
4Models

This chapter presents many mathematical models that all end up with ODEs of the
type u0 D �auC b. The applications are taken from biology, finance, and physics,
and cover population growth or decay, interacting predator-prey populations, com-
pound interest and inflation, radioactive decay, chemical and biochemical reaction,
spreading of diseases, cooling of objects, compaction of geological media, pressure
variations in the atmosphere, viscoelastic response in materials, and air resistance
on falling or rising bodies.

Before we turn to the applications, however, we take a brief look at the technique
of scaling, which is so useful in many applications.

4.1 Scaling

Real applications of a model u0 D �auCb will often involve a lot of parameters in
the expressions for a and b. It can be quite a challenge to find relevant values of all
parameters. In simple problems, however, it turns out that it is not always necessary
to estimate all parameters because we can lump them into one or a few dimension-
less numbers by using a very attractive technique called scaling. It simply means to
stretch the u and t axis in the present problem – and suddenly all parameters in the
problem are lumped into one parameter if b ¤ 0 and no parameter when b D 0!

4.1.1 Dimensionless Variables

Scaling means that we introduce a new function Nu.Nt /, with

Nu D u � um

uc

; Nt D t

tc
;

where um is a characteristic value of u, uc is a characteristic size of the range of
u values, and tc is a characteristic size of the range of t where u shows signifi-
cant variation. Choosing um, uc , and tc is not always easy and is often an art in
complicated problems. We just state one choice first:

uc D I; um D b=a; tc D 1=a :
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92 4 Models

Inserting u D umCuc Nu and t D tc Nt in the problem u0 D �auCb, assuming a and
b are constants, results (after some algebra) in the scaled problem

d Nu
d Nt D �Nu; Nu.0/ D 1 � ˇ;

where

ˇ D b

Ia
:

4.1.2 Dimensionless Numbers

The parameter ˇ is a dimensionless number. From the equation we see that b must
have the same unit as the term au. The initial condition I must have the same unit
as u, so Ia has the same unit as b, making the fraction b=.Ia/ dimensionless.

An important observation is that Nu depends on Nt and ˇ. That is, only the special
combination of b=.Ia/ matters, not what the individual values of b, a, and I are.
The original unscaled function u depends on t , b, a, and I .

A second observation is striking: if b D 0, the scaled problem is independent of
a and I ! In practice this means that we can perform a single numerical simulation
of the scaled problem and recover the solution of any problem for a given a and I

by stretching the axis in the plot: u D I Nu and t D Nt=a. For b ¤ 0, we simulate the
scaled problem for a few ˇ values and recover the physical solution u by translating
and stretching the u axis and stretching the t axis.

In general, scaling combines the parameters in a problem to a set of dimension-
less parameters. The number of dimensionless parameters is usually much smaller
than the number of original parameters. Section 4.11 presents an example where 11
parameters are reduced to one!

4.1.3 A Scaling for Vanishing Initial Condition

The scaling breaks down if I D 0. In that case we may choose um D 0, uc D b=a,
and tc D 1=b, resulting in a slightly different scaled problem:

d Nu
d Nt D 1 � Nu; Nu.0/ D 0 :

As with b D 0, the case I D 0 has a scaled problem with no physical parameters!
It is common to drop the bars after scaling and write the scaled problem as u0 D

�u, u.0/ D 1 � ˇ, or u0 D 1 � u, u.0/ D 0. Any implementation of the problem
u0 D �auC b, u.0/ D I , can be reused for the scaled problem by setting a D 1,
b D 0, and I D 1 � ˇ in the code, if I ¤ 0, or one sets a D 1, b D 1, and I D 0

when the physical I is zero. Falling bodies in fluids, as described in Sect. 4.11,
involves u0 D �au C b with seven physical parameters. All these vanish in the
scaled version of the problem if we start the motion from rest!

Many more details about scaling are presented in the author’s book Scaling of
Differential Equations [9].
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4.2 Evolution of a Population

4.2.1 Exponential Growth

Let N be the number of individuals in a population occupying some spatial domain.
Despite N being an integer in this problem, we shall compute with N as a real num-
ber and view N.t/ as a continuous function of time. The basic model assumption is
that in a time interval �t the number of newcomers to the populations (newborns)
is proportional to N , with proportionality constant Nb. The amount of newcomers
will increase the population and result in

N.t C�t/ D N.t/C NbN.t/ :

It is obvious that a long time interval �t will result in more newcomers and hence
a larger Nb. Therefore, we introduce b D Nb=�t : the number of newcomers per unit
time and per individual. We must then multiply b by the length of the time interval
considered and by the population size to get the total number of new individuals,
b�tN .

If the number of removals from the population (deaths) is also proportional to
N , with proportionality constant d�t , the population evolves according to

N.t C�t/ D N.t/C b�tN.t/ � d�tN.t/ :

Dividing by �t and letting �t ! 0, we get the ODE

N 0 D .b � d/N; N.0/ D N0 : (4.1)

In a population where the death rate (d ) is larger than then newborn rate (b), b�d <

0, and the population experiences exponential decay rather than exponential growth.
In some populations there is an immigration of individuals into the spatial do-

main. With I individuals coming in per time unit, the equation for the population
change becomes

N.t C�t/ D N.t/C b�tN.t/ � d�tN.t/C�tI :

The corresponding ODE reads

N 0 D .b � d/N C I; N.0/ D N0 : (4.2)

Emigration is also modeled by this I term if we just change its sign: I < 0. So, the
I term models migration in and out of the domain in general.

Some simplification arises if we introduce a fractional measure of the population:
u D N=N0 and set r D b � d . The ODE problem now becomes

u0 D ruC f; u.0/ D 1; (4.3)

where f D I=N0 measures the net immigration per time unit as the fraction of
the initial population. Very often, r is approximately constant, but f is usually
a function of time.
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4.2.2 Logistic Growth

The growth rate r of a population decreases if the environment has limited re-
sources. Suppose the environment can sustain at most Nmax individuals. We may
then assume that the growth rate approaches zero as N approaches Nmax, i.e., as u

approaches M D Nmax=N0. The simplest possible evolution of r is then a linear
function: r.t/ D %.1�u.t/=M /, where % is the initial growth rate when the popula-
tion is small relative to the maximum size and there is enough resources. Using this
r.t/ in (4.3) results in the logistic model for the evolution of a population (assuming
for the moment that f D 0):

u0 D %.1 � u=M /u; u.0/ D 1 : (4.4)

Initially, u will grow at rate %, but the growth will decay as u approaches M , and
then there is no more change in u, causing u!M as t !1. Note that the logistic
equation u0 D %.1 � u=M /u is nonlinear because of the quadratic term �u2%=M .

4.3 Compound Interest and Inflation

Say the annual interest rate is r percent and that the bank adds the interest once
a year to your investment. If un is the investment in year n, the investment in year
unC1 grows to

unC1 D un C r

100
un :

In reality, the interest rate is added every day. We therefore introduce a parameter
m for the number of periods per year when the interest is added. If n counts the
periods, we have the fundamental model for compound interest:

unC1 D un C r

100m
un : (4.5)

This model is a difference equation, but it can be transformed to a continuous dif-
ferential equation through a limit process. The first step is to derive a formula for
the growth of the investment over a time t . Starting with an investment u0, and
assuming that r is constant in time, we get

unC1 D
�
1C r

100m

�
un

D
�
1C r

100m

�2

un�1

:::

D
�
1C r

100m

�nC1

u0

Introducing time t , which here is a real-numbered counter for years, we have that
n D mt , so we can write

umt D
�
1C r

100m

�mt

u0 :
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The second step is to assume continuous compounding, meaning that the interest is
added continuously. This implies m!1, and in the limit one gets the formula

u.t/ D u0e
rt=100; (4.6)

which is nothing but the solution of the ODE problem

u0 D r

100
u; u.0/ D u0 : (4.7)

This is then taken as the ODE model for compound interest if r > 0. However,
the reasoning applies equally well to inflation, which is just the case r < 0. One
may also take the r in (4.7) as the net growth of an investment, where r takes both
compound interest and inflation into account. Note that for real applications we
must use a time-dependent r in (4.7).

Introducing a D r
100

, continuous inflation of an initial fortune I is then a process
exhibiting exponential decay according to

u0 D �au; u.0/ D I :

4.4 Newton’s Law of Cooling

When a body at some temperature is placed in a cooling environment, experience
shows that the temperature falls rapidly in the beginning, and then the change in
temperature levels off until the body’s temperature equals that of the surroundings.
Newton carried out some experiments on cooling hot iron and found that the tem-
perature evolved as a “geometric progression at times in arithmetic progression”,
meaning that the temperature decayed exponentially. Later, this result was formu-
lated as a differential equation: the rate of change of the temperature in a body is
proportional to the temperature difference between the body and its surroundings.
This statement is known as Newton’s law of cooling, which mathematically can be
expressed as

dT

dt
D �k.T � Ts/; (4.8)

where T is the temperature of the body, Ts is the temperature of the surroundings
(which may be time-dependent), t is time, and k is a positive constant. Equation
(4.8) is primarily viewed as an empirical law, valid when heat is efficiently con-
vected away from the surface of the body by a flowing fluid such as air at constant
temperature Ts . The heat transfer coefficient k reflects the transfer of heat from the
body to the surroundings and must be determined from physical experiments.

The cooling law (4.8) needs an initial condition T .0/ D T0.

4.5 Radioactive Decay

An atomic nucleus of an unstable atom may lose energy by emitting ionizing par-
ticles and thereby be transformed to a nucleus with a different number of protons
and neutrons. This process is known as radioactive decay1. Actually, the process

1 http://en.wikipedia.org/wiki/Radioactive_decay

http://en.wikipedia.org/wiki/Radioactive_decay
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is stochastic when viewed for a single atom, because it is impossible to predict ex-
actly when a particular atom emits a particle. Nevertheless, with a large number
of atoms, N , one may view the process as deterministic and compute the mean
behavior of the decay. Below we reason intuitively about an ODE for the mean
behavior. Thereafter, we show mathematically that a detailed stochastic model for
single atoms leads to the same mean behavior.

4.5.1 Deterministic Model

Suppose at time t , the number of the original atom type is N.t/. A basic model
assumption is that the transformation of the atoms of the original type in a small
time interval �t is proportional to N , so that

N.t C�t/ D N.t/ � a�tN.t/;

where a > 0 is a constant. The proportionality factor is a�t , i.e., proportional to �t

since a longer time interval will produce more transformations. We can introduce
u D N.t/=N.0/, divide by �t , and let �t ! 0:

lim
r!0

N0

u.t C�t/ � u.t/

�t
D �aN0u.t/ :

The left-hand side is the derivative of u. Dividing by the N0 gives the following
ODE for u:

u0 D �au; u.0/ D 1 : (4.9)

The parameter a can for a given nucleus be expressed through the half-life t1=2,
which is the time taken for the decay to reduce the initial amount by one half, i.e.,
u.t1=2/ D 0:5. With u.t/ D e�at , we get t1=2 D a�1 ln 2 or a D ln 2=t1=2.

4.5.2 Stochastic Model

Originally, we have N0 atoms. Up to some particular time t , each atom may either
have decayed or not. If not, they have “survived”. We want to count how many orig-
inal atoms that have survived. The survival of a single atom at time t is a random
event. Since there are only two outcomes, survival or decay, we have a Bernoulli
trial2. Let p be the probability of survival (implying that the probability of decay
is 1 � p). If each atom survives independently of the others, and the probability of
survival is the same for every atom, we have N0 Bernoulli trials, known as a bino-
mial experiment from probability theory. The probability P.N / that N out of the
N0 atoms have survived at time t is then given by the famous binomial distribution

P.N / D N0Š

N Š.N0 �N /Š
pN .1 � p/N0�N :

The mean (or expected) value EŒP � of P.N / is known to be N0p.

2 http://en.wikipedia.org/wiki/Bernoulli_trial

http://en.wikipedia.org/wiki/Bernoulli_trial
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It remains to estimate p. Let the interval Œ0; t � be divided into m small subinter-
vals of length �t . We make the assumption that the probability of decay of a single
atom in an interval of length �t is Qp, and that this probability is proportional to �t :
Qp D ��t (it sounds natural that the probability of decay increases with �t). The

corresponding probability of survival is 1 � ��t . Believing that � is independent
of time, we have, for each interval of length �t , a Bernoulli trial: the atom either
survives or decays in that interval. Now, p should be the probability that the atom
survives in all the intervals, i.e., that we have m successful Bernoulli trials in a row
and therefore

p D .1 � ��t/m :

The expected number of atoms of the original type at time t is

EŒP � D N0p D N0.1 � ��t/m; m D t=�t : (4.10)

To see the relation between the two types of Bernoulli trials and the ODE above,
we go to the limit �t ! 0, m!1. It is possible to show that

p D lim
m!1.1 � ��t/m D lim

m!1

�
1 � �

t

m

�m

D e��t

This is the famous exponential waiting time (or arrival time) distribution for a Pois-
son process in probability theory (obtained here, as often done, as the limit of
a binomial experiment). The probability of decay, or more precisely that at least
one atom has undergone a transition, is 1 � p D 1 � e��t . This is the exponential
distribution3. The limit means that m is very large, hence �t is very small, and
Qp D ��t is very small since the intensity of the events, �, is assumed finite. This

situation corresponds to a very small probability that an atom will decay in a very
short time interval, which is a reasonable model. The same model occurs in lots of
different applications, e.g., when waiting for a taxi, or when finding defects along
a rope.

4.5.3 Relation Between Stochastic and Deterministic Models

With p D e��t we get the expected number of original atoms at t as N0p D N0e
��t ,

which is exactly the solution of the ODE model N 0 D ��N . This also gives an
interpretation of a via � or vice versa. Our important finding here is that the ODE
model captures the mean behavior of the underlying stochastic model. This is,
however, not always the common relation between microscopic stochastic models
and macroscopic “averaged” models.

Also of interest, is that a Forward Euler discretization of N 0 D ��N , N.0/ D
N0, gives N m D N0.1 � ��t/m at time tm D m�t , which is exactly the expected
value of the stochastic experiment with N0 atoms and m small intervals of length
�t , where each atom can decay with probability ��t in an interval.

A fundamental question is how accurate the ODE model is. The underlying
stochastic model fluctuates around its expected value. A measure of the fluctuations

3 http://en.wikipedia.org/wiki/Exponential_distribution

http://en.wikipedia.org/wiki/Exponential_distribution
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is the standard deviation of the binomial experiment with N0 atoms, which can be
shown to be StdŒP � D pN0p.1 � p/. Compared to the size of the expectation, we
get the normalized standard deviation

p
Var.P /

EŒP �
D N

�1=2

0

p
p�1 � 1 D N

�1=2

0

q
.1 � e��t /�1 � 1 � .N0�t/�1=2;

showing that the normalized fluctuations are very small if N0 is very large, which
is usually the case.

4.5.4 Generalization of the Radioactive Decay Modeling

The modeling in Sect. 4.5 is in fact very general, despite a focus on a particular
physical process. We may instead of atoms and decay speak about a set of items,
where each item can undergo a stochastic transition from one state to another. In
Sect. 4.6 the item is a molecule and the transition is a chemical reaction, while in
Sect. 4.7 the item is an ill person and the transition is recovering from the illness (or
an immune person who loses her immunity).

From the modeling in Sect. 4.5 we can establish a deterministic model for a large
number of items and a stochastic model for an arbitrary number of items, even
a single one. The stochastic model has a parameter � reflecting the probability
that a transition takes place in a time interval of unit length (or equivalently, that
the probability is ��t for a transition during a time interval of length �t). The
probability of making a transition before time t is given by

F.t/ D 1 � e��t :

The corresponding probability density is f .t/ D F 0.t/ D e��t . The expected value
of F.t/, i.e., the expected time to transition, is ��1. This interpretation of � makes
it easy to measure its value: just carry out a large number of experiments, measure
the time to transition, and take one over the average of these times as an estimate of
�. The variance is ��2.

The deterministic model counts how many items, N.t/, that have undergone the
transition (on average), and N.t/ is governed by the ODE

N 0 D ��N.t/; N.0/ D N0 :

4.6 Chemical Kinetics

4.6.1 Irreversible Reaction of Two Substances

Consider two chemical substances, A and B, and a chemical reaction that turns A
into B. In a small time interval, some of the molecules of type A are transformed
into molecules of B. This process is, from a mathematical modeling point of view,
equivalent to the radioactive decay process described in the previous section. We
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can therefore apply the same modeling approach. If NA is the number of molecules
of substance A, we have that NA is governed by the differential equation

dNA

dt
D �kNA;

where (the constant) k is called the rate constant of the reaction. Rather than us-
ing the number of molecules, we use the concentration of molecules: ŒA�.t/ D
NA.t/=NA.0/. We see that dŒA�=dt D NA.0/�1dNA=dt . Replacing NA by ŒA� in
the equation for NA leads to the equation for the concentration ŒA�:

dŒA�

dt
D �kŒA�; t 2 .0; T �; ŒA�.0/ D 1 : (4.11)

Since substance A is transformed to substance B, we have that the concentration of
ŒB� grows by the loss of ŒA�:

dŒB�

dt
D kŒA�; ŒB�.0/ D 0 :

The mathematical model can either be (4.11) or the system

dŒA�

dt
D �kŒA�; t 2 .0; T � (4.12)

dŒB�

dt
D kŒA�; t 2 .0; T � (4.13)

ŒA�.0/ D 1; (4.14)

ŒB�.0/D 0 : (4.15)

This reaction is known as a first-order reaction, where each molecule of A makes
an independent decision about whether to complete the reaction, i.e., independent
of what happens to any other molecule.

An n-th order reaction is modeled by

dŒA�

dt
D �kŒA�n; (4.16)

dŒB�

dt
D kŒA�n; (4.17)

for t 2 .0; T � with initial conditions ŒA�.0/ D 1 and ŒB�.0/ D 0. Here, n can be
a real number, but is most often an integer. Note that the sum of the concentrations
is constant since

dŒA�

dt
C dŒB�

dt
D 0 ) ŒA�.t/C ŒB�.t/ D const D ŒA�.0/C ŒB�.0/ D 1C 0 :

4.6.2 Reversible Reaction of Two Substances

Let the chemical reaction turn substance A into B and substance B into A. The rate
of change of ŒA� has then two contributions: a loss kAŒA� and a gain kBŒB�:

dŒA�

dt
D �kAŒA�C kBŒB�; t 2 .0; T �; ŒA�.0/ D A0 : (4.18)
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Similarly for substance B,

dŒB�

dt
D kAŒA� � kBŒB�; t 2 .0; T �; ŒB�.0/ D B0 : (4.19)

This time we have allowed for arbitrary initial concentrations. Again,

dŒA�

dt
C dŒB�

dt
D 0 ) ŒA�.t/C ŒB�.t/ D A0 C B0 :

4.6.3 Irreversible Reaction of Two Substances into a Third

Now we consider two chemical substances, A and B, reacting with each other and
producing a substance C. In a small time interval �t , molecules of type A and B
are occasionally colliding, and in some of the collisions, a chemical reaction occurs,
which turns A and B into a molecule of type C. (More generally, MA molecules of A
and MB molecules of B react to form MC molecules of C .) The number of possible
pairings, and thereby collisions, of A and B is NANB , where NA is the number of
molecules of A, and NB is the number of molecules of B. A fraction k of these
collisions, Ok�tNANB , features a chemical reaction and produce NC molecules of
C. The fraction is thought to be proportional to �t : considering a twice as long time
interval, twice as many molecules collide, and twice as many reactions occur. The
increase in molecules of substance C is now found from the reasoning

NC .t C�t/ D NC .t/C Ok�tNANB :

Dividing by �t ,
NC .t C�t/ �NC .t/

�t
D OkNANB;

and letting �t ! 0, gives the differential equation

dNC

dt
D OkNANB :

(This equation is known as the important law of mass action4 discovered by the
Norwegian scientists Cato M. Guldberg and Peter Waage. A more general form of
the right-hand side is OkN ˛

A N
ˇ
B . All the constants Ok, ˛, and ˇ must be determined

from experiments.)
Working instead with concentrations, we introduce ŒC �.t/ D NC .t/=NC .0/,

with similar definitions for ŒA� and ŒB� we get

dŒC �

dt
D kŒA�ŒB� : (4.20)

4 https://en.wikipedia.org/wiki/Law_of_mass_action

https://en.wikipedia.org/wiki/Law_of_mass_action
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The constant k is related to Ok by k D OkNA.0/NB.0/=NC .0/. The gain in C is a loss
of A and B:

dŒA�

dt
D �kŒA�ŒB�; (4.21)

dŒB�

dt
D �kŒA�ŒB� : (4.22)

4.6.4 A Biochemical Reaction

A common reaction (known as Michaelis–Menten kinetics5) turns a substrate S into
a product P with aid of an enzyme E. The reaction is a two-stage process: first S
and E reacts to form a complex ES, where the enzyme and substrate are bound to
each other, and then ES is turned into E and P. In the first stage, S and E react to
produce a growth of ES according to the law of mass action:

dŒS�

dt
D �kCŒE�ŒS�;

d ŒES�

dt
D kCŒE�ŒS� :

The complex ES reacts and produces the product P at rate �kvŒES� and E at rate
�k�ŒES�. The total set of reactions can then be expressed by

dŒES�

dt
D kCŒE�ŒS�� kvŒES� � k�ŒES�; (4.23)

dŒP �

dt
D kvŒES�; (4.24)

dŒS�

dt
D �kCŒE�ŒS�C k�ŒES�; (4.25)

dŒE�

dt
D �kCŒE�ŒS�C k�ŒES�C kvŒES� : (4.26)

The initial conditions are ŒES�.0/ D ŒP �.0/ D 0, and ŒS� D S0, ŒE� D E0. The
constants kC, k�, and kv must be determined from experiments.

4.7 Spreading of Diseases

The modeling of spreading of diseases is very similar to the modeling of chemical
reactions in Sect. 4.6. The field of epidemiology speaks about susceptibles: people
who can get a disease; infectives: people who are infected and can infect suscep-
tibles; and recovered: people who have recovered from the disease and become
immune. Three categories are accordingly defined: S for susceptibles, I for infec-
tives, and R for recovered. The number in each category is tracked by the functions
S.t/, I.t/, and R.t/.

5 https://en.wikipedia.org/wiki/Michaelis-Menten_kinetics

https://en.wikipedia.org/wiki/Michaelis-Menten_kinetics
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To model how many people that get infected in a small time interval �t , we
reason as with reactions in Sect. 4.6. The possible number of pairings (“collisions”)
between susceptibles and infected is SI . A fraction of these, ˇ�tSI , will actually
meet and the infected succeed in infecting the susceptible, where ˇ is a parameter to
be empirically estimated. This leads to a loss of susceptibles and a gain of infected:

S.t C�t/ D S.t/ � ˇ�tSI;

I.t C�t/ D I.t/C ˇ�tSI :

In the same time interval, a fraction ��tI of the infected is recovered. It follows
from Sect. 4.5.4 that the parameter ��1 is interpreted as the average waiting time to
leave the I category, i.e., the average length of the disease. The ��tI term is a loss
for the I category, but a gain for the R category:

I.t C�t/ D I.t/C ˇ�tSI � ��tI; R.t C�t/ D R.t/C ��tI :

Dividing these equations by �t and going to the limit �t ! 0, gives the ODE
system

dS

dt
D �ˇSI; (4.27)

dI

dt
D ˇSI � �I; (4.28)

dR

dt
D �I; (4.29)

with initial values S.0/ D S0, I.0/ D I0, and R.0/ D 0. By adding the equations,
we realize that

dS

dt
C dI

dt
C dR

dt
D 0 ) S C I CR D const D N;

where N is the total number in the population under consideration. This property
can be used as a partial verification during simulations.

Equations (4.27)–(4.29) are known as the SIR model in epidemiology. The
model can easily be extended to incorporate vaccination programs, immunity loss
after some time, etc. Typical diseases that can be simulated by the SIR model and
its variants are measles, smallpox, flu, plague, and HIV.

4.8 Predator-Prey Models in Ecology

A model for the interaction of predator and prey species can be based on reasoning
from population dynamics and the SIR model. Let H.t/ be the number of preys in
a region, and let L.t/ be the number of predators. For example, H may be hares
and L lynx, or rabbits and foxes.

The population of the prey evolves due to births and deaths, exactly as in a pop-
ulation dynamics model from Sect. 4.2.1. During a time interval �t the increase in
the population is therefore

H.t C�t/ �H.t/ D a�tH.t/;
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where a is a parameter to be measured from data. The increase is proportional to
H , and the proportionality constant a�t is proportional to �t , because doubling
the interval will double the increase.

However, the prey population has an additional loss because they are eaten by
predators. All the prey and predator animals can form LH pairs in total (assuming
all individuals meet randomly). A small fraction b�t of such meetings, during
a time interval �t , ends up with the predator eating the prey. The increase in the
prey population is therefore adjusted to

H.t C�t/ �H.t/ D a�tH.t/� b�tH.t/L.t/ :

The predator population increases as a result of eating preys. The amount of
eaten preys is b�tLH , but only a fraction d�tLH of this amount contributes to
increasing the predator population. In addition, predators die and this loss is set to
c�tL. To summarize, the increase in the predator population is given by

L.t C�t/ � L.t/ D d�tL.t/H.t/ � c�tL.t/ :

Dividing by �t in the equations for H and L and letting t ! 0 results in

lim
�t!0

H.t C�t/ �H.t/

�t
D H 0.t/ D aH.t/ � bL.t/H.t/;

lim
�t!0

L.t C�t/ �L.t/

�t
D L0.t/ D dL.t/H.t/ � cL.t/ :

We can simplify the notation to the following two ODEs:

H 0 D H.a � bL/; (4.30)

L0 D L.dH � c/ : (4.31)

This is a so-called Lokta-Volterra model. It contains four parameters that must be
estimated from data: a, b, c, and d . In addition, two initial conditions are needed
for H.0/ and L.0/.

4.9 Decay of Atmospheric Pressure with Altitude

4.9.1 The General Model

Vertical equilibrium of air in the atmosphere is governed by the equation

dp

dz
D �%g : (4.32)

Here, p.z/ is the air pressure, % is the density of air, and g D 9:807 m=s2 is a stan-
dard value of the acceleration of gravity. (Equation (4.32) follows directly from the
general Navier-Stokes equations for fluid motion, with the assumption that the air
does not move.)
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The pressure is related to density and temperature through the ideal gas law

% D Mp

R�T
; (4.33)

where M is the molar mass of the Earth’s air (0.029 kg=mol), R� is the universal
gas constant (8:314 Nm/(mol K)), and T is the temperature in Kelvin. All variables
p, %, and T vary with the height z. Inserting (4.33) in (4.32) results in an ODE with
a variable coefficient:

dp

dz
D � Mg

R�T .z/
p : (4.34)

4.9.2 Multiple Atmospheric Layers

The atmosphere can be approximately modeled by seven layers. In each layer,
(4.34) is applied with a linear temperature of the form

T .z/ D NTi C Li.z � hi /;

where z D hi denotes the bottom of layer number i , having temperature NTi , and Li

is a constant in layer number i . The table below lists hi (m), NTi (K), and Li (K/m)
for the layers i D 0; : : : ; 6.

i hi
NTi Li

0 0 288 �0.0065
1 11,000 216 0.0
2 20,000 216 0.001
3 32,000 228 0.0028
4 47,000 270 0.0
5 51,000 270 �0.0028
6 71,000 214 �0.002

For implementation it might be convenient to write (4.34) on the form

dp

dz
D � Mg

R�. NT .z/C L.z/.z � h.z///
p; (4.35)

where NT .z/, L.z/, and h.z/ are piecewise constant functions with values given in
the table. The value of the pressure at the sea level z D 0, p0 D p.0/, is 101,325 Pa.

4.9.3 Simplifications

Constant layer temperature One common simplification is to assume that the
temperature is constant within each layer. This means that L D 0.

One-layer model Another commonly used approximation is to work with one
layer instead of seven. This one-layer model6 is based on T .z/ D T0 � Lz,

6 http://en.wikipedia.org/wiki/Density_of_air

http://en.wikipedia.org/wiki/Density_of_air


4.10 Compaction of Sediments 105

with sea level standard temperature T0 D 288 K and temperature lapse rate L D
0:0065 K=m.

4.10 Compaction of Sediments

Sediments, originally made from materials like sand and mud, get compacted
through geological time by the weight of new material that is deposited on the sea
bottom. The porosity � of the sediments tells how much void (fluid) space there is
between the sand and mud grains. The porosity drops with depth, due to the weight
of the sediments above. This makes the void space shrink, and thereby compaction
increases.

A typical assumption is that the change in � at some depth z is negatively pro-
portional to �. This assumption leads to the differential equation problem

d�

dz
D �c�; �.0/ D �0; (4.36)

where the z axis points downwards, z D 0 is the surface with known porosity, and
c > 0 is a constant.

The upper part of the Earth’s crust consists of many geological layers stacked on
top of each other, as indicated in Fig. 4.1. The model (4.36) can be applied for each
layer. In layer number i , we have the unknown porosity function �i .z/ fulfilling
� 0i .z/ D �ci z, since the constant c in the model (4.36) depends on the type of
sediment in the layer. Alternatively, we can use (4.36) to describe the porosity
through all layers if c is taken as a piecewise constant function of z, equal to ci in
layer i . From the figure we see that new layers of sediments are deposited on top
of older ones as time progresses. The compaction, as measured by �, is rapid in the
beginning and then decreases (exponentially) with depth in each layer.

When we drill a well at present time through the right-most column of sediments
in Fig. 4.1, we can measure the thickness of the sediment in (say) the bottom layer.

Fig. 4.1 Illustration of the compaction of geological layers (with different colors) through time
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Let L1 be this thickness. Assuming that the volume of sediment remains constant
through time, we have that the initial volume,

R L1;0

0
�1dz, must equal the volume

seen today,
R `

`�L1
�1dz, where ` is the depth of the bottom of the sediment in the

present day configuration. After having solved for �1 as a function of z, we can
then find the original thickness L1;0 of the sediment from the equation

L1;0Z
0

�1dz D
`Z

`�L1

�1dz :

In hydrocarbon exploration it is important to know L1;0 and the compaction history
of the various layers of sediments.

4.11 Vertical Motion of a Body in a Viscous Fluid

A body moving vertically through a fluid (liquid or gas) is subject to three different
types of forces: the gravity force, the drag force7, and the buoyancy force.

4.11.1 Overview of Forces

Taking the upward direction as positive, the gravity force is Fg D �mg, where m

is the mass of the body and g is the acceleration of gravity. The uplift or buoyancy
force (“Archimedes force”) is Fb D %gV , where % is the density of the fluid and V

is the volume of the body.
The drag force is of two types, depending on the Reynolds number

Re D %d jvj
	

; (4.37)

where d is the diameter of the body in the direction perpendicular to the flow, v

is the velocity of the body, and 	 is the dynamic viscosity of the fluid. When
Re < 1, the drag force is fairly well modeled by the so-called Stokes’ drag, which
for a spherical body of diameter d reads

F
.S/

d D �3
d	v : (4.38)

Quantities are taken as positive in the upwards vertical direction, so if v > 0 and
the body moves upwards, the drag force acts downwards and become negative, in
accordance with the minus sign in expression for F

.S/

d .
For large Re, typically Re > 103, the drag force is quadratic in the velocity:

F
.q/

d D �1

2
CD%Ajvjv; (4.39)

7 http://en.wikipedia.org/wiki/Drag_(physics)

http://en.wikipedia.org/wiki/Drag_(physics)
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where CD is a dimensionless drag coefficient depending on the body’s shape, and A

is the cross-sectional area as produced by a cut plane, perpendicular to the motion,
through the thickest part of the body. The superscripts q and S in F

.S/

d and F
.q/

d

indicate Stokes’ drag and quadratic drag, respectively.

4.11.2 Equation ofMotion

All the mentioned forces act in the vertical direction. Newton’s second law of mo-
tion applied to the body says that the sum of these forces must equal the mass of the
body times its acceleration a in the vertical direction.

ma D Fg C F
.S/

d C Fb :

Here we have chosen to model the fluid resistance by the Stokes’ drag. Inserting
the expressions for the forces yields

ma D �mg � 3
d	vC %gV :

The unknowns here are v and a, i.e., we have two unknowns but only one equation.
From kinematics in physics we know that the acceleration is the time derivative of
the velocity: a D dv=dt . This is our second equation. We can easily eliminate a

and get a single differential equation for v:

m
dv

dt
D �mg � 3
d	vC %gV :

A small rewrite of this equation is handy: We express m as %bV , where %b is the
density of the body, and we divide by the mass to get

v0.t/ D �3
d	

%bV
v C g

�
%

%b

� 1

�
: (4.40)

We may introduce the constants

a D 3
d	

%bV
; b D g

�
%

%b

� 1

�
; (4.41)

so that the structure of the differential equation becomes obvious:

v0.t/ D �av.t/C b : (4.42)

The corresponding initial condition is v.0/ D v0 for some prescribed starting ve-
locity v0.

This derivation can be repeated with the quadratic drag force F
.q/

d , leading to the
result

v0.t/ D �1

2
CD

%A

%bV
jvjv C g

�
%

%b

� 1

�
: (4.43)



108 4 Models

Defining

a D 1

2
CD

%A

%bV
; (4.44)

and b as above, we can write (4.43) as

v0.t/ D �ajvjv C b : (4.45)

4.11.3 Terminal Velocity

An interesting aspect of (4.42) and (4.45) is whether v will approach a final constant
value, the so-called terminal velocity vT , as t ! 1. A constant v means that
v0.t/! 0 as t !1 and therefore the terminal velocity vT solves

0 D �avT C b

and
0 D �ajvT jvT C b :

The former equation implies vT D b=a, while the latter has solutions vT D
�pjbj=a for a falling body (vT < 0) and vT D

p
b=a for a rising body (vT > 0).

4.11.4 A Crank–Nicolson Scheme

Both governing equations, the Stokes’ drag model (4.42) and the quadratic drag
model (4.45), can be readily solved by the Forward Euler scheme. For higher ac-
curacy one can use the Crank–Nicolson method, but a straightforward application
of this method gives a nonlinear equation in the new unknown value vnC1 when
applied to (4.45):

vnC1 � vn

�t
D �a

1

2
.jvnC1jvnC1 C jvnjvn/C b : (4.46)

The first term on the right-hand side of (4.46) is the arithmetic average of �jvjv
evaluated at time levels n and nC 1.

Instead of approximating the term �jvjv by an arithmetic average, we can use
a geometric mean:

.jvjv/nC 1
2 � jvnjvnC1 : (4.47)

The error is of second order in �t , just as for the arithmetic average and the centered
finite difference approximation in (4.46). With the geometric mean, the resulting
discrete equation

vnC1 � vn

�t
D �ajvnjvnC1 C b
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becomes a linear equation in vnC1, and we can therefore easily solve for vnC1:

vnC1 D vn C�tbnC 1
2

1C�tanC 1
2 jvnj

: (4.48)

Using a geometric mean instead of an arithmetic mean in the Crank–Nicolson
scheme is an attractive method for avoiding a nonlinear algebraic equation when
discretizing a nonlinear ODE.

4.11.5 Physical Data

Suitable values of 	 are 1:8 �10�5 Pa s for air and 8:9 �10�4 Pa s for water. Densities
can be taken as 1:2 kg=m3 for air and as 1:0 � 103 kg=m3 for water. For consider-
able vertical displacement in the atmosphere one should take into account that the
density of air varies with the altitude, see Sect. 4.9. One possible density variation
arises from the one-layer model in the mentioned section.

Any density variation makes b time dependent and we need bnC 1
2 in (4.48). To

compute the density that enters bnC 1
2 we must also compute the vertical position

z.t/ of the body. Since v D dz=dt , we can use a centered difference approxima-
tion:

znC 1
2 � zn� 1

2

�t
D vn ) znC 1

2 D zn� 1
2 C�t vn :

This znC 1
2 is used in the expression for b to compute %.znC 1

2 / and then bnC 1
2 .

The drag coefficient8 CD depends heavily on the shape of the body. Some values
are: 0.45 for a sphere, 0.42 for a semi-sphere, 1.05 for a cube, 0.82 for a long
cylinder (when the center axis is in the vertical direction), 0.75 for a rocket, 1.0-1.3
for a man in upright position, 1.3 for a flat plate perpendicular to the flow, and 0.04
for a streamlined, droplet-like body.

4.11.6 Verification

To verify the program, one may assume a heavy body in air such that the Fb force
can be neglected, and further assume a small velocity such that the air resistance Fd

can also be neglected. This can be obtained by setting 	 and % to zero. The motion
then leads to the velocity v.t/ D v0 � gt , which is linear in t and therefore should
be reproduced to machine precision (say tolerance 10�15) by any implementation
based on the Crank–Nicolson or Forward Euler schemes.

Another verification, but not as powerful as the one above, can be based on
computing the terminal velocity and comparing with the exact expressions. The
advantage of this verification is that we can also test the situation % ¤ 0.

As always, the method of manufactured solutions can be applied to test the im-
plementation of all terms in the governing equation, but then the solution has no
physical relevance in general.

8 http://en.wikipedia.org/wiki/Drag_coefficient

http://en.wikipedia.org/wiki/Drag_coefficient
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4.11.7 Scaling

Applying scaling, as described in Sect. 4.1, will for the linear case reduce the need
to estimate values for seven parameters down to choosing one value of a single
dimensionless parameter

ˇ D
%bgV

�
%

%b
� 1

�
3
d	I

;

provided I ¤ 0. If the motion starts from rest, I D 0, the scaled problem reads

Nu0 D 1 � Nu; Nu.0/ D 0;

and there is no need for estimating physical parameters (!). This means that there
is a single universal solution to the problem of a falling body starting from rest:
Nu.t/ D 1 � e�Nt . All real physical cases correspond to stretching the Nt axis and the
Nu axis in this dimensionless solution. More precisely, the physical velocity u.t/ is
related to the dimensionless velocity Nu.Nt/ through

u D
%bgV

�
%

%b
� 1

�
3
d	

Nu.t=.g.%=%b � 1/// D
%bgV

�
%

%b
� 1

�
3
d	

.1 � et=.g.%=%b�1/// :

4.12 Viscoelastic Materials

When stretching a rod made of a perfectly elastic material, the elongation (change in
the rod’s length) is proportional to the magnitude of the applied force. Mathematical
models for material behavior under application of external forces use strain " and
stress � instead of elongation and forces. Strain is relative change in elongation and
stress is force per unit area. An elastic material has a linear relation between stress
and strain: � D E". This is a good model for many materials, but frequently the
velocity of the deformation (or more precisely, the strain rate "0) also influences the
stress. This is particularly the case for materials like organic polymers, rubber, and
wood. When the stress depends on both the strain and the strain rate, the material
is said to be viscoelastic. A common model relating forces to deformation is the
Kelvin–Voigt model9:

�.t/ D E".t/C �"0.t/ : (4.49)

Compared to a perfectly elastic material, which deforms instantaneously when
a force is acting, a Kelvin–Voigt material will spend some time to elongate. For
example, when an elastic rod is subject to a constant force � at t D 0, the strain
immediately adjusts to " D �=E. A Kelvin–Voigt material, however, has a response
".t/ D �

E
.1 � eEt=�/. Removing the force when the strain is ".t1/ D I will for

an elastic material immediately bring the strain back to zero, while a Kelvin–Voigt
material will decay: " D Ie�.t�t1/E=�/.

9 https://en.wikipedia.org/wiki/Kelvin-Voigt_material

https://en.wikipedia.org/wiki/Kelvin-Voigt_material
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Introducing u for " and treating � .t/ as a given function, we can write the
Kelvin–Voigt model in our standard form

u0.t/ D �au.t/C b.t/; (4.50)

with a D E=� and b.t/ D � .t/=�. An initial condition, usually u.0/ D 0, is
needed.

4.13 Decay ODEs from Solving a PDE by Fourier Expansions

Suppose we have a partial differential equation

@u

@t
D ˛

@2u

@x2
C f .x; t/;

with boundary conditions u.0; t/ D u.L; t/ D 0 and initial condition u.x; 0/ D
I.x/. One may express the solution as

u.x; t/ D
mX

kD1

Ak.t/eikx
=L;

for appropriate unknown functions Ak , k D 1; : : : ; m. We use the complex ex-
ponential eikx
=L for easy algebra, but the physical u is taken as the real part of
any complex expression. Note that the expansion in terms of eikx
=L is compatible
with the boundary conditions: all functions eikx
=L vanish for x D 0 and x D L.
Suppose we can express I.x/ as

I.x/ D
mX

kD1

Ikeikx
=L :

Such an expansion can be computed by well-known Fourier expansion techniques,
but those details are not important here. Also, suppose we can express the given
f .x; t/ as

f .x; t/ D
mX

kD1

bk.t/eikx
=L :

Inserting the expansions for u and f in the differential equations demands that all
terms corresponding to a given k must be equal. The calculations result in the
follow system of ODEs:

A0k.t/ D �˛
k2
2

L2
C bk.t/; k D 1; : : : ; m :

From the initial condition

u.x; 0/ D
X

k

Ak.0/eikx
=L D I.x/ D
X

k

Ike.ikx
=L/;
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so it follows that Ak.0/ D Ik , k D 1; : : : ; m. We then have m equations of the
form A0k D �aAk C b, Ak.0/ D Ik , for appropriate definitions of a and b. These
ODE problems are independent of each other such that we can solve one problem
at a time. The outlined technique is a quite common solution approach to partial
differential equations.

Remark Since ak depends on k and the stability of the Forward Euler scheme
demands ak�t � 1, we get that �t � ˛�1L2
�2k�2 for this scheme. Usually, quite
large k values are needed to accurately represent the given functions I and f so that
�t in the Forward Euler scheme needs to be very small for these large values of k.
Therefore, the Crank–Nicolson and Backward Euler schemes, which allow larger
�t without any growth in the solutions, are more popular choices when creating
time-stepping algorithms for partial differential equations of the type considered in
this example.

4.14 Exercises

Problem 4.1: Radioactive decay of Carbon-14
The Carbon-1410 isotope, whose radioactive decay is used extensively in dating
organic material that is tens of thousands of years old, has a half-life of 5,730 years.
Determine the age of an organic material that contains 8.4 % of its initial amount of
Carbon-14. Use a time unit of 1 year in the computations. The uncertainty in the
half time of Carbon-14 is ˙40 years. What is the corresponding uncertainty in the
estimate of the age?

Hint 1 Let A be the amount of Carbon-14. The ODE problem is then A0.t/ D
�aA.t/, A.0/ D I . Introduced the scaled amount u D A=I . The ODE problem
for u is u0 D �au, u.0/ D 1. Measure time in years. Simulate until the first mesh
point tm such that u.tm/ � 0:084.

Hint 2 Use simulations with 5;730˙ 40 y as input and find the corresponding un-
certainty interval for the result.
Filename: carbon14.

Exercise 4.2: Derive schemes for Newton’s law of cooling
Show in detail how we can apply the ideas of the Forward Euler, Backward Euler,
and Crank–Nicolson discretizations to derive explicit computational formulas for
new temperature values in Newton’s law of cooling (see Sect. 4.4):

dT

dt
D �k.T � Ts.t//; T .0/ D T0 :

Here, T is the temperature of the body, Ts.t/ is the temperature of the surroundings,
t is time, k is the heat transfer coefficient, and T0 is the initial temperature of the
body. Summarize the discretizations in a �-rule such that you can get the three
schemes from a single formula by varying the � parameter.

Filename: schemes_cooling.

10 http://en.wikipedia.org/wiki/Carbon-14

http://en.wikipedia.org/wiki/Carbon-14
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Exercise 4.3: Implement schemes for Newton’s law of cooling
The goal of this exercise is to implement the schemes from Exercise 4.2 and inves-
tigate several approaches for verifying the implementation.

a) Implement the �-rule from Exercise 4.2 in a function

cooling(T0, k, T_s, t_end, dt, theta=0.5)

where T0 is the initial temperature, k is the heat transfer coefficient, T_s is
a function of t for the temperature of the surroundings, t_end is the end time of
the simulation, dt is the time step, and theta corresponds to � . The cooling
function should return the temperature as an array T of values at the mesh points
and the time mesh t.

b) In the case limt!1 Ts.t/ D C D const, explain why T .t/ ! C . Construct
an example where you can illustrate this property in a plot. Implement a corre-
sponding test function that checks the correctness of the asymptotic value of the
solution.

c) A piecewise constant surrounding temperature,

Ts.t/ D
(

C0; 0 � t � t�

C1; t > t�;

corresponds to a sudden change in the environment at t D t�. Choose C0 D 2T0,
C1 D 1

2
T0, and t� D 3=k. Plot the solution T .t/ and explain why it seems

physically reasonable.
d) We know from the ODE u0 D �au that the Crank–Nicolson scheme can give

non-physical oscillations for �t > 2=a. In the present problem, this results
indicates that the Crank–Nicolson scheme give undesired oscillations for �t >

2=k. Discuss if this a potential problem in the physical case from c).
e) Find an expression for the exact solution of T 0 D �k.T � Ts.t//, T .0/ D T0.

Construct a test case and compare the numerical and exact solution in a plot.
Find a value of the time step �t such that the two solution curves cannot (vi-
sually) be distinguished from each other. Many scientists will claim that such
a plot provides evidence for a correct implementation, but point out why there
still may be errors in the code. Can you introduce bugs in the cooling function
and still achieve visually coinciding curves?

Hint The exact solution can be derived by multiplying (4.8) by the integrating fac-
tor ekt .

f) Implement a test function for checking that the solution returned by the cooling
function is identical to the exact numerical solution of the problem (to machine
precision) when Ts is constant.

Hint The exact solution of the discrete equations in the case Ts is a constant can
be found by introducing u D T � Ts to get a problem u0 D �ku, u.0/ D T0 � Ts .
The solution of the discrete equations is then of the form un D .T0 � Ts/A

n for
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some amplification factor A. The expression for T n is then T n D Ts.tn/ C un D
Ts C .T0 � Ts/A

n. We find that

A D 1 � .1 � �/k�t

1C �k�t
:

The test function, testing several � values for a quite coarse mesh, may take the
form

def test_discrete_solution():
"""
Compare the numerical solution with an exact solution
of the scheme when the T_s is constant.
"""
T_s = 10
T0 = 2
k = 1.2
dt = 0.1 # can use any mesh
N_t = 6 # any no of steps will do
t_end = dt*N_t
t = np.linspace(0, t_end, N_t+1)

for theta in [0, 0.5, 1, 0.2]:
u, t = cooling(T0, k, lambda t: T_s , t_end, dt, theta)
A = (1 - (1-theta)*k*dt)/(1 + theta*k*dt)
u_discrete_exact = T_s + (T0-T_s)*A**(np.arange(len(t)))
diff = np.abs(u - u_discrete_exact).max()
print ’diff computed and exact discrete solution:’, diff
tol = 1E-14
success = diff < tol
assert success, ’diff=%g’ % diff

Running this function shows that the diff variable is 3.55E-15 as maximum so
a tolerance of 10�14 is appropriate. This is a good test that the cooling function
works!

Filename: cooling.

Exercise 4.4: Find time of murder from body temperature
A detective measures the temperature of a dead body to be 26.7 ıC at 2 pm. One
hour later the temperature is 25.8 ıC. The question is when death occurred.

Assume that Newton’s law of cooling (4.8) is an appropriate mathematical model
for the evolution of the temperature in the body. First, determine k in (4.8) by
formulating a Forward Euler approximation with one time steep from time 2 am to
time 3 am, where knowing the two temperatures allows for finding k. Assume the
temperature in the air to be 20 ıC. Thereafter, simulate the temperature evolution
from the time of murder, taken as t D 0, when T D 37 ıC, until the temperature
reaches 25.8 ıC. The corresponding time allows for answering when death occurred.

Filename: detective.

Exercise 4.5: Simulate an oscillating cooling process
The surrounding temperature Ts in Newton’s law of cooling (4.8) may vary in time.
Assume that the variations are periodic with period P and amplitude a around
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a constant mean temperature Tm:

Ts.t/ D Tm C a sin

�
2


P
t

�
: (4.51)

Simulate a process with the following data: k D 0:05 min�1, T .0/ D 5 ıC, Tm D
25 ıC, a D 2:5 ıC, and P D 1 h, P D 10 min, and P D 6 h. Plot the T solutions
and Ts in the same plot.

Filename: osc_cooling.

Exercise 4.6: Simulate stochastic radioactive decay
The purpose of this exercise is to implement the stochastic model described in
Sect. 4.5 and show that its mean behavior approximates the solution of the cor-
responding ODE model.

The simulation goes on for a time interval Œ0; T � divided into Nt intervals of
length �t . We start with N0 atoms. In some time interval, we have N atoms that
have survived. Simulate N Bernoulli trials with probability ��t in this interval
by drawing N random numbers, each being 0 (survival) or 1 (decay), where the
probability of getting 1 is ��t . We are interested in the number of decays, d , and
the number of survived atoms in the next interval is then N � d . The Bernoulli
trials are simulated by drawing N uniformly distributed real numbers on Œ0; 1� and
saying that 1 corresponds to a value less than ��t :

# Given lambda_, dt, N
import numpy as np
uniform = np.random.uniform(N)
Bernoulli_trials = np.asarray(uniform < lambda_*dt, dtype=np.int)
d = Bernoulli_trials.size

Observe that uniform < lambda_*dt is a boolean array whose true and false val-
ues become 1 and 0, respectively, when converted to an integer array.

Repeat the simulation over Œ0; T � a large number of times, compute the average
value of N in each interval, and compare with the solution of the corresponding
ODE model.

Filename: stochastic_decay.

Problem 4.7: Radioactive decay of two substances
Consider two radioactive substances A and B. The nuclei in substance A decay to
form nuclei of type B with a half-life A1=2, while substance B decay to form type
A nuclei with a half-life B1=2. Letting uA and uB be the fractions of the initial
amount of material in substance A and B, respectively, the following system of
ODEs governs the evolution of uA.t/ and uB.t/:

1

ln 2
u0A D uB=B1=2 � uA=A1=2; (4.52)

1

ln 2
u0B D uA=A1=2 � uB=B1=2; (4.53)

with uA.0/ D uB.0/ D 1.
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a) Make a simulation program that solves for uA.t/ and uB.t/.
b) Verify the implementation by computing analytically the limiting values of uA

and uB as t ! 1 (assume u0A; u0B ! 0) and comparing these with those ob-
tained numerically.

c) Run the program for the case of A1=2 D 10 minutes and B1=2 D 50 minutes.
Use a time unit of 1 minute. Plot uA and uB versus time in the same plot.

Filename: radioactive_decay_2subst.

Exercise 4.8: Simulate a simple chemical reaction
Consider the simple chemical reaction where a substance A is turned into a sub-
stance B according to

dŒA�

dt
D �kŒA�;

d ŒB�

dt
D kŒA�;

where ŒA� and ŒB� are the concentrations of A and B, respectively. It may be a chal-
lenge to find appropriate values of k, but we can avoid this problem by working
with a scaled model (as explained in Sect. 4.1). Scale the model above, using a time
scale 1=k, and use the initial concentration of ŒA� as scale for ŒA� and ŒB�. Show
that the scaled system reads

du

dt
D �u;

dv

dt
D u;

with initial conditions u.0/ D 1, and v.0/ D ˛, where ˛ D ŒB�.0/=ŒA�.0/ is
a dimensionless number, and u and v are the scaled concentrations of ŒA� and ŒB�,
respectively. Implement a numerical scheme that can be used to find the solutions
u.t/ and v.t/. Visualize u and v in the same plot.

Filename: chemcial_kinetics_AB.

Exercise 4.9: Simulate an n-th order chemical reaction
An n-order chemical reaction, generalizing the model in Exercise 4.8, takes the
form

dŒA�

dt
D �kŒA�n;

d ŒB�

dt
D kŒA�n;

where symbols are as defined in Exercise 4.8. Bring this model on dimensionless
form, using a time scale ŒA�.0/n�1=k, and show that the dimensionless model sim-
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plifies to

du

dt
D �un;

dv

dt
D un;

with u.0/ D 1 and v.0/ D ˛ D ŒB�.0/=ŒA�.0/. Solve numerically for u.t/ and
show a plot with u for n D 0:5; 1; 2; 4.

Filename: chemcial_kinetics_ABn.

Exercise 4.10: Simulate a biochemical process
The purpose of this exercise is to simulate the ODE system (4.23)–(4.26) modeling
a simple biochemical process.

a) Scale (4.23)–(4.26) such that we can work with dimensionless parameters,
which are easier to prescribe. Introduce

NQ D ŒES�

Qc

; NP D P

Pc

; NS D S

S0

; NE D E

E0

; Nt D t

tc
;

where appropriate scales are

Qc D S0E0

K
; Pc D Qc; tc D 1

kCE0

;

with K D .kv C k�/=kC (Michaelis constant). Show that the scaled system
becomes

d NQ
d Nt D ˛. NE NS � NQ/; (4.54)

d NP
d Nt D ˇ NQ; (4.55)

d NS
d Nt D �

NE NS C .1 � ˇ˛�1/ NQ; (4.56)



d NE
d Nt D �

NE NS C NQ; (4.57)

where we have three dimensionless parameters

˛ D K

E0

; ˇ D kv

kCE0

; 
 D E0

S0

:

The corresponding initial conditions are NQ D NP D 0 and NS D NE D 1.
b) Implement a function for solving (4.54)–(4.57).
c) There are two conservation equations implied by (4.23)–(4.26):

ŒES�C ŒE� D E0; (4.58)

ŒES�C ŒS�C ŒP � D S0 : (4.59)
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Derive these two equations. Use these properties in the function in b) to do
a partial verification of the solution at each time step.

d) Simulate a case with T D 8, ˛ D 1:5 and ˇ D 1, and two 
 values: 0.9 and 0.1.

Filename: biochem.

Exercise 4.11: Simulate spreading of a disease
The SIR model (4.27)–(4.29) can be used to simulate spreading of an epidemic
disease.

a) Estimating the parameter ˇ is difficult so it can be handy to scale the equations.
Use tc D 1=� as time scale, and scale S , I , and R by the population size
N D S.0/CI.0/CR.0/. Show that the resulting dimensionless model becomes

d NS
d Nt D �R0

NS NI ; (4.60)

d NI
d Nt D R0

NS NI � NI ; (4.61)

d NR
d Nt D I; (4.62)

NS.0/ D 1 � ˛; (4.63)

NI .0/ D ˛; (4.64)

NR.0/ D 0; (4.65)

where R0 and ˛ are the only parameters in the problem:

R0 D Nˇ

�
; ˛ D I.0/

N
:

A quantity with a bar denotes a dimensionless version of that quantity, e.g, Nt is
dimensionless time, and Nt D �t .

b) Show that the R0 parameter governs whether the disease will spread or not at
t D 0.

Hint Spreading means dI=dt > 0.

c) Implement the scaled SIR model. Check at every time step, as a verification,
that NS C NI C NR D 1.

d) Simulate the spreading of a disease where R0 D 2; 5 and 2 % of the population
is infected at time t D 0.

Filename: SIR.

Exercise 4.12: Simulate predator-prey interaction
Section 4.8 describes a model for the interaction of predator and prey populations,
such as lynx and hares.
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a) Scale the equations (4.30)–(4.31). Use the initial population H.0/ D H0 of H

has scale for H and L, and let the time scale be 1=.bH0/.
b) Implement the scaled model from a). Run illustrating cases how the two popu-

lations develop.
c) The scaling in a) used a scale for H and L based on the initial condition H.0/ D

H0. An alternative scaling is to make the ODEs as simple as possible by intro-
ducing separate scales Hc and Lc for H and L, respectively. Fit Hc , Lc , and
the time scale tc such that there are as few dimensionless parameters as possi-
ble in the ODEs. Scale the initial conditions. Compare the number and type of
dimensionless parameters with a).

d) Compute with the scaled model from c) and create plots to illustrate the typical
solutions.

Filename: predator_prey.

Exercise 4.13: Simulate the pressure drop in the atmosphere
We consider the models for atmospheric pressure in Sect. 4.9. Make a program with
three functions,

� one computing the pressure p.z/ using a seven-layer model and varying L,
� one computing p.z/ using a seven-layer model, but with constant temperature in

each layer, and
� one computing p.z/ based on the one-layer model.

How can these implementations be verified? Should ease of verification impact how
you code the functions? Compare the three models in a plot.

Filename: atmospheric_pressure.

Exercise 4.14: Make a program for vertical motion in a fluid
Implement the Stokes’ drag model (4.40) and the quadratic drag model (4.43) from
Sect. 4.11, using the Crank–Nicolson scheme and a geometric mean for jvjv as
explained, and assume constant fluid density. At each time level, compute the
Reynolds number Re and choose the Stokes’ drag model if Re < 1 and the quadratic
drag model otherwise.

The computation of the numerical solution should take place either in a stand-
alone function or in a solver class that looks up a problem class for physical data.
Create a module and equip it with pytest/nose compatible test functions for auto-
matically verifying the code.

Verification tests can be based on

� the terminal velocity (see Sect. 4.11),
� the exact solution when the drag force is neglected (see Sect. 4.11),
� the method of manufactured solutions (see Sect. 3.1.5) combined with comput-

ing convergence rates (see Sect. 3.1.6).

Use, e.g., a quadratic polynomial for the velocity in the method of manufactured
solutions. The expected error is O.�t2/ from the centered finite difference approx-
imation and the geometric mean approximation for jvjv.
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A solution that is linear in t will also be an exact solution of the discrete equa-
tions in many problems. Show that this is true for linear drag (by adding a source
term that depends on t), but not for quadratic drag because of the geometric mean
approximation. Use the method of manufactured solutions to add a source term in
the discrete equations for quadratic drag such that a linear function of t is a so-
lution. Add a test function for checking that the linear function is reproduced to
machine precision in the case of both linear and quadratic drag.

Apply the software to a case where a ball rises in water. The buoyancy force is
here the driving force, but the drag will be significant and balance the other forces
after a short time. A soccer ball has radius 11 cm and mass 0.43 kg. Start the motion
from rest, set the density of water, %, to 1000 kg=m3, set the dynamic viscosity, 	,
to 10�3 Pa s, and use a drag coefficient for a sphere: 0.45. Plot the velocity of the
rising ball.

Filename: vertical_motion.

Project 4.15: Simulate parachuting
The aim of this project is to develop a general solver for the vertical motion of
a body with quadratic air drag, verify the solver, apply the solver to a skydiver in
free fall, and finally apply the solver to a complete parachute jump.

All the pieces of software implemented in this project should be realized as
Python functions and/or classes and collected in one module.

a) Set up the differential equation problem that governs the velocity of the motion.
The parachute jumper is subject to the gravity force and a quadratic drag force.
Assume constant density. Add an extra source term to be used for program
verification. Identify the input data to the problem.

b) Make a Python module for computing the velocity of the motion. Also equip
the module with functionality for plotting the velocity.

Hint 1 Use the Crank–Nicolson scheme with a geometric mean of jvjv in time to
linearize the equation of motion with quadratic drag.

Hint 2 You can either use functions or classes for implementation. If you choose
functions, make a function solver that takes all the input data in the problem as
arguments and that returns the velocity (as a mesh function) and the time mesh. In
case of a class-based implementation, introduce a problem class with the physical
data and a solver class with the numerical data and a solve method that stores the
velocity and the mesh in the class.

Allow for a time-dependent area and drag coefficient in the formula for the drag
force.

c) Show that a linear function of t does not fulfill the discrete equations because of
the geometric mean approximation used for the quadratic drag term. Fit a source
term, as in the method of manufactured solutions, such that a linear function of
t is a solution of the discrete equations. Make a test function to check that this
solution is reproduced to machine precision.
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d) The expected error in this problem goes like �t2 because we use a centered finite
difference approximation with error O.�t2/ and a geometric mean approxima-
tion with error O.�t2/. Use the method of manufactured solutions combined
with computing convergence rate to verify the code. Make a test function for
checking that the convergence rate is correct.

e) Compute the drag force, the gravity force, and the buoyancy force as a function
of time. Create a plot with these three forces.

Hint You can either make a function forces(v, t, plot=None) that returns the
forces (as mesh functions) and t, and shows a plot on the screen and also saves
the plot to a file with name stored in plot if plot is not None, or you can extend
the solver class with computation of forces and include plotting of forces in the
visualization class.

f) Compute the velocity of a skydiver in free fall before the parachute opens.

Hint Meade and Struthers [11] provide some data relevant to skydiving11. The
mass of the human body and equipment can be set to 100 kg. A skydiver in spread-
eagle formation has a cross-section of 0.5 m2 in the horizontal plane. The density
of air decreases with altitude, but can be taken as constant, 1 kg=m3, for altitudes
relevant to skydiving (0–4000 m). The drag coefficient for a man in upright position
can be set to 1.2. Start with a zero velocity. A free fall typically has a terminating
velocity of 45 m=s. (This value can be used to tune other parameters.)

g) The next task is to simulate a parachute jumper during free fall and after the
parachute opens. At time tp , the parachute opens and the drag coefficient and the
cross-sectional area change dramatically. Use the program to simulate a jump
from z D 3000 m to the ground z D 0. What is the maximum acceleration,
measured in units of g, experienced by the jumper?

Hint Following Meade and Struthers [11], one can set the cross-section area per-
pendicular to the motion to 44 m2 when the parachute is open. Assume that it takes
8 s to increase the area linearly from the original to the final value. The drag coeffi-
cient for an open parachute can be taken as 1.8, but tuned using the known value of
the typical terminating velocity reached before landing: 5.3 m=s. One can take the
drag coefficient as a piecewise constant function with an abrupt change at tp . The
parachute is typically released after tp D 60 s, but larger values of tp can be used to
make plots more illustrative.
Filename: parachuting.

Exercise 4.16: Formulate vertical motion in the atmosphere
Vertical motion of a body in the atmosphere needs to take into account a varying air
density if the range of altitudes is many kilometers. In this case, % varies with the
altitude z. The equation of motion for the body is given in Sect. 4.11. Let us assume
quadratic drag force (otherwise the body has to be very, very small). A differential

11 http://en.wikipedia.org/wiki/Parachuting

http://en.wikipedia.org/wiki/Parachuting
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equation problem for the air density, based on the information for the one-layer
atmospheric model in Sect. 4.9, can be set up as

p0.z/ D � Mg

R�.T0 C Lz/
p; (4.66)

% D p
M

R�T
: (4.67)

To evaluate p.z/ we need the altitude z. From the principle that the velocity is the
derivative of the position we have that

z0.t/ D v.t/; (4.68)

where v is the velocity of the body.
Explain in detail how the governing equations can be discretized by the Forward

Euler and the Crank–Nicolson methods. Discuss pros and cons of the two methods.
Filename: falling_in_variable_density.

Exercise 4.17: Simulate vertical motion in the atmosphere
Implement the Forward Euler or the Crank–Nicolson scheme derived in Exer-
cise 4.16. Demonstrate the effect of air density variation on a falling human, e.g.,
the famous fall of Felix Baumgartner12. The drag coefficient can be set to 1.2.

Filename: falling_in_variable_density.

Problem 4.18: Compute y D jxj by solving an ODE
Consider the ODE problem

y0.x/ D
(
�1; x < 0;

1; x 	 0
x 2 .�1; 1�; y.1�/ D 1;

which has the solution y.x/ D jxj. Using a mesh x0 D �1, x1 D 0, and
x2 D 1, calculate by hand y1 and y2 from the Forward Euler, Backward Euler,
Crank–Nicolson, and Leapfrog methods. Use all of the former three methods for
computing the y1 value to be used in the Leapfrog calculation of y2. Thereafter, vi-
sualize how these schemes perform for a uniformly partitioned mesh with N D 10

and N D 11 points.
Filename: signum.

Problem 4.19: Simulate fortune growth with random interest rate
The goal of this exercise is to compute the value of a fortune subject to inflation and
a random interest rate. Suppose that the inflation is constant at i percent per year
and that the annual interest rate, p, changes randomly at each time step, starting at
some value p0 at t D 0. The random change is from a value pn at t D tn to pnC�p

with probability 0.25 and pn � �p with probability 0.25. No change occurs with
probability 0.5. There is also no change if pnC1 exceeds 15 or becomes below 1.
Use a time step of one month, p0 D i , initial fortune scaled to 1, and simulate 1000

12 http://en.wikipedia.org/wiki/Felix_Baumgartner

http://en.wikipedia.org/wiki/Felix_Baumgartner
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scenarios of length 20 years. Compute the mean evolution of one unit of money
and the corresponding standard deviation. Plot the mean curve along with the mean
plus one standard deviation and the mean minus one standard deviation. This will
illustrate the uncertainty in the mean curve.

Hint 1 The following code snippet computes pnC1:

import random

def new_interest_rate(p_n, dp=0.5):
r = random.random() # uniformly distr. random number in [0,1)
if 0 <= r < 0.25:

p_np1 = p_n + dp
elif 0.25 <= r < 0.5:

p_np1 = p_n - dp
else:

p_np1 = p_n
return (p_np1 if 1 <= p_np1 <= 15 else p_n)

Hint 2 If ui .t/ is the value of the fortune in experiment number i , i D 0; : : : ; N�1,
the mean evolution of the fortune is

Nu.t/ D 1

N

N�1X
iD0

ui .t/;

and the standard deviation is

s.t/ D
vuut 1

N � 1

 
�. Nu.t//2 C

N�1X
iD0

.ui .t//2

!
:

Suppose ui .t/ is stored in an array u. The mean and the standard deviation of
the fortune is most efficiently computed by using two accumulation arrays, sum_u
and sum_u2, and performing sum_u += u and sum_u2 += u**2 after every ex-
periment. This technique avoids storing all the ui .t/ time series for computing the
statistics.
Filename: random_interest.

Exercise 4.20: Simulate a population in a changing environment
We shall study a population modeled by (4.3) where the environment, represented
by r and f , undergoes changes with time.

a) Assume that there is a sudden drop (increase) in the birth (death) rate at time
t D tr , because of limited nutrition or food supply:

r.t/ D
(

%; t < tr ;

% �A; t 	 tr :

This drop in population growth is compensated by a sudden net immigration at
time tf > tr :

f .t/ D
(

0; t < tf ;

f0; t 	 ta:
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Start with % and make A > %. Experiment with these and other parameters to
illustrate the interplay of growth and decay in such a problem.

b) Now we assume that the environmental conditions changes periodically with
time so that we may take

r.t/ D %C A sin
�

2


P
t

�
:

That is, the combined birth and death rate oscillates around % with a maximum
change of ˙A repeating over a period of length P in time. Set f D 0 and
experiment with the other parameters to illustrate typical features of the solution.

Filename: population.py.

Exercise 4.21: Simulate logistic growth
Solve the logistic ODE (4.4) using a Crank–Nicolson scheme where .unC 1

2 /2 is
approximated by a geometric mean:

.unC 1
2 /2 � unC1un :

This trick makes the discrete equation linear in unC1.
Filename: logistic_CN.

Exercise 4.22: Rederive the equation for continuous compound interest
The ODE model (4.7) was derived under the assumption that r was constant. Per-
form an alternative derivation without this assumption: 1) start with (4.5); 2) intro-
duce a time step �t instead of m: �t D 1=m if t is measured in years; 3) divide by
�t and take the limit �t ! 0. Simulate a case where the inflation is at a constant
level I percent per year and the interest rate oscillates: r D �I=2 C r0 sin.2
t/.
Compare solutions for r0 D I; 3I=2; 2I .

Filename: interest_modeling.

Exercise 4.23: Simulate the deformation of a viscoelastic material
Stretching a rod made of polymer will cause deformations that are well described
with a Kelvin–Voigt material model (4.49). At t D 0 we apply a constant force
� D �0, but at t D t1, we remove the force so � D 0. Compute numerically the
corresponding strain (elongation divided by the rod’s length) and visualize how it
responds in time.

Hint To avoid finding proper values of the E and � parameters for a polymer, one
can scale the problem. A common dimensionless time is Nt D tE=�. Note that " is
already dimensionless by definition, but it takes on small values, say up to 0.1, so
we introduce a scaling: Nu D 10" such that Nu takes on values up to about unity.

Show that the material model then takes the form Nu0 D � NuC 10�.t/=E. Work
with the dimensionless force F D 10�.t/=E, and let F D 1 for Nt 2 .0; Nt1/ and
F D 0 for Nt 	 Nt1. A possible choice of t1 is the characteristic time �=E, which
means that Nt1 D 1.
Filename: KelvinVoigt.
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