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Abstract In this paper the effect of the choice of the model on partial hedging in
incomplete markets in finance is estimated. In fact we compare the quadratic hedging
strategies in a martingale setting for a claim when two models for the underlying
stock price are considered. The first model is a geometric Lévy process in which
the small jumps might have infinite activity. The second model is a geometric Lévy
process where the small jumps are replaced by a Brownianmotion which is appropri-
ately scaled. The hedging strategies are related to solutions of backward stochastic
differential equations with jumps which are driven by a Brownian motion and a
Poisson random measure. We use this relation to prove that the strategies are robust
towards the choice of the model for the market prices and to estimate the model risk.
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1 Introduction

When jumps are present in the stock price model, the market is in general incomplete
and there is no self-financing hedging strategy which allows to attain the contingent
claim at maturity. In other words, one cannot eliminate the risk completely. However
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it is possible to find ‘partial’ hedging strategies which minimise some risk. One way
to determine these ‘partial’ hedging strategies is to introduce a subjective criterion
according to which strategies are optimised.

In the present paper, we consider two types of quadratic hedging strategies. The
first, called risk-minimising (RM) strategy, is replicating the option’s payoff, but it is
not self-financing (see, e.g., [19]). In such strategies, the hedging is considered under
a risk-neutral measure or equivalent martingale measure. The aim is to minimise
the risk process, which is induced by the fact that the strategy is not self-financing,
under this measure. In the second approach, called mean-variance hedging (MVH),
the strategy is self-financing and the quadratic hedging error at maturity is minimised
in mean square sense (see, e.g., [19]). Again a risk-neutral setting is assumed.

The aim in this paper is to investigate whether these quadratic hedging strategies
(RM andMVH) in incomplete markets are robust to the variation of the model. Thus
we consider two geometric Lévy processes to model the asset price dynamics. The
first model (St )t∈[0,T ] is driven by a Lévy process in which the small jumps might
have infinite activity. The second model (Sε

t )t∈[0,T ] is driven by a Lévy process in
whichwe replace the jumpswith absolute size smaller than ε > 0 by an appropriately
scaled Brownian motion. The latter model (Sε

t )t∈[0,T ] converges to the first one in
an L2-sense when ε goes to 0. The aim is to study whether similar convergence
properties hold for the corresponding quadratic hedging strategies.

Geometric Lévy processes describe well realistic asset price dynamics and are
well established in the literature (see e.g., [5]). Moreover, the idea of shifting from a
model with small jumps to another where these variations are represented by some
appropriately scaled continuous component goes back to [2]. This idea is interesting
from a simulation point of view. Indeed, the process (Sε

t )t∈[0,T ] contains a compound
Poisson process and a scaled Brownian motion which are both easy to simulate.
Whereas it is not easy to simulate the infinite activity of the small jumps in the
process (St )t∈[0,T ] (see [5] for more about simulation of Lévy processes).

The interest of this paper is the model risk. In other words, from a modelling
point of view, we may think of two financial agents who want to price and hedge an
option. One is considering (St )t∈[0,T ] as a model for the price process and the other
is considering (Sε

t )t∈[0,T ]. Thus the first agent chooses to consider infinitely small
variations in a discontinuous way, i.e. in the form of infinitely small jumps of an
infinite activity Lévy process. The second agent observes the small variations in a
continuous way, i.e. coming from a Brownian motion. Hence the difference between
both market models determines a type of model risk and the question is whether the
pricing and hedging formulas corresponding to (Sε

t )t∈[0,T ] converge to the pricing
and hedging formulas corresponding to (St )t∈[0,T ] when ε goes to zero. This is what
we intend in the sequel by robustness or stability study of the model.

In this paperwe focusmainly on theRMstrategies. These strategies are considered
under a martingale measure which is equivalent to the historical measure. Equivalent
martingale measures are characterised by the fact that the discounted asset price
processes are martingales under these measures. The problem we are facing is that
the martingale measure is dependent on the choice of the model. Therefore it is clear
that, in this paper, there will be different equivalent martingale measures for the two
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considered price models. Here we emphasise that for the robustness study, we come
back to the common underlying physical measure.

Besides, since the market is incomplete, we will also have to identify which
equivalent martingale measure, or measure change, to apply. In particular, we discuss
some specific martingale measures which are commonly used in finance and in
electricity markets: the Esscher transform, the minimal entropy martingale measure,
and the minimal martingale measure. We prove some common properties for the
mentioned martingale measures in the exponential Lévy setting in addition to those
shown in [4, 6].

To perform the described stability study, we follow the approach in [8] and we
relate the RM hedging strategies to backward stochastic differential equations with
jumps (BSDEJs). See e.g. [7, 9] for an overview about BSDEs and their applications
in hedging and in nonlinear pricing theory for incomplete markets.

Under some conditions on the parameters of the stock price process and of the
martingale measure, we investigate the robustness to the choice of the model of the
value of the portfolio, the amount of wealth, the cost and gain process in a RM
strategy. The amount of wealth and the gain process in a MVH strategy coincide
with those in the RM strategy and hence the convergence results will immediately
follow. When we assume a fixed initial portfolio value to set up a MVH strategy we
derive a convergence rate for the loss at maturity.

The BSDEJ approach does not provide a robustness result for the optimal number
of risky assets in a RM strategy as well as in aMVH strategy. In [6] convergence rates
for those optimal numbers and other quantities, such as the delta and the amount of
wealth, are computed using Fourier transform techniques.

The paper is organised as follows: in Sect. 2 we introduce the notations, define
the two martingale models for the stock price, and derive the corresponding BSDEJs
for the value of the discounted RM hedging portfolio. In Sect. 3 we study the stabil-
ity of the quadratic hedging strategies towards the choice of the model and obtain
convergence rates. In Sect. 4 we conclude.

2 Quadratic Hedging Strategies in a Martingale Setting for
Two Geometric Lévy Stock Price Models

Assume a finite time horizon T > 0. The first considered stock price process is
determined by the process L = (Lt )t∈[0,T ] which denotes a Lévy process in the
filtered complete probability space (Ω,F ,F,P) satisfying the usual hypotheses as
defined in [18]. We work with the càdlàg version of the given Lévy process. The
characteristic triplet of the Lévy process L is denoted by (a, b2, �). We consider a
stock price modelled by a geometric Lévy process, i.e. the stock price is given by
St = S0eLt , ∀t ∈ [0, T ], where S0 > 0. Let r > 0 be the risk-free instantaneous
interest rate. The value of the corresponding riskless asset equals er t for any time
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t ∈ [0, T ]. We denote the discounted stock price process by Ŝ. Hence at any time
t ∈ [0, T ] it equals

Ŝt = e−r t St = S0e
−r teLt .

It holds that

dŜt = Ŝt âdt + Ŝt bdWt + Ŝt

∫
R0

(ez − 1)Ñ (dt, dz), (1)

where W is a standard Brownian motion independent of the compensated jump
measure Ñ and

â = a − r + 1

2
b2 +

∫
R0

(
ez − 1 − z1{|z|<1}

)
�(dz).

It is assumed that Ŝ is not deterministic and arbitrage opportunities are excluded (cfr.
[21]). The aim of this paper is to study the stability of quadratic hedging strategies in
a martingale setting towards the choice of the model. Since the equivalent martingale
measure is determined by the market model, we also have to take into account the
robustness of the risk-neutralmeasures. Thereforewe consider the casewhereP is not
a risk-neutral measure, or in other words â �= 0 so that Ŝ is not a P-martingale. Then,
a change of measure, specifically determined by themarket model (1), will have to be
performed to obtain a martingale setting. Let us denote a martingale measure which
is equivalent to the historical measure P by P̃. We consider martingale measures that
belong to the class of structure preservingmartingale measures, see [14]. In this case,
the Lévy triplet of the driving process L under P̃ is denoted by (ã, b2, �̃). Theorem
III.3.24 in [14] states conditions which are equivalent to the existence of a parameter
Θ ∈ R and a function ρ(z;Θ), z ∈ R, such that

∫
{|z|<1}

|z (ρ(z;Θ) − 1)| �(dz) < ∞, (2)

and such that

ã = a + b2Θ +
∫

{|z|<1}
z (ρ(z;Θ) − 1) �(dz) and �̃(dz) = ρ(z;Θ)�(dz). (3)

For Ŝ to be a martingale under P̃, the parameter Θ should guarantee the following
equation

â0 = ã − r + 1

2
b2 +

∫
R0

(
ez − 1 − z1{|z|<1}

)
�̃(dz) = 0. (4)

From now on we denote the solution of Eq. (4)—when it exists—by Θ0 and the
equivalent martingale measure by P̃Θ0 . Notice that we obtain different martingale
measures P̃Θ0 for different choices of the function ρ(. ;Θ0). In the next section we
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present some knownmartingalemeasures for specific functionsρ(. ;Θ0) and specific
parameters Θ0 which solve (4).

The relation between the original measure P and the martingale measure P̃Θ0 is
given by

dP̃Θ0

dP

∣∣∣
Ft

= exp

(
bΘ0Wt − 1

2
b2Θ0

2t +
∫ t

0

∫
R0

log (ρ(z;Θ0)) Ñ (ds, dz)

+ t
∫
R0

(log (ρ(z;Θ0)) + 1 − ρ(z;Θ0)) �(dz)

)
.

From the Girsanov theorem (see e.g. Theorem 1.33 in [17]) we know that the
processes W Θ0 and ÑΘ0 defined by

dW Θ0
t = dWt − bΘ0dt, (5)

ÑΘ0(dt, dz) = N (dt, dz) − ρ(z;Θ0)�(dz)dt = Ñ (dt, dz) + (1 − ρ(z;Θ0)) �(dz)dt,

for all t ∈ [0, T ] and z ∈ R0, are a standard Brownian motion and a compensated
jump measure under P̃Θ0 . Moreover we can rewrite (1) as

dŜt = Ŝt bdW Θ0
t + Ŝt

∫
R0

(ez − 1)ÑΘ0(dt, dz). (6)

We consider anFT -measurable and square integrable random variable HT which
denotes the payoff of a contract. The discounted payoff equals ĤT = e−rT HT . In
case the discounted stock price process is a martingale, both, the mean-variance
hedging (MVH) and the risk-minimising strategy (RM) are related to the Galtchouk-
Kunita-Watanabe (GKW) decomposition, see [11]. In the following we recall the
GKW-decomposition of the FT -measurable and square integrable random variable
ĤT under the martingale measure P̃Θ0

ĤT = Ẽ
Θ0 [ĤT ] +

∫ T

0
ξΘ0

s dŜs + L Θ0
T , (7)

where ẼΘ0 denotes the expectation under P̃Θ0 , ξ
Θ0 is a predictable process for which

we can determine the stochastic integral with respect to Ŝ, and L Θ0 is a square
integrable P̃Θ0 -martingale withL Θ0

0 = 0, such that L Θ0 is P̃Θ0 -orthogonal to Ŝ.
The quadratic hedging strategies are determined by the process ξΘ0 . It indicates

the number of discounted risky assets to hold in the portfolio. The amount invested in
the riskless asset is different in both strategies and is determined by the self-financing
property for the MVH strategy and by the replicating condition for the RM strategy.
See [19] for more details.
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We define the process

V̂ Θ0
t = Ẽ

Θ0 [ĤT |Ft ], ∀t ∈ [0, T ],

which equals the value of the discounted portfolio for the RM strategy. The GKW-
decomposition (7) implies that

V̂ Θ0
t = V̂ Θ0

0 +
∫ t

0
ξΘ0

s dŜs + L Θ0
t , ∀t ∈ [0, T ]. (8)

Moreover since L Θ0 is a P̃Θ0 -martingale, there exist processes XΘ0 and Y Θ0(z)
such that

L Θ0
t =

∫ t

0
XΘ0

s dW Θ0
s +

∫ t

0

∫
R0

Y Θ0
s (z)ÑΘ0(ds, dz), ∀t ∈ [0, T ], (9)

and which by the P̃Θ0 -orthogonality of L Θ0 and Ŝ satisfy

XΘ0b +
∫
R0

Y Θ0(z)(ez − 1)ρ(z;Θ0)�(dz) = 0. (10)

By substituting (6) and (9) in (8), we retrieve

dV̂ Θ0
t =

(
ξ

Θ0
t Ŝt b + XΘ0

t

)
dW Θ0

t +
∫
R0

(
ξ

Θ0
t Ŝt (e

z − 1) + Y Θ0
t (z)

)
ÑΘ0(dt, dz).

Let π̂Θ0 = ξΘ0 Ŝ indicate the amount of wealth invested in the discounted risky asset
in a quadratic hedging strategy. We conclude that the following BSDEJ holds for the
RM strategy

⎧⎪⎨
⎪⎩
dV̂ Θ0

t = AΘ0
t dW Θ0

t +
∫
R0

BΘ0
t (z)ÑΘ0(dt, dz),

V̂ Θ0
T = ĤT ,

(11)

where
AΘ0 = π̂Θ0b + XΘ0 and BΘ0(z) = π̂Θ0(ez − 1) + Y Θ0(z). (12)

Since the random variable ĤT is square integrable andFT -measurable, we know by
[20] that the BSDEJ (11) has a unique solution (V̂ Θ0 , AΘ0 , BΘ0). This follows from
the fact that the drift parameter of V̂ Θ0 equals zero under P̃Θ0 and thus it is Lipschitz
continuous.
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We introduce another Lévy process Lε, for 0 < ε < 1, which is obtained by
truncating the jumps of L with absolute size smaller than ε and replacing them by
an independent Brownian motion which is appropriately scaled. The second stock
price process is denoted by Sε = S0eLε

and the corresponding discounted stock price
process Ŝε is thus given by

dŜε
t = Ŝε

t âεdt + Ŝε
t bdWt + Ŝε

t

∫
{|z|≥ε}

(ez − 1)Ñ (dt, dz) + Ŝε
t G(ε)dW̃t , (13)

for all t ∈ [0, T ] and Ŝε
0 = S0. Herein W̃ is a standard Brownian motion independent

of W ,

G2(ε) =
∫

{|z|<ε}
(ez − 1)2�(dz), and (14)

âε = a − r + 1

2

(
b2 + G2(ε)

)
+
∫

{|z|≥ε}
(
ez − 1 − z1{|z|<1}

)
�(dz).

From now on, we assume that the filtration F is enlarged with the information of
the Brownian motion W̃ and we denote the new filtration by F̃. Moreover, we also
assume absence of arbitrage in this second model. It is clear that the process Lε has
the Lévy characteristic triplet

(
a, b2 + G2(ε), 1{|·|≥ε}�

)
under the measure P.

Let P̃ε represent a structure preserving martingale measure for Ŝε. The charac-
teristic triplet of the driving process Lε w.r.t. this martingale measure is denoted

by
(

ãε, b2 + G2(ε), �̃ε

)
. From [14, Theorem III.3.24] we know that there exist a

parameter Θ ∈ R and a function ρ(z;Θ), z ∈ R, under certain conditions, such that

∫
{ε≤|z|<1}

|z(ρ(z;Θ) − 1)| �(dz) < ∞, (15)

ãε = a +
(

b2 + G2(ε)
)

Θ +
∫

{ε≤|z|<1}
z (ρ(z;Θ) − 1) �(dz), and (16)

�̃ε(dz) = 1{|z|≥ε}ρ(z;Θ)�(dz). (17)

Let us assume that Θ solves the following equation

ãε − r + 1

2

(
b2 + G2(ε)

)
+
∫
R0

(
ez − 1 − z1{|z|<1}

)
�̃ε(dz) = 0, (18)

then Ŝε is a martingale under P̃. From now onwe indicate the solution of (18)—when
it exists—as Θε and the martingale measure as P̃Θε .
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The relation between the original measure P and the martingale measure P̃Θε is
given by

dP̃Θε

dP

∣∣∣
F̃t

= exp

(
bΘεWt − 1

2
b2Θ0

2t + G(ε)ΘεW̃t − 1

2
G2(ε)Θε

2t

+
∫ t

0

∫
{|z|≥ε}

log(ρ(z;Θε))Ñ (ds, dz)

+ t
∫

{|z|≥ε}
(
log (ρ(z;Θε)) + 1 − ρ(z;Θε)

)
�(dz)

)
.

The processes W Θε , W̃ Θε , and ÑΘε defined by

dW Θε
t = dWt − bΘεdt,

dW̃ Θε
t = dW̃t − G(ε)Θεdt,

ÑΘε(dt, dz) = N (dt, dz) − ρ(z; Θε)�(dz)dt

= Ñ (dt, dz) + (1 − ρ(z; Θε))�(dz)dt, (19)

for all t ∈ [0, T ] and z ∈ {z ∈ R : |z| ≥ ε}, are two standard Brownian motions and
a compensated jump measure under P̃Θε (see e.g. Theorem 1.33 in [17]). Hence the
process Ŝε is given by

dŜε
t = Ŝε

t bdW Θε
t + Ŝε

t

∫
{|z|≥ε}

(ez − 1)ÑΘε(dt, dz) + Ŝε
t G(ε)dW̃ Θε

t . (20)

We consider an F̃T -measurable and square integrable random variable H ε
T which

is the payoff of a contract. The discounted payoff is denoted by Ĥ ε
T = e−rT H ε

T . The
GKW-decomposition of Ĥ ε

T under the martingale measure P̃Θε equals

Ĥ ε
T = Ẽ

Θε [Ĥ ε
T ] +

∫ T

0
ξΘε

s dŜε
s + L Θε

T , (21)

where Ẽ
Θε is the expectation under P̃Θε , ξΘε is a predictable process for which

we can determine the stochastic integral with respect to Ŝε, and L Θε is a square
integrable P̃Θε -martingale withL Θε

0 = 0, such that L Θε is P̃Θε -orthogonal to Ŝε.
The value of the discounted portfolio for the RM strategy is defined by

V̂ Θε
t = Ẽ

Θε [Ĥ ε
T |F̃t ], ∀t ∈ [0, T ].

From the GKW-decomposition (21) we have

V̂ Θε
t = V̂ Θε

0 +
∫ t

0
ξΘε

s dŜε
s + L Θε

t , ∀t ∈ [0, T ]. (22)
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Moreover since L Θε is a P̃Θε -martingale, there exist processes XΘε , Y Θε(z), and
ZΘε such that

L Θε
t =

∫ t

0
XΘε

s dW Θε
s +

∫ t

0

∫
{|z|≥ε}

Y Θε
s (z)ÑΘε (ds, dz) +

∫ t

0
ZΘε

s dW̃ Θε
s , ∀t ∈ [0, T ].

(23)
The P̃Θε -orthogonality of L Θε and Ŝε implies that

XΘε b +
∫

{|z|≥ε}
Y Θε(z)(ez − 1)ρ(z;Θε)�(dz) + ZΘε G(ε) = 0. (24)

Combining (20) and (23) in (22), we get

dV̂ Θε
t =

(
ξ
Θε
t Ŝε

t b + XΘε
t

)
dWΘε

t +
∫
{|z|≥ε}

(
ξ
Θε
t Ŝε

t (ez − 1) + Y Θε
t (z)

)
ÑΘε (dt, dz)

+
(
ξ
Θε
t Ŝε

t G(ε) + ZΘε
t

)
dW̃Θε

t .

Let π̂Θε = ξΘε Ŝε denote the amount of wealth invested in the discounted risky asset
in the quadratic hedging strategy. We conclude that the following BSDEJ holds for
the RM strategy

⎧⎪⎨
⎪⎩
dV̂ Θε

t = AΘε
t dW Θε

t +
∫

{|z|≥ε}
BΘε

t (z)ÑΘε(dt, dz) + CΘε
t dW̃ Θε

t ,

V̂ Θε

T = Ĥ ε
T ,

(25)

where

AΘε = π̂Θε b + XΘε , BΘε(z) = π̂Θε (ez − 1) + Y Θε(z), and (26)

CΘε = π̂Θε G(ε) + ZΘε .

Since the random variable Ĥ ε
T is square integrable and F̃T -measurable we know

by [20] that the BSDEJ (25) has a unique solution
(

V̂ Θε , AΘε , BΘε , CΘε

)
. This

results from the fact that the drift parameter of V̂ Θε equals zero under P̃Θε and thus
is Lipschitz continuous.

3 Robustness of the Quadratic Hedging Strategies

The aim of this section is to study the stability of the quadratic hedging strategies
to the variation of the model, where we consider the two stock price models defined
in (1) and (13). We study the stability of the RM strategy extensively and at the end
of this section we come back to the MVH strategy. Since we work in the martingale
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setting, we first present some specific martingale measures which are commonly
used in finance and in electricity markets. Then we discuss some common properties
which are fulfilled by these measures. This is the topic of the next subsection.

3.1 Robustness of the Martingale Measures

Recall from the previous section that the martingale measures P̃Θ0 and P̃Θε are deter-
mined via the functions ρ(. ;Θ0), ρ(. ;Θε) and the parameters Θ0, Θε, respectively.
We present the following assumptions on these characteristics.

Assumptions 1 For Θ0, Θε, ρ(. ;Θ0), and ρ(. ;Θε) satisfying Eqs. (2)–(4), and
Eqs. (15)–(18) we assume the following, where C denotes a positive constant and
Θ ∈ {Θ0,Θε}.
(i) Θ0 and Θε exist and are unique.
(ii) It holds that

|Θ0 − Θε| ≤ CG̃2(ε),

where G̃(ε) = max(G(ε), σ (ε)). Herein σ(ε) equals the standard deviation of
the jumps of L with size smaller than ε, i.e.

σ 2(ε) =
∫

{|z|<ε}
z2�(dz).

(iii) On the other hand, Θε is uniformly bounded in ε, i.e.

|Θε| ≤ C.

(iv) For all z in {|z| < 1} it holds that

|ρ(z;Θ)| ≤ C.

(v) We have ∫
{|z|≥1}

ρ4(z;Θ)�(dz) ≤ C.

(vi) It is guaranteed that

∫
R0

(
1 − ρ(z;Θ)

)2
�(dz) ≤ C.
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(vii) It holds for k ∈ {2, 4} that
∫
R0

(
ρ(z;Θ0) − ρ(z;Θε)

)k
�(dz) ≤ CG̃2k(ε).

Widely used martingale measures in the exponential Lévy setting are the Esscher
transform (ET), minimal entropy martingale measure (MEMM), and minimal mar-
tingale measure (MMM), which are specified as follows.

• In order to define the ET we assume that
∫

{|z|≥1}
eθ z�(dz) < ∞, ∀θ ∈ R. (27)

The Lévy measures under the ET are given in (3) and (17) where ρ(z;Θ) = eΘz .
The ET for the first model is then determined by the parameter Θ0 satisfying (4).
For the second model the ET corresponds to the solution Θε of (18). See [13] for
more details.

• Let us impose that

∫
{|z|≥1}

eθ(ez−1)�(dz) < ∞, ∀θ ∈ R, (28)

and that ρ(z;Θ) = eΘ(ez−1) in the Lévy measures. Then the solution Θ0 of
Eq. (4) determines the MEMM for the first model, and Θε being the solution of
(18) characterises the MEMM for the second model. The MEMM is studied in
[12].

• Let us consider the assumption

∫
{z≥1}

e4z�(dz) < ∞. (29)

The MMM implies that ρ(z;Θ) = Θ(ez − 1) − 1 in the Lévy measures and the
parameters Θ0 and Θε are the solutions of (4) and (18). More information about
the MMM can be found in [1, 10].

In [4, 6] it was shown that the ET, the MEMM, and the MMM fulfill statements (i),
(ii), (iii), and (iv) of Assumptions 1 in the exponential Lévy setting. The following
proposition shows that items (v), (vi), and (vii) of Assumptions 1 also hold for these
martingale measures.

Proposition 1 The Lévy measures given in (3) and (17) and corresponding to the
ET, MEMM, and MMM, satisfy (v), (vi), and (vii) of Assumptions 1.

Proof Recall that the Lévy measure satisfies the following integrability conditions
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∫
{|z|<1}

z2�(dz) < ∞ and
∫

{|z|≥1}
�(dz) < ∞. (30)

We show that the statement holds for the considered martingale measures.

• Under the ET it holds for Θ ∈ {Θ0,Θε} that

ρ4(z;Θ) = e4Θz ≤ e4C|z|,

because of (iii) in Assumptions 1. By the mean value theorem (MVT), there exists
a number Θ ′ between 0 and Θ such that

(
1 − ρ(z;Θ)

)2 = z2e2Θ
′zΘ2 ≤

(
1{|z|<1}e2C z2 + 1{|z|≥1}e(2C+2)z

)
C,

where we used again Assumptions 1 (iii). For k ∈ {2, 4}, we derive via the MVT
that

(
ρ(z;Θ0) − ρ(z;Θε)

)k = ekΘ0z
(
1 − e(Θε−Θ0)z

)k = ekΘ0z zkekΘ ′′z(Θ0 − Θε)
k,

where Θ ′′ is a number between 0 and Θε − Θ0. Assumptions 1 (ii) imply that

(
ρ(z;Θ0)−ρ(z;Θε)

)k ≤
(
1{|z|<1}ek(|Θ0|+C)z2 + 1{|z|≥1}ek(Θ0+1+C)z

)
CG̃2k(ε).

The obtained inequalities and integrability conditions (27) and (30) prove the
statement.

• Consider the MEMM and Θ ∈ {Θ0,Θε}. We have

ρ4(z;Θ) = e4Θ(ez−1) ≤ e4C|ez−1|,

because of (iii) in Assumptions 1. The latter assumption and the MVT imply that

(
1 − ρ(z;Θ)

)2 = (ez − 1)2e2Θ
′(ez−1)Θ2

≤
(
1{|z|<1}e2C(e+1)+2z2 + 1{|z|≥1}e(2C+2)(ez−1)

)
C.

We determine via the MVT and properties (ii) and (iii) in Assumptions 1 for
k ∈ {2, 4} that
(
ρ(z;Θ0) − ρ(z;Θε)

)k
= ekΘ0(ez−1)

(
1 − e(Θε−Θ0)(ez−1)

)k

= ekΘ0(ez−1)(ez − 1)kekΘ ′′(ez−1)(Θ0 − Θε)
k

≤
(
1{|z|<1}ek(|Θ0|(e+1)+1+C(e+1))z2 + 1{|z|≥1}ek(Θ0+1+C)(ez−1)

)
CG̃2k(ε).
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From (28) and (30) we conclude that (v), (vi), and (vii) in Assumptions 1 are in
force.

• For the MMM we have

ρ4(z;Θ) = (Θ(ez − 1) − 1
)4 ≤ C(e4z + 1).

Moreover it holds that

(
1 − ρ(z;Θ)

)2 = (ez − 1)2Θ2 ≤
(
1{|z|<1}e2z2 + 1{|z|≥1}(e2z + 1)

)
C.

We get through (ii) and (iii) in Assumptions 1 that

(
ρ(z;Θ0) − ρ(z;Θε)

)k = (ez − 1)k(Θ0 − Θε)
k

≤
(
1{|z|<1}ek z2 + 1{|z|≥1}(ekz + 1)

)
CG̃2k(ε),

for k ∈ {2, 4}. The proof is completed by involving conditions (29) and (30). �

3.2 Robustness of the BSDEJ

The aim of this subsection is to study the robustness of the BSDEJs (11) and (25).
First, we prove the L2-boundedness of the solution of theBSDEJ (11) in the following
lemma.

Lemma 1 Assume point (vi) from Assumptions 1. Let (V̂ Θ0 , AΘ0 , BΘ0) be the solu-
tion of (11). Then we have for all t ∈ [0, T ]

E

[∫ T

t
(V̂ Θ0

s )2ds

]
+E

[∫ T

t
(AΘ0

s )2ds

]
+E

[∫ T

t

∫
R0

(BΘ0
s (z))2�(dz)ds

]
≤ CE[Ĥ2

T ],

where C represents a positive constant.

Proof Via (5) we rewrite the BSDEJ (11) as follows

dV̂ Θ0
t =

(
−bΘ0AΘ0

t +
∫
R0

BΘ0
t (z)(1 − ρ(z;Θ0))�(dz)

)
dt

+ AΘ0
t dWt +

∫
R0

BΘ0
t (z)Ñ (dt, dz).

We apply the Itô formula to eβt (V̂ Θ0
t )2 and find that
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d
(
eβt (V̂ Θ0

t )2
)

= βeβt (V̂ Θ0
t )2dt + 2eβt V̂ Θ0

t

(
−bΘ0AΘ0

t +
∫
R0

BΘ0
t (z)(1 − ρ(z; Θ0))�(dz)

)
dt

+ 2eβt V̂ Θ0
t AΘ0

t dWt + eβt (AΘ0
t )2dt

+
∫
R0

eβt
((

V̂ Θ0
t− + BΘ0

t (z)
)2 − (V̂ Θ0

t− )2
)

Ñ (dt, dz) +
∫
R0

eβt (BΘ0
t (z))2�(dz)dt.

By integration and taking the expectation we recover that

E

[
eβt (V̂ Θ0

t )2
]

= E

[
eβT (V̂ Θ0

T )2
]

− βE

[∫ T

t
eβs(V̂ Θ0

s )2ds

]

− 2E

[∫ T

t
eβs V̂ Θ0

s

(
−bΘ0AΘ0

s +
∫
R0

BΘ0
s (z)(1 − ρ(z;Θ0))�(dz)

)
ds

]
(31)

− E

[∫ T

t
eβs(AΘ0

s )2ds

]
− E

[∫ T

t

∫
R0

eβs(BΘ0
s (z))2�(dz)ds

]
.

Because of the properties

for all a, b ∈ R and k ∈ R
+
0 it holds that ± 2ab ≤ ka2 + 1

k
b2 (32)

and

for all n ∈ N and for all ai ∈ R, i = 1, . . . , n we have that

(
n∑

i=1

ai

)2

≤ n
n∑

i=1

a2
i ,

(33)
the third term in the right hand side of (31) is estimated by

− 2E

[∫ T

t
eβs V̂ Θ0

s

(
−bΘ0AΘ0

s +
∫
R0

BΘ0
s (z)(1 − ρ(z; Θ0))�(dz)

)
ds

]

≤ E

[∫ T

t
eβs

{
k(V̂ Θ0

s )2 + 1

k

(
−bΘ0AΘ0

s +
∫
R0

BΘ0
s (z)(1 − ρ(z; Θ0))�(dz)

)2}
ds

]

≤ kE

[∫ T

t
eβs(V̂ Θ0

s )2ds

]
+ 2

k
b2Θ0

2
E

[∫ T

t
eβs(AΘ0

s )2ds

]

+ 2

k

∫
R0

(1 − ρ(z; Θ0))
2 �(dz)E

[∫ T

t
eβs
∫
R0

(BΘ0
s (z))2�(dz)ds

]
.

Substituting the latter inequality in (31) leads to



Quantification of Model Risk in Quadratic Hedging in Finance 225

E

[
eβt (V̂ Θ0

t )2
]

+ (β − k)E

[∫ T

t
eβs(V̂ Θ0

s )2ds

]
+
(
1 − 2

k
b2Θ0

2
)
E

[∫ T

t
eβs(AΘ0

s )2ds

]

+
(
1 − 2

k

∫
R0

(1 − ρ(z; Θ0))
2 �(dz)

)
E

[∫ T

t
eβs
∫
R0

(BΘ0
s (z))2�(dz)ds

]

≤ E

[
eβT (V̂ Θ0

T )2
]
. (34)

Let k guarantee that

1 − 2

k
b2Θ0

2 ≥ 1

2
and 1 − 2

k

∫
R0

(1 − ρ(z;Θ0))
2 �(dz) ≥ 1

2
.

Hence we choose

k ≥ 4max

(
b2Θ0

2,

∫
R0

(1 − ρ(z;Θ0))
2 �(dz)

)
> 0,

which exists because of (vi) from Assumptions 1. Besides we assume that β ≥
k + 1

2 > 0. Then for s ∈ [0, T ] it follows that 1 ≤ eβs ≤ eβT and from (34) we
achieve

E

[∫ T

t
(V̂ Θ0

s )2ds

]
+ E

[∫ T

t
(AΘ0

s )2ds

]
+ E

[∫ T

t

∫
R0

(BΘ0
s (z))2�(dz)ds

]
≤ CE[(V̂ Θ0

T )2],

which proves the claim. �

In order to study the robustness of the BSDEJs (11) and (25), we consider both
models under the enlarged filtration F̃ since we have for all t ∈ [0, T ] thatFt ⊂ F̃t .
Let us define

V̄ ε = V̂ Θ0 − V̂ Θε , Āε = AΘ0 − AΘε , B̄ε(z) = BΘ0(z) − 1{|z|≥ε} BΘε(z).

We derive from (5), (11), (19), and (25) that

dV̄ ε
t = αε

t dt + Āε
t dWt +

∫
R0

B̄ε
t (z)Ñ (dt, dz) − CΘε

t dW̃t , (35)

where

αε = −b(Θ0AΘ0 − Θε AΘε) + G(ε)ΘεCΘε (36)

+
∫
R0

(
BΘ0(z) (1 − ρ(z;Θ0)) − 1{|z|≥ε} BΘε(z) (1 − ρ(z;Θε))

)
�(dz).
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The process αε (36) plays a crucial role in the study of the robustness of the
BSDEJ. In the following lemma we state an upper bound for this process in terms of
the solutions of the BSDEJs.

Lemma 2 Let Assumptions 1 hold true. Consider αε as defined in (36). For any
t ∈ [0, T ] and β ∈ R it holds that

E

[∫ T

t
eβs(αε

s )
2ds

]

≤ C

(
G̃4(ε)

{
E

[∫ T

t
eβs(AΘ0

s )2ds

]
+ E

[∫ T

t
eβs
∫
R0

(BΘ0
s (z))2�(dz)ds

]}

+ E

[∫ T

t
eβs( Āε

s )
2ds

]
+ E

[∫ T

t
eβs
∫
R0

(B̄ε
s (z))2�(dz)ds

]

+E

[∫ T

t
eβs(CΘε

s )2ds

])
,

where C is a positive constant.

Proof Parts (ii) and (iii) of Assumptions 1 imply that

∣∣−b
(
Θ0AΘ0

s − Θε AΘε
s

)∣∣ ≤ |b||Θ0 − Θε||AΘ0
s | + |b||Θε||AΘ0

s − AΘε
s |

≤ CG̃2(ε)|AΘ0
s | + C | Āε

s |

and
|G(ε)ΘεCΘε

s | ≤ C |CΘε
s |.

From Hölder’s inequality and Assumptions 1 (vi) and (vii) it follows that

∣∣∣
∫
R0

(
BΘ0

s (z) (1 − ρ(z;Θ0)) − 1{|z|≥ε} BΘε
s (z) (1 − ρ(z;Θε))

)
�(dz)

∣∣∣
≤
∣∣∣
∫
R0

BΘ0
s (z) (ρ(z;Θ0) − ρ(z;Θε)) �(dz)

∣∣∣+
∣∣∣
∫
R0

B̄ε
s (z) (1 − ρ(z;Θε)) �(dz)

∣∣∣

≤
(∫

R0

(
ρ(z;Θ0) − ρ(z;Θε)

)2
�(dz)

)1/2 (∫
R0

(BΘ0
s (z))2�(dz)

)1/2

+
(∫

R0

(
1 − ρ(z;Θε)

)2
�(dz)

)1/2 (∫
R0

(B̄ε
s (z))2�(dz)

)1/2

≤ CG̃2(ε)

(∫
R0

(BΘ0
s (z))2�(dz)

)1/2

+ C

(∫
R0

(B̄ε
s (z))2�(dz)

)1/2

.
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We conclude that

(αε
s )

2 ≤ C

(
G̃4(ε)

{
(AΘ0

s )2 +
∫
R0

(BΘ0
s (z))2�(dz)

}

+ ( Āε
s )

2 +
∫
R0

(B̄ε
s (z))2�(dz) + (CΘε

s )2
)

.

The statement is easily deduced from this inequality. �

With these two lemmas ready for use, we state and prove the main result of this
subsection which is the robustness of the BSDEJs for the discounted portfolio value
process of the RM strategy.

Theorem 1 Assumptions 1 are in force. Let (V̂ Θ0 , AΘ0 , BΘ0) be the solution of (11)
and (V̂ Θε , AΘε , BΘε , CΘε) be the solution of (25). For some positive constant C
and any t ∈ [0, T ] we have

E

[∫ T

t
(V̂ Θ0

s − V̂ Θε
s )2ds

]
+ E

[∫ T

t
(AΘ0

s − AΘε
s )2ds

]

+ E

[∫ T

t

∫
R0

(
BΘ0

s (z) − 1{|z|≥ε} BΘε
s (z)

)2
�(dz)ds

]
+ E

[∫ T

t
(CΘε

s )2ds

]

≤ C
(
E

[
(ĤT − Ĥ ε

T )2
]

+ G̃4(ε)E[Ĥ2
T ]
)

.

Proof We apply the Itô formula to eβt (V̄ ε
t )2

d
(
eβt (V̄ ε

t )2
)

= βeβt (V̄ ε
t )2dt + 2eβt V̄ ε

t αε
t dt + 2eβt V̄ ε

t Āε
t dWt − 2eβt V̄ ε

t CΘε
t dW̃t

+ eβt ( Āε
t )

2dt + eβt (CΘε
t )2dt +

∫
R0

eβt (B̄ε
t (z))2�(dz)dt

+
∫
R0

eβt
(
(V̄ ε

t− + B̄ε
t (z))2 − (V̄ ε

t−)2
)

Ñ (dt, dz).

Integration over the interval [t, T ] and taking the expectation under P results into

E

[
eβt (V̄ ε

t )2
]

= E

[
eβT (V̄ ε

T )2
]

− βE

[∫ T

t
eβs(V̄ ε

s )2ds

]
− 2E

[∫ T

t
eβs V̄ ε

s αε
s ds

]

− E

[∫ T

t
eβs( Āε

s )
2ds

]
− E

[∫ T

t

∫
R0

eβs(B̄ε
s (z))2�(dz)ds

]

− E

[∫ T

t
eβs(CΘε

s )2ds

]
,
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or equivalently

E

[
eβt (V̄ ε

t )2
]

+ E

[∫ T

t
eβs( Āε

s )
2ds

]

+ E

[∫ T

t

∫
R0

eβs(B̄ε
s (z))2�(dz)ds

]
+ E

[∫ T

t
eβs(CΘε

s )2ds

]

= E

[
eβT (V̄ ε

T )2
]

− βE

[∫ T

t
eβs(V̄ ε

s )2ds

]
− 2E

[∫ T

t
eβs V̄ ε

s αε
s ds

]

≤ E

[
eβT (V̄ ε

T )2
]

+ (k − β)E

[∫ T

t
eβs(V̄ ε

s )2ds

]
+ 1

k
E

[∫ T

t
eβs(αε

s )
2ds

]
, (37)

where we used property (32). The combination of (37) with Lemma 2 provides

E
[
eβt (V̄ ε

t )2
]+ (β − k)E

[∫ T

t
eβs(V̄ ε

s )2ds

]
+
(
1 − C

k

)
E

[∫ T

t
eβs( Āε

s )
2ds

]

+
(
1 − C

k

)
E

[∫ T

t
eβs
∫
R0

(B̄Θε
s (z))2�(dz)ds

]
+
(
1 − C

k

)
E

[∫ T

t
eβs(CΘε

s )2ds

]

≤ E

[
eβT (V̄ ε

T )2
]

+ C

k
G̃4(ε)

{
E

[∫ T

t
eβs(AΘ0

s )2ds

]
(38)

+E

[∫ T

t
eβs
∫
R0

(BΘ0
s (z))2�(dz)ds

]}
.

Let us choose k and β such that 1 − C
k ≥ 1

2 and β − k ≥ 1
2 . This means we choose

k ≥ 2C > 0 andβ ≥ 1
2 + k > 0. Thus for any s ∈ [t, T ] it holds that 1 < eβs ≤ eβT .

We derive from (38) that

E

[∫ T

t
(V̄ ε

s )2ds

]
+ E

[∫ T

t
( Āε

s )
2ds

]

+ E

[∫ T

t

∫
R0

(B̄Θε
s (z))2�(dz)ds

]
+ E

[∫ T

t
(CΘε

s )2ds

]

≤ C

(
E
[
(V̄ ε

T )2
]+ G̃4(ε)

{
E

[∫ T

t
(AΘ0

s )2ds

]
+ E

[∫ T

t

∫
R0

(BΘ0
s (z))2�(dz)ds

]})
.

By Lemma 1 we conclude the proof. �

This main result leads to the following theorem concerning the robustness of the
discounted portfolio value process of the RM strategy.

Theorem 2 Assume Assumptions 1. Let V̂ Θ0 , V̂ Θε be part of the solution of (11),
(25) respectively. Then we have
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E

[
sup

0≤t≤T
(V̂ Θ0

s − V̂ Θε
s )2

]
≤ C

(
E[(ĤT − Ĥ ε

T )2] + G̃4(ε)E[Ĥ2
T ]
)

,

for a positive constant C.

Proof Integration of the BSDEJ (35) results into

V̄ ε
t = V̄ ε

T −
∫ T

t
αε

s ds −
∫ T

t
Āε

sdWs −
∫ T

t

∫
R0

B̄ε
s (z)Ñ (ds, dz) +

∫ T

t
CΘε

s dW̃s .

By property (33) we arrive at

E

[
sup

0≤t≤T
(V̄ ε

t )2

]

≤ 5

⎛
⎝E [(V̄ ε

T )2
]

+ E

[∫ T

0
(αε

s )2ds

]
+ E

⎡
⎣ sup
0≤t≤T

(∫ T

t
Āε

sdWs

)2⎤
⎦

+E

⎡
⎣ sup
0≤t≤T

(∫ T

t

∫
R0

B̄ε
s (z)Ñ (ds, dz)

)2⎤
⎦+ E

⎡
⎣ sup
0≤t≤T

(∫ T

t
CΘε

s dW̃s

)2⎤
⎦
⎞
⎠ .

Burkholder’s inequality (see e.g., Theorem 3.28 in [15]) guarantees the existence of
a positive constant C such that

E

[
sup

0≤t≤T

(∫ T

t
Āε

sdWs

)2]
≤ CE

[∫ T

0
( Āε

s )
2ds

]
,

E

[
sup

0≤t≤T

(∫ T

t

∫
R0

B̄ε
s (z)Ñ (ds, dz)

)2]
≤ CE

[∫ T

0

∫
R0

(B̄ε
s (z))2�(dz)ds

]
,

E

[
sup

0≤t≤T

(∫ T

t
CΘε

s dW̃s

)2]
≤ CE

[∫ T

0
(CΘε

s )2ds

]
.

Application of Lemma 2 for t = 0, β = 0, Lemma 1, and Theorem 1 completes the
proof. �

3.3 Robustness of the Risk-Minimising Strategy

Theorem 2 in the previous subsection concerns the robustness result of the value
process of the discounted portfolio in the RM strategy. Before we present the stability
of the amount of wealth in the RM strategy, we study the relation between π̂Θ0

(resp. π̂Θε ) and the solution of the BSDEJ of type (11) (resp. (25)) in the first
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(resp. second) model. Consider the processes AΘ0 and BΘ0(z) defined in (12), then
it holds that

AΘ0b +
∫
R0

BΘ0(z)(ez − 1)ρ(z; Θ0)�(dz)

= π̂Θ0b2 + XΘ0b +
∫
R0

(
π̂Θ0(ez − 1)2ρ(z; Θ0) + Y Θ0(z)(ez − 1)ρ(z; Θ0)

)
�(dz)

= π̂Θ0

{
b2 +

∫
R0

(ez − 1)2ρ(z; Θ0)�(dz)

}

+ XΘ0b +
∫
R0

Y Θ0(z)(ez − 1)ρ(z; Θ0)�(dz).

From property (10) we attain that

π̂Θ0 = 1

κ0

(
AΘ0b +

∫
R0

BΘ0(z)(ez − 1)ρ(z;Θ0)�(dz)

)
, (39)

where κ0 = b2 + ∫
R0

(ez − 1)2ρ(z;Θ0)�(dz). Similarly for the second setting we

have for the processes AΘε , BΘε(z), and CΘε defined in (26) that

AΘε b +
∫

{|z|≥ε}
BΘε(z)(ez − 1)ρ(z;Θε)�(dz) + CΘε G(ε)

= π̂Θε

{
b2 +

∫
{|z|≥ε}

(ez − 1)2ρ(z;Θε)�(dz) + G2(ε)

}

+ XΘε b +
∫

{|z|≥ε}
Y Θε(z)(ez − 1)ρ(z;Θε)�(dz) + ZΘε G(ε).

Property (24) leads to

π̂Θε = 1

κε

(
AΘε b +

∫
{|z|≥ε}

BΘε(z)(ez − 1)ρ(z;Θε)�(dz) + CΘε G(ε)

)
, (40)

where κε = b2 + ∫{|z|≥ε}(e
z − 1)2ρ(z;Θε)�(dz) + G2(ε).

We introduce the following additional assumption on the Lévy measure which we
need for the robustness results studied later.

Assumption 2 For the Lévy measure � the following integrability condition holds

∫
{z≥1}

e4z�(dz) < ∞.
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Note that the latter assumption, combined with (30), implies for k ∈ {2, 4} that
∫
R0

(ez−1)k�(dz) ≤ C

(∫
{|z|<1}

z2�(dz) +
∫

{|z|≥1}
�(dz) +

∫
{z≥1}

e4z�(dz)

)
< ∞.

(41)
Moreover Assumption 2 is fulfilled for the considered martingale measures
described in Sect. 3.1. Indeed, consider the ET, applying (27) for θ = 4 and restrict-
ing the integral over {z ≥ 1} implies Assumption 2. On the set {z ≥ 1} it holds that
z ≤ ez − 1 and therefore Assumption 2 follows from (28) by choosing θ = 4. For
the MMM, condition (29) corresponds exactly to Assumption 2.

Theorem 3 Impose Assumptions 1 and 2. Let the processes π̂Θ0 and π̂Θε denote
the amounts of wealth in a RM strategy. There is a positive constant C such that for
any t ∈ [0, T ]

E

[∫ T

t
(π̂Θ0

s − π̂Θε
s )2ds

]
≤ C

(
E[(ĤT − Ĥ ε

T )2] + G̃4(ε)E[Ĥ2
T ]
)

.

Proof Consider the amounts of wealth in (39) and (40). Let us denote π̂Θ0 = 1
κ0

Υ 0

and π̂Θε = 1
κε

Υ ε. Then it holds that

(
π̂Θ0 − π̂Θε

)2 ≤ 2

((
κ0 − κε

κ0κε

)2

(Υ 0)2 + 1

κ2
ε

(Υ 0 − Υ ε)2

)
.

Herein we have because of the Hölder’s inequality, (14), (41), and properties (iv) and
(vii) in Assumptions 1 that

(
κ0 − κε

κ0κε

)2

≤ 3

b8

((∫
{|z|<ε}

(ez − 1)2ρ(z;Θ0)�(dz)

)2

+
(∫

{|z|≥ε}
(ez − 1)2(ρ(z;Θ0) − ρ(z;Θε))�(dz)

)2
+ G4(ε)

)

≤ 3

b8

(
C

(∫
{|z|<ε}

(ez − 1)2�(dz)

)2

+
∫
R0

(ez − 1)4�(dz)
∫
R0

(ρ(z;Θ0) − ρ(z;Θε))
2 �(dz) + G4(ε)

⎞
⎠

≤ CG̃4(ε).
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On the other hand it is clear from (39) and (40) that

(Υ 0 − Υ ε)2

≤ 3
(
( Āε)2b2 + (CΘε)2G2(ε)

+
(∫

R0

(BΘ0(z)(ez − 1)ρ(z; Θ0) − 1{|z|≥ε}BΘε(z)(ez − 1)ρ(z; Θε))�(dz)

)2)
.

Herein we derive via Hölder’s inequality, (30), (41), and points (iv), (v), and (vii) in
Assumptions 1 that

(∫
R0

(BΘ0(z)(ez − 1)ρ(z;Θ0) − 1{|z|≥ε} BΘε (z)(ez − 1)ρ(z;Θε))�(dz)

)2

=
(∫

R0

(BΘ0(z)(ρ(z;Θ0) − ρ(z;Θε))(e
z − 1) + B̄ε(z)ρ(z;Θε)(e

z − 1))�(dz)

)2

≤
∫
R0

(BΘ0(z))2�(dz)
∫
R0

(ρ(z;Θ0) − ρ(z;Θε))
2(ez − 1)2�(dz)

+
∫
R0

(B̄ε(z))2�(dz)
∫
R0

ρ2(z;Θε)(e
z − 1)2�(dz)

≤
∫
R0

(BΘ0(z))2�(dz)

(∫
R0

(ρ(z;Θ0) − ρ(z;Θε))
4�(dz)

) 1
2
(∫

R0

(ez − 1)4�(dz)

) 1
2

+
∫
R0

(B̄ε(z))2�(dz)

(∫
{|z|≥1}

ρ4(z;Θε)�(dz)
∫

{|z|≥1}
(ez − 1)4�(dz)

) 1
2

+ C
∫
R0

(B̄ε(z))2�(dz)
∫

{|z|<1}
z2�(dz)

≤ CG̃4(ε)

∫
R0

(BΘ0(z))2�(dz) + C
∫
R0

(B̄ε(z))2�(dz).

The results above show that

(
π̂

Θ0
t − π̂

Θε
t

)2 ≤ C

(
( Āε

t )
2 +

∫
R0

(B̄ε
t (z))2�(dz) + (CΘε

t )2

+ G̃4(ε)

{
(AΘ0

t )2 +
∫
R0

(BΘ0
t (z))2�(dz)

})
.
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Therefore

E

[∫ T

t
(π̂Θ0

s − π̂Θε
s )2ds

]

≤ C

(
E

[∫ T

t
( Āε

s )
2ds

]
+ E

[∫ T

t

∫
R0

(B̄ε
s (z))2�(dz)ds

]
+ E

[∫ T

t
(CΘε

s )2ds

]

+ G̃4(ε)

{
E

[∫ T

t
(AΘ0

s )2ds

]
+ E

[∫ T

t

∫
R0

(BΘ0
s (z))2�(dz)ds

]})
.

By Lemma 1 and Theorem 1 we conclude the proof. �

The trading in the risky assets is gathered in the gain processes defined by ĜΘ0
t =∫ t

0 ξ
Θ0
s dŜs and ĜΘε

t = ∫ t
0 ξ

Θε
s dŜε

s . The following theorem shows the robustness of
this gain process.

Theorem 4 Under Assumptions 1 and 2, there exists a positive constant C such that
for any t ∈ [0, T ]

E

[(
ĜΘ0

t − ĜΘε
t

)2] ≤ C
(
E[(ĤT − Ĥ ε

T )2] + G̃2(ε)E[Ĥ2
T ]
)

.

Proof From (5) and (6) we know that

ξΘ0
s dŜs = ξΘ0

s ŜsbdW Θ0
s + ξΘ0

s Ŝs

∫
R0

(ez − 1)ÑΘ0(ds, dz)

= π̂Θ0
s

((
−b2Θ0 +

∫
R0

(ez − 1) (1 − ρ(z;Θ0)) �(dz)

)
ds

+ bdWs +
∫
R0

(ez − 1)Ñ (ds, dz)

)
.

In the other setting we have from (19) and (20) that

ξΘε
s dŜε

s = ξΘε
s Ŝε

s bdW Θε
s + ξΘε

s Ŝε
s

∫
{|z|≥ε}

(ez − 1)ÑΘε(ds, dz) + ξΘε
s Ŝε

s G(ε)dW̃ Θε
s

= π̂Θε
s

((
−b2Θε +

∫
{|z|≥ε}

(ez − 1) (1 − ρ(z;Θε)) �(dz) − G2(ε)Θε

)
ds

+ bdWs +
∫

{|z|≥ε}
(ez − 1)Ñ (ds, dz) + G(ε)dW̃s

)
.
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We derive from the previous SDEs that

ĜΘ0
t − ĜΘε

t =
∫ t

0
ξΘ0

s dŜs −
∫ t

0
ξΘε

s dŜε
s

=
(

−b2Θ0 +
∫
R0

(ez − 1) (1 − ρ(z;Θ0)) �(dz)

)∫ t

0
π̂Θ0

s ds

−
(

−b2Θε +
∫

{|z|≥ε}
(ez − 1) (1 − ρ(z;Θε)) �(dz) − G2(ε)Θε

)∫ t

0
π̂Θε

s ds

+ b
∫ t

0
(π̂Θ0

s − π̂Θε
s )dWs +

∫ t

0

∫
R0

(
π̂Θ0

s (ez − 1) − π̂Θε
s 1{|z|≥ε}(ez − 1)

)
Ñ (ds, dz)

− G(ε)

∫ t

0
π̂Θε

s dW̃s .

Via the Cauchy-Schwartz inequality and the Itô isometry we obtain that

E

[(
ĜΘ0

t − ĜΘε
t

)2]

≤ C

(
E

[∫ t

0
(π̂Θ0

s )2ds

]{(
−b2Θ0 +

∫
R0

(ez − 1) (1 − ρ(z;Θ0)) �(dz)

)

−
(

−b2Θε +
∫

{|z|≥ε}
(ez − 1) (1 − ρ(z;Θε)) �(dz) − G2(ε)Θε

)}2

+ E

[∫ t

0
(π̂Θ0

s − π̂Θε
s )2ds

]

×
(

−b2Θε +
∫

{|z|≥ε}
(ez − 1) (1 − ρ(z;Θε)) �(dz) − G2(ε)Θε

)2

+ b2E

[∫ t

0
(π̂Θ0

s − π̂Θε
s )2ds

]
+ G2(ε)E

[∫ t

0
(π̂Θε

s )2ds

]

+E

[∫ t

0

∫
R0

(
π̂Θ0

s (ez − 1) − π̂Θε
s 1{|z|≥ε}(ez − 1)

)2
�(dz)ds

])
,

wherein

E

[∫ t

0

∫
R0

(
π̂Θ0

s (ez − 1) − π̂Θε
s 1{|z|≥ε}(ez − 1)

)2
�(dz)ds

]

≤ 2E

[∫ t

0

∫
R0

(
(π̂Θ0

s )2(ez − 1)21{|z|<ε} + (π̂Θ0
s − π̂Θε

s )2(ez − 1)21{|z|≥ε}
)
�(dz)ds

]

≤ 2

(∫
{|z|<ε}

(ez − 1)2�(dz)E

[∫ t

0
(π̂Θ0

s )2ds

]

+
∫
R0

(ez − 1)2�(dz)E

[∫ t

0
(π̂Θ0

s − π̂Θε
s )2ds

])
,
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and

E

[∫ t

0
(π̂Θε

s )2ds

]
≤ 2E

[∫ t

0
(π̂Θ0

s − π̂Θε
s )2ds

]
+ 2E

[∫ t

0
(π̂Θ0

s )2ds

]
.

By relation (14), Assumptions 1, (39), (41), Lemma 1, and Theorem 3 we prove the
statement. �

The following result shows the robustness of the process L Θ appearing in the
GKW-decomposition. This plays an important role in the stability of the cost process
of the RM strategy.

Theorem 5 Let Assumptions 1 and 2 hold true. Let the processes L Θ0 and L Θε

be as in (9) and (23), respectively. For any t ∈ [0, T ] it holds that

E[(L Θ0
t − L Θε

t )2] ≤ C
(
E[(ĤT − Ĥ ε

T )2] + G̃2(ε)E[Ĥ2
T ]
)

,

for a positive constant C.

Proof By (5) we can rewrite (9) as

dL Θ0
t =

(
−bΘ0XΘ0

t +
∫
R0

Y Θ0
t (z)(1 − ρ(z;Θ0))�(dz)

)
dt

+ XΘ0
t dWt +

∫
R0

Y Θ0
t (z)Ñ (dt, dz).

and similarly by (19) we obtain for (23)

dL Θε
t =

(
−bΘε XΘε

t +
∫

{|z|≥ε}
Y Θε

t (z)(1 − ρ(z;Θε))�(dz) − G(ε)Θε ZΘε
t

)
dt

+ XΘε
t dWt +

∫
{|z|≥ε}

Y Θε
t (z)Ñ (dt, dz) + ZΘε

t dW̃t .

Hence we recover that

d(L Θ0
t − L Θε

t ) = γ ε
t dt + X̄ε

t dWt +
∫
R0

Ȳ ε
t (z)Ñ (dt, dz) − ZΘε

t dW̃t ,

where

γ ε = −b(Θ0XΘ0 − Θε XΘε) + G(ε)Θε ZΘε

+
∫
R0

(
Y Θ0(z)(1 − ρ(z;Θ0)) − 1{|z|≥ε}Y Θε(z)(1 − ρ(z;Θε))

)
�(dz),

X̄ε = XΘ0 − XΘε ,

Ȳ ε(z) = Y Θ0(z) − 1{|z|≥ε}Y Θε(z).
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By integration over [0, t] and taking the square we retrieve using (33) that

(L Θ0
t − L Θε

t )2 ≤ C

((∫ t

0
γ ε

s ds

)2

+
(∫ t

0
X̄ε

s dWs

)2

+
(∫ t

0

∫
R0

Ȳ ε
s (z)Ñ (ds, dz)

)2

+
(∫ t

0
ZΘε

s dW̃s

)2
)

.

Via the Cauchy-Schwartz inequality and the Itô isometry it follows that

E[(L Θ0
t − L Θε

t )2] ≤ C

(
E

[∫ t

0
(γ ε

s )2ds

]
+ E

[∫ t

0
(X̄ε

s )
2ds

]

+E

[∫ t

0

∫
R0

(Ȳ ε
s (z))2�(dz)ds

]
+ E

[∫ t

0
(ZΘε

s )2ds

])
.

Concerning the term E

[∫ t
0 (γ ε

s )2ds
]
we derive through (ii) and (iii) in Assumptions

1 that

E

[∫ t

0

(
Θ0XΘ0

s − Θε XΘε
s

)2
ds

]

≤ 2

(
E

[∫ t

0
(Θ0 − Θε)

2(XΘ0
s )2ds

]
+ E

[∫ t

0
Θε

2(XΘ0
s − XΘε

s )2ds

])

≤ C

(
G̃4(ε)E

[∫ t

0
(XΘ0

s )2ds

]
+ E

[∫ t

0
(X̄ε

s )
2ds

])

and via (vi) and (vii) in Assumptions 1 it follows that

E

[∫ t

0

{∫
R0

(
Y Θ0

s (z) (1 − ρ(z;Θ0)) − 1{|z|≥ε}Y Θε
s (z) (1 − ρ(z;Θε))

)
�(dz)

}2
ds

]

≤
∫
R0

(ρ(z;Θ0) − ρ(z;Θε))
2 �(dz)E

[∫ t

0

∫
R0

(Y Θ0
s (z))2�(dz)ds

]

+
∫
R0

(1 − ρ(z;Θε))
2 �(dz)E

[∫ t

0

∫
R0

(Ȳ ε
s (z))2�(dz)ds

]

≤ C

(
G̃4(ε)E

[∫ t

0

∫
R0

(Y Θ0
s (z))2�(dz)ds

]
+ E

[∫ t

0

∫
R0

(Ȳ ε
s (z))2�(dz)ds

])
.



Quantification of Model Risk in Quadratic Hedging in Finance 237

Thus we obtain that

E[(L Θ0
t − L Θε

t )2]
≤ C

(
G̃4(ε)

{
E

[∫ t

0
(XΘ0

s )2ds

]
+ E

[∫ t

0

∫
R0

(Y Θ0
s (z))2�(dz)ds

]}

+E

[∫ t

0
(X̄ε

s )
2ds

]
+ E

[∫ t

0

∫
R0

(Ȳ ε
s (z))2�(dz)ds

]
+ E

[∫ t

0
(ZΘε

s )2ds

])
.

(42)

Let us consider the terms appearing in the latter expression separately.

• Definition (12) implies that

E

[∫ t

0
(XΘ0

s )2ds

]
≤ 2

(
E

[∫ t

0
(AΘ0

s )2ds

]
+ b2E

[∫ t

0
(π̂Θ0

s )2ds

])

and

E

[∫ t

0

∫
R0

(Y Θ0
s (z))2�(dz)ds

]

≤ 2

(
E

[∫ t

0

∫
R0

(BΘ0
s (z))2�(dz)ds

]
+
∫
R0

(ez − 1)2�(dz)E

[∫ t

0
(π̂Θ0

s )2ds

])
.

• Combining (12) and (26) in

X̄ε
t = XΘ0

t − XΘε
t = Āε

t − (π̂
Θ0
t − π̂

Θε
t )b,

it easily follows that

E

[∫ t

0
(X̄ε

s )
2ds

]
≤ C

(
E

[∫ t

0
( Āε

s )
2ds

]
+ E

[∫ t

0
(π̂Θ0

s − π̂Θε
s )2ds

])
.

• Similarly, from (12) and (26) we find

Ȳ ε
t (z) = Y Θ0

t (z) − Y Θε
t (z) = B̄ε

t (z) − (π̂
Θ0
t − π̂

Θε
t )(ez − 1).

Hence

E

[∫ t

0

∫
R0

(Ȳ ε
s (z))2�(dz)ds

]

≤ 2

(
E

[∫ t

0

∫
R0

(B̄ε
s (z))2�(dz)ds

]
+
∫
R0

(ez − 1)2�(dz)E

[∫ t

0
(π̂Θ0

s − π̂Θε
s )2ds

])
.
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• From (26), the estimate

(ZΘε
t (z))2 ≤ C

(
(CΘε

t )2 + (π̂
Θ0
t − π̂

Θε
t )2G2(ε) + (π̂

Θ0
t )2G2(ε)

)

leads to

E

[∫ t

0
(ZΘε

s (z))2ds

]
≤ C

(
E

[∫ t

0
(CΘε

s )2ds

]
+ G2(ε)E

[∫ t

0
(π̂Θ0

s − π̂Θε
s )2ds

]

+ G2(ε)E

[∫ t

0
(π̂Θ0

s )2ds

])
.

• Because of (39) and (vi) in Assumptions 1 we notice that

E

[∫ t

0
(π̂Θ0

s )2ds

]
≤ C

(
E

[∫ t

0
(AΘ0

s )2ds

]
+ E

[∫ t

0

∫
R0

(BΘ0
s (z))2�(dz)ds

])
.

Using (41) and the combination of the above inequalities in (42) show that

E[(L Θ0
t − L Θε

t )2] ≤ C

(
G̃2(ε)

{
E

[∫ t

0
(AΘ0

s )2ds

]
+ E

[∫ t

0

∫
R0

(BΘ0
s (z))2�(dz)ds

]}

+ E

[∫ t

0
( Āε

s )
2ds

]
+ E

[∫ t

0

∫
R0

(B̄ε
s (z))2�(dz)ds

]

+E

[∫ t

0
(CΘε

s )2ds

]
+ E

[∫ t

0
(π̂Θ0

s − π̂Θε
s )2ds

])
.

Finally by Lemma 1 and Theorems 1 and 3 we conclude the proof. �

The cost processes of the quadratic hedging strategy for ĤT , Ĥ ε
T are defined by

K Θ0 = L Θ0 + V̂ Θ0
0 and K Θε = L Θε + V̂ Θε

0 . The upcoming result concerns the
robustness of the cost process and follows directly from the previous theorem.

Corollary 1 Under Assumptions 1 and 2, there exists a positive constant C such
that it holds for all t ∈ [0, T ] that

E[(K Θ0
t − K Θε

t )2] ≤ C
(
E[(ĤT − Ĥ ε

T )2] + G̃2(ε)E[Ĥ2
T ]
)

.

Proof Notice that

E[(K Θ0
t − K Θε

t )2] ≤ 2
(
E[(L Θ0

t − L Θε
t )2] + E[(V̂ Θ0

0 − V̂ Θε

0 )2]
)

,
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wherein

E[(V̂ Θ0
0 − V̂ Θε

0 )2] ≤ E

[
sup

0≤t≤T
(V̂ Θ0

t − V̂ Θε
t )2

]
.

Theorems 2 and 5 complete the proof. �

3.4 Robustness Results for the Mean-Variance Hedging

Since the optimal numbers ξΘ0 and ξΘε of risky assets are the same in the RM and
the MVH strategy, the amounts of wealth π̂Θ0 and π̂Θε and the gain processes ĜΘ0

and ĜΘε also coincide for both strategies. Therefore we conclude that the robustness
results of the amount of wealth and gain process also hold true for theMVH strategy,
see Theorems 3 and 4.

The cost for a MVH strategy is not the same as for the RM strategy. However,
under the assumption that a fixed starting amount Ṽ0 is available to set up a MVH
strategy, we derive a robustness result for the loss at time of maturity. For the models
(1) and (13), it holds that the losses at time of maturity T are given by

LΘ0 = ĤT − Ṽ0 −
∫ T

0
ξΘ0

s dŜs,

LΘε = Ĥ ε
T − Ṽ0 −

∫ T

0
ξΘε

s dŜε
s .

When Assumptions 1 and 2 are imposed, we derive via Theorem 4 that

E[(LΘ0 − LΘε)2] ≤ C
(
E[(ĤT − Ĥ ε

T )2] + G̃2(ε)E[Ĥ2
T ]
)

,

for a positive constant C .
Note that we cannot draw any conclusions from the results above about the robust-

ness of the value of the discounted portfolio for theMVHstrategy, since the portfolios
are strictly different for both strategies.

4 Conclusion

Two different geometric Lévy stock price models were considered in this paper. We
proved that the RM and the MVH strategies in a martingale setting are stable against
the choice of the model. To this end the two models were considered under different
risk-neutral measures that are dependent on the specific pricemodels. The robustness
results are derived through the use of BSDEJs and the obtained L2-convergence rates
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are expressed in terms of estimates of the formE[(ĤT − Ĥ ε
T )2]. The latter estimate is

a well studied quantity, see [3, 16]. In the current paper, we considered two possible
models for the price process. Starting from the initial model (1) other models could
be constructed by truncating the small jumps and possibly rescaling the original
Brownian motion (cfr. [8]). Similar robustness results hold for quadratic hedging
strategies in a martingale setting in these other models.

In [8] a semimartingale setting was considered and conditions had to be imposed
to guarantee the existence of the solutions to the BSDEJs. In this paper however,
we considered a martingale setting and, since there is no driver in the BSDEJs,
the existence of the solution to the BSDEJs was immediately guaranteed. On the
other hand, since the two models were considered under two different martingale
measures, we had to fall back on the common historical measure for the robustness
study. Therefore, a robustness study of the martingale measures had to be performed
and additional terms made some computations more involved compared to the semi-
martingale setting studied in [8].

In this approach based on BSDEJs we could not find explicit robustness results for
the optimal number of risky assets. Thereforewe refer to [6],where a robustness study
is performed in amartingale and semimartingale setting based on Fourier transforms.
Note that in [6] robustness was mainly studied in the L1-sense and the authors noted
that their results can be extended into L2-convergence, whereas L2-robustness results
are explicitly derived in the current paper.
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