
1Algorithms and Implementations

Throughout industry and science it is common today to study nature or technolog-
ical devices through models on a computer. With such models the computer acts
as a virtual lab where experiments can be done in a fast, reliable, safe, and cheap
way. In some fields, e.g., aerospace engineering, the computer models are now so
sophisticated that they can replace physical experiments to a large extent.

A vast amount of computer models are based on ordinary and partial differen-
tial equations. This book is an introduction to the various scientific ingredients we
need for reliable computing with such type of models. A key theme is to solve
differential equations numerically on a computer. Many methods are available for
this purpose, but the focus here is on finite difference methods, because these are
simple, yet versatile, for solving a wide range of ordinary and partial differential
equations. The present chapter first presents the mathematical ideas of finite dif-
ference methods and derives algorithms, i.e., formulations of the methods ready for
computer programming. Then we create programs and learn how we can be sure
that the programs really work correctly.

1.1 Finite DifferenceMethods

This section explains the basic ideas of finite difference methods via the simple or-
dinary differential equation u0 D �au. Emphasis is put on the reasoning around
discretization principles and introduction of key concepts such as mesh, mesh func-
tion, finite difference approximations, averaging in a mesh, derivation of algorithms,
and discrete operator notation.

1.1.1 A Basic Model for Exponential Decay

Our model problem is perhaps the simplest ordinary differential equation (ODE):

u0.t/ D �au.t/ :

In this equation, u.t/ is a scalar function of time t , a is a constant (in this book
we mostly work with a > 0), and u0.t/ means differentiation with respect to t .

1© The Author(s) 2016
H.P. Langtangen, Finite Difference Computing with Exponential Decay Models,
Lecture Notes in Computational Science and Engineering 110,
DOI 10.1007/978-3-319-29439-1_1

2 1 Algorithms and Implementations

This type of equation arises in a number of widely different phenomena where
some quantity u undergoes exponential reduction (provided a > 0). Examples
include radioactive decay, population decay, investment decay, cooling of an object,
pressure decay in the atmosphere, and retarded motion in fluids. Some models with
growth, a < 0, are treated as well, see Chap. 4 for details and motivation. We have
chosen this particular ODE not only because its applications are relevant, but even
more because studying numerical solution methods for this particular ODE gives
important insight that can be reused in far more complicated settings, in particular
when solving diffusion-type partial differential equations.

The exact solution Although our interest is in approximate numerical solutions of
u0 D �au, it is convenient to know the exact analytical solution of the problem so
we can compute the error in numerical approximations. The analytical solution of
this ODE is found by separation of variables, which results in

u.t/ D Ce�at ;

for any arbitrary constant C . To obtain a unique solution, we need a condition to
fix the value of C . This condition is known as the initial condition and stated as
u.0/ D I . That is, we know that the value of u is I when the process starts at
t D 0. With this knowledge, the exact solution becomes u.t/ D Ie�at . The initial
condition is also crucial for numerical methods: without it, we can never start the
numerical algorithms!

A complete problem formulation Besides an initial condition for the ODE, we
also need to specify a time interval for the solution: t 2 .0; T �. The point t D 0

is not included since we know that u.0/ D I and assume that the equation governs
u for t > 0. Let us now summarize the information that is required to state the
complete problem formulation: find u.t/ such that

u0 D �au; t 2 .0; T �; u.0/ D I : (1.1)

This is known as a continuous problem because the parameter t varies continuously
from 0 to T . For each t we have a corresponding u.t/. There are hence infinitely
many values of t and u.t/. The purpose of a numerical method is to formulate
a corresponding discrete problem whose solution is characterized by a finite num-
ber of values, which can be computed in a finite number of steps on a computer.
Typically, we choose a finite set of time values t0; t1; : : : ; tNt

, and create algorithms
that generate the corresponding u values u0; u1; : : : ; uNt

.

1.1.2 The Forward Euler Scheme

Solving an ODE like (1.1) by a finite difference method consists of the following
four steps:

1. discretizing the domain,
2. requiring fulfillment of the equation at discrete time points,
3. replacing derivatives by finite differences,
4. formulating a recursive algorithm.

1.1 Finite Difference Methods 3

Fig. 1.1 Time mesh with discrete solution values at points and a dashed line indicating the true
solution

Step 1: Discretizing the domain The time domain Œ0; T � is represented by a finite
number of Nt C 1 points

0 D t0 < t1 < t2 < � � � < tNt�1 < tNt
D T : (1.2)

The collection of points t0; t1; : : : ; tNt
constitutes a mesh or grid. Often the mesh

points will be uniformly spaced in the domain Œ0; T �, which means that the spacing
tnC1 � tn is the same for all n. This spacing is often denoted by �t , which means
that tn D n�t .

We want the solution u at the mesh points: u.tn/, n D 0; 1; : : : ; Nt . A notational
short-form for u.tn/, which will be used extensively, is un. More precisely, we let
un be the numerical approximation to the exact solution u.tn/ at t D tn.

When we need to clearly distinguish between the numerical and exact solution,
we often place a subscript e on the exact solution, as in ue.tn/. Figure 1.1 shows
the tn and un points for n D 0; 1; : : : ; Nt D 7 as well as ue.t/ as the dashed line.

We say that the numerical approximation, i.e., the collection of un values for
n D 0; : : : ; Nt , constitutes a mesh function. A “normal” continuous function is
a curve defined for all real t values in Œ0; T �, but a mesh function is only defined
at discrete points in time. If you want to compute the mesh function between the
mesh points, where it is not defined, an interpolation method must be used. Usually,
linear interpolation, i.e., drawing a straight line between the mesh function values,
see Fig. 1.1, suffices. To compute the solution for some t 2 Œtn; tnC1�, we use the
linear interpolation formula

u.t/ � un C unC1 � un

tnC1 � tn
.t � tn/ : (1.3)

4 1 Algorithms and Implementations

Fig. 1.2 Linear interpolation between the discrete solution values (dashed curve is exact solution)

Notice
The goal of a numerical solution method for ODEs is to compute the mesh func-
tion by solving a finite set of algebraic equations derived from the original ODE
problem.

Step 2: Fulfilling the equation at discrete time points The ODE is supposed to
hold for all t 2 .0; T �, i.e., at an infinite number of points. Now we relax that
requirement and require that the ODE is fulfilled at a finite set of discrete points in
time. The mesh points t0; t1; : : : ; tNt

are a natural (but not the only) choice of points.
The original ODE is then reduced to the following equations:

u0.tn/ D �au.tn/; n D 0; : : : ; Nt ; u.0/ D I : (1.4)

Even though the original ODE is not stated to be valid at t D 0, it is valid as close
to t D 0 as we like, and it turns out that it is useful for construction of numerical
methods to have (1.4) valid for n D 0. The next two steps show that we need (1.4)
for n D 0.

Step 3: Replacing derivatives by finite differences The next and most essential
step of the method is to replace the derivative u0 by a finite difference approxima-
tion. Let us first try a forward difference approximation (see Fig. 1.3),

u0.tn/ � unC1 � un

tnC1 � tn
: (1.5)

The name forward relates to the fact that we use a value forward in time, unC1, to-
gether with the value un at the point tn, where we seek the derivative, to approximate

1.1 Finite Difference Methods 5

Fig. 1.3 Illustration of a forward difference

u0.tn/. Inserting this approximation in (1.4) results in

unC1 � un

tnC1 � tn
D �aun; n D 0; 1; : : : ; Nt � 1 : (1.6)

Note that if we want to compute the solution up to time level Nt , we only need (1.4)
to hold for n D 0; : : : ; Nt � 1 since (1.6) for n D Nt � 1 creates an equation for the
final value uNt .

Also note that we use the approximation symbol � in (1.5), but not in (1.6).
Instead, we view (1.6) as an equation that is not mathematically equivalent to (1.5),
but represents an approximation to (1.5).

Equation (1.6) is the discrete counterpart to the original ODE problem (1.1), and
often referred to as a finite difference scheme or more generally as the discrete equa-
tions of the problem. The fundamental feature of these equations is that they are
algebraic and can hence be straightforwardly solved to produce the mesh function,
i.e., the approximate values of u at the mesh points: un, n D 1; 2; : : : ; Nt .

Step 4: Formulating a recursive algorithm The final step is to identify the com-
putational algorithm to be implemented in a program. The key observation here
is to realize that (1.6) can be used to compute unC1 if un is known. Starting with
n D 0, u0 is known since u0 D u.0/ D I , and (1.6) gives an equation for u1.
Knowing u1, u2 can be found from (1.6). In general, un in (1.6) can be assumed
known, and then we can easily solve for the unknown unC1:

unC1 D un � a.tnC1 � tn/un : (1.7)

We shall refer to (1.7) as the Forward Euler (FE) scheme for our model problem.
From a mathematical point of view, equations of the form (1.7) are known as differ-
ence equations since they express how differences in the dependent variable, here
u, evolve with n. In our case, the differences in u are given by unC1 � un D

6 1 Algorithms and Implementations

�a.tnC1 � tn/un. The finite difference method can be viewed as a method for turn-
ing a differential equation into an algebraic difference equation that can be easily
solved by repeated use of a formula like (1.7).

Interpretation There is a very intuitive interpretation of the FE scheme, illustrated
in the sketch below. We have computed some point values on the solution curve
(small red disks), and the question is how we reason about the next point. Since we
know u and t at the most recently computed point, the differential equation gives us
the slope of the solution curve: u0 D �au. We can draw this slope as a red line and
continue the solution curve along that slope. As soon as we have chosen the next
point on this line, we have a new t and u value and can compute a new slope and
continue the process.

Computing with the recursive formula Mathematical computation with (1.7) is
straightforward:

u0 D I;

u1 D u0 � a.t1 � t0/u0 D I.1 � a.t1 � t0//;

u2 D u1 � a.t2 � t1/u1 D I.1 � a.t1 � t0//.1 � a.t2 � t1//;

u3 D u2 � a.t3 � t2/u2 D I.1 � a.t1 � t0//.1 � a.t2 � t1//.1 � a.t3 � t2//;

and so on until we reach uNt . Very often, tnC1 � tn is constant for all n, so we
can introduce the common symbol �t D tnC1 � tn, n D 0; 1; : : : ; Nt � 1. Using
a constant mesh spacing �t in the above calculations gives

u0 D I;

u1 D I.1 � a�t/;

1.1 Finite Difference Methods 7

u2 D I.1 � a�t/2;

u3 D I.1 � a�t/3;

:::

uNt D I.1 � a�t/Nt :

This means that we have found a closed formula for un, and there is no need to let
a computer generate the sequence u1; u2; u3; : : : However, finding such a formula
for un is possible only for a few very simple problems, so in general finite difference
equations must be solved on a computer.

As the next sections will show, the scheme (1.7) is just one out of many alterna-
tive finite difference (and other) methods for the model problem (1.1).

1.1.3 The Backward Euler Scheme

There are several choices of difference approximations in step 3 of the finite differ-
ence method as presented in the previous section. Another alternative is

u0.tn/ � un � un�1

tn � tn�1

: (1.8)

Since this difference is based on going backward in time (tn�1) for information, it is
known as a backward difference, also called Backward Euler difference. Figure 1.4
explains the idea.

Fig. 1.4 Illustration of a backward difference

8 1 Algorithms and Implementations

Inserting (1.8) in (1.4) yields the Backward Euler (BE) scheme:

un � un�1

tn � tn�1

D �aun; n D 1; : : : ; Nt : (1.9)

We assume, as explained under step 4 in Sect. 1.1.2, that we have computed
u0; u1; : : : ; un�1 such that (1.9) can be used to compute un. Note that (1.9) needs n

to start at 1 (then it involves u0, but no u�1) and end at Nt .
For direct similarity with the formula for the Forward Euler scheme (1.7) we

replace n by nC 1 in (1.9) and solve for the unknown value unC1:

unC1 D 1

1C a.tnC1 � tn/
un; n D 0; : : : ; Nt � 1 : (1.10)

1.1.4 The Crank–Nicolson Scheme

The finite difference approximations (1.5) and (1.8) used to derive the schemes (1.7)
and (1.10), respectively, are both one-sided differences, i.e., we collect information
either forward or backward in time when approximating the derivative at a point.
Such one-sided differences are known to be less accurate than central (or midpoint)
differences, where we use information both forward and backward in time. A nat-
ural next step is therefore to construct a central difference approximation that will
yield a more accurate numerical solution.

The central difference approximation to the derivative is sought at the point
tnC 1

2
D 1

2
.tn C tnC1/ (or tnC 1

2
D .n C 1

2
/�t if the mesh spacing is uniform in

time). The approximation reads

u0.tnC 1
2
/ � unC1 � un

tnC1 � tn
: (1.11)

Figure 1.5 sketches the geometric interpretation of such a centered difference. Note
that the fraction on the right-hand side is the same as for the Forward Euler ap-
proximation (1.5) and the Backward Euler approximation (1.8) (with n replaced by
n C 1). The accuracy of this fraction as an approximation to the derivative of u

depends on where we seek the derivative: in the center of the interval Œtn; tnC1� or at
the end points. We shall later see that it is more accurate at the center point.

With the formula (1.11), where u0 is evaluated at tnC 1
2
, it is natural to demand

the ODE to be fulfilled at the time points between the mesh points:

u0.tnC 1
2
/ D �au.tnC 1

2
/; n D 0; : : : ; Nt � 1 : (1.12)

Using (1.11) in (1.12) results in the approximate discrete equation

unC1 � un

tnC1 � tn
D �aunC 1

2 ; n D 0; : : : ; Nt � 1; (1.13)

where unC 1
2 is a short form for the numerical approximation to u.tnC 1

2
/.

1.1 Finite Difference Methods 9

Fig. 1.5 Illustration of a centered difference

There is a fundamental problem with the right-hand side of (1.13): we aim to
compute un for integer n, which means that unC 1

2 is not a quantity computed by
our method. The quantity must therefore be expressed by the quantities that we
actually produce, i.e., the numerical solution at the mesh points. One possibility is
to approximate unC 1

2 as an arithmetic mean of the u values at the neighboring mesh
points:

unC 1
2 � 1

2
.un C unC1/ : (1.14)

Using (1.14) in (1.13) results in a new approximate discrete equation

unC1 � un

tnC1 � tn
D �a

1

2
.un C unC1/ : (1.15)

There are three approximation steps leading to this formula: 1) the ODE is only
valid at discrete points (between the mesh points), 2) the derivative is approximated
by a finite difference, and 3) the value of u between mesh points is approximated
by an arithmetic mean value. Despite one more approximation than for the Back-
ward and Forward Euler schemes, the use of a centered difference leads to a more
accurate method.

To formulate a recursive algorithm, we assume that un is already computed so
that unC1 is the unknown, which we can solve for:

unC1 D 1 � 1
2
a.tnC1 � tn/

1C 1
2
a.tnC1 � tn/

un : (1.16)

The finite difference scheme (1.16) is often called the Crank–Nicolson (CN) scheme
or a midpoint or centered scheme. Note that (1.16) as well as (1.7) and (1.10) apply
whether the spacing in the time mesh, tnC1 � tn, depends on n or is constant.

10 1 Algorithms and Implementations

1.1.5 The Unifying �-Rule

The Forward Euler, Backward Euler, and Crank–Nicolson schemes can be formu-
lated as one scheme with a varying parameter � :

unC1 � un

tnC1 � tn
D �a.�unC1 C .1 � �/un/ : (1.17)

Observe that

� � D 0 gives the Forward Euler scheme
� � D 1 gives the Backward Euler scheme,
� � D 1

2
gives the Crank–Nicolson scheme.

We shall later, in Chap. 2, learn the pros and cons of the three alternatives. One may
alternatively choose any other value of � in Œ0; 1�, but this is not so common since
the accuracy and stability of the scheme do not improve compared to the values
� D 0; 1; 1

2
.

As before, un is considered known and unC1 unknown, so we solve for the latter:

unC1 D 1 � .1 � �/a.tnC1 � tn/

1C �a.tnC1 � tn/
: (1.18)

This scheme is known as the �-rule, or alternatively written as the “theta-rule”.

Derivation
We start with replacing u0 by the fraction

unC1 � un

tnC1 � tn
;

in the Forward Euler, Backward Euler, and Crank–Nicolson schemes. Then we
observe that the difference between the methods concerns which point this frac-
tion approximates the derivative. Or in other words, at which point we sample the
ODE. So far this has been the end points or the midpoint of Œtn; tnC1�. However,
we may choose any point Qt 2 Œtn; tnC1�. The difficulty is that evaluating the right-
hand side �au at an arbitrary point faces the same problem as in Sect. 1.1.4: the
point value must be expressed by the discrete u quantities that we compute by
the scheme, i.e., un and unC1. Following the averaging idea from Sect. 1.1.4, the
value of u at an arbitrary point Qt can be calculated as a weighted average, which
generalizes the arithmetic mean 1

2
un C 1

2
unC1. The weighted average reads

u.Qt / � �unC1 C .1 � �/un; (1.19)

where � 2 Œ0; 1� is a weighting factor. We can also express Qt as a similar
weighted average

Qt � � tnC1 C .1 � �/tn : (1.20)

Let now the ODE hold at the point Qt 2 Œtn; tnC1�, approximate u0 by the
fraction .unC1 � un/=.tnC1 � tn/, and approximate the right-hand side �au by
the weighted average (1.19). The result is (1.17).

1.1 Finite Difference Methods 11

1.1.6 Constant Time Step

All schemes up to now have been formulated for a general non-uniform mesh in
time: t0 < t1 < � � � < tNt

. Non-uniform meshes are highly relevant since one
can use many points in regions where u varies rapidly, and fewer points in regions
where u is slowly varying. This idea saves the total number of points and therefore
makes it faster to compute the mesh function un. Non-uniform meshes are used
together with adaptive methods that are able to adjust the time mesh during the
computations (Sect. 3.2.11 applies adaptive methods).

However, a uniformly distributed set of mesh points is not only convenient, but
also sufficient for many applications. Therefore, it is a very common choice. We
shall present the finite difference schemes for a uniform point distribution tn D
n�t , where �t is the constant spacing between the mesh points, also referred to as
the time step. The resulting formulas look simpler and are more well known.

Summary of schemes for constant time step

unC1 D .1 � a�t/un Forward Euler (1.21)

unC1 D 1

1C a�t
un Backward Euler (1.22)

unC1 D 1 � 1
2
a�t

1C 1
2
a�t

un Crank–Nicolson (1.23)

unC1 D 1 � .1 � �/a�t

1C �a�t
un The �-rule (1.24)

It is not accidental that we focus on presenting the Forward Euler, Backward
Euler, and Crank–Nicolson schemes. They complement each other with their dif-
ferent pros and cons, thus providing a useful collection of solution methods for
many differential equation problems. The unifying notation of the �-rule makes it
convenient to work with all three methods through just one formula. This is par-
ticularly advantageous in computer implementations since one avoids if-else tests
with formulas that have repetitive elements.

Test your understanding!
To check that key concepts are really understood, the reader is encouraged to
apply the explained finite difference techniques to a slightly different equation.
For this purpose, we recommend you do Exercise 4.2 now!

1.1.7 Mathematical Derivation of Finite Difference Formulas

The finite difference formulas for approximating the first derivative of a function
have so far been somewhat justified through graphical illustrations in Figs. 1.3,
1.4, and 1.5. The task is to approximate the derivative at a point of a curve using
only two function values. By drawing a straight line through the points, we have
some approximation to the tangent of the curve and use the slope of this line as

12 1 Algorithms and Implementations

an approximation to the derivative. The slope can be computed by inspecting the
figures.

However, we can alternatively derive the finite difference formulas by pure math-
ematics. The key tool for this approach is Taylor series, or more precisely, approxi-
mation of functions by lower-order Taylor polynomials. Given a function f .x/ that
is sufficiently smooth (i.e., f .x/ has “enough derivatives”), a Taylor polynomial of
degree m can be used to approximate the value of the function f .x/ if we know the
values of f and its first m derivatives at some other point x D a. The formula for
the Taylor polynomial reads

f .x/ � f .a/C f 0.a/.x � a/C 1

2
f 00.a/.x � a/2 C 1

6
f 000.a/.x � a/3 C � � �

C 1

mŠ

df .m/

dxm
.a/.x � a/m : (1.25)

For a function of time, f .t/, related to a mesh with spacing �t , we often need
the Taylor polynomial approximation at f .tn ˙ �t/ given f and its derivatives at
t D tn. Replacing x by tn C�t and a by tn gives

f .tn C�t/ � f .tn/C f 0.tn/�t C 1

2
f 00.tn/�t2 C 1

6
f 000.tn/�t3 C � � �

C 1

mŠ

df .m/

dxm
.tn/�tm : (1.26)

The forward difference We can use (1.26) to find an approximation for f 0.tn/

simply by solving with respect to this quantity:

f 0.tn/ � f .tn C�t/ � f .tn/

�t
� 1

2
f 00.tn/�t � 1

6
f 000.tn/�t2 C � � �

� 1

mŠ

df .m/

dxm
.tn/�tm�1 : (1.27)

By letting m!1, this formula is exact, but that is not so much of practical value.
A more interesting observation is that all the power terms in �t vanish as �t ! 0,
i.e., the formula

f 0.tn/ � f .tn C�t/ � f .tn/

�t
(1.28)

is exact in the limit �t ! 0.
The interesting feature of (1.27) is that we have a measure of the error in the

formula (1.28): the error is given by the extra terms on the right-hand side of (1.27).
We assume that �t is a small quantity (�t � 1). Then �t2 � �t , �t3 � �t2,
and so on, which means that the first term is the dominating term. This first term
reads � 1

2
f 00.tn/�t and can be taken as a measure of the error in the Forward Euler

formula.

1.1 Finite Difference Methods 13

The backward difference To derive the backward difference, we use the Taylor
polynomial approximation at f .tn ��t/:

f .tn ��t/ � f .tn/ � f 0.tn/�t C 1

2
f 00.tn/�t2 � 1

6
f 000.tn/�t3 C � � �

C 1

mŠ

df .m/

dxm
.tn/�tm : (1.29)

Solving with respect to f 0.tn/ gives

f 0.tn/ � f .tn/� f .tn ��t/

�t
C 1

2
f 00.tn/�t � 1

6
f 000.tn/�t2 C � � �

� 1

mŠ

df .m/

dxm
.tn/�tm�1 : (1.30)

The term 1
2
f 00.tn/�t can be taken as a simple measure of the approximation error

since it will dominate over the other terms as �t ! 0.

The centered difference The centered difference approximates the derivative at
tn C 1

2
�t . Let us write up the Taylor polynomial approximations to f .tn/ and

f .tnC1/ around tn C 1
2
�t :

f .tn/ � f

�
tn C 1

2
�t

�
� f 0

�
tn C 1

2
�t

�
1

2
�t C f 00

�
tn C 1

2
�t

��
1

2
�t

�2

�

f 000
�

tn C 1

2
�t

��
1

2
�t

�3

C � � � (1.31)

f .tnC1/ � f

�
tn C 1

2
�t

�
C f 0

�
tn C 1

2
�t

�
1

2
�t C f 00

�
tn C 1

2
�t

��
1

2
�t

�2

C

f 000
�

tn C 1

2
�t

��
1

2
�t

�3

C � � � (1.32)

Subtracting the first from the second gives

f .tnC1/�f .tn/ D f 0
�

tn C 1

2
�t

�
�tC2f 000

�
tn C 1

2
�t

��
1

2
�t

�3

C� � � (1.33)

Solving with respect to f 0.tn C 1
2
�t/ results in

f 0
�

tn C 1

2
�t

�
� f .tnC1/ � f .tn/

�t
� 1

4
f 000

�
tn C 1

2
�t

�
�t2 C c � � � (1.34)

This time the error measure goes like 1
4
f 000�t2, i.e., it is proportional to �t2 and

not only �t , which means that the error goes faster to zero as �t is reduced. This
means that the centered difference formula

f 0
�

tn C 1

2
�t

�
� f .tnC1/� f .tn/

�t
(1.35)

is more accurate than the forward and backward differences for small �t .

14 1 Algorithms and Implementations

1.1.8 Compact Operator Notation for Finite Differences

Finite difference formulas can be tedious to write and read, especially for differen-
tial equations with many terms and many derivatives. To save space and help the
reader spot the nature of the difference approximations, we introduce a compact
notation. For a function u.t/, a forward difference approximation is denoted by the
DCt operator and written as

ŒDCt u�n D unC1 � un

�t

�
� d

dt
u.tn/

�
: (1.36)

The notation consists of an operator that approximates differentiation with respect
to an independent variable, here t . The operator is built of the symbol D, with the
independent variable as subscript and a superscript denoting the type of difference.
The superscript C indicates a forward difference. We place square brackets around
the operator and the function it operates on and specify the mesh point, where the
operator is acting, by a superscript after the closing bracket.

The corresponding operator notation for a centered difference and a backward
difference reads

ŒDt u�n D unC 1
2 � un� 1

2

�t
� d

dt
u.tn/; (1.37)

and

ŒD�t u�n D un � un�1

�t
� d

dt
u.tn/ : (1.38)

Note that the superscript � denotes the backward difference, while no superscript
implies a central difference.

An averaging operator is also convenient to have:

Œut �n D 1

2
.un� 1

2 C unC 1
2 / � u.tn/ (1.39)

The superscript t indicates that the average is taken along the time coordinate. The
common average .un C unC1/=2 can now be expressed as Œut �nC

1
2 . (When also

spatial coordinates enter the problem, we need the explicit specification of the co-
ordinate after the bar.)

With our compact notation, the Backward Euler finite difference approximation
to u0 D �au can be written as

ŒD�t u�n D �aun :

In difference equations we often place the square brackets around the whole equa-
tion, to indicate at which mesh point the equation applies, since each term must be
approximated at the same point:

ŒD�t u D �au�n : (1.40)

Similarly, the Forward Euler scheme takes the form

ŒDCt u D �au�n; (1.41)

1.2 Implementations 15

while the Crank–Nicolson scheme is written as

ŒDt u D �aut �nC
1
2 : (1.42)

Question
By use of (1.37) and (1.39), are you able to write out the expressions in (1.42) to
verify that it is indeed the Crank–Nicolson scheme?

The �-rule can be specified in operator notation by

Œ NDt u D �aut;� �nC� : (1.43)

We define a new time difference

Œ NDt u�nC� D unC1 � un

tnC1 � tn
; (1.44)

to be applied at the time point tnC� � � tn C .1 � �/tnC1. This weighted average
gives rise to the weighted averaging operator

Œut;� �nC� D .1 � �/un C �unC1 � u.tnC� /; (1.45)

where � 2 Œ0; 1� as usual. Note that for � D 1
2

we recover the standard cen-
tered difference and the standard arithmetic mean. The idea in (1.43) is to sample
the equation at tnC� , use a non-symmetric difference at that point Œ NDtu�nC� , and
a weighted (non-symmetric) mean value.

An alternative and perhaps clearer notation is

ŒDtu�nC
1
2 D �Œ�au�nC1C .1 � �/Œ�au�n :

Looking at the various examples above and comparing them with the underlying
differential equations, we see immediately which difference approximations that
have been used and at which point they apply. Therefore, the compact notation
effectively communicates the reasoning behind turning a differential equation into
a difference equation.

1.2 Implementations

We want to make a computer program for solving

u0.t/ D �au.t/; t 2 .0; T �; u.0/ D I;

by finite difference methods. The program should also display the numerical solu-
tion as a curve on the screen, preferably together with the exact solution.

All programs referred to in this section are found in the src/alg1 directory (we
use the classical Unix term directory for what many others nowadays call folder).

1 http://tinyurl.com/ofkw6kc/alg

http://tinyurl.com/ofkw6kc/alg

16 1 Algorithms and Implementations

Mathematical problem We want to explore the Forward Euler scheme, the Back-
ward Euler, and the Crank–Nicolson schemes applied to our model problem. From
an implementational point of view, it is advantageous to implement the �-rule

unC1 D 1 � .1 � �/a�t

1C �a�t
un;

since it can generate the three other schemes by various choices of � : � D 0 for
Forward Euler, � D 1 for Backward Euler, and � D 1=2 for Crank–Nicolson. Given
a, u0 D I , T , and �t , our task is to use the �-rule to compute u1; u2; : : : ; uNt ,
where tNt

D Nt �t , and Nt the closest integer to T=�t .

1.2.1 Computer Language: Python

Any programming language can be used to generate the unC1 values from the for-
mula above. However, in this document we shall mainly make use of Python. There
are several good reasons for this choice:

� Python has a very clean, readable syntax (often known as “executable pseudo-
code”).

� Python code is very similar to MATLAB code (and MATLAB has a particularly
widespread use for scientific computing).

� Python is a full-fledged, very powerful programming language.
� Python is similar to C++, but is much simpler to work with and results in more

reliable code.
� Python has a rich set of modules for scientific computing, and its popularity in

scientific computing is rapidly growing.
� Python was made for being combined with compiled languages (C, C++, For-

tran), so that existing numerical software can be reused, and thereby easing high
computational performance with new implementations.

� Python has extensive support for administrative tasks needed when doing large-
scale computational investigations.

� Python has extensive support for graphics (visualization, user interfaces, web
applications).

Learning Python is easy. Many newcomers to the language will probably learn
enough from the forthcoming examples to perform their own computer experiments.
The examples start with simple Python code and gradually make use of more pow-
erful constructs as we proceed. Unless it is inconvenient for the problem at hand,
our Python code is made as close as possible to MATLAB code for easy transition
between the two languages.

The coming programming examples assumes familiarity with variables, for
loops, lists, arrays, functions, positional arguments, and keyword (named) ar-
guments. A background in basic MATLAB programming is often enough to
understand Python examples. Readers who feel the Python examples are too hard
to follow will benefit from reading a tutorial, e.g.,

1.2 Implementations 17

� The Official Python Tutorial2

� Python Tutorial on tutorialspoint.com3

� Interactive Python tutorial site4

� A Beginner’s Python Tutorial5

The author also has a comprehensive book [8] that teaches scientific programming
with Python from the ground up.

1.2.2 Making a Solver Function

We choose to have an array u for storing the un values, n D 0; 1; : : : ; Nt . The
algorithmic steps are

1. initialize u0

2. for t D tn, n D 1; 2; : : : ; Nt : compute un using the �-rule formula

An implementation of a numerical algorithm is often referred to as a solver. We
shall now make a solver for our model problem and realize the solver as a Python
function. The function must take the input data I , a, T , �t , and � of the problem
as arguments and return the solution as arrays u and t for un and tn, n D 0; : : : ; Nt .
The solver function used as

u, t = solver(I, a, T, dt, theta)

One can now easily plot u versus t to visualize the solution.
The function solver may look as follows in Python:

from numpy import *

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
Nt = int(T/dt) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

The numpy library contains a lot of functions for array computing. Most of the
function names are similar to what is found in the alternative scientific computing
language MATLAB. Here we make use of

� zeros(Nt+1) for creating an array of size Nt+1 and initializing the elements to
zero

2 http://docs.python.org/2/tutorial/
3 http://www.tutorialspoint.com/python/
4 http://www.learnpython.org/
5 http://en.wikibooks.org/wiki/A_Beginner’s_Python_Tutorial

http://docs.python.org/2/tutorial/
http://www.tutorialspoint.com/python/
http://www.learnpython.org/
http://en.wikibooks.org/wiki/A_Beginner's_Python_Tutorial

18 1 Algorithms and Implementations

� linspace(0, T, Nt+1) for creating an array with Nt+1 coordinates uniformly
distributed between 0 and T

The for loop deserves a comment, especially for newcomers to Python. The con-
struction range(0, Nt, s) generates all integers from 0 to Nt in steps of s, but
not including Nt. Omitting s means s=1. For example, range(0, 6, 3) gives 0
and 3, while range(0, 6) generates the list [0, 1, 2, 3, 4, 5]. Our loop im-
plies the following assignments to u[n+1]: u[1], u[2], . . . , u[Nt], which is what
we want since u has length Nt+1. The first index in Python arrays or lists is always
0 and the last is then len(u)-1 (the length of an array u is obtained by len(u) or
u.size).

1.2.3 Integer Division

The shown implementation of the solver may face problems and wrong results if
T, a, dt, and theta are given as integers (see Exercises 1.3 and 1.4). The prob-
lem is related to integer division in Python (as in Fortran, C, C++, and many other
computer languages!): 1/2 becomes 0, while 1.0/2, 1/2.0, or 1.0/2.0 all be-
come 0.5. So, it is enough that at least the nominator or the denominator is a real
number (i.e., a float object) to ensure a correct mathematical division. Inserting
a conversion dt = float(dt) guarantees that dt is float.

Another problem with computing Nt D T=�t is that we should round Nt to
the nearest integer. With Nt = int(T/dt) the int operation picks the largest
integer smaller than T/dt. Correct mathematical rounding as known from school is
obtained by

Nt = int(round(T/dt))

The complete version of our improved, safer solver function then becomes

from numpy import *

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

1.2.4 Doc Strings

Right below the header line in the solver function there is a Python string enclosed
in triple double quotes """. The purpose of this string object is to document what
the function does and what the arguments are. In this case the necessary documen-

1.2 Implementations 19

tation does not span more than one line, but with triple double quoted strings the
text may span several lines:

def solver(I, a, T, dt, theta):
"""
Solve

u’(t) = -a*u(t),

with initial condition u(0)=I, for t in the time interval
(0,T]. The time interval is divided into time steps of
length dt.

theta=1 corresponds to the Backward Euler scheme, theta=0
to the Forward Euler scheme, and theta=0.5 to the Crank-
Nicolson method.
"""
...

Such documentation strings appearing right after the header of a function are called
doc strings. There are tools that can automatically produce nicely formatted docu-
mentation by extracting the definition of functions and the contents of doc strings.

It is strongly recommended to equip any function with a doc string, unless the
purpose of the function is not obvious. Nevertheless, the forthcoming text deviates
from this rule if the function is explained in the text.

1.2.5 Formatting Numbers

Having computed the discrete solution u, it is natural to look at the numbers:

Write out a table of t and u values:
for i in range(len(t)):

print t[i], u[i]

This compact print statement unfortunately gives less readable output because the
t and u values are not aligned in nicely formatted columns. To fix this problem,
we recommend to use the printf format, supported in most programming languages
inherited from C. Another choice is Python’s recent format string syntax. Both
kinds of syntax are illustrated below.

Writing t[i] and u[i] in two nicely formatted columns is done like this with
the printf format:

print ’t=%6.3f u=%g’ % (t[i], u[i])

The percentage signs signify “slots” in the text where the variables listed at the end
of the statement are inserted. For each “slot” one must specify a format for how the
variable is going to appear in the string: f for float (with 6 decimals), s for pure
text, d for an integer, g for a real number written as compactly as possible, 9.3E
for scientific notation with three decimals in a field of width 9 characters (e.g.,
-1.351E-2), or .2f for standard decimal notation with two decimals formatted

20 1 Algorithms and Implementations

with minimum width. The printf syntax provides a quick way of formatting tabular
output of numbers with full control of the layout.

The alternative format string syntax looks like

print ’t={t:6.3f} u={u:g}’.format(t=t[i], u=u[i])

As seen, this format allows logical names in the “slots” where t[i] and u[i] are
to be inserted. The “slots” are surrounded by curly braces, and the logical name
is followed by a colon and then the printf-like specification of how to format real
numbers, integers, or strings.

1.2.6 Running the Program

The function and main program shown above must be placed in a file, say with
name decay_v1.py6 (v1 for 1st version of this program). Make sure you write the
code with a suitable text editor (Gedit, Emacs, Vim, Notepad++, or similar). The
program is run by executing the file this way:

Terminal

Terminal> python decay_v1.py

The text Terminal> just indicates a prompt in a Unix/Linux or DOS termi-
nal window. After this prompt, which may look different in your terminal win-
dow (depending on the terminal application and how it is set up), commands like
python decay_v1.py can be issued. These commands are interpreted by the op-
erating system.

We strongly recommend to run Python programs within the IPython shell. First
start IPython by typing ipython in the terminal window. Inside the IPython shell,
our program decay_v1.py is run by the command run decay_v1.py:

Terminal

Terminal> ipython

In [1]: run decay_v1.py
t= 0.000 u=1
t= 0.800 u=0.384615
t= 1.600 u=0.147929
t= 2.400 u=0.0568958
t= 3.200 u=0.021883
t= 4.000 u=0.00841653
t= 4.800 u=0.00323713
t= 5.600 u=0.00124505
t= 6.400 u=0.000478865
t= 7.200 u=0.000184179
t= 8.000 u=7.0838e-05

6 http://tinyurl.com/ofkw6kc/alg/decay_v1.py

http://tinyurl.com/ofkw6kc/alg/decay_v1.py

1.2 Implementations 21

The advantage of running programs in IPython are many, but here we explicitly
mention a few of the most useful features:

� previous commands are easily recalled with the up arrow,
� %pdb turns on a debugger so that variables can be examined if the program aborts

(due to a Python exception),
� output of commands are stored in variables,
� the computing time spent on a set of statements can be measured with the

%timeit command,
� any operating system command can be executed,
� modules can be loaded automatically and other customizations can be performed

when starting IPython

Although running programs in IPython is strongly recommended, most execution
examples in the forthcoming text use the standard Python shell with prompt »> and
run programs through a typesetting like

Terminal

Terminal> python programname

The reason is that such typesetting makes the text more compact in the vertical
direction than showing sessions with IPython syntax.

1.2.7 Plotting the Solution

Having the t and u arrays, the approximate solution u is visualized by the intuitive
command plot(t, u):

from matplotlib.pyplot import *
plot(t, u)
show()

It will be illustrative to also plot the exact solution ue.t/ D Ie�at for comparison.
We first need to make a Python function for computing the exact solution:

def u_exact(t, I, a):
return I*exp(-a*t)

It is tempting to just do

u_e = u_exact(t, I, a)
plot(t, u, t, u_e)

However, this is not exactly what we want: the plot function draws straight lines
between the discrete points (t[n], u_e[n]) while ue.t/ varies as an exponential

22 1 Algorithms and Implementations

function between the mesh points. The technique for showing the “exact” variation
of ue.t/ between the mesh points is to introduce a very fine mesh for ue.t/:

t_e = linspace(0, T, 1001) # fine mesh
u_e = u_exact(t_e, I, a)

We can also plot the curves with different colors and styles, e.g.,

plot(t_e, u_e, ’b-’, # blue line for u_e
t, u, ’r--o’) # red dashes w/circles

With more than one curve in the plot we need to associate each curve with
a legend. We also want appropriate names on the axes, a title, and a file con-
taining the plot as an image for inclusion in reports. The Matplotlib package
(matplotlib.pyplot) contains functions for this purpose. The names of the
functions are similar to the plotting functions known from MATLAB. A complete
function for creating the comparison plot becomes

from matplotlib.pyplot import *

def plot_numerical_and_exact(theta, I, a, T, dt):
"""Compare the numerical and exact solution in a plot."""
u, t = solver(I=I, a=a, T=T, dt=dt, theta=theta)

t_e = linspace(0, T, 1001) # fine mesh for u_e
u_e = u_exact(t_e, I, a)

plot(t, u, ’r--o’, # red dashes w/circles
t_e, u_e, ’b-’) # blue line for exact sol.

legend([’numerical’, ’exact’])
xlabel(’t’)
ylabel(’u’)
title(’theta=%g, dt=%g’ % (theta, dt))
savefig(’plot_%s_%g.png’ % (theta, dt))

plot_numerical_and_exact(I=1, a=2, T=8, dt=0.8, theta=1)
show()

Note that savefig here creates a PNG file whose name includes the values of �

and �t so that we can easily distinguish files from different runs with � and �t .
The complete code is found in the file decay_v2.py7. The resulting plot is

shown in Fig. 1.6. As seen, there is quite some discrepancy between the exact and
the numerical solution. Fortunately, the numerical solution approaches the exact
one as �t is reduced.

1.2.8 Verifying the Implementation

It is easy to make mistakes while deriving and implementing numerical algorithms,
so we should never believe in the solution before it has been thoroughly verified.

7 http://tinyurl.com/ofkw6kc/alg/decay_v2.py

http://tinyurl.com/ofkw6kc/alg/decay_v2.py

1.2 Implementations 23

Fig. 1.6 Comparison of numerical and exact solution

Verification and validation
The purpose of verifying a program is to bring evidence for the property that there
are no errors in the implementation. A related term, validate (and validation),
addresses the question if the ODE model is a good representation of the phenom-
ena we want to simulate. To remember the difference between verification and
validation, verification is about solving the equations right, while validation is
about solving the right equations. We must always perform a verification before
it is meaningful to believe in the computations and perform validation (which
compares the program results with physical experiments or observations).

The most obvious idea for verification in our case is to compare the numerical so-
lution with the exact solution, when that exists. This is, however, not a particularly
good method. The reason is that there will always be a discrepancy between these
two solutions, due to numerical approximations, and we cannot precisely quantify
the approximation errors. The open question is therefore whether we have the math-
ematically correct discrepancy or if we have another, maybe small, discrepancy due
to both an approximation error and an error in the implementation. It is thus impos-
sible to judge whether the program is correct or not by just looking at the graphs in
Fig. 1.6.

To avoid mixing the unavoidable numerical approximation errors and the unde-
sired implementation errors, we should try to make tests where we have some exact
computation of the discrete solution or at least parts of it. Examples will show how
this can be done.

Running a few algorithmic steps by hand The simplest approach to produce
a correct non-trivial reference solution for the discrete solution u, is to compute
a few steps of the algorithm by hand. Then we can compare the hand calculations
with numbers produced by the program.

24 1 Algorithms and Implementations

A straightforward approach is to use a calculator and compute u1, u2, and u3.
With I D 0:1, � D 0:8, and �t D 0:8 we get

A � 1 � .1 � �/a�t

1C �a�t
D 0:298245614035

u1 D AI D 0:0298245614035;

u2 D Au1 D 0:00889504462912;

u3 D Au2 D 0:00265290804728

Comparison of these manual calculations with the result of the solver function
is carried out in the function

def test_solver_three_steps():
"""Compare three steps with known manual computations."""
theta = 0.8; a = 2; I = 0.1; dt = 0.8
u_by_hand = array([I,

0.0298245614035,
0.00889504462912,
0.00265290804728])

Nt = 3 # number of time steps
u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)

tol = 1E-15 # tolerance for comparing floats
diff = abs(u - u_by_hand).max()
success = diff < tol
assert success

The test_solver_three_steps function follows widely used conventions for
unit testing. By following such conventions we can at a later stage easily execute
a big test suite for our software. That is, after a small modification is made to the
program, we can by typing just a short command, run through a large number of
tests to check that the modifications do not break any computations. The conven-
tions boil down to three rules:

� The test function name must start with test_ and the function cannot take any
arguments.

� The test must end up in a boolean expression that is True if the test was passed
and False if it failed.

� The function must run assert on the boolean expression, resulting in program
abortion (due to an AssertionError exception) if the test failed.

A typical assert statement is to check that a computed result c equals the expected
value e: assert c == e. However, since real numbers are stored in a computer
using only 64 units, most numbers will feature a small rounding error, typically of
size 10�16. That is, real numbers on a computer have finite precision. When doing
arithmetics with finite precision numbers, the rounding errors may accumulate or
not, depending on the algorithm. It does not make sense to test c == e, since
a small rounding error will cause the test to fail. Instead, we use an equality with
tolerance tol: abs(e - c) < tol. The test_solver_three_steps functions
applies this type of test with a tolerance 01�15.

1.2 Implementations 25

The main program can routinely run the verification test prior to solving the real
problem:

test_solver_three_steps()
plot_numerical_and_exact(I=1, a=2, T=8, dt=0.8, theta=1)
show()

(Rather than calling test_*() functions explicitly, one will normally ask a test-
ing framework like nose or pytest to find and run such functions.) The complete
program including the verification above is found in the file decay_v3.py8.

1.2.9 Computing the Numerical Error as a Mesh Function

Now that we have some evidence for a correct implementation, we are in position to
compare the computed un values in the u array with the exact u values at the mesh
points, in order to study the error in the numerical solution.

A natural way to compare the exact and discrete solutions is to calculate their
difference as a mesh function for the error:

en D ue.tn/ � un; n D 0; 1; : : : ; Nt : (1.46)

We may view the mesh function un
e D ue.tn/ as a representation of the continuous

function ue.t/ defined for all t 2 Œ0; T �. In fact, un
e is often called the representative

of ue on the mesh. Then, en D un
e � un is clearly the difference of two mesh

functions.
The error mesh function en can be computed by

u, t = solver(I, a, T, dt, theta) # Numerical sol.
u_e = u_exact(t, I, a) # Representative of exact sol.
e = u_e - u

Note that the mesh functions u and u_e are represented by arrays and associated
with the points in the array t.

Array arithmetics
The last statements

u_e = u_exact(t, I, a)
e = u_e - u

demonstrate some standard examples of array arithmetics: t is an array of mesh
points that we pass to u_exact. This function evaluates -a*t, which is a scalar
times an array, meaning that the scalar is multiplied with each array element.
The result is an array, let us call it tmp1. Then exp(tmp1) means applying
the exponential function to each element in tmp1, giving an array, say tmp2.

8 http://tinyurl.com/ofkw6kc/alg/decay_v3.py

http://tinyurl.com/ofkw6kc/alg/decay_v3.py

26 1 Algorithms and Implementations

Finally, I*tmp2 is computed (scalar times array) and u_e refers to this array
returned from u_exact. The expression u_e - u is the difference between two
arrays, resulting in a new array referred to by e.

Replacement of array element computations inside a loop by array arithmetics
is known as vectorization.

1.2.10 Computing the Norm of the Error Mesh Function

Instead of working with the error en on the entire mesh, we often want a single
number expressing the size of the error. This is obtained by taking the norm of the
error function.

Let us first define norms of a function f .t/ defined for all t 2 Œ0; T �. Three
common norms are

jjf jjL2 D
0
@

TZ
0

f .t/2dt

1
A

1=2

; (1.47)

jjf jjL1 D
TZ

0

jf .t/jdt; (1.48)

jjf jjL1 D max
t2Œ0;T �

jf .t/j : (1.49)

The L2 norm (1.47) (“L-two norm”) has nice mathematical properties and is the
most popular norm. It is a generalization of the well-known Eucledian norm of
vectors to functions. The L1 norm looks simpler and more intuitive, but has less
nice mathematical properties compared to the two other norms, so it is much less
used in computations. The L1 is also called the max norm or the supremum norm
and is widely used. It focuses on a single point with the largest value of jf j, while
the other norms measure average behavior of the function.

In fact, there is a whole family of norms,

jjf jjLp D
0
@

TZ
0

f .t/pdt

1
A

1=p

; (1.50)

with p real. In particular, p D 1 corresponds to the L1 norm above while p D 1
is the L1 norm.

Numerical computations involving mesh functions need corresponding norms.
Given a set of function values, f n, and some associated mesh points, tn, a numer-
ical integration rule can be used to calculate the L2 and L1 norms defined above.
Imagining that the mesh function is extended to vary linearly between the mesh
points, the Trapezoidal rule is in fact an exact integration rule. A possible modifi-
cation of the L2 norm for a mesh function f n on a uniform mesh with spacing �t

1.2 Implementations 27

is therefore the well-known Trapezoidal integration formula

jjf njj D

�t

1

2
.f 0/2 C 1

2
.f Nt /2 C

Nt�1X
nD1

.f n/2

!!1=2

A common approximation of this expression, motivated by the convenience of hav-
ing a simpler formula, is

jjf njj`2 D

�t

NtX
nD0

.f n/2

!1=2

:

This is called the discrete L2 norm and denoted by `2. If jjf jj2
`2 (i.e., the square

of the norm) is used instead of the Trapezoidal integration formula, the error is
�t..f 0/2 C .f Nt /2/=2. This means that the weights at the end points of the mesh
function are perturbed, but as �t ! 0, the error from this perturbation goes to zero.
As long as we are consistent and stick to one kind of integration rule for the norm
of a mesh function, the details and accuracy of this rule is of no concern.

The three discrete norms for a mesh function f n, corresponding to the L2, L1,
and L1 norms of f .t/ defined above, are defined by

jjf njj`2 D

�t

NtX
nD0

.f n/2

!1=2

; (1.51)

jjf njj`1 D �t

NtX
nD0

jf nj; (1.52)

jjf njj`1 D max
0�n�Nt

jf nj : (1.53)

Note that the L2, L1, `2, and `1 norms depend on the length of the interval of
interest (think of f D 1, then the norms are proportional to

p
T or T). In some

applications it is convenient to think of a mesh function as just a vector of function
values without any relation to the interval Œ0; T �. Then one can replace �t by T=Nt

and simply drop T (which is just a common scaling factor in the norm, independent
of the vector of function values). Moreover, people prefer to divide by the total
length of the vector, Nt C 1, instead of Nt . This reasoning gives rise to the vector
norms for a vector f D .f0; : : : ; fN /:

jjf jj2 D

1

N C 1

NX
nD0

.fn/2

!1=2

; (1.54)

jjf jj1 D 1

N C 1

NX
nD0

jfnj; (1.55)

jjf jj`1 D max
0�n�N

jfnj : (1.56)

28 1 Algorithms and Implementations

Here we have used the common vector component notation with subscripts (fn)
and N as length. We will mostly work with mesh functions and use the discrete
`2 norm (1.51) or the max norm `1 (1.53), but the corresponding vector norms
(1.54)–(1.56) are also much used in numerical computations, so it is important to
know the different norms and the relations between them.

A single number that expresses the size of the numerical error will be taken as
jjenjj`2 and called E:

E D
vuut�t

NtX
nD0

.en/2 (1.57)

The corresponding Python code, using array arithmetics, reads

E = sqrt(dt*sum(e**2))

The sum function comes from numpy and computes the sum of the elements of an
array. Also the sqrt function is from numpy and computes the square root of each
element in the array argument.

Scalar computing Instead of doing array computing sqrt(dt*sum(e**2)) we
can compute with one element at a time:

m = len(u) # length of u array (alt: u.size)
u_e = zeros(m)
t = 0
for i in range(m):

u_e[i] = u_exact(t, a, I)
t = t + dt

e = zeros(m)
for i in range(m):

e[i] = u_e[i] - u[i]
s = 0 # summation variable
for i in range(m):

s = s + e[i]**2
error = sqrt(dt*s)

Such element-wise computing, often called scalar computing, takes more code, is
less readable, and runs much slower than what we can achieve with array comput-
ing.

1.2.11 Experiments with Computing and Plotting

Let us write down a new function that wraps up the computation and all the plotting
statements used for comparing the exact and numerical solutions. This function can
be called with various � and �t values to see how the error depends on the method
and mesh resolution.

def explore(I, a, T, dt, theta=0.5, makeplot=True):
"""
Run a case with the solver, compute error measure,
and plot the numerical and exact solutions (if makeplot=True).
"""

1.2 Implementations 29

u, t = solver(I, a, T, dt, theta) # Numerical solution
u_e = u_exact(t, I, a)
e = u_e - u
E = sqrt(dt*sum(e**2))
if makeplot:

figure() # create new plot
t_e = linspace(0, T, 1001) # fine mesh for u_e
u_e = u_exact(t_e, I, a)
plot(t, u, ’r--o’) # red dashes w/circles
plot(t_e, u_e, ’b-’) # blue line for exact sol.
legend([’numerical’, ’exact’])
xlabel(’t’)
ylabel(’u’)
title(’theta=%g, dt=%g’ % (theta, dt))
theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
savefig(’%s_%g.png’ % (theta2name[theta], dt))
savefig(’%s_%g.pdf’ % (theta2name[theta], dt))
show()

return E

The figure() call is key: without it, a new plot command will draw the new
pair of curves in the same plot window, while we want the different pairs to appear
in separate windows and files. Calling figure() ensures this.

Instead of including the � value in the filename to implicitly inform about the
applied method, the code utilizes a little Python dictionary that maps each relevant
� value to a corresponding acronym for the method name (FE, BE, or CN):

theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
savefig(’%s_%g.png’ % (theta2name[theta], dt))

The explore function stores the plot in two different image file formats: PNG
and PDF. The PNG format is suitable for being included in HTML documents,
while the PDF format provides higher quality for LATEX (i.e., PDFLATEX) documents.
Frequently used viewers for these image files on Unix systems are gv (comes with
Ghostscript) for the PDF format and display (from the ImageMagick software
suite) for PNG files:

Terminal

Terminal> gv BE_0.5.pdf
Terminal> display BE_0.5.png

A main program may run a loop over the three methods (given by their corre-
sponding � values) and call explore to compute errors and make plots:

def main(I, a, T, dt_values, theta_values=(0, 0.5, 1)):
print ’theta dt error’ # Column headings in table
for theta in theta_values:

for dt in dt_values:
E = explore(I, a, T, dt, theta, makeplot=True)
print ’%4.1f %6.2f: %12.3E’ % (theta, dt, E)

main(I=1, a=2, T=5, dt_values=[0.4, 0.04])

30 1 Algorithms and Implementations

Fig. 1.7 The Forward Euler scheme for two values of the time step

The file decay_plot_mpl.py9 contains the complete code with the functions
above. Running this program results in

Terminal

Terminal> python decay_plot_mpl.py
theta dt error
0.0 0.40: 2.105E-01
0.0 0.04: 1.449E-02
0.5 0.40: 3.362E-02
0.5 0.04: 1.887E-04
1.0 0.40: 1.030E-01
1.0 0.04: 1.382E-02

We observe that reducing �t by a factor of 10 increases the accuracy for all
three methods. We also see that the combination of � D 0:5 and a small time step
�t D 0:04 gives a much more accurate solution, and that � D 0 and � D 1 with
�t D 0:4 result in the least accurate solutions.

Figure 1.7 demonstrates that the numerical solution produced by the Forward
Euler method with �t D 0:4 clearly lies below the exact curve, but that the accuracy
improves considerably by reducing the time step by a factor of 10.

The behavior of the two other schemes is shown in Figs. 1.8 and 1.9. Crank–
Nicolson is obviously the most accurate scheme from this visual point of view.

Combining plot files Mounting two PNG files beside each other, as done in
Figs. 1.7–1.9, is easily carried out by the montage10 program from the ImageMag-
ick suite:

Terminal

Terminal> montage -background white -geometry 100% -tile 2x1 \
FE_0.4.png FE_0.04.png FE1.png

Terminal> convert -trim FE1.png FE1.png

9 http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py
10 http://www.imagemagick.org/script/montage.php

http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py
http://www.imagemagick.org/script/montage.php

1.2 Implementations 31

Fig. 1.8 The Backward Euler scheme for two values of the time step

Fig. 1.9 The Crank–Nicolson scheme for two values of the time step

The -geometry argument is used to specify the size of the image. Here, we
preserve the individual sizes of the images. The -tile HxV option specifies H im-
ages in the horizontal direction and V images in the vertical direction. A series of
image files to be combined are then listed, with the name of the resulting com-
bined image, here FE1.png at the end. The convert -trim command removes
surrounding white areas in the figure (an operation usually known as cropping in
image manipulation programs).

For LATEX reports it is not recommended to use montage and PNG files as the
result has too low resolution. Instead, plots should be made in the PDF format and
combined using the pdftk, pdfnup, and pdfcrop tools (on Linux/Unix):

Terminal

Terminal> pdftk FE_0.4.png FE_0.04.png output tmp.pdf
Terminal> pdfnup --nup 2x1 --outfile tmp.pdf tmp.pdf
Terminal> pdfcrop tmp.pdf FE1.png # output in FE1.png

Here, pdftk combines images into a multi-page PDF file, pdfnup combines
the images in individual pages to a table of images (pages), and pdfcrop removes
white margins in the resulting combined image file.

32 1 Algorithms and Implementations

Plotting with SciTools The SciTools package11 provides a unified plotting inter-
face, called Easyviz, to many different plotting packages, including Matplotlib,
Gnuplot, Grace, MATLAB, VTK, OpenDX, and VisIt. The syntax is very similar to
that of Matplotlib and MATLAB. In fact, the plotting commands shown above look
the same in SciTool’s Easyviz interface, apart from the import statement, which
reads

from scitools.std import *

This statement performs a from numpy import * as well as an import of the most
common pieces of the Easyviz (scitools.easyviz) package, along with some
additional numerical functionality.

With Easyviz one can merge several plotting commands into a single one using
keyword arguments:

plot(t, u, ’r--o’, # red dashes w/circles
t_e, u_e, ’b-’, # blue line for exact sol.
legend=[’numerical’, ’exact’],
xlabel=’t’,
ylabel=’u’,
title=’theta=%g, dt=%g’ % (theta, dt),
savefig=’%s_%g.png’ % (theta2name[theta], dt),
show=True)

The decay_plot_st.py12 file contains such a demo.
By default, Easyviz employs Matplotlib for plotting, but Gnuplot13 and Grace14

are viable alternatives:

Terminal

Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend gnuplot
Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend grace

The actual tool used for creating plots (called backend) and numerous other op-
tions can be permanently set in SciTool’s configuration file.

All the Gnuplot windows are launched without any need to kill one before the
next one pops up (as is the case with Matplotlib) and one can press the key ‘q’
anywhere in a plot window to kill it. Another advantage of Gnuplot is the auto-
matic choice of sensible and distinguishable line types in black-and-white PDF and
PostScript files.

For more detailed information on syntax and plotting capabilities, we refer to the
Matplotlib [5] and SciTools [7] documentation. The hope is that the programming
syntax explained so far suffices for understanding the basic plotting functionality
and being able to look up the cited technical documentation.

11 https://github.com/hplgit/scitools
12 http://tinyurl.com/ofkw6kc/alg/decay_plot_st.py
13 http://www.gnuplot.info/
14 http://plasma-gate.weizmann.ac.il/Grace/

https://github.com/hplgit/scitools
http://tinyurl.com/ofkw6kc/alg/decay_plot_st.py
http://www.gnuplot.info/
http://plasma-gate.weizmann.ac.il/Grace/

1.2 Implementations 33

Test your understanding!
Exercise 4.3 asks you to implement a solver for a problem that is slightly dif-
ferent from the one above. You may use the solver and explore functions
explained above as a starting point. Apply the new solver to solve Exercise 4.4.

1.2.12 Memory-Saving Implementation

The computer memory requirements of our implementations so far consist mainly
of the u and t arrays, both of length Nt C 1. Also, for the programs that involve
array arithmetics, Python needs memory space for storing temporary arrays. For
example, computing I*exp(-a*t) requires storing the intermediate result a*t be-
fore the preceding minus sign can be applied. The resulting array is temporarily
stored and provided as input to the exp function. Regardless of how we implement
simple ODE problems, storage requirements are very modest and put no restrictions
on how we choose our data structures and algorithms. Nevertheless, when the pre-
sented methods are applied to three-dimensional PDE problems, memory storage
requirements suddenly become a challenging issue.

Let us briefly elaborate on how large the storage requirements can quickly be in
three-dimensional problems. The PDE counterpart to our model problem u0 D �a

is a diffusion equation ut D ar2u posed on a space-time domain. The discrete
representation of this domain may in 3D be a spatial mesh of M 3 points and a time
mesh of Nt points. In many applications, it is quite typical that M is at least 100, or
even 1000. Storing all the computed u values, like we have done in the programs so
far, would demand storing arrays of size up to M 3Nt . This would give a factor of
M 3 larger storage demands compared to what was required by our ODE programs.
Each real number in the u array requires 8 bytes (b) of storage. With M D 100 and
Nt D 1000, there is a storage demand of .103/3 � 1000 � 8 D 8 Gb for the solution
array. Fortunately, we can usually get rid of the Nt factor, resulting in 8 Mb of
storage. Below we explain how this is done (the technique is almost always applied
in implementations of PDE problems).

Let us critically evaluate how much we really need to store in the computer’s
memory for our implementation of the � method. To compute a new unC1, all we
need is un. This implies that the previous un�1; un�2; : : : ; u0 values do not need to
be stored, although this is convenient for plotting and data analysis in the program.
Instead of the u array we can work with two variables for real numbers, u and u_1,
representing unC1 and un in the algorithm, respectively. At each time level, we
update u from u_1 and then set u_1 = u, so that the computed unC1 value becomes
the “previous” value un at the next time level. The downside is that we cannot
plot the solution after the simulation is done since only the last two numbers are
available. The remedy is to store computed values in a file and use the file for
visualizing the solution later.

We have implemented this memory saving idea in the file decay_memsave.py15,
which is a slight modification of decay_plot_mpl.py16 program.

15 http://tinyurl.com/ofkw6kc/alg/decay_memsave.py
16 http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py

http://tinyurl.com/ofkw6kc/alg/decay_memsave.py
http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py

34 1 Algorithms and Implementations

The following function demonstrates how we work with the two most recent
values of the unknown:

def solver_memsave(I, a, T, dt, theta, filename=’sol.dat’):
"""
Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt.
Minimum use of memory. The solution is stored in a file
(with name filename) for later plotting.
"""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of intervals

outfile = open(filename, ’w’)
u: time level n+1, u_1: time level n
t = 0
u_1 = I
outfile.write(’%.16E %.16E\n’ % (t, u_1))
for n in range(1, Nt+1):

u = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u_1
u_1 = u
t += dt
outfile.write(’%.16E %.16E\n’ % (t, u))

outfile.close()
return u, t

This code snippet also serves as a quick introduction to file writing in Python. Read-
ing the data in the file into arrays t and u is done by the function

def read_file(filename=’sol.dat’):
infile = open(filename, ’r’)
u = []; t = []
for line in infile:

words = line.split()
if len(words) != 2:

print ’Found more than two numbers on a line!’, words
sys.exit(1) # abort

t.append(float(words[0]))
u.append(float(words[1]))

return np.array(t), np.array(u)

This type of file with numbers in rows and columns is very common, and numpy
has a function loadtxt which loads such tabular data into a two-dimensional array
named by the user. Say the name is data, the number in row i and column j is
then data[i,j]. The whole column number j can be extracted by data[:,j].
A version of read_file using np.loadtxt reads

def read_file_numpy(filename=’sol.dat’):
data = np.loadtxt(filename)
t = data[:,0]
u = data[:,1]
return t, u

The present counterpart to the explore function from decay_plot_mpl.py17

must run solver_memsave and then load data from file before we can compute the
error measure and make the plot:

17 http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py

http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py

1.3 Exercises 35

def explore(I, a, T, dt, theta=0.5, makeplot=True):
filename = ’u.dat’
u, t = solver_memsave(I, a, T, dt, theta, filename)

t, u = read_file(filename)
u_e = u_exact(t, I, a)
e = u_e - u
E = sqrt(dt*np.sum(e**2))
if makeplot:

figure()
...

Apart from the internal implementation, where un values are stored in a file
rather than in an array, decay_memsave.py file works exactly as the
decay_plot_mpl.py file.

1.3 Exercises

Exercise 1.1: Define a mesh function and visualize it

a) Write a function mesh_function(f, t) that returns an array with mesh point
values f .t0/; : : : ; f .tNt

/, where f is a Python function implementing a mathe-
matical function f(t) and t0; : : : ; tNt

are mesh points stored in the array t. Use
a loop over the mesh points and compute one mesh function value at the time.

b) Use mesh_function to compute the mesh function corresponding to

f .t/ D
(

e�t ; 0 � t � 3;

e�3t ; 3 < t � 4

Choose a mesh tn D n�t with �t D 0:1. Plot the mesh function.

Filename: mesh_function.

Remarks In Sect. 1.2.9 we show how easy it is to compute a mesh function by
array arithmetics (or array computing). Using this technique, one could simply
implement mesh_function(f,t) as return f(t). However, f(t) will not work
if there are if tests involving t inside f as is the case in b). Typically, if t < 3
must have t < 3 as a boolean expression, but if t is array, t < 3, is an array of
boolean values, which is not legal as a boolean expression in an if test. Computing
one element at a time as suggested in a) is a way of out of this problem.

We also remark that the function in b) is the solution of u0 D �au, u.0/ D 1,
for t 2 Œ0; 4�, where a D 1 for t 2 Œ0; 3� and a D 3 for t 2 Œ3; 4�.

Problem 1.2: Differentiate a function
Given a mesh function un as an array u with un values at mesh points tn D n�t ,
the discrete derivative can be based on centered differences:

d n D ŒD2tu�n D unC1 � un�1

2�t
; n D 1; : : : ; Nt � 1 : (1.58)

36 1 Algorithms and Implementations

At the end points we use forward and backward differences:

d 0 D ŒDCt u�n D u1 � u0

�t
;

and

d Nt D ŒD�t u�n D uNt � uNt�1

�t
:

a) Write a function differentiate(u, dt) that returns the discrete derivative
d n of the mesh function un. The parameter dt reflects the mesh spacing �t .
Write a corresponding test function test_differentiate() for verifying the
implementation.

Hint The three differentiation formulas are exact for quadratic polynomials. Use
this property to verify the program.

b) A standard implementation of the formula (1.58) is to have a loop over i . For
large Nt , such loop may run slowly in Python. A technique for speeding up
the computations, called vectorization or array computing, replaces the loop
by array operations. To see how this can be done in the present mathematical
problem, we define two arrays

uC D .u2; u3; : : : ; uNt /; u� D .u0; u1; : : : ; uNt�2/ :

The formula (1.58) can now be expressed as

.d 1; d 2; : : : ; d Nt�1/ D 1

2�t
.uC � u�/ :

The corresponding Python code reads

d[1:-1] = (u[2:] - u[0:-2])/(2*dt)
or
d[1:N_t] = (u[2:N_t+1] - u[0:N_t-1])/(2*dt)

Recall that an array slice u[1:-1] contains the elements in u starting with index
1 and going all indices up to, but not including, the last one (-1).
Use the ideas above to implement a vectorized version of the differentiate
function without loops. Make a corresponding test function that compares the
result with that of differentiate.

Filename: differentiate.

Problem 1.3: Experiment with divisions
Explain what happens in the following computations, where some are mathemati-
cally unexpected:

1.3 Exercises 37

>>> dt = 3
>>> T = 8
>>> Nt = T/dt
>>> Nt
2
>>> theta = 1; a = 1
>>> (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
0

Filename: pyproblems.

Problem 1.4: Experiment with wrong computations
Consider the solver function in the decay_v1.py18 file and the following call:

u, t = solver(I=1, a=1, T=7, dt=2, theta=1)

The output becomes

t= 0.000 u=1
t= 2.000 u=0
t= 4.000 u=0
t= 6.000 u=0

Print out the result of all intermediate computations and use type(v) to see the
object type of the result stored in some variable v. Examine the intermediate cal-
culations and explain why u is wrong and why we compute up to t D 6 only even
though we specified T D 7.

Filename: decay_v1_err.

Problem 1.5: Plot the error function
Solve the problem u0 D �au, u.0/ D I , using the Forward Euler, Backward
Euler, and Crank–Nicolson schemes. For each scheme, plot the error mesh function
en D ue.tn/ � un for �t D 0:1; 0:05; 0:025, where ue is the exact solution of the
ODE and un is the numerical solution at mesh point tn.

Hint Modify the decay_plot_mpl.py19 code.
Filename: decay_plot_error.

Problem 1.6: Change formatting of numbers and debug
The decay_memsave.py20 program writes the time values and solution values to
a file which looks like

0.0000000000000000E+00 1.0000000000000000E+00
2.0000000000000001E-01 8.3333333333333337E-01
4.0000000000000002E-01 6.9444444444444453E-01
6.0000000000000009E-01 5.7870370370370383E-01
8.0000000000000004E-01 4.8225308641975323E-01
1.0000000000000000E+00 4.0187757201646102E-01
1.2000000000000000E+00 3.3489797668038418E-01
1.3999999999999999E+00 2.7908164723365347E-01

18 http://tinyurl.com/ofkw6kc/alg/decay_v1.py
19 http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py
20 http://tinyurl.com/ofkw6kc/alg/decay_memsave.py

http://tinyurl.com/ofkw6kc/alg/decay_v1.py
http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py
http://tinyurl.com/ofkw6kc/alg/decay_memsave.py

38 1 Algorithms and Implementations

Modify the file output such that it looks like

0.000 1.00000
0.200 0.83333
0.400 0.69444
0.600 0.57870
0.800 0.48225
1.000 0.40188
1.200 0.33490
1.400 0.27908

If you have just modified the formatting of numbers in the file, running the modified
program

Terminal

Terminal> python decay_memsave_v2.py --T 10 --theta 1 \
--dt 0.2 --makeplot

leads to printing of the message Bug in the implementation! in the terminal
window. Why?

Filename: decay_memsave_v2.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

http://creativecommons.org/licenses/by-nc/4.0/

