φ(X̄(t))])(q̂(t) + θ
 p̂∗(t)).

We note that the processes ( p̂, q̂, 
) may depend on the sensitivity index θ . To ease
notation, we omit to make this dependence explicit.

Below, we will show that, under Assumption 1, (14) admits a unique lF-adapted
solution ( p̂, q̂, v̂θ , 
) such that

E

[
sup

t∈[0,T ]
| p̂(t)|2 + sup

t∈[0,T ]
|vθ (t)|2 +

∫ T

0

(
|q̂(t)|2 + |
(t)|2

)
dt

]
< ∞. (15)

Moreover,

Lemma 1 The process defined on (Ω,F , lF, lP) by

Lθ
t := vθ (t)

vθ (0)
= exp

(∫ t

0
θ〈
(s), d Bs〉 − θ2

2

∫ t

0
|
(s)|2ds

)
, 0 ≤ t ≤ T, (16)

is a uniformly integrable lF-martingale.

The process Lθ defines a new probability measure lPθ equivalent to lP by setting
Lθ

t := dlPθ

dlP |Ft . By Girsanov’s theorem, the process Bθ
t := Bt − θ

∫ t
0 
(s)ds, 0 ≤

t ≤ T is a lPθ -Brownian motion.

The following theorem is the main result of the paper. Let Eθ [ · ] denote the expec-
tation w.r.t. lPθ .

Theorem 1 (Risk-sensitive maximum principle) Let Assumption 1 hold. If the
process (ρ̄(·), x̄(·), ū(·)) is an optimal solution of the risk-sensitive control problem
(3)–(5), then there are two pairs of lF-adapted processes (vθ , 
) and ( p̂, q̂) which
satisfy (14)–(15), such that

Eθ [H θ (t, ρ̄(t), x̄(t), p̂(t), q̂(t), 
(t), u) − H θ (t, ρ̄(t), x̄(t), p̂(t), q̂(t), 
(t), ū(t))|F Y
t ] ≤ 0,

for all u ∈ U, almost every t and lPθ−almost surely.

Remark 1 The boundedness assumption of the involved coefficients and their deriv-
atives imposed in Assumption 1, in Theorem 1, guarantees the solvability of the
system of forward-backward SDEs (5) and (14). In fact Theorem 1 applies provided
we can solve system of forward-backward SDEs (5) and (14). A typical example of
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such a situation is the classical Linear-Quadratic (LQ) control problem (see Sect. 4
below), in which the involved coefficients are at most quadratic, but not necessarily
bounded.

3 Proof of the Main Result

In this section we give a proof of Theorem 1 here presented in several steps.

3.1 An Intermediate SMP for Mean-Field Type Control

In this subsection we first reformulate the risk-sensitive control problem associated
with (4)–(5) in terms of an augmented state process and terminal payoff problem.
An intermediate stochastic maximum principle is then obtained by applying the
SMP obtained in ([1], Theorem 3.1 or [5], Theorem 2.1) for loss functionals without
running cost. Then, we transform the intermediate first-order adjoint processes to a
simpler form. The mean-field type control problem for the cost functional (4) under
the dynamics (5) is equivalent to

inf
u(·)∈U

E
[
ρ(T )eθ[h(x(T ),E[ρ(T )x(T )])+ξ(T )]

]
, (17)

subject to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dρ(t) = ρ(t)β(t, x(t))dYt ,

dx(t) = {b(t, x(t), E[x(t)], u(t)) − α(t, x(t), E[x(t)])β(t, x(t))} dt
+ σ(t, x(t), E[x(t)])dWt + α(t, x(t), E[x(t)])dYt ,

dξ = f (t, x(t), E[ρ(t)x(t)], u(t))dt,
ρ(0) = 1, x(0) = x0, ξ(0) = 0.

(18)

We introduce the following notation.

R :=
⎛
⎝ρ

x
ξ

⎞
⎠ =

(
X
ξ

)
, R̄ :=

⎛
⎝ ρ̄

x̄
ξ̄

⎞
⎠ =

(
X̄
ξ̄

)
, R0 = R̄0 :=

(
X0,

0

)
,

Γ (t, R, m) :=
(

G(t, X, m, u)

0

)
,

φ(R) = φ(X) = x, φ̃(R) = φ̃(X) = ρx, φ(R̄) = φ(X̄) = x̄, φ̃(R̄) = φ̃(X̄) = ρ̄ x̄ .
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With this notation, the system (18) can be rewritten in the following compact form

⎧⎨
⎩

d R(t) =
(

F(t, R(t), E[φ(R(t))], u(t))
f (t, R(t), E[φ̃(R(t))], u(t))

)
dt + Γ (t, R(t), E[φ(R(t))])d Bt ,

R(0) = R0

and the risk-sensitive cost functional (4) becomes

J θ (u(·)) := E[�
(

R(T ), E[φ̃(R(T ))]
)
],

where,

�(R(T ), E[φ(R(T ))]) := ρ(T ) exp (θh(x(T ), E[ρ(T )x(T )]) + θξ(T )) .

We define the Hamiltonian associated with random variables R such that φ(R) ∈
L1(Ω,F , lP) as follows. For (p, q) ∈ lR3 × lR3×3,

He(t, R, p, q, u) := 〈
(

F(t, R(t), E[φ(R(t))], u(t))
f (t, R(t), E[φ̃(R(t))], u(t))

)
, p〉

+ tr(Γ ∗(t, R, E[φ(R)])q),

(19)

where, Γ ∗ denotes the transpose of the matrix Γ .

Setting

p :=
⎛
⎝ p1

p2
p3

⎞
⎠ , q :=

⎛
⎝q11 q12

q21 q22
q31 q32

⎞
⎠ , (20)

the explicit form of the Hamiltonian (19) reads

He(t, ρ, x, ξ, p, q, u) := He(t, R, p, q, u) = c(t, x, E[x], u)p2 + f (t, x, E[ρx], u)p3
+σ(t, x, E[x])q22 + ρβ(t, x)q11 + α(t, x, E[x])q21.

In view of (12), we set

⎧⎨
⎩

He
x (t) := cx (t)p2(t) + fx (t)p3(t) + σx (t)q22(t) + ρ̄(t)βx (t)q11(t) + αx (t)q21(t),

Ȟ e
m(t) := cm(t)p2(t) + fm(t)p3(t) + σm(t)q22(t) + αm(t)q21(t),

He
ρ (t) = β(t, x̄(t))q11(t).

We may apply the SMP for risk-neutral mean-field type control (cf. [1], Theorem
3.1 or [5], Theorem 2.1) to the augmented state dynamics (ρ, x, ξ) to derive the first
order adjoint equation:
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dp(t) = −
⎛
⎝ He

ρ (t) + E[Ȟ e
m(t)] + x̄(t)E[ fm(t)p3(t)]

He
x (t) + E[Ȟ e

m(t)] + ρ̄(t)E[ fm(t)p3(t)]
0

⎞
⎠ dt + q(t)d Bt ,

p(T ) = −θψθ
T

⎛
⎝ (θρ̄(T ))−1

hx (T )

1

⎞
⎠ − θ

⎛
⎝ x̄(T )

ρ̄(T )

0

⎞
⎠ E[ψθ

T hm(T )].
(21)

This is a system of linear backward SDEs of mean-field type which, in view of
([6], Theorem 3.1), under Assumption 1, admits a unique lF-adapted solution (p, q)

satisfying

E

[
sup

t∈[0,T ]
|p(t)|2 +

∫ T

0
|q(t)|2dt

]
< ∞, (22)

where, | · | denotes the usual Euclidean norm with appropriate dimension.

We may apply the SMP for SDEs of mean-field type control from ([1], Theorem
3.1 or [5], Theorem 2.1) together with the SMP for risk-neutral partially observable
SDEs derived in ([23], Theorem 2.1) to obtain the following SMP.

Proposition 1 Let Assumption 1 hold. If (R̄(·), ū(·)) is an optimal solution of the
risk-neutral control problem (17) subject to the dynamics (18), then there is a unique
pair of lF-adapted processes (p, q) which satisfies (21)–(22) such that

E[He(t, R̄(t), p(t), q(t), u) − He(t, R̄(t), p(t), q(t), ū(t))|F Y
t ] ≤ 0,

for all u ∈ U, almost every t and lP−almost surely.

3.2 Transformation of the First Order Adjoint Process

Although the result of Proposition 1 is a good SMP for the risk-sensitive mean-field
type control with partial observations, augmenting the state process with the third
component ξ yields a system of three adjoint equations that appears complicated to
solve in concrete situations. In this section we apply the transformation of the adjoint
processes (p, q) introduced in [11] in such a way to get rid of the third component
(p3, q31, q32) in (21) and express the SMP in terms of only two adjoint process that
we denote ( p̂, q̂), where

p̂ :=
(

p̂1
p̂2

)
, q̂ :=

(
q̂1
q̂2

)
, q̂i := (q̂i1, q̂i2), i = 1, 2. (23)
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Indeed, noting that from (21), we have dp3(t) = 〈q3(t), d Bt 〉 and p3(T ) = −θψθ
T ,

the explicit solution of this backward SDE is

p3(t) = −θ E[ψθ
T | Ft ] = −θvθ (t), (24)

where,
vθ (t) := E[ψθ

T | Ft ], 0 ≤ t ≤ T .

In particular, we have vθ (0) = E[ψθ
T ]. Therefore, in view of (24), it would be natural

to choose a transformation of (p, q) into an adjoint process ( p̂, q̂) , where,

p̂ :=
⎛
⎝ p̂1

p̂2
p̂3

⎞
⎠ , q̂ :=

⎛
⎝ q̂11 q̂12

q̂21 q̂22
q̂31 q̂32

⎞
⎠ ,

such that

p̂3(t) = p3(t)

θvθ (t)
= −1, 0 ≤ t ≤ T . (25)

This would imply that, for almost every 0 ≤ t ≤ T ,

q̂3(t) = (q̂31(t), q̂32(t)) = 0, lP − a.s., (26)

which in turn would reduce the number of adjoint processes to those of the form
given by (23).

We consider the following transform:

p̂(t) := 1

θvθ (t)
p(t), 0 ≤ t ≤ T . (27)

In view of (21), we have

p̂(T ) = −
⎛
⎝ (θρ̄(T ))−1

hx (T )

1

⎞
⎠ −

⎛
⎝ x̄(T )

ρ̄(T )

0

⎞
⎠ 1

ψθ
T

E[ψθ
T hm(T )]. (28)

We should identify the processes α̂ and q̂ such that

d p̂(t) = −α̂(t)dt + q̂(t)d Bt , (29)

for which (25) and (26) are satisfied.
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In order to investigate the properties of these new processes ( p̂, q̂), the following
properties of the genericmartingale vθ , used in [11], are essential.We reproduce them
here for the sake of completeness. Since, by Assumption 1, f and h are bounded by
some constant C > 0, we have

0 < e−(1+T )Cθρ(T ) ≤ ψθ
T ≤ e(1+T )Cθρ(T ).

Therefore, vθ is a uniformly integrable lF-martingale satisfying

0 < e−(1+T )Cθρ(t) ≤ vθ (t) ≤ e(1+T )Cθρ(t), 0 ≤ t ≤ T .

Hence, in view of (2), we have

E[ sup
0≤t≤T

|vθ (t)|2] ≤ C. (30)

Furthermore, the martingale vθ enjoys the following useful logarithmic transform
established in ([12], Proposition 3.1)

vθ (t) = exp

(
θ Zt + θ

∫ t

0
f (s, x̄(s), E[ρ̄(s)x̄(s)], ū(s))ds

)
, 0 ≤ t ≤ T, (31)

and
vθ (0) = E[ψθ

T ] = exp(θ Z0).

Moreover, the process Z is the first component of the lF-adapted pair of processes
(Z , 
) which is the unique solution to the following quadratic BSDE:

⎧⎨
⎩

d Zt = −{ f (t, x̄(t), E[ρ̄(s)x̄(s)], ū(t)) + θ
2 |
(t)|2}dt + 〈
(t), d Bt 〉,

ZT = 1
θ
ln ρ̄(T ) + h(x̄T , E[ρ̄(T )x̄(T )]).

(32)

where, 
(t) = (
1(t), 
2(t)) satisfies

E

[∫ T

0
|
(t)|2dt

]
< ∞. (33)

In particular, vθ solves the following linear backward SDE

dvθ (t) = θvθ (t)〈
(t), d Bt 〉, vθ (T ) = ψθ
T . (34)
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Hence,

Proof of Lemma 1. In view of (30),

vθ (t)

vθ (0)
= exp

(∫ t

0
θ〈
(s), d Bs〉 − θ2

2

∫ t

0
|
(s)|2ds

)
:= Lθ

t , 0 ≤ t ≤ T, (35)

is a uniformly integrable lF-martingale. �
To identify the processes α̃ and q̃ such that

d p̂(t) = −α̂(t)dt + q̂(t)d Bt ,

we may apply Itô’s formula to the process p(t) = θvθ p̃(t), use (21) and (34) and
identify the coefficients. We obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α̂(t) = 1
θvθ (t)

⎛
⎝ He

ρ (t) + E[Ȟ e
m(t)] + x̄(t)E[ fm(t)p3(t)]

He
x (t) + E[Ȟ e

m(t)] + ρ̄(t)E[ fm(t)p3(t)]
0

⎞
⎠ + θ q̂(t)
(t),

q̂(t) = 1
θvθ (t)

q(t) − θ p̂(t)
(t).

(36)

Therefore,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d p̂(t) = − 1
θvθ (t)

⎛
⎝ He

ρ (t) + E[Ȟ e
m(t)] + x̄(t)E[ fm(t)p3(t)]

He
x (t) + E[Ȟ e

m(t)] + ρ̄(t)E[ fm(t)p3(t)]
0

⎞
⎠ dt + q̂(t)d Bθ

t ,

q̂(t) = 1
θvθ (t)

q(t) − θ p̂(t)
(t),

dvθ (t) = θvθ (t)〈
(t), d Bt 〉,

p̂(T ) = −
⎛
⎝ (θρ̄(T ))−1

hx (T )

1

⎞
⎠ −

⎛
⎝ x̄(T )

ρ̄(T )

0

⎞
⎠ 1

ψθ
T

E[ψθ
T hm(T )],

vθ (T ) = ψθ
T ,

(37)

where, Bθ
t := Bt −θ

∫ t
0 
(s)ds, 0 ≤ t ≤ T , which is, in view of (35) and Girsanov’s

Theorem, a lPθ -Brownian motion, where dlPθ

dlP

∣∣∣
Ft

:= Lθ
t .

In particular,

d p̂3(t) = 〈q̂3(t),−θ
(t)dt + d Bt 〉, p̂3(T ) = −1.
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Therefore, noting that p̂3(t) := [θvθ (t)]−1 p3(t) is square-integrable, we obtain

p̂3(t) = EP
θ [ p̂3(T )|Ft ] = −1.

Thus, its quadratic variation becomes
∫ T
0 |q̂3(t)|2dt = 0, P

θ − a.s. This implies
that, for almost every 0 ≤ t ≤ T , q̂3(t) = 0, P

θ and P − a.s.

Hence, we can drop the last components from the adjoint processes ( p̂, q̂) and only
consider (keeping the same notation)

p̂ :=
(

p̂1
p̂2

)
, q̂ :=

(
q̂11 q̂12
q̂21 q̂22

)
,

for which (37) reduces to the risk-sensitive adjoint equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d p̂(t) = − 1
θvθ (t)

(
He

ρ (t) + E[Ȟ e
m(t)] − x̄(t)E[ fm(t)]

He
x (t) + E[Ȟ e

m(t)] − ρ̄(t)E[ fm(t)]

)
dt + q̂(t)d Bθ

t ,

q̂(t) = 1
θvθ (t)

q(t) − θ p̂(t)
(t),

dvθ (t) = θvθ (t)〈
(t), d Bt 〉,
p̂(T ) = −

(
(θρ̄(T ))−1

hx (T )

)
−
(

x̄(T )

ρ̄(T )

)
1

ψθ
T

E[ψθ
T hm(T )],

vθ (T ) = ψθ
T .

(38)

In view of the uniqueness of lF-adapted pairs (p, q), solution of (21), and the pair
(vθ , 
) obtained satisfying (33) and (34), the solution of the system of backward
SDEs (38) is unique and satisfies (15).

3.3 Risk-Sensitive Stochastic Maximum Principle

We may use the transform (27) and (36) to obtain the explicit form (11) of the
risk-sensitive Hamiltonian H θ defined by

H θ (t, X̄(t), p̂(t), q̂(t), 
(t), u) := 1

θvθ (t)
He(t, R̄(t), p(t), q(t), u), (39)

where, He is defined by (19).
Let

δHe(t) := He(t, R̄(t), p(t), q(t), u) − He(t, R̄(t), p(t), q(t), ū(t))
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and

δH θ (t) = H θ (t, X̄(t), p̂(t), q̂(t), 
(t), u) − H θ (t, X̄(t), p̂(t), q̂(t), 
(t), ū(t)).

We have

E[δHe(t)|F Y
t ] = θ E[vθ (t)δH θ (t)|F Y

t ] = θvθ (0)Eθ [δH θ (t)|F Y
t ],

where, we recall that vθ (t)/vθ (0) = Lθ
t = dlPθ /dlP|Ft .

Now, since θ > 0 and vθ (0) = E[ψθ
T ] > 0, the variational inequality (1) translates

into

Eθ [H θ (t, ρ̄(t), x̄(t), p̂(t), q̂(t), 
(t), u) − H θ (t, ρ̄(t), x̄(t), p̂(t), q̂(t), 
(t), ū(t))|F Y
t ] ≤ 0.

for all u ∈ U, almost every t and lPθ−almost surely. This finishes the proof of
Theorem 1.

4 Illustrative Example: Linear-Quadratic Risk-Sensitive
Model Under Partial Observation

To illustrate our approach, we consider a one-dimensional linear diffusionwith expo-
nential quadratic cost functional. Perhaps, the easiest example of a linear-quadratic
(LQ) risk-sensitive control problem with mean-field coupling is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

infu(·)∈U Eue
θ
[
1
2

∫ T
0 u2(t)dt+ 1

2 x2(T )+μEu [x(T )]
]
,

subject to
dx(t) = (ax(t) + bu(t)) dt + σdWt + αdW̃ u

t ,

dYt = βx(t)dt + dW̃ u
t ,

x(0) = x0, Y0 = 0,

where, a, b, α, β, μ and σ are real constants.

In this section we will illustrate our approach by only considering the LQ risk-
sensitive control under partial observation without the mean-field coupling i.e. (μ =
0) so that our result can be compared with [8] where a similar example (in many
dimensions) is studied using the Dynamic Programming Principle. The case μ �= 0
can treated in a similar fashion (cf. [11]).
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We consider the linear-quadratic risk-sensitive control problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

infu(·)∈U Eue
θ
[
1
2

∫ T
0 u2(t)dt+ 1

2 x2(T )
]
,

subject to
dx(t) = (ax(t) + bu(t)) dt + σdWt + αdW̃ u

t ,

dYt = βx(t)dt + dW̃ u
t ,

x(0) = x0, Y0 = 0,

(40)

where, a, b, α, β and σ are real constants.

An admissible process (ρ̄(·), x̄(·), ū(·)) satisfying the necessary optimality condi-
tions of Theorem 1 is obtained by solving the following system of forward-backward
SDEs (cf. (5) and (14)) (see Remark 1, above).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dρ̄(t) = βρ̄(t)x̄(t)dYt ,

dx̄(t) = {cx̄(t) + bū(t)} dt + σdWt + αdYt ,

dp(t) = −
(

H θ
ρ (t)

H θ
x (t)

)
dt + q(t)(−θ
(t)dt + d Bt ),

dvθ (t) = θvθ (t)〈
(t), d Bt 〉,
p(T ) = −

(
(θρ̄(T ))−1

x̄(T )

)
,

vθ (T ) = ψθ
T ,

ρ̄(0) = 1, x̄(0) = x0,

(41)

where,

c := a − αβ, Bt :=
(

Yt

Wt

)
, 
 :=

(

1

2

)
, p :=

(
p1
p2

)
, q :=

(
q11 q12
q21 q22

)
,

ψθ
T := ρ̄(T )e

θ
[
1
2

∫ T
0 ū2(t)dt+ 1

2 x̄2(T )
]
,

and the associated risk-sensitive Hamiltonian is

H θ (t, ρ, x, u, p, q, 
) := (cx + bu)p2 − 1
2u2 + ρβx(q11 + θ
1 p1)

+α(q21 + θ
2 p1) + σ(q22 + θ
2 p2).
(42)

In general the solution (vθ , 
) primarily gives the correct form of the process 
which
may be a function of the optimal control ū. Inserting 
 in the BSDE satisfied by
(p, q) in the system (41) and solving for (p, q), we arrive at the characterization the
optimal control of our problem.
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For the LQ-control problem it turns out that by considering the BSDE satisfied by
(vθ , 
), we will find an explicit form of the optimal control ū. Indeed, by (31), this
is equivalent to consider the BSDE satisfied by (Z , 
):

{
d Zt = −{ 12 ū2(t) + θ

2 |
(t)|2}dt + 〈
(t), d Bt 〉,
ZT = 1

θ
ln ρ̄(T ) + 1

2 x̄2T .

Since ū isF Y
t , the form of ZT suggests that we characterize ū and 
 such that

Eθ [Zt |F Y
t ] = Eθ [γ (t)

2
x̄2(t) + 1

θ
ln ρ̄(t) + η(t)|F Y

t ], 0 ≤ t ≤ T,

where, γ and η are deterministic functions such that γ (T ) = 1 and η(T ) = 0. In
view of the SDEs satisfied by (ρ̄, x̄) in (41), applying Itô’s formula and identifying
the coefficients, we get


1(t) = (αγ (t) + β/θ)x̄(t), 
2(t) = σγ (t)x̄(t) (43)

and

Eθ [ 12
(
γ̇ (t) + 2(c + αβ)γ (t) + (θ(σ 2 + α2) − b2)γ 2(t)

)
x̄2(t)|F Y

t ]
+Eθ [η̇(t) + 1

2 (σ
2 + α2)γ (t) + (ū(t) + bγ (t)x̄(t))2|F Y

t ] = 0.

Hence,

{
γ̇ (t) + 2(c + αβ)γ (t) + (θ(σ 2 + α2) − b2)γ 2(t) = 0, γ (T ) = 1,
η̇(t) + 1

2 (σ
2 + α2)γ (t) = 0, η(T ) = 0,

(44)

where, the first equation is the risk-sensitive Riccati equation, and

Eθ [(ū(t) + bγ (t)x̄(t))2|F Y
t ] = 0.

By the conditional Jensen’s inequality, we have

∣∣∣Eθ [ū(t) + bγ (t)x̄(t)|F Y
t ]
∣∣∣2 ≤ Eθ [(ū(t) + bγ (t)x̄(t))2|F Y

t ].

Therefore, the optimal control is

ū(t) = −bγ (t)Eθ [x̄(t)|F Y
t ], (45)

and the optimal dynamics solves the linear SDE

dx̄(t) =
(

cx̄(t) − b2γ (t)Eθ [x̄(t)|F Y
t ]
)

dt + σdWt + αdYt , x̄(0) = x0, (46)
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where, by the filter equation of Theorem 8.1 in [22], πt (x̄) := Eθ [x̄(t)|F Y
t ] is the

solution of the SDE on (Ω,F , lF, lPθ ):

πt (x̄) = x0 +
∫ t

0
(c − b2γ (s))πs(x̄)ds +

∫ t

0

(
α + (θαγ (t) + β)

[
πs(x̄2) − π2

s (x̄)
])

dȲ θ
s ,

where, Ȳ θ
t = Yt −

∫ t
0 (θαγ (s)+β)πs(x̄)ds is an (Ω,F , lFY , lPθ )-Brownian motion.

Inserting the form (43) of 
 in the BSDE satisfied by (p, q) in the system (41) and
solving for (p, q), we arrive at the same characterization the optimal control of our
problem, obtained as a maximizer of the associated H θ given by (42). We sketch the
main steps and omit the details.

We have

H θ
u = bp2 − u, H θ

ρ = βx(q11 + θ
1 p1), H θ
x = cp2 + βρ(q11 + θ
1 p1).

The BSDE satisfied by (p, q) then reads

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dp1(t) = −{q11(t)(β x̄(t) + θ
1(t)) + θ(
1(t)p1(t)x̄(t) + q12(t)
2(t))} dt
+ q11(t)dYt + q12(t)dWt ,

dp2(t) = −{cp2(t) + βρ(t)(q11(t) + θ
1(t)p1(t))} dt
+ θ(q21
1(t) + q22
2(t))dt + q21(t)dYt + q22(t)dWt ,

p1(T ) = − 1
θρ̄(T )

, p2(T ) = −x̄(T ).

(47)

In view of Theorem 1, if ū is an optimal control of the system (40), it is necessary
that

Eθ [bp2(t) − ū(t)|F Y
t ] = 0.

This yields
ū(t) = bEθ [p2(t)|F Y

t ].

The associated state dynamics x̄ solves then the SDE

dx̄(t) =
{

cx̄(t) + b2Eθ [p2(t)|F Y
t ]
}

dt + σdWt + αdYt .

It remains to compute Eθ [p2(t)|F Y
t ]. Indeed, inserting the form (43) of 
 in the

BSDE satisfied by (p, q) in the system (47), by Itô’s formula and identifying the
coefficients, it is easy to check that (p1(t), q11(t), q12(t)) given by

p1(t) := − 1

θρ̄(t)
, q11(t) := β

θ

x̄(t)

ρ̄(t)
, q12(t) := 0

solves the first adjoint equation in (47). Furthermore, since p2(T ) = −x̄(T ), setting
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Eθ [p2(t)|F Y
t ] = −λ(t)Eθ [x̄(t)|F Y

t ],

where, λ is a deterministic function such that λ(T ) = 1, and identifying the coeffi-
cients, we find that λ satisfies the risk-sensitive Riccati equation in (44). Moreover,

q21(t) = −σλ(t), q22(t) = −αλ(t).

By uniqueness of the solution of the risk-sensitive Riccati equation in (44), it follows
that λ = γ . Therefore,

Eθ [p2(t)|F Y
t ] = −γ (t)Eθ [x̄(t)|F Y

t ], q21(t) = −σγ (t), q22(t) = −αγ (t).

Summing up: the optimal control of the LQ-problem (41) is

ū(t) = −bγ (t)Eθ [x̄(t)|F Y
t ], (48)

where, γ solves the risk-sensitive Riccati equation

γ̇ (t) + 2(c + αβ)γ (t) + (θ(σ 2 + α2) − b2)γ 2(t) = 0, γ (T ) = 1. (49)

The optimal dynamics solves the linear SDE

dx̄(t) =
(

cx̄(t) − b2γ (t)Eθ [x̄(t)|F Y
t ]
)

dt + σdWt + αdYt , x̄(0) = x0, (50)

and the filter πt (x̄) := Eθ [x̄(t)|F Y
t ] is solution of the SDE on (Ω,F , lF, lPθ ):

πt (x̄) = x0 +
∫ t

0
(c − b2γ (s))πs(x̄)ds +

∫ t

0

(
α + (θαγ (t) + β)

[
πs(x̄2) − π2

s (x̄)
])

dȲ θ
s ,

where, Ȳ θ
t = Yt −

∫ t
0 (θαγ (s)+β)πs(x̄)ds is an (Ω,F , lFY , lPθ )-Brownian motion.
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