
2Analysis

We address the ODE for exponential decay,

u0.t/ D �au.t/; u.0/ D I; (2.1)

where a and I are given constants. This problem is solved by the �-rule finite
difference scheme, resulting in the recursive equations

unC1 D 1 � .1 � �/a�t

1C �a�t
un (2.2)

for the numerical solution unC1, which approximates the exact solution ue at time
point tnC1. For constant mesh spacing, which we assume here, tnC1 D .nC 1/�t .

The example programs associated with this chapter are found in the directory
src/analysis1.

2.1 Experimental Investigations

We first perform a series of numerical explorations to see how the methods behave
as we change the parameters I , a, and �t in the problem.

2.1.1 Discouraging Numerical Solutions

Choosing I D 1, a D 2, and running experiments with � D 1; 0:5; 0 for �t D
1:25; 0:75; 0:5; 0:1, gives the results in Figs. 2.1, 2.2, and 2.3.

The characteristics of the displayed curves can be summarized as follows:

� The Backward Euler scheme gives a monotone solution in all cases, lying above
the exact curve.

� The Crank–Nicolson scheme gives the most accurate results, but for �t D 1:25

the solution oscillates.

1 http://tinyurl.com/ofkw6kc/analysis

39© The Author(s) 2016
H.P. Langtangen, Finite Difference Computing with Exponential Decay Models,
Lecture Notes in Computational Science and Engineering 110,
DOI 10.1007/978-3-319-29439-1_2

http://tinyurl.com/ofkw6kc/analysis

40 2 Analysis

Fig. 2.1 Backward Euler

� The Forward Euler scheme gives a growing, oscillating solution for �t D 1:25;
a decaying, oscillating solution for �t D 0:75; a strange solution un D 0 for
n 	 1 when �t D 0:5; and a solution seemingly as accurate as the one by
the Backward Euler scheme for �t D 0:1, but the curve lies below the exact
solution.

Since the exact solution of our model problem is a monotone function, u.t/ D
Ie�at , some of these qualitatively wrong results indeed seem alarming!

Key questions
� Under what circumstances, i.e., values of the input data I , a, and �t will the

Forward Euler and Crank–Nicolson schemes result in undesired oscillatory
solutions?

� How does �t impact the error in the numerical solution?

The first question will be investigated both by numerical experiments and by
precise mathematical theory. The theory will help establish general criteria on
�t for avoiding non-physical oscillatory or growing solutions.

For our simple model problem we can answer the second question very pre-
cisely, but we will also look at simplified formulas for small �t and touch upon

2.1 Experimental Investigations 41

Fig. 2.2 Crank–Nicolson

important concepts such as convergence rate and the order of a scheme. Other
fundamental concepts mentioned are stability, consistency, and convergence.

2.1.2 Detailed Experiments

To address the first question above, we may set up an experiment where we loop
over values of I , a, and �t in our chosen model problem. For each experiment, we
flag the solution as oscillatory if

un > un�1;

for some value of n. This seems like a reasonable choice, since we expect un to
decay with n, but oscillations will make u increase over a time step. Doing some
initial experimentation with varying I , a, and �t , quickly reveals that oscillations
are independent of I , but they do depend on a and �t . We can therefore limit the
investigation to vary a and �t . Based on this observation, we introduce a two-
dimensional function B.a; �t/ which is 1 if oscillations occur and 0 otherwise.
We can visualize B as a contour plot (lines for which B D const). The contour
B D 0:5 corresponds to the borderline between oscillatory regions with B D 1 and
monotone regions with B D 0 in the a; �t plane.

42 2 Analysis

Fig. 2.3 Forward Euler

The B function is defined at discrete a and �t values. Say we have given P

values for a, a0; : : : ; aP�1, and Q values for �t , �t0; : : : ; �tQ�1. These ai and
�tj values, i D 0; : : : ; P � 1, j D 0; : : : ; Q � 1, form a rectangular mesh of
P
 Q points in the plane spanned by a and �t . At each point .ai ; �tj /, we
associate the corresponding value B.ai ; �tj /, denoted Bij . The Bij values are nat-
urally stored in a two-dimensional array. We can thereafter create a plot of the
contour line Bij D 0:5 dividing the oscillatory and monotone regions. The file
decay_osc_regions.py2 given below (osc_regions stands for “oscillatory re-
gions”) contains all nuts and bolts to produce the B D 0:5 line in Figs. 2.4 and 2.5.
The oscillatory region is above this line.

from decay_mod import solver
import numpy as np
import scitools.std as st

def non_physical_behavior(I, a, T, dt, theta):
"""
Given lists/arrays a and dt, and numbers I, dt, and theta,
make a two-dimensional contour line B=0.5, where B=1>0.5
means oscillatory (unstable) solution, and B=0<0.5 means
monotone solution of u’=-au.
"""

2 http://tinyurl.com/ofkw6kc/analysis/decay_osc_regions.py

http://tinyurl.com/ofkw6kc/analysis/decay_osc_regions.py

2.1 Experimental Investigations 43

Fig. 2.4 Forward Euler scheme: oscillatory solutions occur for points above the curve

a = np.asarray(a); dt = np.asarray(dt) # must be arrays
B = np.zeros((len(a), len(dt))) # results
for i in range(len(a)):

for j in range(len(dt)):
u, t = solver(I, a[i], T, dt[j], theta)
Does u have the right monotone decay properties?
correct_qualitative_behavior = True
for n in range(1, len(u)):

if u[n] > u[n-1]: # Not decaying?
correct_qualitative_behavior = False
break # Jump out of loop

B[i,j] = float(correct_qualitative_behavior)
a_, dt_ = st.ndgrid(a, dt) # make mesh of a and dt values
st.contour(a_, dt_, B, 1)
st.grid(’on’)
st.title(’theta=%g’ % theta)
st.xlabel(’a’); st.ylabel(’dt’)
st.savefig(’osc_region_theta_%s.png’ % theta)
st.savefig(’osc_region_theta_%s.pdf’ % theta)

non_physical_behavior(
I=1,
a=np.linspace(0.01, 4, 22),
dt=np.linspace(0.01, 4, 22),
T=6,
theta=0.5)

By looking at the curves in the figures one may guess that a�t must be less
than a critical limit to avoid the undesired oscillations. This limit seems to be about
2 for Crank–Nicolson and 1 for Forward Euler. We shall now establish a precise
mathematical analysis of the discrete model that can explain the observations in our
numerical experiments.

44 2 Analysis

Fig. 2.5 Crank–Nicolson scheme: oscillatory solutions occur for points above the curve

2.2 Stability

The goal now is to understand the results in the previous section. To this end, we
shall investigate the properties of the mathematical formula for the solution of the
equations arising from the finite difference methods.

2.2.1 Exact Numerical Solution

Starting with u0 D I , the simple recursion (2.2) can be applied repeatedly n times,
with the result that

un D IAn; A D 1 � .1 � �/a�t

1C �a�t
: (2.3)

Solving difference equations
Difference equations where all terms are linear in unC1, un, and maybe un�1,
un�2, etc., are called homogeneous, linear difference equations, and their solu-
tions are generally of the form un D An, where A is a constant to be determined.
Inserting this expression in the difference equation and dividing by AnC1 gives
a polynomial equation in A. In the present case we get

A D 1 � .1 � �/a�t

1C �a�t
:

This is a solution technique of wider applicability than repeated use of the recur-
sion (2.2).

2.2 Stability 45

Regardless of the solution approach, we have obtained a formula for un. This
formula can explain everything we see in the figures above, but it also gives us
a more general insight into accuracy and stability properties of the three schemes.

Since un is a factor A raised to an integer power n, we realize that A < 0 will
imply un < 0 for odd n and un > 0 for even n. That is, the solution oscillates
between the mesh points. We have oscillations due to A < 0 when

.1 � �/a�t > 1 : (2.4)

Since A > 0 is a requirement for having a numerical solution with the same basic
property (monotonicity) as the exact solution, we may say that A > 0 is a stability
criterion. Expressed in terms of �t the stability criterion reads

�t <
1

.1 � �/a
: (2.5)

The Backward Euler scheme is always stable since A < 0 is impossible for
� D 1, while non-oscillating solutions for Forward Euler and Crank–Nicolson de-
mand �t � 1=a and �t � 2=a, respectively. The relation between �t and a look
reasonable: a larger a means faster decay and hence a need for smaller time steps.

Looking at the upper left plot in Fig. 2.3, we see that �t D 1:25, and remember-
ing that a D 2 in these experiments, A can be calculated to be�1:5, so the Forward
Euler solution becomes un D .�1:5/n (I D 1). This solution oscillates and grows.
The upper right plot has a�t D 2 � 0:75 D 1:5, so A D �0:5, and un D .�0:5/n

decays but oscillates. The lower left plot is a peculiar case where the Forward Euler
scheme produces a solution that is stuck on the t axis. Now we can understand why
this is so, because a�t D 2 � 0:5 D 1, which gives A D 0, and therefore un D 0 for
n 	 1. The decaying oscillations in the Crank–Nicolson scheme in the upper left
plot in Fig. 2.2 for �t D 1:25 are easily explained by the fact that A � �0:11 < 0.

2.2.2 Stability Properties Derived from the Amplification Factor

The factor A is called the amplification factor since the solution at a new time
level is the solution at the previous time level amplified by a factor A. For a decay
process, we must obviously have jAj � 1, which is fulfilled for all �t if � 	 1=2.
Arbitrarily large values of u can be generated when jAj > 1 and n is large enough.
The numerical solution is in such cases totally irrelevant to an ODE modeling decay
processes! To avoid this situation, we must demand jAj � 1 also for � < 1=2,
which implies

�t � 2

.1 � 2�/a
; (2.6)

For example, �t must not exceed 2=a when computing with the Forward Euler
scheme.

46 2 Analysis

Stability properties
We may summarize the stability investigations as follows:

1. The Forward Euler method is a conditionally stable scheme because it re-
quires �t < 2=a for avoiding growing solutions and �t < 1=a for avoiding
oscillatory solutions.

2. The Crank–Nicolson is unconditionally stable with respect to growing solu-
tions, while it is conditionally stable with the criterion �t < 2=a for avoiding
oscillatory solutions.

3. The Backward Euler method is unconditionally stable with respect to grow-
ing and oscillatory solutions – any �t will work.

Much literature on ODEs speaks about L-stable and A-stable methods. In our
case A-stable methods ensures non-growing solutions, while L-stable methods
also avoids oscillatory solutions.

2.3 Accuracy

While stability concerns the qualitative properties of the numerical solution, it re-
mains to investigate the quantitative properties to see exactly how large the numer-
ical errors are.

2.3.1 Visual Comparison of Amplification Factors

After establishing how A impacts the qualitative features of the solution, we shall
now look more into how well the numerical amplification factor approximates the
exact one. The exact solution reads u.t/ D Ie�at , which can be rewritten as

ue.tn/ D Ie�an�t D I.e�a�t /n : (2.7)

From this formula we see that the exact amplification factor is

Ae D e�a�t : (2.8)

We see from all of our analysis that the exact and numerical amplification factors
depend on a and �t through the dimensionless product a�t : whenever there is
a �t in the analysis, there is always an associated a parameter. Therefore, it is
convenient to introduce a symbol for this product, p D a�t , and view A and Ae as
functions of p. Figure 2.6 shows these functions. The two amplification factors are
clearly closest for the Crank–Nicolson method, but that method has the unfortunate
oscillatory behavior when p > 2.

Significance of the p D a�t parameter
The key parameter for numerical performance of a scheme is in this model prob-
lem p D a�t . This is a dimensionless number (a has dimension 1/s and �t

2.3 Accuracy 47

Fig. 2.6 Comparison of amplification factors

has dimension s) reflecting how the discretization parameter plays together with
a physical parameter in the problem.

One can bring the present model problem on dimensionless form through
a process called scaling. The scaled modeled has a modified time Nt D at and
modified response Nu D u=I such that the model reads d Nu=d Nt D �Nu, Nu.0/ D 1.
Analyzing this model, where there are no physical parameters, we find that �Nt
is the key parameter for numerical performance. In the unscaled model, this
corresponds to �Nt D a�t .

It is common that the numerical performance of methods for solving ordinary
and partial differential equations is governed by dimensionless parameters that
combine mesh sizes with physical parameters.

2.3.2 Series Expansion of Amplification Factors

As an alternative to the visual understanding inherent in Fig. 2.6, there is a strong
tradition in numerical analysis to establish formulas for approximation errors when
the discretization parameter, here �t , becomes small. In the present case, we let p

be our small discretization parameter, and it makes sense to simplify the expressions
for A and Ae by using Taylor polynomials around p D 0. The Taylor polynomi-
als are accurate for small p and greatly simplify the comparison of the analytical
expressions since we then can compare polynomials, term by term.

Calculating the Taylor series for Ae is easily done by hand, but the three versions
of A for � D 0; 1; 1

2
lead to more cumbersome calculations. Nowadays, analyti-

cal computations can benefit greatly by symbolic computer algebra software. The
Python package sympy represents a powerful computer algebra system, not yet as
sophisticated as the famous Maple and Mathematica systems, but it is free and very
easy to integrate with our numerical computations in Python.

48 2 Analysis

When using sympy, it is convenient to enter an interactive Python shell where the
results of expressions and statements can be shown immediately. Here is a simple
example. We strongly recommend to use isympy (or ipython) for such interactive
sessions.

Let us illustrate sympy with a standard Python shell syntax (»> prompt) to com-
pute a Taylor polynomial approximation to e�p:

>>> from sympy import *
>>> # Create p as a mathematical symbol with name ’p’
>>> p = Symbols(’p’)
>>> # Create a mathematical expression with p
>>> A_e = exp(-p)
>>>
>>> # Find the first 6 terms of the Taylor series of A_e
>>> A_e.series(p, 0, 6)
1 + (1/2)*p**2 - p - 1/6*p**3 - 1/120*p**5 + (1/24)*p**4 + O(p**6)

Lines with »> represent input lines, whereas without this prompt represent the result
of the previous command (note that isympy and ipython apply other prompts, but
in this text we always apply »> for interactive Python computing). Apart from the
order of the powers, the computed formula is easily recognized as the beginning of
the Taylor series for e�p .

Let us define the numerical amplification factor where p and � enter the formula
as symbols:

>>> theta = Symbol(’theta’)
>>> A = (1-(1-theta)*p)/(1+theta*p)

To work with the factor for the Backward Euler scheme we can substitute the value
1 for theta:

>>> A.subs(theta, 1)
1/(1 + p)

Similarly, we can substitute theta by 1=2 for Crank–Nicolson, preferably using an
exact rational representation of 1=2 in sympy:

>>> half = Rational(1,2)
>>> A.subs(theta, half)
1/(1 + (1/2)*p)*(1 - 1/2*p)

The Taylor series of the amplification factor for the Crank–Nicolson scheme can
be computed as

>>> A.subs(theta, half).series(p, 0, 4)
1 + (1/2)*p**2 - p - 1/4*p**3 + O(p**4)

2.3 Accuracy 49

We are now in a position to compare Taylor series:

>>> FE = A_e.series(p, 0, 4) - A.subs(theta, 0).series(p, 0, 4)
>>> BE = A_e.series(p, 0, 4) - A.subs(theta, 1).series(p, 0, 4)
>>> CN = A_e.series(p, 0, 4) - A.subs(theta, half).series(p, 0, 4)
>>> FE
(1/2)*p**2 - 1/6*p**3 + O(p**4)
>>> BE
-1/2*p**2 + (5/6)*p**3 + O(p**4)
>>> CN
(1/12)*p**3 + O(p**4)

From these expressions we see that the error A � Ae � O.p2/ for the Forward and
Backward Euler schemes, while A�Ae � O.p3/ for the Crank–Nicolson scheme.
The notation O.pm/ here means a polynomial in p where pm is the term of lowest-
degree, and consequently the term that dominates the expression for p < 0. We call
this the leading order term. As p ! 0, the leading order term clearly dominates
over the higher-order terms (think of p D 0:01: p is a hundred times larger than p2).

Now, a is a given parameter in the problem, while �t is what we can vary. Not
surprisingly, the error expressions are usually written in terms �t . We then have

A � Ae D
(
O.�t2/; Forward and Backward Euler;

O.�t3/; Crank–Nicolson
(2.9)

We say that the Crank–Nicolson scheme has an error in the amplification factor
of order �t3, while the two other schemes are of order �t2 in the same quantity.

What is the significance of the order expression? If we halve �t , the error in am-
plification factor at a time level will be reduced by a factor of 4 in the Forward and
Backward Euler schemes, and by a factor of 8 in the Crank–Nicolson scheme. That
is, as we reduce �t to obtain more accurate results, the Crank–Nicolson scheme
reduces the error more efficiently than the other schemes.

2.3.3 The Ratio of Numerical and Exact Amplification Factors

An alternative comparison of the schemes is provided by looking at the ratio A=Ae,
or the error 1 � A=Ae in this ratio:

>>> FE = 1 - (A.subs(theta, 0)/A_e).series(p, 0, 4)
>>> BE = 1 - (A.subs(theta, 1)/A_e).series(p, 0, 4)
>>> CN = 1 - (A.subs(theta, half)/A_e).series(p, 0, 4)
>>> FE
(1/2)*p**2 + (1/3)*p**3 + O(p**4)
>>> BE
-1/2*p**2 + (1/3)*p**3 + O(p**4)
>>> CN
(1/12)*p**3 + O(p**4)

The leading-order terms have the same powers as in the analysis of A � Ae.

50 2 Analysis

2.3.4 The Global Error at a Point

The error in the amplification factor reflects the error when progressing from time
level tn to tn�1 only. That is, we disregard the error already present in the solution
at tn�1. The real error at a point, however, depends on the error development over
all previous time steps. This error, en D un � ue.tn/, is known as the global error.
We may look at un for some n and Taylor expand the mathematical expressions as
functions of p D a�t to get a simple expression for the global error (for small p).
Continuing the sympy expression from previous section, we can write

>>> n = Symbol(’n’)
>>> u_e = exp(-p*n)
>>> u_n = A**n
>>> FE = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
>>> BE = u_e.series(p, 0, 4) - u_n.subs(theta, 1).series(p, 0, 4)
>>> CN = u_e.series(p, 0, 4) - u_n.subs(theta, half).series(p, 0, 4)
>>> FE
(1/2)*n*p**2 - 1/2*n**2*p**3 + (1/3)*n*p**3 + O(p**4)
>>> BE
(1/2)*n**2*p**3 - 1/2*n*p**2 + (1/3)*n*p**3 + O(p**4)
>>> CN
(1/12)*n*p**3 + O(p**4)

Note that sympy does not sort the polynomial terms in the output, so p3 appears
before p2 in the output of BE.

For a fixed time t , the parameter n in these expressions increases as p ! 0 since
t D n�t D const and hence n must increase like �t�1. With n substituted by t=�t

in the leading-order error terms, these become

en D 1

2
np2 D 1

2
ta2�t; Forward Euler (2.10)

en D �1

2
np2 D �1

2
ta2�t; Backward Euler (2.11)

en D 1

12
np3 D 1

12
ta3�t2; Crank–Nicolson (2.12)

The global error is therefore of second order (in �t) for the Crank–Nicolson scheme
and of first order for the other two schemes.

Convergence
When the global error en ! 0 as �t ! 0, we say that the scheme is convergent.
It means that the numerical solution approaches the exact solution as the mesh is
refined, and this is a much desired property of a numerical method.

2.3.5 Integrated Error

It is common to study the norm of the numerical error, as explained in detail in
Sect. 1.2.10. The L2 norm of the error can be computed by treating en as a func-
tion of t in sympy and performing symbolic integration. From now on we shall
do import sympy as sym and prefix all functions in sympy by sym to explicitly

2.3 Accuracy 51

notify ourselves that the functions are from sympy. This is particularly advanta-
geous when we use mathematical functions like sin: sym.sin is for symbolic
expressions, while sin from numpy or math is for numerical computation. For the
Forward Euler scheme we have

import sympy as sym
p, n, a, dt, t, T, theta = sym.symbols(’p n a dt t T theta’)
A = (1-(1-theta)*p)/(1+theta*p)
u_e = sym.exp(-p*n)
u_n = A**n
error = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
Introduce t and dt instead of n and p
error = error.subs(’n’, ’t/dt’).subs(p, ’a*dt’)
error = error.as_leading_term(dt) # study only the first term
print error
error_L2 = sym.sqrt(sym.integrate(error**2, (t, 0, T)))
print ’L2 error:’, sym.simplify(error_error_L2)

The output reads

sqrt(30)*sqrt(T**3*a**4*dt**2*(6*T**2*a**2 - 15*T*a + 10))/60

which means that the L2 error behaves like a2�t .
Strictly speaking, the numerical error is only defined at the mesh points so it

makes most sense to compute the `2 error

jjenjj`2 D
vuut�t

NtX
nD0

.ue.tn/� un/2 :

We have obtained an exact analytical expression for the error at t D tn, but here we
use the leading-order error term only since we are mostly interested in how the error
behaves as a polynomial in �t or p, and then the leading order term will dominate.
For the Forward Euler scheme, ue.tn/ � un � 1

2
np2, and we have

jjenjj2
`2 D �t

NtX
nD0

1

4
n2p4 D �t

1

4
p4

NtX
nD0

n2 :

Now,
PNt

nD0 n2 � 1
3
N 3

t . Using this approximation, setting Nt D T=�t , and taking
the square root gives the expression

jjenjj`2 D 1

2

r
T 3

3
a2�t : (2.13)

Calculations for the Backward Euler scheme are very similar and provide the same
result, while the Crank–Nicolson scheme leads to

jjenjj`2 D 1

12

r
T 3

3
a3�t2 : (2.14)

52 2 Analysis

Summary of errors
Both the global point-wise errors (2.10)–(2.12) and their time-integrated versions
(2.13) and (2.14) show that

� the Crank–Nicolson scheme is of second order in �t , and
� the Forward Euler and Backward Euler schemes are of first order in �t .

2.3.6 Truncation Error

The truncation error is a very frequently used error measure for finite difference
methods. It is defined as the error in the difference equation that arises when in-
serting the exact solution. Contrary to many other error measures, e.g., the true
error en D ue.tn/ � un, the truncation error is a quantity that is easily computable.

Before reading on, it is wise to review Sect. 1.1.7 on how Taylor polynomials
were used to derive finite differences and quantify the error in the formulas. Very
similar reasoning, and almost identical mathematical details, will be carried out
below, but in a slightly different context. Now, the focus is on the error when solving
a differential equation, while in Sect. 1.1.7 we derived errors for a finite difference
formula. These errors are tightly connected in the present model problem.

Let us illustrate the calculation of the truncation error for the Forward Euler
scheme. We start with the difference equation on operator form,

ŒDCt u D �au�n;

which is the short form for

unC1 � un

�t
D �aun :

The idea is to see how well the exact solution ue.t/ fulfills this equation. Since
ue.t/ in general will not obey the discrete equation, we get an error in the discrete
equation. This error is called a residual, denoted here by Rn:

Rn D ue.tnC1/� ue.tn/

�t
C aue.tn/ : (2.15)

The residual is defined at each mesh point and is therefore a mesh function with
a superscript n.

The interesting feature of Rn is to see how it depends on the discretization pa-
rameter �t . The tool for reaching this goal is to Taylor expand ue around the point
where the difference equation is supposed to hold, here t D tn. We have that

ue.tnC1/ D ue.tn/C u0e.tn/�t C 1

2
u00e.tn/�t2 C � � � ;

2.3 Accuracy 53

which may be used to reformulate the fraction in (2.15) so that

Rn D u0e.tn/C 1

2
u00e.tn/�t C : : :C aue.tn/ :

Now, ue fulfills the ODE u0e D �aue, which means that the first and last term
cancel and we have

Rn D 1

2
u00e.tn/�t CO.�t2/ :

This Rn is the truncation error, which for the Forward Euler is seen to be of first
order in �t as �! 0.

The above procedure can be repeated for the Backward Euler and the Crank–
Nicolson schemes. We start with the scheme in operator notation, write it out in
detail, Taylor expand ue around the point Qt at which the difference equation is
defined, collect terms that correspond to the ODE (here u0e C aue), and identify
the remaining terms as the residual R, which is the truncation error. The Backward
Euler scheme leads to

Rn � �1

2
u00e.tn/�t;

while the Crank–Nicolson scheme gives

RnC 1
2 � 1

24
u000e .tnC 1

2
/�t2;

when �t ! 0.
The order r of a finite difference scheme is often defined through the leading

term �tr in the truncation error. The above expressions point out that the Forward
and Backward Euler schemes are of first order, while Crank–Nicolson is of second
order. We have looked at other error measures in other sections, like the error in
amplification factor and the error en D ue.tn/ � un, and expressed these error
measures in terms of �t to see the order of the method. Normally, calculating the
truncation error is more straightforward than deriving the expressions for other error
measures and therefore the easiest way to establish the order of a scheme.

2.3.7 Consistency, Stability, and Convergence

Three fundamental concepts when solving differential equations by numerical
methods are consistency, stability, and convergence. We shall briefly touch upon
these concepts below in the context of the present model problem.

Consistency means that the error in the difference equation, measured through
the truncation error, goes to zero as �t ! 0. Since the truncation error tells
how well the exact solution fulfills the difference equation, and the exact solution
fulfills the differential equation, consistency ensures that the difference equation
approaches the differential equation in the limit. The expressions for the truncation
errors in the previous section are all proportional to �t or �t2, hence they vanish
as �t ! 0, and all the schemes are consistent. Lack of consistency implies that we
actually solve some other differential equation in the limit �t ! 0 than we aim at.

54 2 Analysis

Stability means that the numerical solution exhibits the same qualitative proper-
ties as the exact solution. This is obviously a feature we want the numerical solution
to have. In the present exponential decay model, the exact solution is monotone and
decaying. An increasing numerical solution is not in accordance with the decaying
nature of the exact solution and hence unstable. We can also say that an oscillat-
ing numerical solution lacks the property of monotonicity of the exact solution and
is also unstable. We have seen that the Backward Euler scheme always leads to
monotone and decaying solutions, regardless of �t , and is hence stable. The For-
ward Euler scheme can lead to increasing solutions and oscillating solutions if �t

is too large and is therefore unstable unless �t is sufficiently small. The Crank–
Nicolson can never lead to increasing solutions and has no problem to fulfill that
stability property, but it can produce oscillating solutions and is unstable in that
sense, unless �t is sufficiently small.

Convergence implies that the global (true) error mesh function en D ue.tn/ �
un ! 0 as �t ! 0. This is really what we want: the numerical solution gets as
close to the exact solution as we request by having a sufficiently fine mesh.

Convergence is hard to establish theoretically, except in quite simple problems
like the present one. Stability and consistency are much easier to calculate. A major
breakthrough in the understanding of numerical methods for differential equations
came in 1956 when Lax and Richtmeyer established equivalence between conver-
gence on one hand and consistency and stability on the other (the Lax equivalence
theorem3). In practice it meant that one can first establish that a method is stable
and consistent, and then it is automatically convergent (which is much harder to
establish). The result holds for linear problems only, and in the world of nonlinear
differential equations the relations between consistency, stability, and convergence
are much more complicated.

We have seen in the previous analysis that the Forward Euler, Backward Euler,
and Crank–Nicolson schemes are convergent (en ! 0), that they are consistent
(Rn ! 0), and that they are stable under certain conditions on the size of �t . We
have also derived explicit mathematical expressions for en, the truncation error, and
the stability criteria.

2.4 Various Types of Errors in a Differential Equation Model

So far we have been concerned with one type of error, namely the discretization
error committed by replacing the differential equation problem by a recursive set
of difference equations. There are, however, other types of errors that must be
considered too. We can classify errors into four groups:

1. model errors: how wrong is the ODE model?
2. data errors: how wrong are the input parameters?
3. discretization errors: how wrong is the numerical method?
4. rounding errors: how wrong is the computer arithmetics?

Below, we shall briefly describe and illustrate these four types of errors. Each of
the errors deserve its own chapter, at least, so the treatment here is superficial to

3 http://en.wikipedia.org/wiki/Lax_equivalence_theorem

http://en.wikipedia.org/wiki/Lax_equivalence_theorem

2.4 Various Types of Errors in a Differential EquationModel 55

give some indication about the nature of size of the errors in a specific case. Some
of the required computer codes quickly become more advanced than in the rest of
the book, but we include to code to document all the details that lie behind the
investigations of the errors.

2.4.1 Model Errors

Any mathematical modeling like u0 D �au, u.0/ D I , is just an approximate
description of a real-world phenomenon. How good this approximation is can be
determined by comparing physical experiments with what the model predicts. This
is the topic of validation and is obviously an essential part of mathematical mod-
eling. One difficulty with validation is that we need to estimate the parameters in
the model, and this brings in data errors. Quantifying data errors is challenging,
and a frequently used method is to tune the parameters in the model to make model
predictions as close as possible to the experiments. That is, we do not attempt to
measure or estimate all input parameters, but instead find values that “make the
model good”. Another difficulty is that the response in experiments also contains
errors due to measurement techniques.

Let us try to quantify model errors in a very simple example involving u0 D �au,
u.0/ D I , with constant a. Suppose a more accurate model has a as a function of
time rather than a constant. Here we take a.t/ as a simple linear function: a C pt .
Obviously, u with p > 0 will go faster to zero with time than a constant a.

The solution of
u0 D .aC pt/u; u.0/ D I;

can be shown (see below) to be

u.t/ D Ie�t.aC 1
2 pt/ :

Let a Python function true_model(t, I, a, p) implement the above u.t/

and let the solution of our primary ODE u0 D �au be available as the function
model(t, I, a). We can now make some plots of the two models and the
error for some values of p. Figure 2.7 displays model versus true_model for
p D 0:01; 0:1; 1, while Fig. 2.8 shows the difference between the two models as
a function of t for the same p values.

The code that was used to produce the plots looks like

from numpy import linspace, exp
from matplotlib.pyplot import \

plot, show, xlabel, ylabel, legend, savefig, figure, title

def model_errors():
p_values = [0.01, 0.1, 1]
a = 1
I = 1
t = linspace(0, 4, 101)
legends = []
Work with figure(1) for the discrepancy and figure(2+i)
for plotting the model and the true model for p value no i
for i, p in enumerate(p_values):

u = model(t, I, a)

56 2 Analysis

Fig. 2.7 Comparison of two models for three values of p

2.4 Various Types of Errors in a Differential EquationModel 57

Fig. 2.8 Discrepancy of Comparison of two models for three values of p

u_true = true_model(t, I, a, p)
discrepancy = u_true - u
figure(1)
plot(t, discrepancy)
figure(2+i)
plot(t, u, ’r-’, t, u_true, ’b--’)
legends.append(’p=%g’ % p)

figure(1)
legend(legends, loc=’lower right’)
savefig(’tmp1.png’); savefig(’tmp1.pdf’)
for i, p in enumerate(p_values):

figure(2+i)
legend([’model’, ’true model’])
title(’p=%g’ % p)
savefig(’tmp%d.png’ % (2+i)); savefig(’tmp%d.pdf’ % (2+i))

To derive the analytical solution of the model u0 D �.a C pt/u, u.0/ D I , we
can use SymPy and the code below. This is somewhat advanced SymPy use for
a newbie, but serves to illustrate the possibilities to solve differential equations by
symbolic software.

def derive_true_solution():
import sympy as sym
u = sym.symbols(’u’, cls=sym.Function) # function u(t)
t, a, p, I = sym.symbols(’t a p I’, real=True)

def ode(u, t, a, p):
"""Define ODE: u’ = (a + p*t)*u. Return residual."""
return sym.diff(u, t) + (a + p*t)*u

eq = ode(u(t), t, a, p)
s = sym.dsolve(eq)
s is sym.Eq object u(t) == expression, we want u = expression,
so grab the right-hand side of the equality (Eq obj.)
u = s.rhs
print u

58 2 Analysis

u contains C1, replace it with a symbol we can fit to
the initial condition
C1 = sym.symbols(’C1’, real=True)
u = u.subs(’C1’, C1)
print u
Initial condition equation
eq = u.subs(t, 0) - I
s = sym.solve(eq, C1) # solve eq wrt C1
print s
s is a list s[0] = ...
Replace C1 in u by the solution
u = u.subs(C1, s[0])
print ’u:’, u
print sym.latex(u) # latex formula for reports

Consistency check: u must fulfill ODE and initial condition
print ’ODE is fulfilled:’, sym.simplify(ode(u, t, a, p))
print ’u(0)-I:’, sym.simplify(u.subs(t, 0) - I)

Convert u expression to Python numerical function
(modules=’numpy’ allows numpy arrays as arguments,
we want this for t)
u_func = sym.lambdify([t, I, a, p], u, modules=’numpy’)
return u_func

true_model = derive_true_solution()

2.4.2 Data Errors

By “data” we mean all the input parameters to a model, in our case I and a. The
values of these may contain errors, or at least uncertainty. Suppose I and a are
measured from some physical experiments. Ideally, we have many samples of I

and a and from these we can fit probability distributions. Assume that I turns
out to be normally distributed with mean 1 and standard deviation 0.2, while a is
uniformly distributed in the interval Œ0:5; 1:5�.

How will the uncertainty in I and a propagate through the model u D Ie�at ?
That is, what is the uncertainty in u at a particular time t? This answer can easily
be answered using Monte Carlo simulation. It means that we draw a lot of samples
from the distributions for I and a. For each combination of I and a sample we
compute the corresponding u value for selected values of t . Afterwards, we can for
each selected t values make a histogram of all the computed u values to see what the
distribution of u values look like. Figure 2.9 shows the histograms corresponding
to t D 0; 1; 3. We see that the distribution of u values is much like a symmetric
normal distribution at t D 0, centered around u D 1. At later times, the distribution
gets more asymmetric and narrower. It means that the uncertainty decreases with
time.

From the computed u values we can easily calculate the mean and standard de-
viation. The table below shows the mean and standard deviation values along with
the value if we just use the formula u D Ie�at with the mean values of I and a:
I D 1 and a D 1. As we see, there is some discrepancy between this latter (naive)
computation and the mean value produced by Monte Carlo simulation.

2.4 Various Types of Errors in a Differential EquationModel 59

time mean st.dev. u.t I I D a D 1/

0 1.00 0.200 1.00
1 0.38 0.135 0.37
3 0.07 0.060 0.14

Actually, u.t I I; a/ becomes a stochastic variable for each t when I and a are
stochastic variables, as they are in the above Monte Carlo simulation. The mean
of the stochastic u.t I I; a/ is not equal to u with mean values of the input data,
u.t I I D a D 1/, unless u is linear in I and a (here u is nonlinear in a).

Estimating statistical uncertainty in input data and investigating how this uncer-
tainty propagates to uncertainty in the response of a differential equation model
(or other models) are key topics in the scientific field called uncertainty quantifica-
tion, simply known as UQ. Estimation of the statistical properties of input data can
either be done directly from physical experiments, or one can find the parameter
values that provide a “best fit” of model predictions with experiments. Monte Carlo
simulation is a general and widely used tool to solve the associated statistical prob-
lems. The accuracy of the Monte Carlo results increases with increasing number of
samples N , typically the error behaves like N �1=2.

The computer code required to do the Monte Carlo simulation and produce the
plots in Fig. 2.9 is shown below.

def data_errors():
from numpy import random, mean, std
from matplotlib.pyplot import hist
N = 10000
Draw random numbers for I and a
I_values = random.normal(1, 0.2, N)
a_values = random.uniform(0.5, 1.5, N)
Compute corresponding u values for some t values
t = [0, 1, 3]
u_values = {} # samples for various t values
u_mean = {}
u_std = {}
for t_ in t:

Compute u samples corresponding to I and a samples
u_values[t_] = [model(t_, I, a)

for I, a in zip(I_values, a_values)]
u_mean[t_] = mean(u_values[t_])
u_std[t_] = std(u_values[t_])

figure()
dummy1, bins, dummy2 = hist(

u_values[t_], bins=30, range=(0, I_values.max()),
normed=True, facecolor=’green’)

#plot(bins)
title(’t=%g’ % t_)
savefig(’tmp_%g.png’ % t_); savefig(’tmp_%g.pdf’ % t_)

Table of mean and standard deviation values
print ’time mean st.dev.’
for t_ in t:

print ’%3g %.2f %.3f’ % (t_, u_mean[t_], u_std[t_])

60 2 Analysis

Fig. 2.9 Histogram of solution uncertainty at three time points, due to data errors

2.4 Various Types of Errors in a Differential EquationModel 61

Fig. 2.10 Discretization errors in various schemes for four time step values

2.4.3 Discretization Errors

The errors implied by solving the differential equation problem by the �-rule has
been thoroughly analyzed in the previous sections. Below are some plots of the error
versus time for the Forward Euler (FE), Backward Euler (BN), and Crank–Nicolson
(CN) schemes for decreasing values of �t . Since the difference in magnitude
between the errors in the CN scheme versus the FE and BN schemes grows sig-
nificantly as �t is reduced (the error goes like �t2 for CN versus �t for FE/BE),
we have plotted the logarithm of the absolute value of the numerical error as a mesh
function.

The table below presents exact figures of the discretization error for various
choices of �t and schemes.

�t FE BE CN
0.4 9 � 10�2 6 � 10�2 5 � 10�3

0.1 2 � 10�2 2 � 10�2 3 � 10�4

0.01 2 � 10�3 2 � 10�3 3 � 10�6

The computer code used to generate the plots appear next. It makes use of a solver
function as shown in Sect. 1.2.3.

62 2 Analysis

def discretization_errors():
from numpy import log, abs
I = 1
a = 1
T = 4
t = linspace(0, T, 101)
schemes = {’FE’: 0, ’BE’: 1, ’CN’: 0.5} # theta to scheme name
dt_values = [0.8, 0.4, 0.1, 0.01]
for dt in dt_values:

figure()
legends = []
for scheme in schemes:

theta = schemes[scheme]
u, t = solver(I, a, T, dt, theta)
u_e = model(t, I, a)
error = u_e - u
print ’%s: dt=%.2f, %d steps, max error: %.2E’ % \

(scheme, dt, len(u)-1, abs(error).max())
Plot log(error), but exclude error[0] since it is 0
plot(t[1:], log(abs(error[1:])))
legends.append(scheme)

xlabel(’t’); ylabel(’log(abs(numerical error))’)
legend(legends, loc=’upper right’)
title(r’$\Delta t=%g$’ % dt)
savefig(’tmp_dt%g.png’ % dt); savefig(’tmp_dt%g.pdf’ % dt)

2.4.4 Rounding Errors

Real numbers on a computer are represented by floating-point numbers4, which
means that just a finite number of digits are stored and used. Therefore, the floating-
point number is an approximation to the underlying real number. When doing
arithmetics with floating-point numbers, there will be small approximation errors,
called round-off errors or rounding errors, that may or may not accumulate in com-
prehensive computations.

The cause and analysis of rounding errors are described in most books on nu-
merical analysis, see for instance Chapter 2 in Gander et al. [1]. For very simple
algorithms it is possible to theoretically establish bounds for the rounding errors,
but for most algorithms one cannot know to what extent rounding errors accumu-
late and potentially destroy the final answer. Exercise 2.3 demonstrates the impact
of rounding errors on numerical differentiation and integration.

Here is a simplest possible example of the effect of rounding errors:

>>> 1.0/51*51
1.0
>>> 1.0/49*49
0.9999999999999999

We see that the latter result is not exact, but features an error of 10�16. This is
the typical level of a rounding error from an arithmetic operation with the widely
used 64 bit floating-point number (float object in Python, often called double or
double precision in other languages). One cannot expect more accuracy than 10�16.
The big question is if errors at this level accumulate in a given numerical algorithm.

4 https://en.wikipedia.org/wiki/Floating_point

https://en.wikipedia.org/wiki/Floating_point

2.4 Various Types of Errors in a Differential EquationModel 63

What is the effect of using float objects and not exact arithmetics when solving
differential equations? We can investigate this question through computer experi-
ments if we have the ability to represent real numbers to a desired accuracy. For-
tunately, Python has a Decimal object in the decimal5 module that allows us to
use as many digits in floating-point numbers as we like. We take 1000 digits as the
true answer where rounding errors are negligible, and then we run our numerical
algorithm (the Crank–Nicolson scheme to be precise) with Decimal objects for all
real numbers and compute the maximum error arising from using 4, 16, 64, and 128
digits.

When computing with numbers around unity in size and doing Nt D 40 time
steps, we typically get a rounding error of 10�d , where d is the number of digits
used. The effect of rounding errors may accumulate if we perform more operations,
so increasing the number of time steps to 4000 gives a rounding error of the order
10�dC2. Also, if we compute with numbers that are much larger than unity, we
lose accuracy due to rounding errors. For example, for the u values implied by
I D 1000 and a D 100 (u � 103), the rounding errors increase to about 10�dC3.
Below is a table summarizing a set of experiments. A rough model for the size of
rounding errors is 10�dCqCr , where d is the number of digits, the number of time
steps is of the order 10q time steps, and the size of the numbers in the arithmetic
expressions are of order 10r .

digits u � 1, Nt D 40 u � 1, Nt D 4000 u � 103, Nt D 40 u � 103, Nt D 4000

4 3:05 � 10�4 2:51 � 10�1 3:05 � 10�1 9:82 � 102

16 1:71 � 10�16 1:42 � 10�14 1:58 � 10�13 4:84 � 10�11

64 2:99 � 10�64 1:80 � 10�62 2:06 � 10�61 1:04 � 10�57

128 1:60 � 10�128 1:56 � 10�126 2:41 � 10�125 1:07 � 10�122

We realize that rounding errors are at the lowest possible level if we scale the differ-
ential equation model, see Sect. 4.1, so the numbers entering the computations are
of unity in size, and if we take a small number of steps (40 steps gives a discretiza-
tion error of 5 � 10�3 with the Crank–Nicolson scheme). In general, rounding errors
are negligible in comparison with other errors in differential equation models.

The computer code for doing the reported experiments need a new version of the
solver function where we do arithmetics with Decimal objects:

def solver_decimal(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
from numpy import zeros, linspace
from decimal import Decimal as D
dt = D(dt)
a = D(a)
theta = D(theta)
Nt = int(round(D(T)/dt))
T = Nt*dt
u = zeros(Nt+1, dtype=object) # array of Decimal objects
t = linspace(0, float(T), Nt+1)

u[0] = D(I) # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

5 https://docs.python.org/2/library/decimal.html

https://docs.python.org/2/library/decimal.html

64 2 Analysis

The function below carries out the experiments. We can conveniently set the num-
ber of digits as we want through the decimal.getcontext().prec variable.

def rounding_errors(I=1, a=1, T=4, dt=0.1):
import decimal
from numpy import log, array, abs
digits_values = [4, 16, 64, 128]
"Exact" arithmetics is taken as 1000 decimals here
decimal.getcontext().prec = 1000
u_e, t = solver_decimal(I=I, a=a, T=T, dt=dt, theta=0.5)
for digits in digits_values:

decimal.getcontext().prec = digits # set no of digits
u, t = solver_decimal(I=I, a=a, T=T, dt=dt, theta=0.5)
error = u_e - u
error = array(error[1:], dtype=float)
print ’%d digits, %d steps, max abs(error): %.2E’ % \

(digits, len(u)-1, abs(error).max())

2.4.5 Discussion of the Size of Various Errors

The previous computational examples of model, data, discretization, and rounding
errors are tied to one particular mathematical problem, so it is in principle danger-
ous to make general conclusions. However, the illustrations made point to some
common trends that apply to differential equation models.

First, rounding errors have very little impact compared to the other types of er-
rors. Second, numerical errors are in general smaller than model and data errors, but
more importantly, numerical errors are often well understood and can be reduced
by just increasing the computational work (in our example by taking more smaller
time steps).

Third, data errors may be significant, and it also takes a significant amount of
computational work to quantify them and their impact on the solution. Many types
of input data are also difficult or impossible to measure, so finding suitable values
requires tuning of the data and the model to a known (measured) response. Nev-
ertheless, even if the predictive precision of a model is limited because of severe
errors or uncertainty in input data, the model can still be of high value for inves-
tigating qualitative properties of the underlying phenomenon. Through computer
experiments with synthetic input data one can understand a lot of the science or
engineering that goes into the model.

Fourth, model errors are the most challenging type of error to deal with. Sim-
plicity of model is in general preferred over complexity, but adding complexity is
often the only way to improve the predictive capabilities of a model. More com-
plexity usually also means a need for more input data and consequently the danger
of increasing data errors.

2.5 Exercises

Problem 2.1: Visualize the accuracy of finite differences
The purpose of this exercise is to visualize the accuracy of finite difference approx-
imations of the derivative of a given function. For any finite difference approxima-

2.5 Exercises 65

tion, take the Forward Euler difference as an example, and any specific function,
take u D e�at , we may introduce an error fraction

E D ŒDCt u�n

u0.tn/
D exp .�a.tn C�t// � exp .�atn/

�a exp .�atn/�t

D 1

a�t
.1 � exp .�a�t// ;

and view E as a function of �t . We expect that lim�t!0 E D 1, while E may
deviate significantly from unity for large �t . How the error depends on �t is best
visualized in a graph where we use a logarithmic scale for �t , so we can cover
many orders of magnitude of that quantity. Here is a code segment creating an
array of 100 intervals, on the logarithmic scale, ranging from 10�6 to 10�0:5 and
then plotting E versus p D a�t with logarithmic scale on the p axis:

from numpy import logspace, exp
from matplotlib.pyplot import semilogx
p = logspace(-6, -0.5, 101)
y = (1-exp(-p))/p
semilogx(p, y)

Illustrate such errors for the finite difference operators ŒDCt u�n (forward), ŒD�t u�n

(backward), and ŒDtu�n (centered) in the same plot.
Perform a Taylor series expansions of the error fractions and find the leading

order r in the expressions of type 1C Cpr CO.prC1/, where C is some constant.

Hint To save manual calculations and learn more about symbolic computing, make
functions for the three difference operators and use sympy to perform the sym-
bolic differences, differentiation, and Taylor series expansion. To plot a symbolic
expression E against p, convert the expression to a Python function first: E =
sympy.lamdify([p], E).
Filename: decay_plot_fd_error.

Problem 2.2: Explore the �-rule for exponential growth
This exercise asks you to solve the ODE u0 D �au with a < 0 such that the
ODE models exponential growth instead of exponential decay. A central theme is
to investigate numerical artifacts and non-physical solution behavior.

a) Set a D �1 and run experiments with � D 0; 0:5; 1 for various values of �t

to uncover numerical artifacts. Recall that the exact solution is a monotone,
growing function when a < 0. Oscillations or significantly wrong growth are
signs of wrong qualitative behavior.
From the experiments, select four values of �t that demonstrate the kind of
numerical solutions that are characteristic for this model.

b) Write up the amplification factor and plot it for � D 0; 0:5; 1 together with the
exact one for a�t < 0. Use the plot to explain the observations made in the
experiments.

66 2 Analysis

Hint Modify the decay_ampf_plot.py6 code (in the src/analysis directory).
Filename: exponential_growth.

Problem 2.3: Explore rounding errors in numerical calculus

a) Compute the absolute values of the errors in the numerical derivative of e�t

at t D 1
2

for three types of finite difference approximations: a forward differ-
ence, a backward difference, and a centered difference, for �t D 2�k , k D
0; 4; 8; 12; : : : ; 60. When do rounding errors destroy the accuracy?

b) Compute the absolute values of the errors in the numerical approximation ofR 4

0 e�t dt using the Trapezoidal and the Midpoint integration methods. Make
a table of the errors for n D 2k intervals, k D 1; 3; 5; : : : ; 21. Is there any
impact of rounding errors?

Hint The Trapezoidal rule for
R b

a
f .x/dx reads

bZ
a

f .x/dx � h

1

2
f .a/C 1

2
f .b/C

n�1X
iD1

f .aC ih/

!
; h D b � a

n
:

The Midpoint rule is

bZ
a

f .x/dx � h

nX
iD1

f

�
aC

�
i C 1

2

�
h

�
:

Filename: rounding.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

6 http://tinyurl.com/ofkw6kc/analysis/decay_ampf_plot.py

http://creativecommons.org/licenses/by-nc/4.0/
http://tinyurl.com/ofkw6kc/analysis/decay_ampf_plot.py

