
5Scientific Software Engineering

Teaching material on scientific computing has traditionally been very focused on
the mathematics and the applications, while details on how the computer is pro-
grammed to solve the problems have received little attention. Many end up writing
as simple programs as possible, without being aware of much useful computer sci-
ence technology that would increase the fun, efficiency, and reliability of the their
scientific computing activities.

This chapter demonstrates a series of good practices and tools from modern com-
puter science, using the simple mathematical problem u0 D �au, u.0/ D I , such
that we minimize the mathematical details and can go more in depth with implemen-
tations. The goal is to increase the technological quality of computer programming
and make it match the more well-established quality of the mathematics of scientific
computing.

The conventions and techniques outlined here will save you a lot of time when
you incrementally extend software over time from simpler to more complicated
problems. In particular, you will benefit from many good habits:

� new code is added in a modular fashion to a library (modules),
� programs are run through convenient user interfaces,
� it takes one quick command to let all your code undergo heavy testing,
� tedious manual work with running programs is automated,
� your scientific investigations are reproducible,
� scientific reports with top quality typesetting are produced both for paper and

electronic devices.

5.1 Implementations with Functions andModules

All previous examples in this book have implemented numerical algorithms as
Python functions. This is a good style that readers are expected to adopt. How-
ever, this author has experienced that many students and engineers are inclined to
make “flat” programs, i.e., a sequence of statements without any use of functions,
just to get the problem solved as quickly as possible. Since this programming style
is so widespread, especially among people with MATLAB experience, we shall

127© The Author(s) 2016
H.P. Langtangen, Finite Difference Computing with Exponential Decay Models,
Lecture Notes in Computational Science and Engineering 110,
DOI 10.1007/978-3-319-29439-1_5



128 5 Scientific Software Engineering

look at the weaknesses of flat programs and show how they can be refactored into
more reusable programs based on functions.

5.1.1 Mathematical Problem and Solution Technique

We address the differential equation problem

u0.t/ D �au.t/; t 2 .0; T �; (5.1)

u.0/ D I; (5.2)

where a, I , and T are prescribed parameters, and u.t/ is the unknown function to
be estimated. This mathematical model is relevant for physical phenomena featur-
ing exponential decay in time, e.g., vertical pressure variation in the atmosphere,
cooling of an object, and radioactive decay.

As we learned in Chap. 1.1.2, the time domain is discretized with points 0 D
t0 < t1 � � � < tNt

D T , here with a constant spacing �t between the mesh points:
�t D tn � tn�1, n D 1; : : : ; Nt . Let un be the numerical approximation to the
exact solution at tn. A family of popular numerical methods are provided by the �

scheme,

unC1 D 1 � .1 � �/a�t

1C �a�t
un; (5.3)

for n D 0; 1; : : : ; Nt � 1. This formula produces the Forward Euler scheme when
� D 0, the Backward Euler scheme when � D 1, and the Crank–Nicolson scheme
when � D 1=2.

5.1.2 A First, Quick Implementation

Solving (5.3) in a program is very straightforward: just make a loop over n and
evaluate the formula. The u.tn/ values for discrete n can be stored in an array. This
makes it easy to also plot the solution. It would be natural to also add the exact
solution curve u.t/ D Ie�at to the plot.

Many have programming habits that would lead them to write a simple program
like this:

from numpy import *
from matplotlib.pyplot import *

A = 1
a = 2
T = 4
dt = 0.2
N = int(round(T/dt))
y = zeros(N+1)
t = linspace(0, T, N+1)
theta = 1
y[0] = A
for n in range(0, N):

y[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*y[n]



5.1 Implementations with Functions and Modules 129

y_e = A*exp(-a*t) - y
error = y_e - y
E = sqrt(dt*sum(error**2))
print ’Norm of the error: %.3E’ % E
plot(t, y, ’r--o’)
t_e = linspace(0, T, 1001)
y_e = A*exp(-a*t_e)
plot(t_e, y_e, ’b-’)
legend([’numerical, theta=%g’ % theta, ’exact’])
xlabel(’t’)
ylabel(’y’)
show()

This program is easy to read, and as long as it is correct, many will claim that it
has sufficient quality. Nevertheless, the program suffers from two serious flaws:

1. The notation in the program does not correspond exactly to the notation in the
mathematical problem: the solution is called y and corresponds to u in the math-
ematical description, the variable A corresponds to the mathematical parameter
I , N in the program is called Nt in the mathematics.

2. There are no comments in the program.

These kind of flaws quickly become crucial if present in code for complicated math-
ematical problems and code that is meant to be extended to other problems.

We also note that the program is flat in the sense that it does not contain func-
tions. Usually, this is a bad habit, but let us first correct the two mentioned flaws.

5.1.3 AMore Decent Program

A code of better quality arises from fixing the notation and adding comments:

from numpy import *
from matplotlib.pyplot import *

I = 1
a = 2
T = 4
dt = 0.2
Nt = int(round(T/dt)) # no of time intervals
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh
theta = 1 # Backward Euler method

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]

# Compute norm of the error
u_e = I*exp(-a*t) - u # exact u at the mesh points
error = u_e - u
E = sqrt(dt*sum(error**2))
print ’Norm of the error: %.3E’ % E

# Compare numerical (u) and exact solution (u_e) in a plot
plot(t, u, ’r--o’)
t_e = linspace(0, T, 1001) # very fine mesh for u_e
u_e = I*exp(-a*t_e)



130 5 Scientific Software Engineering

plot(t_e, u_e, ’b-’)
legend([’numerical, theta=%g’ % theta, ’exact’])
xlabel(’t’)
ylabel(’u’)
show()

Comments in a program There is obviously not just one way to comment a pro-
gram, and opinions may differ as to what code should be commented. The guiding
principle is, however, that comments should make the program easy to understand
for the human eye. Do not comment obvious constructions, but focus on ideas and
(“what happens in the next statements?”) and on explaining code that can be found
complicated.

Refactoring into functions At first sight, our updated program seems like a good
starting point for playing around with the mathematical problem: we can just
change parameters and rerun. Although such edit-and-rerun sessions are good for
initial exploration, one will soon extend the experiments and start developing the
code further. Say we want to compare � D 0; 1; 0:5 in the same plot. This extension
requires changes all over the code and quickly leads to errors. To do something
serious with this program, we have to break it into smaller pieces and make sure
each piece is well tested, and ensure that the program is sufficiently general and can
be reused in new contexts without changes. The next natural step is therefore to
isolate the numerical computations and the visualization in separate Python func-
tions. Such a rewrite of a code, without essentially changing the functionality, but
just improve the quality of the code, is known as refactoring. After quickly putting
together and testing a program, the next step is to refactor it so it becomes better
prepared for extensions.

Program file vs IDE vs notebook There are basically three different ways of
working with Python code:

1. One writes the code in a file, using a text editor (such as Emacs or Vim) and
runs it in a terminal window.

2. One applies an Integrated Development Environment (the simplest is IDLE,
which comes with standard Python) containing a graphical user interface with
an editor and an element where Python code can be run.

3. One applies the Jupyter Notebook (previously known as IPython Notebook),
which offers an interactive environment for Python code where plots are auto-
matically inserted after the code, see Fig. 5.1.

It appears that method 1 and 2 are quite equivalent, but the notebook encourages
more experimental code and therefore also flat programs. Consequently, notebook
users will normally need to think more about refactoring code and increase the use
of functions after initial experimentation.



5.1 Implementations with Functions and Modules 131

Fig. 5.1 Experimental code in a notebook

5.1.4 Prefixing Imported Functions by theModule Name

Import statements of the form from module import * import all functions and
variables in module.py into the current file. This is often referred to as “import
star”, and many find this convenient, but it is not considered as a good programming
style in Python. For example, when doing

from numpy import *
from matplotlib.pyplot import *

we get mathematical functions like sin and exp as well as MATLAB-style func-
tions like linspace and plot, which can be called by these well-known names.
Unfortunately, it sometimes becomes confusing to know where a particular func-
tion comes from, i.e., what modules you need to import. Is a desired function from
numpy or matplotlib.pyplot? Or is it our own function? These questions are
easy to answer if functions in modules are prefixed by the module name. Doing an
additional from math import * is really crucial: now sin, cos, and other mathe-
matical functions are imported and their names hide those previously imported from
numpy. That is, sin is now a sine function that accepts a float argument, not an
array.



132 5 Scientific Software Engineering

Doing the import such that module functions must have a prefix is generally
recommended:

import numpy
import matplotlib.pyplot

t = numpy.linspace(0, T, Nt+1)
u_e = I*numpy.exp(-a*t)
matplotlib.pyplot.plot(t, u_e)

The modules numpy and matplotlib.pyplot are frequently used, and since
their full names are quite tedious to write, two standard abbreviations have evolved
in the Python scientific computing community:

import numpy as np
import matplotlib.pyplot as plt

t = np.linspace(0, T, Nt+1)
u_e = I*np.exp(-a*t)
plt.plot(t, u_e)

The downside of prefixing functions by the module name is that mathematical
expressions like e�at sin.2
t/ get cluttered with module names,

numpy.exp(-a*t)*numpy.sin(2(numpy.pi*t)
# or
np.exp(-a*t)*np.sin(2*np.pi*t)

Such an expression looks like exp(-a*t)*sin(2*pi*t) in most other program-
ming languages. Similarly, np.linspace and plt.plot look less familiar to
people who are used to MATLAB and who have not adopted Python’s prefix style.
Whether to do from module import * or import module depends on personal
taste and the problem at hand. In these writings we use from module import *
in more basic, shorter programs where similarity with MATLAB could be an ad-
vantage. However, in reusable modules we prefix calls to module functions by their
function name, or do explicit import of the needed functions:

from numpy import exp, sum, sqrt

def u_exact(t, I, a):
return I*exp(-a*t)

error = u_exact(t, I, a) - u
E = sqrt(dt*sum(error**2))

Prefixing module functions or not?
It can be advantageous to do a combination: mathematical functions in formulas
are imported without prefix, while module functions in general are called with
a prefix. For the numpy package we can do

import numpy as np
from numpy import exp, sum, sqrt



5.1 Implementations with Functions and Modules 133

such that mathematical expression can apply exp, sum, and sqrt and hence look
as close to the mathematical formulas as possible (without a disturbing prefix).
Other calls to numpy function are done with the prefix, as in np.linspace.

5.1.5 Implementing the Numerical Algorithm in a Function

The solution formula (5.3) is completely general and should be available as a Python
function solver with all input data as function arguments and all output data re-
turned to the calling code. With this solver function we can solve all types of
problems (5.1)–(5.2) by an easy-to-read one-line statement:

u, t = solver(I=1, a=2, T=4, dt=0.2, theta=0.5)

Refactoring the numerical method in the previous flat program in terms of
a solver function and prefixing calls to module functions by the module name
leads to this code:

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = np.zeros(Nt+1) # array of u[n] values
t = np.linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

Tip: Always use a doc string to document a function!
Python has a convention for documenting the purpose and usage of a function in
a doc string: simply place the documentation in a one- or multi-line triple-quoted
string right after the function header.

Be careful with unintended integer division!
Note that we in the solver function explicitly covert dt to a float object. If
not, the updating formula for u[n+1] may evaluate to zero because of integer
division when theta, a, and dt are integers!

5.1.6 Do not Have Several Versions of a Code

One of the most serious flaws in computational work is to have several slightly
different implementations of the same computational algorithms lying around in
various program files. This is very likely to happen, because busy scientists often
want to test a slight variation of a code to see what happens. A quick copy-and-
edit does the task, but such quick hacks tend to survive. When a real correction is
needed in the implementation, it is difficult to ensure that the correction is done in
all relevant files. In fact, this is a general problem in programming, which has led
to an important principle.



134 5 Scientific Software Engineering

The DRY principle: Don’t repeat yourself!
When implementing a particular functionality in a computer program, make sure
this functionality and its variations are implemented in just one piece of code.
That is, if you need to revise the implementation, there should be one and only
one place to edit. It follows that you should never duplicate code (don’t repeat
yourself!), and code snippets that are similar should be factored into one piece
(function) and parameterized (by function arguments).

The DRY principle means that our solver function should not be copied to
a new file if we need some modifications. Instead, we should try to extend solver
such that the new and old needs are met by a single function. Sometimes this
process requires a new refactoring, but having a numerical method in one and only
one place is a great advantage.

5.1.7 Making aModule

As soon as you start making Python functions in a program, you should make sure
the program file fulfills the requirement of a module. This means that you can
import and reuse your functions in other programs too. For example, if our solver
function resides in a module file decay.py, another program may reuse of the
function either by

from decay import solver
u, t = solver(I=1, a=2, T=4, dt=0.2, theta=0.5)

or by a slightly different import statement, combined with a subsequent prefix of
the function name by the name of the module:

import decay
u, t = decay.solver(I=1, a=2, T=4, dt=0.2, theta=0.5)

The requirements for a program file to also qualify for a module are simple:

1. The filename without .py must be a valid Python variable name.
2. The main program must be executed (through statements or a function call) in

the test block.

The test block is normally placed at the end of a module file:

if __name__ == ’__main__’:
# Statements

When the module file is executed as a stand-alone program, the if test is true and
the indented statements are run. If the module file is imported, however, __name__
equals the module name and the test block is not executed.

To demonstrate the difference, consider the trivial module file hello.py with
one function and a call to this function as main program:



5.1 Implementations with Functions and Modules 135

def hello(arg=’World!’):
print ’Hello, ’ + arg

if __name__ == ’__main__’:
hello()

Without the test block, the code reads

def hello(arg=’World!’):
print ’Hello, ’ + arg

hello()

With this latter version of the file, any attempt to import hello will, at the same
time, execute the call hello() and hence write “Hello, World!” to the screen. Such
output is not desired when importing a module! To make import and execution of
code independent for another program that wants to use the function hello, the
module hello must be written with a test block. Furthermore, running the file itself
as python hello.py will make the block active and lead to the desired printing.

All coming functions are placed in a module!
The many functions to be explained in the following text are put in one module
file decay.py1.

What more than the solver function is needed in our decay module to do ev-
erything we did in the previous, flat program? We need import statements for numpy
and matplotlib as well as another function for producing the plot. It can also be
convenient to put the exact solution in a Python function. Our module decay.py
then looks like this:

import numpy as np
import matplotlib.pyplot as plt

def solver(I, a, T, dt, theta):
...

def u_exact(t, I, a):
return I*np.exp(-a*t)

def experiment_compare_numerical_and_exact():
I = 1; a = 2; T = 4; dt = 0.4; theta = 1
u, t = solver(I, a, T, dt, theta)

t_e = np.linspace(0, T, 1001) # very fine mesh for u_e
u_e = u_exact(t_e, I, a)

plt.plot(t, u, ’r--o’) # dashed red line with circles
plt.plot(t_e, u_e, ’b-’) # blue line for u_e
plt.legend([’numerical, theta=%g’ % theta, ’exact’])
plt.xlabel(’t’)
plt.ylabel(’u’)
plotfile = ’tmp’
plt.savefig(plotfile + ’.png’); plt.savefig(plotfile + ’.pdf’)

1 http://tinyurl.com/ofkw6kc/softeng/decay.py

http://tinyurl.com/ofkw6kc/softeng/decay.py


136 5 Scientific Software Engineering

error = u_exact(t, I, a) - u
E = np.sqrt(dt*np.sum(error**2))
print ’Error norm:’, E

if __name__ == ’__main__’:
experiment_compare_numerical_and_exact()

We could consider doing from numpy import exp, sqrt, sum to make the
mathematical expressions with these functions closer to the mathematical formulas,
but here we employed the prefix since the formulas are so simple and easy to read.

This module file does exactly the same as the previous, flat program, but now
it becomes much easier to extend the code with more functions that produce other
plots, other experiments, etc. Even more important, though, is that the numerical
algorithm is coded and tested once and for all in the solver function, and any need
to solve the mathematical problem is a matter of one function call.

5.1.8 Example on Extending theModule Code

Let us specifically demonstrate one extension of the flat program in Sect. 5.1.2 that
would require substantial editing of the flat code (Sect. 5.1.3), while in a structured
module (Sect. 5.1.7), we can simply add a new function without affecting the exist-
ing code.

Our example that illustrates the extension is to make a comparison between the
numerical solutions for various schemes (� values) and the exact solution:

Wait a minute!
Look at the flat program in Sect. 5.1.2, and try to imagine which edits that are
required to solve this new problem.

With the solver function at hand, we can simply create a function with a loop
over theta values and add the necessary plot statements:



5.1 Implementations with Functions and Modules 137

def experiment_compare_schemes():
"""Compare theta=0,1,0.5 in the same plot."""
I = 1; a = 2; T = 4; dt = 0.4
legends = []
for theta in [0, 1, 0.5]:

u, t = solver(I, a, T, dt, theta)
plt.plot(t, u, ’--o’)
legends.append(’theta=%g’ % theta)

t_e = np.linspace(0, T, 1001) # very fine mesh for u_e
u_e = u_exact(t_e, I, a)
plt.plot(t_e, u_e, ’b-’)
legends.append(’exact’)
plt.legend(legends, loc=’upper right’)
plotfile = ’tmp’
plt.savefig(plotfile + ’.png’); plt.savefig(plotfile + ’.pdf’)

A call to this experiment_compare_schemes function must be placed in the
test block, or you can run the program from IPython instead:

In[1]: from decay import *

In[2]: experiment_compare_schemes()

We do not present how the flat program from Sect. 5.1.3 must be refactored
to produce the desired plots, but simply state that the danger of introducing bugs
is significantly larger than when just writing an additional function in the decay
module.

5.1.9 Documenting Functions andModules

We have already emphasized the importance of documenting functions with a doc
string (see Sect. 5.1.5). Now it is time to show how doc strings should be structured
in order to take advantage of the documentation utilities in the numpy module. The
idea is to follow a convention that in itself makes a good pure text doc string in the
terminal window and at the same time can be translated to beautiful HTML manuals
for the web.

The conventions for numpy style doc strings are well documented2, so here we
just present a basic example that the reader can adopt. Input arguments to a function
are listed under the heading Parameters, while returned values are listed under
Returns. It is a good idea to also add an Examples section on the usage of the
function. More complicated software may have additional sections, see pydoc
numpy.load for an example. The markup language available for doc strings is
Sphinx-extended reStructuredText. The example below shows typical constructs:
1) how inline mathematics is written with the :math: directive, 2) how arguments
to the functions are referred to using single backticks (inline monospace font for
code applies double backticks), and 3) how arguments and return values are listed
with types and explanation.

2 https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt


138 5 Scientific Software Engineering

def solver(I, a, T, dt, theta):
"""
Solve :math:‘u’=-au‘ with :math:‘u(0)=I‘ for :math:‘t \in (0,T]‘
with steps of ‘dt‘ and the method implied by ‘theta‘.

Parameters
----------
I: float

Initial condition.
a: float

Parameter in the differential equation.
T: float

Total simulation time.
theta: float, int

Parameter in the numerical scheme. 0 gives
Forward Euler, 1 Backward Euler, and 0.5
the centered Crank-Nicolson scheme.

Returns
-------
‘u‘: array

Solution array.
‘t‘: array

Array with time points corresponding to ‘u‘.

Examples
--------
Solve :math:‘u’ = -\frac{1}{2}u, u(0)=1.5‘
with the Crank-Nicolson method:

>>> u, t = solver(I=1.5, a=0.5, T=9, theta=0.5)
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, u)
>>> plt.show()
"""

If you follow such doc string conventions in your software, you can easily produce
nice manuals that meet the standard expected within the Python scientific comput-
ing community.

Sphinx3 requires quite a number of manual steps to prepare a manual, so it is
recommended to use a premade script4 to automate the steps. (By default, the script
generates documentation for all *.py files in the current directory. You need to
do a pip install of sphinx and numpydoc to make the script work.) Figure 5.2
provides an example of what the above doc strings look like when Sphinx has trans-
formed them to HTML.

5.1.10 Logging Intermediate Results

Sometimes one may wish that a simulation program could write out intermediate
results for inspection. This could be accomplished by a (global) verbose variable
and code like

if verbose >= 2:
print ’u[%d]=%g’ % (i, u[i])

3 http://sphinx-doc.org/
4 http://tinyurl.com/ofkw6kc/softeng/make_sphinx_api.py

http://sphinx-doc.org/
http://tinyurl.com/ofkw6kc/softeng/make_sphinx_api.py


5.1 Implementations with Functions and Modules 139

Fig. 5.2 Example on Sphinx API manual in HTML

The professional way to do report intermediate results and problems is, however, to
use a logger. This is an object that writes messages to a log file. The messages are
classified as debug, info, and warning.

Introductory example Here is a simple example using defining a logger, using
Python’s logging module:

import logging
# Configure logger
logging.basicConfig(

filename=’myprog.log’, filemode=’w’, level=logging.WARNING,
format=’%(asctime)s - %(levelname)s - %(message)s’,
datefmt=’%m/%d/%Y %I:%M:%S %p’)

# Perform logging
logging.info(’Here is some general info.’)
logging.warning(’Here is a warning.’)
logging.debug(’Here is some debugging info.’)
logging.critical(’Dividing by zero!’)
logging.error(’Encountered an error.’)

Running this program gives the following output in the log file myprog.log:

09/26/2015 09:25:10 AM - INFO - Here is some general info.
09/26/2015 09:25:10 AM - WARNING - Here is a warning.
09/26/2015 09:25:10 AM - CRITICAL - Dividing by zero!
09/26/2015 09:25:10 AM - ERROR - Encountered an error.

The logger has different levels of messages, ordered as critical, error, warning,
info, and debug. The level argument to logging.basicConfig sets the level



140 5 Scientific Software Engineering

and thereby determines what the logger will print to the file: all messages at the
specified and lower levels are printed. For example, in the above example we set
the level to be info, and therefore the critical, error, warning, and info messages
were printed, but not the debug message. Setting level to debug (logging.DEBUG)
prints all messages, while level critical prints only the critical messages.

The filemode argument is set to w such that any existing log file is overwritten
(the default is a, which means append new messages to an existing log file, but this
is seldom what you want in mathematical computations).

The messages are preceded by the date and time and the level of the message.
This output is governed by the format argument: asctime is the date and time,
levelname is the name of the message level, and message is the message itself.
Setting format=’%(message)s’ ensures that just the message and nothing more
is printed on each line. The datefmt string specifies the formatting of the date and
time, using the rules of the time.strftime5 function.

Using a logger in our solver function Let us let a logger write out intermediate
results and some debugging results in the solver function. Such messages are
useful for monitoring the simulation and for debugging it, respectively.

def solver_with_logging(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = np.zeros(Nt+1) # array of u[n] values
t = np.linspace(0, T, Nt+1) # time mesh
logging.debug(’solver: dt=%g, Nt=%g, T=%g’ % (dt, Nt, T))

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]

logging.info(’u[%d]=%g’ % (n, u[n]))
logging.debug(’1 - (1-theta)*a*dt: %g, %s’ %

(1-(1-theta)*a*dt,
str(type(1-(1-theta)*a*dt))[7:-2]))

logging.debug(’1 + theta*dt*a: %g, %s’ %
(1 + theta*dt*a,
str(type(1 + theta*dt*a))[7:-2]))

return u, t

The application code that calls solver_with_logging needs to configure the log-
ger. The decay module offers a default configure function:

import logging

def configure_basic_logger():
logging.basicConfig(

filename=’decay.log’, filemode=’w’, level=logging.DEBUG,
format=’%(asctime)s - %(levelname)s - %(message)s’,
datefmt=’%Y.%m.%d %I:%M:%S %p’)

5 https://docs.python.org/2/library/time.html#time.strftime

https://docs.python.org/2/library/time.html#time.strftime


5.1 Implementations with Functions and Modules 141

If the user of a library does not configure a logger or call this configure function,
the library should prevent error messages by declaring a default logger that does
nothing:

import logging
logging.getLogger(’decay’).addHandler(logging.NullHandler())

We can run the new solver function with logging in a shell:

>>> import decay
>>> decay.configure_basic_logger()
>>> u, t = decay.solver_with_logging(I=1, a=0.5, T=10, \

dt=0.5, theta=0.5)

During this execution, each logging message is appended to the log file. Suppose
we add some pause (time.sleep(2)) at each time level such that the execution
takes some time. In another terminal window we can then monitor the evolution of
decay.log and the simulation by the tail -f Unix command:

Terminal> tail -f decay.log
2015.09.26 05:37:41 AM - INFO - u[0]=1
2015.09.26 05:37:41 AM - INFO - u[1]=0.777778
2015.09.26 05:37:41 AM - INFO - u[2]=0.604938
2015.09.26 05:37:41 AM - INFO - u[3]=0.470508
2015.09.26 05:37:41 AM - INFO - u[4]=0.36595
2015.09.26 05:37:41 AM - INFO - u[5]=0.284628

Especially in simulation where each time step demands considerable CPU time
(minutes, hours), it can be handy to monitor such a log file to see the evolution of
the simulation.

If we want to look more closely into the numerator and denominator of the for-
mula for unC1, we can change the logging level to level=logging.DEBUG and get
output in decay.log like

2015.09.26 05:40:01 AM - DEBUG - solver: dt=0.5, Nt=20, T=10
2015.09.26 05:40:01 AM - INFO - u[0]=1
2015.09.26 05:40:01 AM - DEBUG - 1 - (1-theta)*a*dt: 0.875, float
2015.09.26 05:40:01 AM - DEBUG - 1 + theta*dt*a: 1.125, float
2015.09.26 05:40:01 AM - INFO - u[1]=0.777778
2015.09.26 05:40:01 AM - DEBUG - 1 - (1-theta)*a*dt: 0.875, float
2015.09.26 05:40:01 AM - DEBUG - 1 + theta*dt*a: 1.125, float
2015.09.26 05:40:01 AM - INFO - u[2]=0.604938
2015.09.26 05:40:01 AM - DEBUG - 1 - (1-theta)*a*dt: 0.875, float
2015.09.26 05:40:01 AM - DEBUG - 1 + theta*dt*a: 1.125, float
2015.09.26 05:40:01 AM - INFO - u[3]=0.470508
2015.09.26 05:40:01 AM - DEBUG - 1 - (1-theta)*a*dt: 0.875, float
2015.09.26 05:40:01 AM - DEBUG - 1 + theta*dt*a: 1.125, float
2015.09.26 05:40:01 AM - INFO - u[4]=0.36595
2015.09.26 05:40:01 AM - DEBUG - 1 - (1-theta)*a*dt: 0.875, float
2015.09.26 05:40:01 AM - DEBUG - 1 + theta*dt*a: 1.125, float

Logging can be much more sophisticated than shown above. One can, e.g., out-
put critical messages to the screen and all messages to a file. This requires more
code as demonstrated in the Logging Cookbook6.

6 https://docs.python.org/2/howto/logging-cookbook.html

https://docs.python.org/2/howto/logging-cookbook.html


142 5 Scientific Software Engineering

5.2 User Interfaces

It is good programming practice to let programs read input from some user inter-
face, rather than requiring users to edit parameter values in the source code. With
effective user interfaces it becomes easier and safer to apply the code for scien-
tific investigations and in particular to automate large-scale investigations by other
programs (see Sect. 5.6).

Reading input data can be done in many ways. We have to decide on the func-
tionality of the user interface, i.e., how we want to operate the program when
providing input. Thereafter, we use appropriate tools to implement the particular
user interface. There are four basic types of user interface, listed here according to
implementational complexity, from lowest to highest:

1. Questions and answers in the terminal window
2. Command-line arguments
3. Reading data from files
4. Graphical user interfaces (GUIs)

Personal preferences of user interfaces differ substantially, and it is difficult to
present recommendations or pros and cons. Alternatives 2 and 4 are most popular
and will be addressed next. The goal is to make it easy for the user to set physical
and numerical parameters in our decay.py program. However, we use a little toy
program, called prog.py, as introductory example:

delta = 0.5
p = 2
from math import exp
result = delta*exp(-p)
print result

The essential content is that prog.py has two input parameters: delta and p.
A user interface will replace the first two assignments to delta and p.

5.2.1 Command-Line Arguments

The command-line arguments are all the words that appear on the command line
after the program name. Running a program prog.py as python prog.py arg1
arg2 means that there are two command-line arguments (separated by white
space): arg1 and arg2. Python stores all command-line arguments in a special list
sys.argv. (The name argv stems from the C language and stands for “argument
values”. In C there is also an integer variable called argc reflecting the number of
arguments, or “argument counter”. A lot of programming languages have adopted
the variable name argv for the command-line arguments.) Here is an example
on a program what_is_sys_argv.py that can show us what the command-line
arguments are

import sys
print sys.argv



5.2 User Interfaces 143

A sample run goes like

Terminal

Terminal> python what_is_sys_argv.py 5.0 ’two words’ -1E+4
[’what_is_sys_argv.py’, ’5.0’, ’two words’, ’-1E+4’]

We make two observations:

� sys.argv[0] is the name of the program, and the sublist sys.argv[1:] con-
tains all the command-line arguments.

� Each command-line argument is available as a string. A conversion to float is
necessary if we want to compute with the numbers 5.0 and 104.

There are, in principle, two ways of programming with command-line arguments in
Python:

� Positional arguments: Decide upon a sequence of parameters on the command
line and read their values directly from the sys.argv[1:] list.

� Option-value pairs: Use –option value on the command line to replace
the default value of an input parameter option by value (and utilize the
argparse.ArgumentParser tool for implementation).

Suppose we want to run some program prog.py with specification of two param-
eters p and delta on the command line. With positional command-line arguments
we write

Terminal

Terminal> python prog.py 2 0.5

and must know that the first argument 2 represents p and the next 0.5 is the value
of delta. With option-value pairs we can run

Terminal

Terminal> python prog.py --delta 0.5 --p 2

Now, both p and delta are supposed to have default values in the program, so
we need to specify only the parameter that is to be changed from its default value,
e.g.,

Terminal

Terminal> python prog.py --p 2 # p=2, default delta
Terminal> python prog.py --delta 0.7 # delta-0.7, default a
Terminal> python prog.py # default a and delta

How do we extend the prog.py code for positional arguments and option-value
pairs? Positional arguments require very simple code:



144 5 Scientific Software Engineering

import sys
p = float(sys.argv[1])
delta = float(sys.argv[2])

from math import exp
result = delta*exp(-p)
print result

If the user forgets to supply two command-line arguments, Python will raise an
IndexError exception and produce a long error message. To avoid that, we should
use a try-except construction:

import sys
try:

p = float(sys.argv[1])
delta = float(sys.argv[2])

except IndexError:
print ’Usage: %s p delta’ % sys.argv[0]
sys.exit(1)

from math import exp
result = delta*exp(-p)
print result

Using sys.exit(1) aborts the program. The value 1 (actually any value different
from 0) notifies the operating system that the program failed.

Command-line arguments are strings!
Note that all elements in sys.argv are string objects. If the values are used in
mathematical computations, we need to explicitly convert the strings to numbers.

Option-value pairs requires more programming and is actually better explained
in a more comprehensive example below. Minimal code for our prog.py program
reads

import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--p’, default=1.0)
parser.add_argument(’--delta’, default=0.1)

args = parser.parse_args()
p = args.p
delta = args.delta

from math import exp
result = delta*exp(-p)
print result

Because the default values of delta and p are float numbers, the args.delta and
args.p variables are automatically of type float.

Our next task is to use these basic code constructs to equip our decay.pymodule
with command-line interfaces.



5.2 User Interfaces 145

5.2.2 Positional Command-Line Arguments

For our decay.py module file, we want to include functionality such that we can
read I , a, T , � , and a range of �t values from the command line. A plot is then to be
made, comparing the different numerical solutions for different �t values against
the exact solution. The technical details of getting the command-line information
into the program is covered in the next two sections.

The simplest way of reading the input parameters is to decide on their sequence
on the command line and just index the sys.argv list accordingly. Say the se-
quence of input data for some functionality in decay.py is I , a, T , � followed by
an arbitrary number of �t values. This code extracts these positional command-line
arguments:

def read_command_line_positional():
if len(sys.argv) < 6:

print ’Usage: %s I a T on/off BE/FE/CN dt1 dt2 dt3 ...’ % \
sys.argv[0]; sys.exit(1) # abort

I = float(sys.argv[1])
a = float(sys.argv[2])
T = float(sys.argv[3])
theta = float(sys.argv[4])
dt_values = [float(arg) for arg in sys.argv[5:]]

return I, a, T, theta, dt_values

Note that we may use a try-except construction instead of the if test.
A run like

Terminal

Terminal> python decay.py 1 0.5 4 0.5 1.5 0.75 0.1

results in

sys.argv = [’decay.py’, ’1’, ’0.5’, ’4’, ’0.5’, ’1.5’, ’0.75’, ’0.1’]

and consequently the assignments I=1.0, a=0.5, T=4.0, thet=0.5, and
dt_values = [1.5, 0.75, 0.1].

Instead of specifying the � value, we could be a bit more sophisticated and let the
user write the name of the scheme: BE for Backward Euler, FE for Forward Euler,
and CN for Crank–Nicolson. Then we must map this string to the proper � value, an
operation elegantly done by a dictionary:

scheme = sys.argv[4]
scheme2theta = {’BE’: 1, ’CN’: 0.5, ’FE’: 0}
if scheme in scheme2theta:

theta = scheme2theta[scheme]
else:

print ’Invalid scheme name:’, scheme; sys.exit(1)



146 5 Scientific Software Engineering

Now we can do

Terminal

Terminal> python decay.py 1 0.5 4 CN 1.5 0.75 0.1

and get ‘theta=0.5‘in the code.

5.2.3 Option-Value Pairs on the Command Line

Now we want to specify option-value pairs on the command line, using –I for I (I ),
–a for a (a), –T for T (T ), –scheme for the scheme name (BE, FE, CN), and –dt for
the sequence of dt (�t) values. Each parameter must have a sensible default value
so that we specify the option on the command line only when the default value is
not suitable. Here is a typical run:

Terminal

Terminal> python decay.py --I 2.5 --dt 0.1 0.2 0.01 --a 0.4

Observe the major advantage over positional command-line arguments: the input
is much easier to read and much easier to write. With positional arguments it is easy
to mess up the sequence of the input parameters and quite challenging to detect
errors too, unless there are just a couple of arguments.

Python’s ArgumentParser tool in the argparse module makes it easy to cre-
ate a professional command-line interface to any program. The documentation
of ArgumentParser7 demonstrates its versatile applications, so we shall here
just list an example containing the most basic features. It always pays off to use
ArgumentParser rather than trying to manually inspect and interpret option-value
pairs in sys.argv!

The use of ArgumentParser typically involves three steps:

import argparse
parser = argparse.ArgumentParser()

# Step 1: add arguments
parser.add_argument(’--option_name’, ...)

# Step 2: interpret the command line
args = parser.parse_args()

# Step 3: extract values
value = args.option_name

7 http://docs.python.org/library/argparse.html

http://docs.python.org/library/argparse.html


5.2 User Interfaces 147

A function for setting up all the options is handy:

def define_command_line_options():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(

’--I’, ’--initial_condition’, type=float,
default=1.0, help=’initial condition, u(0)’,
metavar=’I’)

parser.add_argument(
’--a’, type=float, default=1.0,
help=’coefficient in ODE’, metavar=’a’)

parser.add_argument(
’--T’, ’--stop_time’, type=float,
default=1.0, help=’end time of simulation’,
metavar=’T’)

parser.add_argument(
’--scheme’, type=str, default=’CN’,
help=’FE, BE, or CN’)

parser.add_argument(
’--dt’, ’--time_step_values’, type=float,
default=[1.0], help=’time step values’,
metavar=’dt’, nargs=’+’, dest=’dt_values’)

return parser

Each command-line option is defined through the parser.add_argument
method8. Alternative options, like the short –I and the more explaining version
--initial_condition can be defined. Other arguments are type for the Python
object type, a default value, and a help string, which gets printed if the command-
line argument -h or –help is included. The metavar argument specifies the value
associated with the option when the help string is printed. For example, the option
for I has this help output:

Terminal

Terminal> python decay.py -h
...
--I I, --initial_condition I

initial condition, u(0)
...

The structure of this output is

--I metavar, --initial_condition metavar
help-string

Finally, the –dt option demonstrates how to allow for more than one value (sep-
arated by blanks) through the nargs=’+’ keyword argument. After the command
line is parsed, we get an object where the values of the options are stored as at-
tributes. The attribute name is specified by the dist keyword argument, which for
the –dt option is dt_values. Without the dest argument, the value of an option
–opt is stored as the attribute opt.

8 We use the expression method here, because parser is a class variable and functions in classes
are known as methods in Python and many other languages. Readers not familiar with class
programming can just substitute this use of method by function.



148 5 Scientific Software Engineering

The code below demonstrates how to read the command line and extract the
values for each option:

def read_command_line_argparse():
parser = define_command_line_options()
args = parser.parse_args()
scheme2theta = {’BE’: 1, ’CN’: 0.5, ’FE’: 0}
data = (args.I, args.a, args.T, scheme2theta[args.scheme],

args.dt_values)
return data

As seen, the values of the command-line options are available as attributes in args:
args.opt holds the value of option –opt, unless we used the dest argument (as
for --dt_values) for specifying the attribute name. The args.opt attribute has
the object type specified by type (str by default).

The making of the plot is not dependent on whether we read data from the com-
mand line as positional arguments or option-value pairs:

def experiment_compare_dt(option_value_pairs=False):
I, a, T, theta, dt_values = \

read_command_line_argparse() if option_value_pairs else \
read_command_line_positional()

legends = []
for dt in dt_values:

u, t = solver(I, a, T, dt, theta)
plt.plot(t, u)
legends.append(’dt=%g’ % dt)

t_e = np.linspace(0, T, 1001) # very fine mesh for u_e
u_e = u_exact(t_e, I, a)
plt.plot(t_e, u_e, ’--’)
legends.append(’exact’)
plt.legend(legends, loc=’upper right’)
plt.title(’theta=%g’ % theta)
plotfile = ’tmp’
plt.savefig(plotfile + ’.png’); plt.savefig(plotfile + ’.pdf’)

5.2.4 Creating a Graphical Web User Interface

The Python package Parampool9 can be used to automatically generate a web-based
graphical user interface (GUI) for our simulation program. Although the program-
ming technique dramatically simplifies the efforts to create a GUI, the forthcoming
material on equipping our decay module with a GUI is quite technical and of sig-
nificantly less importance than knowing how to make a command-line interface.

Making a compute function The first step is to identify a function that performs
the computations and that takes the necessary input variables as arguments. This is
called the compute function in Parampool terminology. The purpose of this function
is to take values of I , a, T together with a sequence of �t values and a sequence
of � and plot the numerical against the exact solution for each pair of .�; �t/. The
plots can be arranged as a table with the columns being scheme type (� value) and

9 https://github.com/hplgit/parampool

https://github.com/hplgit/parampool


5.2 User Interfaces 149

Fig. 5.3 Automatically generated graphical web interface

the rows reflecting the discretization parameter (�t value). Figure 5.3 displays what
the graphical web interface may look like after results are computed (there are 3
3

plots in the GUI, but only 2 
 2 are visible in the figure).
To tell Parampool what type of input data we have, we assign default values of

the right type to all arguments in the compute function, here called main_GUI:

def main_GUI(I=1.0, a=.2, T=4.0,
dt_values=[1.25, 0.75, 0.5, 0.1],
theta_values=[0, 0.5, 1]):

The compute function must return the HTML code we want for displaying the
result in a web page. Here we want to show a table of plots. Assume for now that
the HTML code for one plot and the value of the norm of the error can be computed
by some other function compute4web. The main_GUI function can then loop over
�t and � values and put each plot in an HTML table. Appropriate code goes like

def main_GUI(I=1.0, a=.2, T=4.0,
dt_values=[1.25, 0.75, 0.5, 0.1],
theta_values=[0, 0.5, 1]):

# Build HTML code for web page. Arrange plots in columns
# corresponding to the theta values, with dt down the rows
theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
html_text = ’<table>\n’
for dt in dt_values:

html_text += ’<tr>\n’
for theta in theta_values:

E, html = compute4web(I, a, T, dt, theta)
html_text += """



150 5 Scientific Software Engineering

<td>
<center><b>%s, dt=%g, error: %.3E</b></center><br>
%s
</td>
""" % (theta2name[theta], dt, E, html)

html_text += ’</tr>\n’
html_text += ’</table>\n’
return html_text

Making one plot is done in compute4web. The statements should be straightfor-
ward from earlier examples, but there is one new feature: we use a tool in Parampool
to embed the PNG code for a plot file directly in an HTML image tag. The details
are hidden from the programmer, who can just rely on relevant HTML code in the
string html_text. The function looks like

def compute4web(I, a, T, dt, theta=0.5):
"""
Run a case with the solver, compute error measure,
and plot the numerical and exact solutions in a PNG
plot whose data are embedded in an HTML image tag.
"""
u, t = solver(I, a, T, dt, theta)
u_e = u_exact(t, I, a)
e = u_e - u
E = np.sqrt(dt*np.sum(e**2))

plt.figure()
t_e = np.linspace(0, T, 1001) # fine mesh for u_e
u_e = u_exact(t_e, I, a)
plt.plot(t, u, ’r--o’)
plt.plot(t_e, u_e, ’b-’)
plt.legend([’numerical’, ’exact’])
plt.xlabel(’t’)
plt.ylabel(’u’)
plt.title(’theta=%g, dt=%g’ % (theta, dt))
# Save plot to HTML img tag with PNG code as embedded data
from parampool.utils import save_png_to_str
html_text = save_png_to_str(plt, plotwidth=400)

return E, html_text

Generating the user interface The web GUI is automatically generated by the
following code, placed in the file decay_GUI_generate.py10.

from parampool.generator.flask import generate
from decay import main_GUI
generate(main_GUI,

filename_controller=’decay_GUI_controller.py’,
filename_template=’decay_GUI_view.py’,
filename_model=’decay_GUI_model.py’)

Running the decay_GUI_generate.py program results in three new files whose
names are specified in the call to generate:

1. decay_GUI_model.py defines HTML widgets to be used to set input data in
the web interface,

10 http://tinyurl.com/ofkw6kc/softeng/decay_GUI_generate.py

http://tinyurl.com/ofkw6kc/softeng/decay_GUI_generate.py


5.3 Tests for Verifying Implementations 151

2. templates/decay_GUI_views.py defines the layout of the web page,
3. decay_GUI_controller.py runs the web application.

We only need to run the last program, and there is no need to look into these files.

Running the web application The web GUI is started by

Terminal

Terminal> python decay_GUI_controller.py

Open a web browser at the location 127.0.0.1:5000. Input fields for I, a, T,
dt_values, and theta_values are presented. Figure 5.3 shows a part of the re-
sulting page if we run with the default values for the input parameters. With the
techniques demonstrated here, one can easily create a tailored web GUI for a par-
ticular type of application and use it to interactively explore physical and numerical
effects.

5.3 Tests for Verifying Implementations

Any module with functions should have a set of tests that can check the correctness
of the implementations. There exists well-established procedures and correspond-
ing tools for automating the execution of such tests. These tools allow large test sets
to be run with a one-line command, making it easy to check that the software still
works (as far as the tests can tell!). Here we shall illustrate two important software
testing techniques: doctest and unit testing. The first one is Python specific, while
unit testing is the dominating test technique in the software industry today.

5.3.1 Doctests

A doc string, the first string after the function header, is used to document the pur-
pose of functions and their arguments (see Sect. 5.1.5). Very often it is instructive
to include an example in the doc string on how to use the function. Interactive
examples in the Python shell are most illustrative as we can see the output result-
ing from the statements and expressions. For example, in the solver function, we
can include an example on calling this function and printing the computed u and t
arrays:

def solver(I, a, T, dt, theta):
"""
Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt.

>>> u, t = solver(I=0.8, a=1.2, T=1.5, dt=0.5, theta=0.5)
>>> for n in range(len(t)):
... print ’t=%.1f, u=%.14f’ % (t[n], u[n])
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923



152 5 Scientific Software Engineering

t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948
"""
...

When such interactive demonstrations are inserted in doc strings, Python’s
doctest11 module can be used to automate running all commands in interactive
sessions and compare new output with the output appearing in the doc string. All
we have to do in the current example is to run the module file decay.py with

Terminal> python -m doctest decay.py

This command imports the doctest module, which runs all doctests found in the
file and reports discrepancies between expected and computed output. Alterna-
tively, the test block in a module may run all doctests by

if __name__ == ’__main__’:
import doctest
doctest.testmod()

Doctests can also be embedded in nose/pytest unit tests as explained in the next
section.

Doctests prevent command-line arguments!
No additional command-line argument is allowed when running doctests. If your
program relies on command-line input, make sure the doctests can be run without
such input on the command line.

However, you can simulate command-line input by filling sys.argv with
values, e.g.,

import sys; sys.argv = ’--I 1.0 --a 5’.split()

The execution command above will report any problem if a test fails. As an
illustration, let us alter the u value at t=1.5 in the output of the doctest by replacing
the last digit 8 by 7. This edit triggers a report:

Terminal

Terminal> python -m doctest decay.py
********************************************************
File "decay.py", line ...
Failed example:

for n in range(len(t)):
print ’t=%.1f, u=%.14f’ % (t[n], u[n])

Expected:
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948

Got:
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923

11 http://docs.python.org/library/doctest.html

http://docs.python.org/library/doctest.html


5.3 Tests for Verifying Implementations 153

t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761947

Pay attention to the number of digits in doctest results!
Note that in the output of t and u we write u with 14 digits. Writing all 16
digits is not a good idea: if the tests are run on different hardware, round-off
errors might be different, and the doctest module detects that the numbers are
not precisely the same and reports failures. In the present application, where
0 < u.t/ � 0:8, we expect round-off errors to be of size 10�16, so comparing 15
digits would probably be reliable, but we compare 14 to be on the safe side. On
the other hand, comparing a small number of digits may hide software errors.

Doctests are highly encouraged as they do two things: 1) demonstrate how
a function is used and 2) test that the function works.

5.3.2 Unit Tests and Test Functions

The unit testing technique consists of identifying smaller units of code and writ-
ing one or more tests for each unit. One unit can typically be a function. Each
test should, ideally, not depend on the outcome of other tests. The recommended
practice is actually to design and write the unit tests first and then implement the
functions!

In scientific computing it is not always obvious how to best perform unit testing.
The units are naturally larger than in non-scientific software. Very often the solution
procedure of a mathematical problem identifies a unit, such as our solver function.

Two Python test frameworks: nose and pytest Python offers two very easy-to-
use software frameworks for implementing unit tests: nose and pytest. These work
(almost) in the same way, but our recommendation is to go for pytest.

Test function requirements For a test to qualify as a test function in nose or pytest,
three rules must be followed:

1. The function name must start with test_.
2. Function arguments are not allowed.
3. An AssertionError exception must be raised if the test fails.

A specific example might be illustrative before proceeding. We have the following
function that we want to test:

def double(n):
return 2*n



154 5 Scientific Software Engineering

The corresponding test function could, in principle, have been written as

def test_double():
"""Test that double(n) works for one specific n."""
n = 4
expected = 2*4
computed = double(4)
if expected != computed:

raise AssertionError

The last two lines, however, are never written like this in test functions. Instead,
Python’s assert statement is used: assert success, msg, where success is
a boolean variable, which is False if the test fails, and msg is an optional message
string that is printed when the test fails. A better version of the test function is
therefore

def test_double():
"""Test that double(n) works for one specific n."""
n = 4
expected = 2*4
computed = double(4)
msg = ’expected %g, computed %g’ % (expected, computed)
success = expected == computed
assert success, msg

Comparison of real numbers Because of the finite precision arithmetics on
a computer, which gives rise to round-off errors, the == operator is not suitable for
checking whether two real numbers are equal. Obviously, this principle also applies
to tests in test functions. We must therefore replace a == b by a comparison based
on a tolerance tol: abs(a-b) < tol. The next example illustrates the problem
and its solution.

Here is a slightly different function that we want to test:

def third(x):
return x/3.

We write a test function where the expected result is computed as 1
3
x rather than

x=3:

def test_third():
"""Check that third(x) works for many x values."""
for x in np.linspace(0, 1, 21):

expected = (1/3.0)*x
computed = third(x)
success = expected == computed
assert success

This test_third function executes silently, i.e., no failure, until x becomes 0.15.
Then round-off errors make the == comparison False. In fact, seven of the x values
above face this problem. The solution is to compare expected and computed with
a small tolerance:



5.3 Tests for Verifying Implementations 155

def test_third():
"""Check that third(x) works for many x values."""
for x in np.linspace(0, 1, 21):

expected = (1/3.)*x
computed = third(x)
tol = 1E-15
success = abs(expected - computed) < tol
assert success

Always compare real numbers with a tolerance!
Real numbers should never be compared with the == operator, but always with
the absolute value of the difference and a tolerance. So, replace a == b, if a
and/or b is float, by

tol = 1E-14
abs(a - b) < tol

The suitable size of tol depends on the size of a and b (see Problem 5.5). Unless
a and b are around unity in size, one should use a relative difference:

tol = 1E-14
abs((a - b)/a) < tol

Special assert functions from nose Test frameworks often contain more tailored
assert functions that can be called instead of using the assert statement. For ex-
ample, comparing two objects within a tolerance, as in the present case, can be done
by the assert_almost_equal from the nose framework:

import nose.tools as nt

def test_third():
x = 0.15
expected = (1/3.)*x
computed = third(x)
nt.assert_almost_equal(

expected, computed, delta=1E-15,
msg=’diff=%.17E’ % (expected - computed))

Whether to use the plain assert statement with a comparison based on a tol-
erance or to use the ready-made function assert_almost_equal depends on the
programmer’s preference. The examples used in the documentation of the pytest
framework stick to the plain assert statement.

Locating test functions Test functions can reside in a module together with the
functions they are supposed to verify, or the test functions can be collected in sepa-
rate files having names starting with test. Actually, nose and pytest can recursively
run all test functions in all test*.py files in the current directory, as well as in all
subdirectories!



156 5 Scientific Software Engineering

The decay.py12 module file features test functions in the module, but we
could equally well have made a subdirectory tests and put the test functions in
tests/test_decay.py13.

Running tests To run all test functions in the file decay.py do

Terminal

Terminal> nosetests -s -v decay.py
Terminal> py.test -s -v decay.py

The -s option ensures that output from the test functions is printed in the termi-
nal window, while -v prints the outcome of each individual test function.

Alternatively, if the test functions are located in some separate test*.py files,
we can just write

Terminal

Terminal> py.test -s -v

to recursively run all test functions in the current directory tree. The corresponding

Terminal

Terminal> nosetests -s -v

command does the same, but requires subdirectory names to start with test or end
with _test or _tests (which is a good habit anyway). An example of a tests
directory with a test*.py file is found in src/softeng/tests14.

Embedding doctests in a test function Doctests can also be executed from
nose/pytest unit tests. Here is an example of a file test_decay_doctest.py15

where we in the test block run all the doctests in the imported module decay, but
we also include a local test function that does the same:

import sys, os
sys.path.insert(0, os.pardir)
import decay
import doctest

def test_decay_module_with_doctest():
"""Doctest embedded in a nose/pytest unit test."""
# Test all functions with doctest in module decay
failure_count, test_count = doctest.testmod(m=decay)
assert failure_count == 0

if __name__ == ’__main__’:
# Run all functions with doctests in this module
failure_count, test_count = doctest.testmod(m=decay)

12 http://tinyurl.com/ofkw6kc/softeng/decay.py
13 http://tinyurl.com/ofkw6kc/softeng/tests/test_decay.py
14 http://tinyurl.com/ofkw6kc/softeng/tests
15 http://tinyurl.com/ofkw6kc/softeng/tests/test_decay_doctest.py

http://tinyurl.com/ofkw6kc/softeng/decay.py
http://tinyurl.com/ofkw6kc/softeng/tests/test_decay.py
http://tinyurl.com/ofkw6kc/softeng/tests
http://tinyurl.com/ofkw6kc/softeng/tests/test_decay_doctest.py


5.3 Tests for Verifying Implementations 157

Running this file as a program from the command line triggers the doctest.
testmod call in the test block, while applying py.test or nosetests to the file
triggers an import of the file and execution of the test function
test_decay_modue_with_doctest.

Installing nose and pytest With pip available, it is trivial to install nose and/or
pytest: sudo pip install nose and sudo pip install pytest.

5.3.3 Test Function for the Solver

Finding good test problems for verifying the implementation of numerical methods
is a topic on its own. The challenge is that we very seldom know what the numerical
errors are. For the present model problem (5.1)–(5.2) solved by (5.3) one can,
fortunately, derive a formula for the numerical approximation:

un D I

�
1 � .1 � �/a�t

1C �a�t

�n

:

Then we know that the implementation should produce numbers that agree with
this formula to machine precision. The formula for un is known as an exact discrete
solution of the problem and can be coded as

def u_discrete_exact(n, I, a, theta, dt):
"""Return exact discrete solution of the numerical schemes."""
dt = float(dt) # avoid integer division
A = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
return I*A**n

A test function can evaluate this solution on a time mesh and check that the u values
produced by the solver function do not deviate with more than a small tolerance:

def test_u_discrete_exact():
"""Check that solver reproduces the exact discr. sol."""
theta = 0.8; a = 2; I = 0.1; dt = 0.8
Nt = int(8/dt) # no of steps
u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)

# Evaluate exact discrete solution on the mesh
u_de = np.array([u_discrete_exact(n, I, a, theta, dt)

for n in range(Nt+1)])

# Find largest deviation
diff = np.abs(u_de - u).max()
tol = 1E-14
success = diff < tol
assert success

Among important things to consider when constructing test functions is testing
the effect of wrong input to the function being tested. In our solver function, for
example, integer values of a, �t , and � may cause unintended integer division. We



158 5 Scientific Software Engineering

should therefore add a test to make sure our solver function does not fall into this
potential trap:

def test_potential_integer_division():
"""Choose variables that can trigger integer division."""
theta = 1; a = 1; I = 1; dt = 2
Nt = 4
u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)
u_de = np.array([u_discrete_exact(n, I, a, theta, dt)

for n in range(Nt+1)])
diff = np.abs(u_de - u).max()
assert diff < 1E-14

In more complicated problems where there is no exact solution of the numerical
problem solved by the software, one must use the method of manufactured solu-
tions, compute convergence rates for a series of �t values, and check that the rates
converges to the expected ones (from theory). This type of testing is fully explained
in Sect. 3.1.6.

5.3.4 Test Function for Reading Positional Command-Line
Arguments

The function read_command_line_positional extracts numbers from the com-
mand line. To test it, we must decide on a set of values for the input data, fill
sys.argv accordingly, and check that we get the expected values:

def test_read_command_line_positional():
# Decide on a data set of input parameters
I = 1.6; a = 1.8; T = 2.2; theta = 0.5
dt_values = [0.1, 0.2, 0.05]
# Expected return from read_command_line_positional
expected = [I, a, T, theta, dt_values]
# Construct corresponding sys.argv array
sys.argv = [sys.argv[0], str(I), str(a), str(T), ’CN’] + \

[str(dt) for dt in dt_values]
computed = read_command_line_positional()
for expected_arg, computed_arg in zip(expected, computed):

assert expected_arg == computed_arg

Note that sys.argv[0] is always the program name and that we have to copy that
string from the original sys.argv array to the new one we construct in the test
function. (Actually, this test function destroys the original sys.argv that Python
fetched from the command line.)

Any numerical code writer should always be skeptical to the use of the exact
equality operator == in test functions, since round-off errors often come into play.
Here, however, we set some real values, convert them to strings and convert back
again to real numbers (of the same precision). This string-number conversion does
not involve any finite precision arithmetics effects so we can safely use == in tests.
Note also that the last element in expected and computed is the list dt_values,
and == works for comparing two lists as well.



5.3 Tests for Verifying Implementations 159

5.3.5 Test Function for Reading Option-Value Pairs

The function read_command_line_argparse can be verified with a test function
that has the same setup as test_read_command_line_positional above. How-
ever, the construction of the command line is a bit more complicated. We find it
convenient to construct the line as a string and then split the line into words to get
the desired list sys.argv:

def test_read_command_line_argparse():
I = 1.6; a = 1.8; T = 2.2; theta = 0.5
dt_values = [0.1, 0.2, 0.05]
# Expected return from read_command_line_argparse
expected = [I, a, T, theta, dt_values]
# Construct corresponding sys.argv array
command_line = ’%s --a %s --I %s --T %s --scheme CN --dt ’ % \

(sys.argv[0], a, I, T)
command_line += ’ ’.join([str(dt) for dt in dt_values])
sys.argv = command_line.split()
computed = read_command_line_argparse()
for expected_arg, computed_arg in zip(expected, computed):

assert expected_arg == computed_arg

Recall that the Python function zip enables iteration over several lists, tuples, or
arrays at the same time.

Let silent test functions speak up during development!
When you develop test functions in a module, it is common to use IPython for
interactive experimentation:

In[1]: import decay

In[2]: decay.test_read_command_line_argparse()

Note that a working test function is completely silent! Many find it psycho-
logically annoying to convince themselves that a completely silent function is
doing the right things. It can therefore, during development of a test function, be
convenient to insert print statements in the function to monitor that the function
body is indeed executed. For example, one can print the expected and computed
values in the terminal window:

def test_read_command_line_argparse():
...
for expected_arg, computed_arg in zip(expected, computed):

print expected_arg, computed_arg
assert expected_arg == computed_arg

After performing this edit, we want to run the test again, but in IPython the
module must first be reloaded (reimported):



160 5 Scientific Software Engineering

In[3]: reload(decay) # force new import

In[2]: decay.test_read_command_line_argparse()
1.6 1.6
1.8 1.8
2.2 2.2
0.5 0.5
[0.1, 0.2, 0.05] [0.1, 0.2, 0.05]

Now we clearly see the objects that are compared.

5.3.6 Classical Class-Based Unit Testing

The test functions written for the nose and pytest frameworks are very straightfor-
ward and to the point, with no framework-required boilerplate code. We just write
the statements we need to get the computations and comparisons done, before ap-
plying the required assert.

The classical way of implementing unit tests (which derives from the JUnit
object-oriented tool in Java) leads to much more comprehensive implementations
with a lot of boilerplate code. Python comes with a built-in module unittest for
doing this type of classical unit tests. Although nose or pytest are much more con-
venient to use than unittest, class-based unit testing in the style of unittest
has a very strong position in computer science and is so widespread in the software
industry that even computational scientists should have an idea how such unit test
code is written. A short demo of unittest is therefore included next. (Readers
who are not familiar with object-oriented programming in Python may find the text
hard to understand, but one can safely jump to the next section.)

Suppose we have a function double(x) in a module file mymod.py:

def double(x):
return 2*x

Unit testing with the aid of the unittest module consists of writing a file
test_mymod.py for testing the functions in mymod.py. The individual tests must
be methods with names starting with test_ in a class derived from class TestCase
in unittest. With one test method for the function double, the test_mymod.py
file becomes

import unittest
import mymod

class TestMyCode(unittest.TestCase):
def test_double(self):

x = 4
expected = 2*x
computed = mymod.double(x)
self.assertEqual(expected, computed)

if __name__ == ’__main__’:
unittest.main()



5.4 Sharing the Software with Other Users 161

The test is run by executing the test file test_mymod.py as a standard Python
program. There is no support in unittest for automatically locating and running
all tests in all test files in a directory tree.

We could use the basic assert statement as we did with nose and pytest
functions, but those who write code based on unittest almost exclusively
use the wide range of built-in assert functions such as assertEqual,
assertNotEqual, assertAlmostEqual, to mention some of them.

Translation of the test functions from the previous sections to unittest means
making a new file test_decay.py file with a test class TestDecay where the
stand-alone functions for nose/pytest now become methods in this class.

import unittest
import decay
import numpy as np

def u_discrete_exact(n, I, a, theta, dt):
...

class TestDecay(unittest.TestCase):

def test_exact_discrete_solution(self):
theta = 0.8; a = 2; I = 0.1; dt = 0.8
Nt = int(8/dt) # no of steps
u, t = decay.solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)
# Evaluate exact discrete solution on the mesh
u_de = np.array([u_discrete_exact(n, I, a, theta, dt)

for n in range(Nt+1)])
diff = np.abs(u_de - u).max() # largest deviation
self.assertAlmostEqual(diff, 0, delta=1E-14)

def test_potential_integer_division(self):
...
self.assertAlmostEqual(diff, 0, delta=1E-14)

def test_read_command_line_positional(self):
...
for expected_arg, computed_arg in zip(expected, computed):

self.assertEqual(expected_arg, computed_arg)

def test_read_command_line_argparse(self):
...

if __name__ == ’__main__’:
unittest.main()

5.4 Sharing the Software with Other Users

As soon as you have some working software that you intend to share with oth-
ers, you should package your software in a standard way such that users can easily
download your software, install it, improve it, and ask you to approve their im-
provements in new versions of the software. During recent years, the software
development community has established quite firm tools and rules for how all this
is done. The following subsections cover three steps in sharing software:

1. Organizing the software for public distribution.
2. Uploading the software to a cloud service (here GitHub).
3. Downloading and installing the software.



162 5 Scientific Software Engineering

5.4.1 Organizing the Software Directory Tree

We start with organizing our software as a directory tree. Our software consists of
one module file, decay.py, and possibly some unit tests in a separate file located
in a directory tests.

The decay.py can be used as a module or as a program. For distribution to other
users who install the program decay.py in system directories, we need to insert the
following line at the top of the file:

#!/usr/bin/env python

This line makes it possible to write just the filename and get the file executed by
the python program (or more precisely, the first python program found in the
directories in the PATH environment variable).

Distributing just a module file Let us start out with the minimum solution alter-
native: distributing just the decay.py file. Then the software is just one file and all
we need is a directory with this file. This directory will also contain an installation
script setup.py and a README file telling what the software is about, the author’s
email address, a URL for downloading the software, and other useful information.

The setup.py file can be as short as

from distutils.core import setup
setup(name=’decay’,

version=’0.1’,
py_modules=[’decay’],
scripts=[’decay.py’],
)

The py_modules argument specifies a list of modules to be installed, while
scripts specifies stand-alone programs. Our decay.py can be used either as
a module or as an executable program, so we want users to have both possibilities.

Distributing a package If the software consists of more files than one or two mod-
ules, one should make a Python package out of it. In our case we make a package
decay containing one module, also called decay.

To make a package decay, create a directory decay and an empty file in it with
name __init__.py. A setup.py script must now specify the directory name of
the package and also an executable program (scripts=) in case we want to run
decay.py as a stand-alone application:

from distutils.core import setup
import os

setup(name=’decay’,
version=’0.1’,
author=’Hans Petter Langtangen’,
author_email=’hpl@simula.no’,
url=’https://github.com/hplgit/decay-package/’,
packages=[’decay’],
scripts=[os.path.join(’decay’, ’decay.py’)]

)



5.4 Sharing the Software with Other Users 163

We have also added some author and download information. The reader is referred
to the Distutils documentation16 for more information on how to write setup.py
scripts.

Remark about the executable file
The executable program, decay.py, is in the above installation script taken to be
the complete module file decay.py. It would normally be preferred to instead
write a very short script essentially importing decay and running the test block
in decay.py. In this way, we distribute a module and a very short file, say
decay-main.py, as an executable program:

#!/usr/bin/env python
import decay
decay.decay.experiment_compare_dt(True)
decay.decay.plt.show()

In this package example, we move the unit tests out of the decay.py module to
a separate file, test_decay.py, and place this file in a directory tests. Then the
nosetests and py.test programs will automatically find and execute the tests.

The complete directory structure reads

Terminal

Terminal> /bin/ls -R
.:
decay README setup.py

./decay:
decay.py __init__.py tests

./decay/tests:
test_decay.py

5.4.2 Publishing the Software at GitHub

The leading site today for publishing open source software projects is GitHub at
http://github.com, provided you want your software to be open to the world. With
a paid GitHub account, you can have private projects too.

Sign up for a GitHub account if you do not already have one. Go to your account
settings and provide an SSH key (typically the file ~/.ssh/id_rsa.pub) such that
you can communicate with GitHub without being prompted for your password. All
communication between your computer and GitHub goes via the version control
system Git. This may at first sight look tedious, but this is the way professionals
work with software today. With Git you have full control of the history of your
files, i.e., “who did what when”. The technology makes Git superior to simpler
alternatives like Dropbox and Google Drive, especially when you collaborate with
others. There is a reason why Git has gained the position it has, and there is no
reason why you should not adopt this tool.

16 https://docs.python.org/2/distutils/setupscript.html

http://github.com
https://docs.python.org/2/distutils/setupscript.html


164 5 Scientific Software Engineering

To create a new project, click on New repository on the main page and fill out
a project name. Click on the check button Initialize this repository with a README,
and click on Create repository. The next step is to clone (copy) the GitHub repo
(short for repository) to your own computer(s) and fill it with files. The typical
clone command is

Terminal

Terminal> git clone git://github.com:username/projname.git

where username is your GitHub username and projname is the name of the repo
(project). The result of git clone is a directory projname. Go to this directory
and add files. As soon as the repo directory is populated with files, run

Terminal

Terminal> git add .
Terminal> git commit -am ’First registration of project files’
Terminal> git push origin master

The above git commands look cryptic, but these commands plus 2–3 more are
the essence of what you need in your daily work with files in small or big software
projects. I strongly encourage you to learn more about version control systems and
project hosting sites17 [6].

Your project files are now stored in the cloud at https://github.com/username/
projname. Anyone can get the software by the listed git clone command you
used above, or by clicking on the links for zip and tar files.

Every time you update the project files, you need to register the update at GitHub
by

Terminal

Terminal> git commit -am ’Description of the changes you made...’
Terminal> git push origin master

The files at GitHub are now synchronized with your local ones. Similarly, every
time you start working on files in this project, make sure you have the latest version:
git pull origin master.

You are recommended to read a quick intro18 that makes you up and going with
this style of professional work. And you should put all your writings and program-
ming projects in repositories in the cloud!

5.4.3 Downloading and Installing the Software

Users of your software go to the Git repo at github.com and clone the repository.
One can use either SSH or HTTP for communication. Most users will use the latter,
typically

17 http://hplgit.github.io/teamods/bitgit/html/
18 http://hplgit.github.io/teamods/bitgit/html/

https://github.com/username/projname
https://github.com/username/projname
http://hplgit.github.io/teamods/bitgit/html/
http://hplgit.github.io/teamods/bitgit/html/


5.4 Sharing the Software with Other Users 165

Terminal

Terminal> git clone https://github.com/username/projname.git

The result is a directory projname with the files in the repo.

Installing just a module file The software package is in the case above a directory
decay with three files

Terminal

Terminal> ls decay
README decay.py setup.py

To install the decay.py file, a user just runs setup.py:

Terminal

Terminal> sudo python setup.py install

This command will install the software in system directories, so the user needs
to run the command as root on Unix systems (therefore the command starts with
sudo). The user can now import the module by import decay and run the program
by

Terminal

Terminal> decay.py

A user can easily install the software on her personal account if a system-wide in-
stallation is not desirable. We refer to the installation documentation19 for the many
arguments that can be given to setup.py. Note that if the software is installed on
a personal account, the PATH and PYTHONPATH environment variables must contain
the relevant directories.

Our setup.py file specifies a module decay to be installed as well as a pro-
gram decay.py. Modules are typically installed in some lib directory on the
computer system, e.g., /usr/local/lib/python2.7/dist-packages, while ex-
ecutable programs go to /usr/local/bin.

Installing a package When the software is organized as a Python package, the
installation is done by running setup.py exactly as explained above, but the use of
a module decay in a package decay requires the following syntax:

import decay
u, t = decay.decay.solver(...)

That is, the call goes like packagename.modulename.functionname.

19 https://docs.python.org/2/install/index.html#alternate-installation

https://docs.python.org/2/install/index.html#alternate-installation


166 5 Scientific Software Engineering

Package import in __init__.py
One can ease the use of packages by providing a somewhat simpler import like

import decay
u, t = decay.solver(...)

# or
from decay import solver
u, t = solver(...)

This is accomplished by putting an import statement in the __init__.py file,
which is always run when doing the package import import decay or from
decay import. The __init__.py file must now contain

from decay import *

Obviously, it is the package developer who decides on such an __init__.py
file or if it should just be empty.

5.5 Classes for Problem and Solution Method

The numerical solution procedure was compactly and conveniently implemented
in a Python function solver in Sect. 5.1.1. In more complicated problems it
might be beneficial to use classes instead of functions only. Here we shall de-
scribe a class-based software design well suited for scientific problems where there
is a mathematical model of some physical phenomenon, and some numerical meth-
ods to solve the equations involved in the model.

We introduce a class Problem to hold the definition of the physical problem,
and a class Solver to hold the data and methods needed to numerically solve the
problem. The forthcoming text will explain the inner workings of these classes and
how they represent an alternative to the solver and experiment_* functions in
the decay module.

Explaining the details of class programming in Python is considered far beyond
the scope of this text. Readers who are unfamiliar with Python class programming
should first consult one of the many electronic Python tutorials or textbooks to come
up to speed with concepts and syntax of Python classes before reading on. The
author has a gentle introduction to class programming for scientific applications in
[8], see Chapter 7 and 9 and Appendix E20. Other useful resources are

� The Python Tutorial: http://docs.python.org/2/tutorial/classes.html
� Wiki book on Python Programming: http://en.wikibooks.org/wiki/Python_

Programming/Classes
� tutorialspoint.com: http://www.tutorialspoint.com/python/python_

classes_objects.htm21

20 http://hplgit.github.io/primer.html/doc/web/index.html
21 http://www.tutorialspoint.com/python/python_classes_objects.htm

http://docs.python.org/2/tutorial/classes.html
http://en.wikibooks.org/wiki/Python_Programming/Classes
http://en.wikibooks.org/wiki/Python_Programming/Classes
http://hplgit.github.io/primer.html/doc/web/index.html
http://www.tutorialspoint.com/python/python_classes_objects.htm


5.5 Classes for Problem and Solution Method 167

5.5.1 The Problem Class

The purpose of the problem class is to store all information about the mathematical
model. This usually means the physical parameters and formulas in the problem.
Looking at our model problem (5.1)–(5.2), the physical data cover I , a, and T .
Since we have an analytical solution of the ODE problem, we may add this solution
in terms of a Python function (or method) to the problem class as well. A possible
problem class is therefore

from numpy import exp

class Problem(object):
def __init__(self, I=1, a=1, T=10):

self.T, self.I, self.a = I, float(a), T

def u_exact(self, t):
I, a = self.I, self.a
return I*exp(-a*t)

We could in the u_exact method have written self.I*exp(-self.a*t), but us-
ing local variables I and a allows the nicer formula I*exp(-a*t), which looks
much closer to the mathematical expression Ie�at . This is not an important issue
with the current compact formula, but is beneficial in more complicated problems
with longer formulas to obtain the closest possible relationship between code and
mathematics. The coding style in this book is to strip off the self prefix when the
code expresses mathematical formulas.

The class data can be set either as arguments in the constructor or at any time
later, e.g.,

problem = Problem(T=5)
problem.T = 8
problem.dt = 1.5

(Some programmers prefer set and get functions for setting and getting data in
classes, often implemented via properties in Python, but this author considers that
overkill when there are just a few data items in a class.)

It would be convenient if class Problem could also initialize the data from the
command line. To this end, we add a method for defining a set of command-line
options and a method that sets the local attributes equal to what was found on the
command line. The default values associated with the command-line options are
taken as the values provided to the constructor. Class Problem now becomes

class Problem(object):
def __init__(self, I=1, a=1, T=10):

self.T, self.I, self.a = I, float(a), T

def define_command_line_options(self, parser=None):
"""Return updated (parser) or new ArgumentParser object."""
if parser is None:

import argparse
parser = argparse.ArgumentParser()



168 5 Scientific Software Engineering

parser.add_argument(
’--I’, ’--initial_condition’, type=float,
default=1.0, help=’initial condition, u(0)’,
metavar=’I’)

parser.add_argument(
’--a’, type=float, default=1.0,
help=’coefficient in ODE’, metavar=’a’)

parser.add_argument(
’--T’, ’--stop_time’, type=float,
default=1.0, help=’end time of simulation’,
metavar=’T’)

return parser

def init_from_command_line(self, args):
"""Load attributes from ArgumentParser into instance."""
self.I, self.a, self.T = args.I, args.a, args.T

def u_exact(self, t):
"""Return the exact solution u(t)=I*exp(-a*t)."""
I, a = self.I, self.a
return I*exp(-a*t)

Observe that if the user already has an ArgumentParser object it can be supplied,
but if she does not have any, class Problem makes one. Python’s None object is
used to indicate that a variable is not initialized with a proper value.

5.5.2 The Solver Class

The solver class stores parameters related to the numerical solution method and
provides a function solve for solving the problem. For convenience, a problem
object is given to the constructor in a solver object such that the object gets access to
the physical data. In the present example, the numerical solution method involves
the parameters �t and � , which then constitute the data part of the solver class.
We include, as in the problem class, functionality for reading �t and � from the
command line:

class Solver(object):
def __init__(self, problem, dt=0.1, theta=0.5):

self.problem = problem
self.dt, self.theta = float(dt), theta

def define_command_line_options(self, parser):
"""Return updated (parser) or new ArgumentParser object."""
parser.add_argument(

’--scheme’, type=str, default=’CN’,
help=’FE, BE, or CN’)

parser.add_argument(
’--dt’, ’--time_step_values’, type=float,
default=[1.0], help=’time step values’,
metavar=’dt’, nargs=’+’, dest=’dt_values’)

return parser

def init_from_command_line(self, args):
"""Load attributes from ArgumentParser into instance."""
self.dt, self.theta = args.dt, args.theta



5.5 Classes for Problem and Solution Method 169

def solve(self):
self.u, self.t = solver(

self.problem.I, self.problem.a, self.problem.T,
self.dt, self.theta)

def error(self):
"""Return norm of error at the mesh points."""
u_e = self.problem.u_exact(self.t)
e = u_e - self.u
E = np.sqrt(self.dt*np.sum(e**2))
return E

Note that we see no need to repeat the body of the previously developed and tested
solver function. We just call that function from the solve method. In this way,
class Solver is merely a class wrapper of the stand-alone solver function. With
a single object of class Solver we have all the physical and numerical data bundled
together with the numerical solution method.

Combining the objects Eventually we need to show how the classes Problem and
Solver play together. We read parameters from the command line and make a plot
with the numerical and exact solution:

def experiment_classes():
problem = Problem()
solver = Solver(problem)

# Read input from the command line
parser = problem.define_command_line_options()
parser = solver. define_command_line_options(parser)
args = parser.parse_args()
problem.init_from_command_line(args)
solver. init_from_command_line(args)

# Solve and plot
solver.solve()
import matplotlib.pyplot as plt
t_e = np.linspace(0, T, 1001) # very fine mesh for u_e
u_e = problem.u_exact(t_e)
print ’Error:’, solver.error()

plt.plot(t, u, ’r--o’)
plt.plot(t_e, u_e, ’b-’)
plt.legend([’numerical, theta=%g’ % theta, ’exact’])
plt.xlabel(’t’)
plt.ylabel(’u’)
plotfile = ’tmp’
plt.savefig(plotfile + ’.png’); plt.savefig(plotfile + ’.pdf’)
plt.show()

5.5.3 Improving the Problem and Solver Classes

The previous Problem and Solver classes containing parameters soon get much
repetitive code when the number of parameters increases. Much of this code can be
parameterized and be made more compact. For this purpose, we decide to collect all
parameters in a dictionary, self.prm, with two associated dictionaries self.type
and self.help for holding associated object types and help strings. The reason is
that processing dictionaries is easier than processing a set of individual attributes.



170 5 Scientific Software Engineering

For the specific ODE example we deal with, the three dictionaries in the problem
class are typically

self.prm = dict(I=1, a=1, T=10)
self.type = dict(I=float, a=float, T=float)
self.help = dict(I=’initial condition, u(0)’,

a=’coefficient in ODE’,
T=’end time of simulation’)

Provided a problem or solver class defines these three dictionaries in the con-
structor, we can create a super class Parameters with general code for defining
command-line options and reading them as well as methods for setting and getting
each parameter. A Problem or Solver for a particular mathematical problem can
then inherit most of the needed functionality and code from the Parameters class.
For example,

class Problem(Parameters):
def __init__(self):

self.prm = dict(I=1, a=1, T=10)
self.type = dict(I=float, a=float, T=float)
self.help = dict(I=’initial condition, u(0)’,

a=’coefficient in ODE’,
T=’end time of simulation’)

def u_exact(self, t):
I, a = self[’I a’.split()]
return I*np.exp(-a*t)

class Solver(Parameters):
def __init__(self, problem):

self.problem = problem # class Problem object
self.prm = dict(dt=0.5, theta=0.5)
self.type = dict(dt=float, theta=float)
self.help = dict(dt=’time step value’,

theta=’time discretization parameter’)

def solve(self):
from decay import solver
I, a, T = self.problem[’I a T’.split()]
dt, theta = self[’dt theta’.split()]
self.u, self.t = solver(I, a, T, dt, theta)

By inheritance, these classes can automatically do a lot more when it comes to
reading and assigning parameter values:

problem = Problem()
solver = Solver(problem)

# Read input from the command line
parser = problem.define_command_line_options()
parser = solver. define_command_line_options(parser)
args = parser.parse_args()
problem.init_from_command_line(args)
solver. init_from_command_line(args)

# Other syntax for setting/getting parameter values
problem[’T’] = 6
print ’Time step:’, solver[’dt’]

solver.solve()
u, t = solver.u, solver.t



5.5 Classes for Problem and Solution Method 171

A generic class for parameters A simplified version of the parameter class looks
as follows:

class Parameters(object):
def __getitem__(self, name):

"""obj[name] syntax for getting parameters."""
if isinstance(name, (list,tuple)): # get many?

return [self.prm[n] for n in name]
else:

return self.prm[name]

def __setitem__(self, name, value):
"""obj[name] = value syntax for setting a parameter."""
self.prm[name] = value

def define_command_line_options(self, parser=None):
"""Automatic registering of options."""
if parser is None:

import argparse
parser = argparse.ArgumentParser()

for name in self.prm:
tp = self.type[name] if name in self.type else str
help = self.help[name] if name in self.help else None
parser.add_argument(

’--’ + name, default=self.get(name), metavar=name,
type=tp, help=help)

return parser

def init_from_command_line(self, args):
for name in self.prm:

self.prm[name] = getattr(args, name)

The file decay_oo.py22 contains a slightly more advanced version of class
Parameters where the functions for getting and setting parameters contain tests
for valid parameter names, and raise exceptions with informative messages if any
name is not registered.

We have already sketched the Problem and Solver classes that build on in-
heritance from Parameters. We have also shown how they are used. The only
remaining code is to make the plot, but this code is identical to previous versions
when the numerical solution is available in an object u and the exact one in u_e.

The advantage with the Parameters class is that it scales to problems with
a large number of physical and numerical parameters: as long as the parameters
are defined once via a dictionary, the compact code in class Parameters can han-
dle any collection of parameters of any size. More advanced tools for storing large
collections of parameters in hierarchical structures is provided by the Parampool23

package.

22 http://tinyurl.com/ofkw6kc/softeng/decay_oo.py
23 https://github.com/hplgit/parampool

http://tinyurl.com/ofkw6kc/softeng/decay_oo.py
https://github.com/hplgit/parampool


172 5 Scientific Software Engineering

5.6 Automating Scientific Experiments

Empirical scientific investigations based on running computer programs require
careful design of the experiments and accurate reporting of results. Although there
is a strong tradition to do such investigations manually, the extreme requirements
to scientific accuracy make a program much better suited to conduct the experi-
ments. We shall in this section outline how we can write such programs, often
called scripts, for running other programs and archiving the results.

Scientific investigation
The purpose of the investigations is to explore the quality of numerical solutions
to an ordinary differential equation. More specifically, we solve the initial-value
problem

u0.t/ D �au.t/; u.0/ D I; t 2 .0; T �; (5.4)

by the �-rule:

unC1 D 1 � .1 � �/a�t

1C �a�t
un; u0 D I : (5.5)

This scheme corresponds to well-known methods: � D 0 gives the Forward
Euler (FE) scheme, � D 1 gives the Backward Euler (BE) scheme, and � D 1

2

gives the Crank–Nicolson (CN) or midpoint/centered scheme.
For chosen constants I , a, and T , we run the three schemes for various values

of �t , and present the following results in a report:

1. visual comparison of the numerical and exact solution in a plot for each �t

and � D 0; 1; 1
2
,

2. a table and a plot of the norm of the numerical error versus �t for � D 0; 1; 1
2
.

The report will also document the mathematical details of the problem under
investigation.

5.6.1 Available Software

Appropriate software for implementing (5.5) is available in a program model.py24,
which is run as

Terminal

Terminal> python model.py --I 1.5 --a 0.25 --T 6 --dt 1.25 0.75 0.5

The command-line input corresponds to setting I D 1:5, a D 0:25, T D 6, and
run three values of �t : 1.25, 0.75, ad 0.5.

The results of running this model.py command are text in the terminal window
and a set of plot files. The plot files have names M_D.E, where M denotes the method
(FE, BE, CN for � D 0; 1; 1

2
, respectively), D the time step length (here 1.25, 0.75,

24 http://tinyurl.com/nc4upel/doconce_src/model.py

http://tinyurl.com/nc4upel/doconce_src/model.py


5.6 Automating Scientific Experiments 173

or 0.5), and E is the plot file extension png or pdf. The text output in the terminal
window looks like

0.0 1.25: 5.998E-01
0.0 0.75: 1.926E-01
0.0 0.50: 1.123E-01
0.0 0.10: 1.558E-02
0.5 1.25: 6.231E-02
0.5 0.75: 1.543E-02
0.5 0.50: 7.237E-03
0.5 0.10: 2.469E-04
1.0 1.25: 1.766E-01
1.0 0.75: 8.579E-02
1.0 0.50: 6.884E-02
1.0 0.10: 1.411E-02

The first column is the � value, the next the �t value, and the final column repre-
sents the numerical error E (the norm of discrete error function on the mesh).

5.6.2 The Results WeWant to Produce

The results we need for our investigations are slightly different than what is directly
produced by model.py:

1. We need to collect all the plots for one numerical method (FE, BE, CN) in
a single plot. For example, if 4 �t values are run, the summarizing figure for
the BE method has 2 
 2 subplots, with the subplot corresponding to the largest
�t in the upper left corner and the smallest in the bottom right corner.

2. We need to create a table containing �t values in the first column and the nu-
merical error E for � D 0; 0:5; 1 in the next three columns. This table should
be available as a standard CSV file.

3. We need to plot the numerical error E versus �t in a log-log plot.

Consequently, we must write a script that can run model.py as described and pro-
duce the results 1–3 above. This requires combining multiple plot files into one file
and interpreting the output from model.py as data for plotting and file storage.

If the script’s name is exper1.py, we run it with the desired �t values as posi-
tional command-line arguments:

Terminal

Terminal> python exper1.py 0.5 0.25 0.1 0.05

This run will then generate eight plot files: FE.png and FE.pdf summarizing
the plots with the FE method, BE.png and BE.pdf with the BE method, CN.png
and CN.pdf with the CN method, and error.png and error.pdfwith the log-log
plot of the numerical error versus �t . In addition, the table with numerical errors is
written to a file error.csv.

Reproducible and replicable science
A script that automates running our computer experiments will ensure that the
experiments can easily be rerun by anyone in the future, either to confirm the



174 5 Scientific Software Engineering

same results or redo the experiments with other input data. Also, whatever we
did to produce the results is documented in every detail in the script.

A project where anyone can easily repeat the experiments with the same
data is referred to as being replicable, and replicability should be a fundamental
requirement in scientific computing work. Of more scientific interest is repro-
ducibilty, which means that we can also run alternative experiments to arrive at
the same conclusions. This requires more than an automating script.

5.6.3 Combining Plot Files

The script for running experiments needs to combine multiple image files into one.
The montage25 and convert26 programs in the ImageMagick software suite can
be used to combine image files. However, these programs are best suited for PNG
files. For vector plots in PDF format one needs other tools to preserve the quality:
pdftk, pdfnup, and pdfcrop.

Suppose you have four files f1.png, f2.png, f3.png, and f4.png and want to
combine them into a 2 
 2 table of subplots in a new file f.png, see Fig. 5.4 for an
example.

Fig. 5.4 Illustration of the Backward Euler method for four time step values

25 http://www.imagemagick.org/script/montage.php
26 http://www.imagemagick.org/script/convert.php

http://www.imagemagick.org/script/montage.php
http://www.imagemagick.org/script/convert.php


5.6 Automating Scientific Experiments 175

The appropriate ImageMagick commands are

Terminal

Terminal> montage -background white -geometry 100% -tile 2x \
f1.png f2.png f3.png f4.png f.png

Terminal> convert -trim f.png f.png
Terminal> convert f.png -transparent white f.png

The first command mounts the four files in one, the next convert command
removes unnecessary surrounding white space, and the final convert command
makes the white background transparent.

High-quality montage of PDF files f1.pdf, f2.pdf, f3.pdf, and f4.pdf into
f.pdf goes like

Terminal

Terminal> pdftk f1.pdf f2.pdf f3.pdf f4.pdf output tmp.pdf
Terminal> pdfnup --nup 2x2 --outfile tmp.pdf tmp.pdf
Terminal> pdfcrop tmp.pdf f.pdf
Terminal> rm -f tmp.pdf

5.6.4 Running a Program from Python

The script for automating experiments needs to run the model.py program with
appropriate command-line options. Python has several tools for executing an arbi-
trary command in the operating systems. Let cmd be a string containing the desired
command. In the present case study, cmd could be ’python model.py –I 1 –dt
0.5 0.2’. The following code executes cmd and loads the text output into a string
output:

from subprocess import Popen, PIPE, STDOUT
p = Popen(cmd, shell=True, stdout=PIPE, stderr=STDOUT)
output, _ = p.communicate()

# Check if the execution was successful
failure = p.returncode
if failure:

print ’Command failed:’, cmd; sys.exit(1)

Unsuccessful execution usually makes it meaningless to continue the program, and
therefore we abort the program with sys.exit(1). Any argument different from 0
signifies to the computer’s operating system that our program stopped with a failure.

Programming tip: use _ for dummy variable
Sometimes we need to unpack tuples or lists in separate variables, but we are not
interested in all the variables. One example is

output, error = p.communicate()



176 5 Scientific Software Engineering

but error is of no interest in the example above. One can then use underscore _
as variable name for the dummy (uninteresting) variable(s):

output, _ = p.communicate()

Here is another example where we iterate over a list of three-tuples, but the
interest is limited to the second element in each three-tuple:

for _, value, _ in list_of_three_tuples:
# work with value

We need to interpret the contents of the string output and store the data in
an appropriate data structure for further processing. Since the content is basically
a table and will be transformed to a spread sheet format, we let the columns in
the table be represented by lists in the program, and we collect these columns in
a dictionary whose keys are natural column names: dt and the three values of � .
The following code translates the output of cmd (output) to such a dictionary of
lists (errors):

errors = {’dt’: dt_values, 1: [], 0: [], 0.5: []}
for line in output.splitlines():

words = line.split()
if words[0] in (’0.0’, ’0.5’, ’1.0’): # line with E?

# typical line: 0.0 1.25: 7.463E+00
theta = float(words[0])
E = float(words[2])
errors[theta].append(E)

5.6.5 The Automating Script

We have now all the core elements in place to write the complete script where we
run model.py for a set of �t values (given as positional command-line arguments),
make the error plot, write the CSV file, and combine plot files as described above.
The complete code is listed below, followed by some explaining comments.

import os, sys, glob
import matplotlib.pyplot as plt

def run_experiments(I=1, a=2, T=5):
# The command line must contain dt values
if len(sys.argv) > 1:

dt_values = [float(arg) for arg in sys.argv[1:]]
else:

print ’Usage: %s dt1 dt2 dt3 ...’ % sys.argv[0]
sys.exit(1) # abort

# Run module file and grab output
cmd = ’python model.py --I %g --a %g --T %g’ % (I, a, T)
dt_values_str = ’ ’.join([str(v) for v in dt_values])
cmd += ’ --dt %s’ % dt_values_str
print cmd



5.6 Automating Scientific Experiments 177

from subprocess import Popen, PIPE, STDOUT
p = Popen(cmd, shell=True, stdout=PIPE, stderr=STDOUT)
output, _ = p.communicate()
failure = p.returncode
if failure:

print ’Command failed:’, cmd; sys.exit(1)

errors = {’dt’: dt_values, 1: [], 0: [], 0.5: []}
for line in output.splitlines():

words = line.split()
if words[0] in (’0.0’, ’0.5’, ’1.0’): # line with E?

# typical line: 0.0 1.25: 7.463E+00
theta = float(words[0])
E = float(words[2])
errors[theta].append(E)

# Find min/max for the axis
E_min = 1E+20; E_max = -E_min
for theta in 0, 0.5, 1:

E_min = min(E_min, min(errors[theta]))
E_max = max(E_max, max(errors[theta]))

plt.loglog(errors[’dt’], errors[0], ’ro-’)
plt.loglog(errors[’dt’], errors[0.5], ’b+-’)
plt.loglog(errors[’dt’], errors[1], ’gx-’)
plt.legend([’FE’, ’CN’, ’BE’], loc=’upper left’)
plt.xlabel(’log(time step)’)
plt.ylabel(’log(error)’)
plt.axis([min(dt_values), max(dt_values), E_min, E_max])
plt.title(’Error vs time step’)
plt.savefig(’error.png’); plt.savefig(’error.pdf’)

# Write out a table in CSV format
f = open(’error.csv’, ’w’)
f.write(r’$\Delta t$,$\theta=0$,$\theta=0.5$,$\theta=1$’ \

+ ’\n’)
for _dt, _fe, _cn, _be in zip(

errors[’dt’], errors[0], errors[0.5], errors[1]):
f.write(’%.2f,%.4f,%.4f,%.4f\n’ % \

(_dt, _fe, _cn, _be))
f.close()

# Combine images into rows with 2 plots in each row
image_commands = []
for method in ’BE’, ’CN’, ’FE’:

pdf_files = ’ ’.join([’%s_%g.pdf’ % (method, dt)
for dt in dt_values])

png_files = ’ ’.join([’%s_%g.png’ % (method, dt)
for dt in dt_values])

image_commands.append(
’montage -background white -geometry 100%’ +
’ -tile 2x %s %s.png’ % (png_files, method))

image_commands.append(
’convert -trim %s.png %s.png’ % (method, method))

image_commands.append(
’convert %s.png -transparent white %s.png’ %
(method, method))

image_commands.append(
’pdftk %s output tmp.pdf’ % pdf_files)

num_rows = int(round(len(dt_values)/2.0))
image_commands.append(

’pdfnup --nup 2x%d --outfile tmp.pdf tmp.pdf’ % \
num_rows)

image_commands.append(
’pdfcrop tmp.pdf %s.pdf’ % method)



178 5 Scientific Software Engineering

for cmd in image_commands:
print cmd
failure = os.system(cmd)
if failure:

print ’Command failed:’, cmd; sys.exit(1)

# Remove the files generated above and by model.py
from glob import glob
filenames = glob(’*_*.png’) + glob(’*_*.pdf’) + \

glob(’tmp*.pdf’)
for filename in filenames:

os.remove(filename)

if __name__ == ’__main__’:
run_experiments(I=1, a=2, T=5)
plt.show()

We may comment upon many useful constructs in this script:

� [float(arg) for arg in sys.argv[1:]] builds a list of real numbers
from all the command-line arguments.

� [’%s_%s.png’ % (method, dt) for dt in dt_values] builds a list of
filenames from a list of numbers (dt_values).

� All montage, convert, pdftk, pdfnup, and pdfcrop commands for creating
composite figures are stored in a list and later executed in a loop.

� glob(’*_*.png’) returns a list of the names of all files in the current directory
where the filename matches the Unix wildcard notation27 *_*.png (meaning
any text, underscore, any text, and then .png).

� os.remove(filename) removes the file with name filename.
� failure = os.system(cmd) runs an operating system command with simpler

syntax than what is required by subprocess (but the output of cmd cannot be
captured).

5.6.6 Making a Report

The results of running computer experiments are best documented in a little report
containing the problem to be solved, key code segments, and the plots from a series
of experiments. At least the part of the report containing the plots should be auto-
matically generated by the script that performs the set of experiments, because in
the script we know exactly which input data that were used to generate a specific
plot, thereby ensuring that each figure is connected to the right data. Take a look at
a sample report28 to see what we have in mind.

Word, OpenOffice, GoogleDocs Microsoft Word, its open source counterparts
OpenOffice and LibreOffice, along with GoogleDocs and similar online services
are the dominating tools for writing reports today. Nevertheless, scientific reports
often need mathematical equations and nicely typeset computer code in monospace
font. The support for mathematics and computer code in the mentioned tools is

27 http://en.wikipedia.org/wiki/Glob_(programming)
28 http://tinyurl.com/nc4upel/_static/sphinx-cloud/

http://en.wikipedia.org/wiki/Glob_(programming)
http://tinyurl.com/nc4upel/_static/sphinx-cloud/


5.6 Automating Scientific Experiments 179

Fig. 5.5 Report in HTML format with MathJax

in this author’s view not on par with the technologies based on markup languages
and which are addressed below. Also, with markup languages one has a readable,
pure text file as source for the report, and changes in this text can easily be tracked
by version control systems like Git. The result is a very strong tool for monitor-
ing “who did what when” with the files, resulting in increased reliability of the
writing process. For collaborative writing, the merge functionality in Git leads to
safer simultaneously editing than what is offered even by collaborative tools like
GoogleDocs.

HTML with MathJax HTML is the markup language used for web pages. Nicely
typeset computer code is straightforward in HTML, and high-quality mathematical
typesetting is available using an extension to HTML called MathJax29, which allows
formulas and equations to be typeset with LATEX syntax and nicely rendered in web
browsers, see Fig. 5.5. A relatively small subset of LATEX environments for mathe-
matics is supported, but the syntax for formulas is quite rich. Inline formulas look
like \( u’=-au \) while equations are surrounded by $$ signs. Inside such signs,
one can use \[ u’=-au \] for unnumbered equations, or \begin{equation} and
\end{equation} for numbered equations, or \begin{align} and \end{align}
for multiple numbered aligned equations. You need to be familiar with mathemati-
cal typesetting in LaTeX30 to write MathJax code.

29 http://www.mathjax.org/
30 http://en.wikibooks.org/wiki/LaTeX/Mathematics

http://www.mathjax.org/
http://en.wikibooks.org/wiki/LaTeX/Mathematics


180 5 Scientific Software Engineering

Fig. 5.6 Report in PDF format generated from LATEX source

The file exper1_mathjax.py31 calls a script exper1.py32 to perform the nu-
merical experiments and then runs Python statements for creating an HTML file33

with the source code for the scientific report34.

LATEX The de facto language for mathematical typesetting and scientific report
writing is LaTeX35. A number of very sophisticated packages have been added to
the language over a period of three decades, allowing very fine-tuned layout and
typesetting. For output in the PDF format36, see Fig. 5.6 for an example, LATEX
is the definite choice when it comes to typesetting quality. The LATEX language
used to write the reports has typically a lot of commands involving backslashes
and braces37, and many claim that LATEX syntax is not particularly readable. For
output on the web via HTML code (i.e., not only showing the PDF in the browser
window), LATEX struggles with delivering high quality typesetting. Other tools, es-
pecially Sphinx, give better results and can also produce nice-looking PDFs. The
file exper1_latex.py38 shows how to generate the LATEX source from a program.

Sphinx Sphinx39 is a typesetting language with similarities to HTML and LATEX,
but with much less tagging. It has recently become very popular for software doc-
umentation and mathematical reports. Sphinx can utilize LATEX for mathematical

31 http://tinyurl.com/p96acy2/report_generation/exper1_html.py
32 http://tinyurl.com/p96acy2/exper1.py
33 http://tinyurl.com/nc4upel/_static/report_mathjax.html.html
34 http://tinyurl.com/nc4upel/_static/report_mathjax.html
35 http://en.wikipedia.org/wiki/LaTeX
36 http://tinyurl.com/nc4upel/_static/report.pdf
37 http://tinyurl.com/nc4upel/_static/report.tex.html
38 http://tinyurl.com/p96acy2/report_generation/exper1_latex.py
39 http://sphinx.pocoo.org/

http://tinyurl.com/p96acy2/report_generation/exper1_html.py
http://tinyurl.com/p96acy2/exper1.py
http://tinyurl.com/nc4upel/_static/report_mathjax.html.html
http://tinyurl.com/nc4upel/_static/report_mathjax.html
http://en.wikipedia.org/wiki/LaTeX
http://tinyurl.com/nc4upel/_static/report.pdf
http://tinyurl.com/nc4upel/_static/report.tex.html
http://tinyurl.com/p96acy2/report_generation/exper1_latex.py
http://sphinx.pocoo.org/


5.6 Automating Scientific Experiments 181

Fig. 5.7 Report in HTML format generated from Sphinx source

formulas and equations. Unfortunately, the subset of LATEX mathematics supported
is less than in full MathJax (in particular, numbering of multiple equations in an
align type environment is not supported). The Sphinx syntax40 is an extension of
the reStructuredText language. An attractive feature of Sphinx is its rich support
for fancy layout of web pages41. In particular, Sphinx can easily be combined with
various layout themes that give a certain look and feel to the web site and that offers
table of contents, navigation, and search facilities, see Fig. 5.7.

Markdown A recent, very popular format for easy writing of web pages is Mark-
down42. Text is written very much like one would do in email, using spacing
and special characters to naturally format the code instead of heavily tagging the
text as in LATEX and HTML. With the tool Pandoc43 one can go from Markdown
to a variety of formats. HTML is a common output format, but LATEX, epub,
XML, OpenOffice/LibreOffice, MediaWiki, and Microsoft Word are some other
possibilities. A Markdown version of our scientific report demo is available as an
IPython/Jupyter notebook (described next).

IPython/Jupyter notebooks. The Jupyter Notebook44 is a web-based tool where
one can write scientific reports with live computer code and graphics. Or the other
way around: software can be equipped with documentation in the style of scien-
tific reports. A slightly extended version of Markdown is used for writing text and
mathematics, and the source code of a notebook45 is in json format. The interest in

40 http://tinyurl.com/nc4upel/_static/report_sphinx.rst.html
41 http://tinyurl.com/nc4upel/_static/sphinx-cloud/index.html
42 http://daringfireball.net/projects/markdown/
43 http://johnmacfarlane.net/pandoc/
44 http://jupyter.org
45 http://tinyurl.com/nc4upel/_static/report.ipynb.html

http://tinyurl.com/nc4upel/_static/report_sphinx.rst.html
http://tinyurl.com/nc4upel/_static/sphinx-cloud/index.html
http://daringfireball.net/projects/markdown/
http://johnmacfarlane.net/pandoc/
http://jupyter.org
http://tinyurl.com/nc4upel/_static/report.ipynb.html


182 5 Scientific Software Engineering

the notebook has grown amazingly fast over just a few years, and further develop-
ment now takes place in the Jupyter project46, which supports a lot of programming
languages for interactive notebook computing. Jupyter notebooks are primarily live
electronic documents, but they can be printed out as PDF reports too. A notebook
version of our scientific report can be downloaded47 and experimented with or just
statically viewed48 in a browser.

Wiki formats A range of wiki formats are popular for creating notes on the web,
especially documents which allow groups of people to edit and add content. Apart
from MediaWiki49 (the wiki format used for Wikipedia), wiki formats have no sup-
port for mathematical typesetting and also limited tools for displaying computer
code in nice ways. Wiki formats are therefore less suitable for scientific reports
compared to the other formats mentioned here.

DocOnce Since it is difficult to choose the right tool or format for writing a scien-
tific report, it is advantageous to write the content in a format that easily translates to
LATEX, HTML, Sphinx, Markdown, IPython/Jupyter notebooks, and various wikis.
DocOnce50 is such a tool. It is similar to Pandoc, but offers some special convenient
features for writing about mathematics and programming. The tagging is mod-
est51, somewhere between LATEX and Markdown. The program exper1_do.py52

demonstrates how to generate DocOnce code for a scientific report. There is also
a corresponding rich demo of the resulting reports53 that can be made from this
DocOnce code.

5.6.7 Publishing a Complete Project

To assist the important principle of replicable science, a report documenting sci-
entific investigations should be accompanied by all the software and data used for
the investigations so that others have a possibility to redo the work and assess the
quality of the results.

One way of documenting a complete project is to make a directory tree with
all relevant files. Preferably, the tree is published at some project hosting site like
Bitbucket or GitHub54 so that others can download it as a tarfile, zipfile, or fork the
files directly using the Git version control system. For the investigations outlined in
Sect. 5.6.6, we can create a directory tree with files

46 https://jupyter.org/
47 http://tinyurl.com/p96acy2/_static/report.ipynb
48 http://nbviewer.ipython.org/url/hplgit.github.com/teamods/writing_reports/_static/report.ipynb
49 http://www.mediawiki.org/wiki/MediaWiki
50 https://github.com/hplgit/doconce
51 http://tinyurl.com/nc4upel/_static/report.do.txt.html
52 http://tinyurl.com/p96acy2/exper1_do.py
53 http://tinyurl.com/nc4upel/index.html
54 http://hplgit.github.com/teamods/bitgit/html/

https://jupyter.org/
http://tinyurl.com/p96acy2/_static/report.ipynb
http://nbviewer.ipython.org/url/hplgit.github.com/teamods/writing_reports/_static/report.ipynb
http://www.mediawiki.org/wiki/MediaWiki
https://github.com/hplgit/doconce
http://tinyurl.com/nc4upel/_static/report.do.txt.html
http://tinyurl.com/p96acy2/exper1_do.py
http://tinyurl.com/nc4upel/index.html
http://hplgit.github.com/teamods/bitgit/html/


5.7 Exercises 183

setup.py
./src:

model.py
./doc:

./src:
exper1_mathjax.py
make_report.sh
run.sh

./pub:
report.html

The src directory holds source code (modules) to be reused in other projects,
the setup.py script builds and installs such software, the doc directory contains
the documentation, with src for the source of the documentation (usually writ-
ten in a markup language) and pub for published (compiled) documentation. The
run.sh file is a simple Bash script listing the python commands we used to run
exper1_mathjax.py to generate the experiments and the report.html file.

5.7 Exercises

Problem 5.1: Make a tool for differentiating curves
Suppose we have a curve specified through a set of discrete coordinates .xi ; yi /,
i D 0; : : : ; n, where the xi values are uniformly distributed with spacing �x: xi D
�x. The derivative of this curve, defined as a new curve with points .xi ; di /, can
be computed via finite differences:

d0 D y1 � y0

�x
; (5.6)

di D yiC1 � yi�1

2�x
; i D 1; : : : ; n � 1; (5.7)

dn D yn � yn�1

�x
: (5.8)

a) Write a function differentiate(x, y) for differentiating a curve with coor-
dinates in the arrays x and y, using the formulas above. The function should
return the coordinate arrays of the resulting differentiated curve.

b) Since the formulas for differentiation used here are only approximate, with un-
known approximation errors, it is challenging to construct test cases. Here are
three approaches, which should be implemented in three separate test functions.
1. Consider a curve with three points and compute di , i D 0; 1; 2, by hand.

Make a test that compares the hand-calculated results with those from the
function in a).

2. The formulas for di are exact for points on a straight line, as all the di val-
ues are then the same, equal to the slope of the line. A test can check this
property.

3. For points lying on a parabola, the values for di , i D 1; : : : ; n � 1, should
equal the exact derivative of the parabola. Make a test based on this property.

c) Start with a curve corresponding to y D sin.
x/ and n C 1 points in Œ0; 1�.
Apply differentiate four times and plot the resulting curve and the exact
y D sin 
x for n D 6; 11; 21; 41.

Filename: curvediff.



184 5 Scientific Software Engineering

Problem 5.2: Make solid software for the Trapezoidal rule
An integral

bZ
a

f .x/dx

can be numerically approximated by the Trapezoidal rule,

bZ
a

f .x/dx � h

2
.f .a/C f .b//C h

n�1X
iD1

f .xi /;

where xi is a set of uniformly spaced points in Œa; b�:

h D b � a

n
; xi D aC ih; i D 1; : : : ; n � 1 :

Somebody has used this rule to compute the integral
R 


0
sin2 x dx:

from math import pi, sin
np = 20
h = pi/np
I = 0
for k in range(1, np):

I += sin(k*h)**2
print I

a) The “flat” implementation above suffers from serious flaws:
1. A general numerical algorithm (the Trapezoidal rule) is implemented in

a specialized form where the formula for f is inserted directly into the code
for the general integration formula.

2. A general numerical algorithm is not encapsulated as a general function,
with appropriate parameters, which can be reused across a wide range of
applications.

3. The lazy programmer dropped the first terms in the general formula since
sin.0/ D sin.
/ D 0.

4. The sloppy programmer used np (number of points?) as variable for n in
the formula and a counter k instead of i. Such small deviations from the
mathematical notation are completely unnecessary. The closer the code and
the mathematics can get, the easier it is to spot errors in formulas.

Write a function trapezoidal that fixes these flaws. Place the function in
a module trapezoidal.

b) Write a test function test_trapezoidal. Call the test function explicitly to
check that it works. Remove the call and run pytest on the module:

Terminal

Terminal> py.test -s -v trapezoidal



5.7 Exercises 185

Hint Note that even if you know the value of the integral, you do not know the error
in the approximation produced by the Trapezoidal rule. However, the Trapezoidal
rule will integrate linear functions exactly (i.e., to machine precision). Base a test
function on a linear f .x/.

c) Add functionality such that we can compute
R b

a
f .x/dx by providing f , a, b,

and n as positional command-line arguments to the module file:

Terminal

Terminal> python trapezoidal.py ’sin(x)**2’ 0 pi 20

Here, a D 0, b D 
 , and n D 20.
Note that the trapezoidal.py file must still be a valid module file, so the
interpretation of command-line data and computation of the integral must be
performed from calls in a test block.

Hint To translate a string formula on the command line, like sin(x)**2, into
a Python function, you can wrap a function declaration around the formula and
run exec on the string to turn it into live Python code:

import math, sys
formula = sys.argv[1]
f_code = """
def f(x):

return %s
""" % formula
exec(code, math.__dict__)

The result is the same as if we had hardcoded

from math import *

def f(x):
return sin(x)**2

in the program. Note that exec needs the namespace math.__dict__, i.e., all
names in the math module, such that it understands sin and other mathematical
functions. Similarly, to allow a and b to be math expressions like pi/4 and exp(4),
do

Terminal

a = eval(sys.argv[2], math.__dict__)
b = eval(sys.argv[2], math.__dict__)

d) Write a test function for verifying the implementation of data reading from the
command line.

Filename: trapezoidal.



186 5 Scientific Software Engineering

Problem 5.3: Implement classes for the Trapezoidal rule
We consider the same problem setting as in Problem 5.2. Make a module with
a class Problem representing the mathematical problem to be solved and a class
Solver representing the solution method. The rest of the functionality of the mod-
ule, including test functions and reading data from the command line, should be as
in Problem 5.2.

Filename: trapezoidal_class.

Problem 5.4: Write a doctest and a test function
Type in the following program:

import sys
# This sqrt(x) returns real if x>0 and complex if x<0
from numpy.lib.scimath import sqrt

def roots(a, b, c):
"""
Return the roots of the quadratic polynomial
p(x) = a*x**2 + b*x + c.

The roots are real or complex objects.
"""
q = b**2 - 4*a*c
r1 = (-b + sqrt(q))/(2*a)
r2 = (-b - sqrt(q))/(2*a)
return r1, r2

a, b, c = [float(arg) for arg in sys.argv[1:]]
print roots(a, b, c)

a) Equip the roots function with a doctest. Make sure to test both real and com-
plex roots. Write out numbers in the doctest with 14 digits or less.

b) Make a test function for the roots function. Perform the same mathematical
tests as in a), but with different programming technology.

Filename: test_roots.

Problem 5.5: Investigate the size of tolerances in comparisons
When we replace a comparison a == b, where a and/or b are float objects, by
a comparison with tolerance, abs(a-b) < tol, the appropriate size of tol de-
pends on the size of a and b. Investigate how the size of abs(a-b) varies when b
takes on values 10k , k D �5;�9; : : : ; 20 and a=1.0/49*b*49. Thereafter, com-
pute the relative difference abs((a-b)/a) for the same b values.

Filename: tolerance.

Remarks You will experience that if a and b are large, as they can be in, e.g.,
geophysical applications where lengths measured in meters can be of size 106 m,
tol must be about 10�9, while a and b around unity can have tol of size 10�15.
The way out of the problem with choosing a tolerance is to use relative differences.

Exercise 5.6: Make use of a class implementation
Implement the experiment_compare_dt function from decay.py using class
Problem and class Solver from Sect. 5.5. The parameters I, a, T, the scheme
name, and a series of dt values should be read from the command line.

Filename: experiment_compare_dt_class.



5.7 Exercises 187

Problem 5.7: Make solid software for a difference equation
We have the following evolutionary difference equation for the number of individ-
uals un of a certain specie at time n�t :

unC1 D un C�t run

�
1 � un

M n

�
; u0 D U0 : (5.9)

Here, n is a counter in time, �t is time between time levels n and nC 1 (assumed
constant), r is a net reproduction rate for the specie, and M n is the upper limit of
the population that the environment can sustain at time level n.

Filename: logistic.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

http://creativecommons.org/licenses/by-nc/4.0/

