LECTURE NOTES IN COMPUTATIONAL
SCIENCE AND ENGINEERING

Hans Petter Langtangen

Finite Difference
Computing

with Exponential
Decay Models

@ Springer Open

Editorial Board
T.J.Barth
M. Griebel



Lecture Notes
in Computational Science
and Engineering

Editors:

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose

Tamar Schlick

110



More information about this series at http://www.springer.com/series/3527


http://www.springer.com/series/3527

Hans Petter Langtangen

Finite Difference
Computing with
Exponential Decay Models

@ Springer Open



Hans Petter Langtangen
Simula Research Laboratory
Lysaker, Norway

On leave from:
Department of Informatics

University of Oslo
Oslo, Norway

ISSN 1439-7358 ISSN 2197-7100 (electronic)
Lecture Notes in Computational Science and Engineering
ISBN 978-3-319-29438-4 ISBN 978-3-319-29439-1 (eBook)

DOI 10.1007/978-3-319-29439-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2016932614
Mathematic Subject Classification (2010): 34, 65, 68

© The Editor(s) (if applicable) and the Author(s) 2016 This book is published open access.

Open Access This book is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits any noncommercial use, duplication, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source, a link is
provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this book are included in the work’s Creative Commons
license, unless indicated otherwise in the credit line; if such material is not included in the work’s
Creative Commons license and the respective action is not permitted by statutory regulation, users will
need to obtain permission from the license holder to duplicate, adapt or reproduce the material.

This work is subject to copyright. All commercial rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publica-
tion does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)


http://creativecommons.org/licenses/by-nc/4.0/
http://www.springer.com

Preface

This book teaches the basic components in the scientific computing pipeline: mod-
eling, differential equations, numerical algorithms, programming, plotting, and
software testing. The pedagogical idea is to treat these topics in the context of
a very simple mathematical model, the differential equation for exponential decay,
u'(t) = —au(t), where u is unknown and « is a given parameter. By keeping the
mathematical problem simple, the text can go deep into all details about how one
must combine mathematics and computer science to create well-tested, reliable,
and flexible software for such a mathematical model.

The writing style is gentle and aims at a broad audience. I am much inspired by
Nick Trefethen’s praise of easy learning:

Some people think that stiff challenges are the best device to induce learning, but I am not
one of them. The natural way to learn something is by spending vast amounts of easy,
enjoyable time at it. This goes whether you want to speak German, sight-read at the piano,
type, or do mathematics. Give me the German storybook for fifth graders that I feel like
reading in bed, not Goethe and a dictionary. The latter will bring rapid progress at first,
then exhaustion and failure to resolve.

The main thing to be said for stiff challenges is that inevitably we will encounter them,
so we had better learn to face them boldly. Putting them in the curriculum can help teach
us to do so. But for teaching the skill or subject matter itself, they are overrated. [13, p. 86]

Prerequisite knowledge for this book is basic one-dimensional calculus and
preferably some experience with computer programming in Python or MATLAB.
The material was initially written for self study and therefore features compre-
hensive and easy-to-understand explanations. For some readers it may act as an
overview and refresher of traditional mathematical topics and likely a first introduc-
tion to many of the software topics. The text can also be used as a case-based and
mathematically simple introduction to modern multi-disciplinary problem solving
with computers, using the range of applications in Chap. 4 as motivation and then
treating the details of the mathematical and computer science subjects from the
other chapters. In particular, I have also had in mind the new groups of readers
from bio- and geo-sciences who need to enter the world of computer-based differ-
ential equation modeling, but lack experience with (and perhaps also interest in)
mathematics and programming.

The choice of topics in this book is motivated from what is needed in more
advanced courses on finite difference methods for partial differential equations

v



Vi Preface

(PDEs). It turns out that a range of concepts and tools needed for PDEs can be
introduced and illustrated by very simple ordinary differential equation (ODE)
examples. The goal of the text is therefore to lay a foundation for understanding
numerical methods for PDEs by first meeting the fundamental ideas in a simpler
ODE setting. Compared to other books, the present one has a much stronger focus
on how to turn mathematics into working code. It also explains the mathematics
and programming in more detail than what is common in the literature.

There is a more advanced companion book in the works, “Finite Difference
Computing with Partial Differential Equations”, which treats finite difference meth-
ods for PDEs using the same writing style and having the same focus on turning
mathematical algorithms into reliable software.

Although the main example in the present book is u" = —au, we also address
the more general model problem v’ = —a(t)u + b(t), and the completely general,
nonlinear problem ' = f(u,t), both for scalar and vector u(¢). The author be-
lieves in the principle simplify, understand, and then generalize. That is why we
start out with the simple model " = —au and try to understand how methods are
constructed, how they work, how they are implemented, and how they may fail for
this problem, before we generalize what we have learned from ¥’ = —au to more
complicated models.

The following list of topics will be elaborated on.

e How to think when constructing finite difference methods, with special focus on

the Forward Euler, Backward Euler, and Crank—Nicolson (midpoint) schemes.

How to formulate a computational algorithm and translate it into Python code.

How to make curve plots of the solutions.

How to compute numerical errors.

How to compute convergence rates.

How to test that an implementation is correct (verification) and how to automate

tests through test functions and unit testing.

e How to work with Python concepts such as arrays, lists, dictionaries, lambda
functions, and functions in functions (closures).

e How to perform array computing and understand the difference from scalar com-
puting.

e How to uncover numerical artifacts in the computed solution.

e How to analyze the numerical schemes mathematically to understand why arti-
facts may occur.

e How to derive mathematical expressions for various measures of the error in
numerical methods, frequently by using the sympy software for symbolic com-
putations.

e How to understand concepts such as finite difference operators, mesh (grid),
mesh functions, stability, truncation error, consistency, and convergence.

e How to solve the general nonlinear ODE v’ = f(u,t), which is either a scalar
ODE or a system of ODE:s (i.e., v and f can either be a function or a vector of
functions).

e How to access professional packages for solving ODEs.

e How the model equation ¥’ = —au arises in a wide range of phenomena in
physics, biology, chemistry, and finance.

e How to structure a code in terms of functions.



Preface vii

How to make reusable modules.

How to read input data flexibly from the command line.

How to create graphical/web user interfaces.

How to use test frameworks for automatic unit testing.

How to refactor code in terms of classes (instead of functions).
How to conduct and automate large-scale numerical experiments.
How to write scientific reports in various formats (I5IgX, HTML).

The exposition in a nutshell

Everything we cover is put into a practical, hands-on context. All mathematics
is translated into working computing codes, and all the mathematical theory of
finite difference methods presented here is motivated from a strong need to un-
derstand why we occasionally obtain strange results from the programs. Two
fundamental questions saturate the text:

e How do we solve a differential equation problem and produce numbers?
e How do we know that the numbers are correct?

Besides answering these two questions, one will learn a lot about mathematical
modeling in general and the interplay between physics, mathematics, numerical
methods, and computer science.

The book contains a set of exercises in most of the chapters. The exercises
are divided into three categories: exercises refer to the text (usually variations or
extensions of examples in the text), problems are stand-alone exercises without ref-
erences to the text, and projects are larger problems. Exercises, problems, and
projects share a common numbering to avoid confusion between, e.g., Exercise 4.3
and Problem 4.3 (it will be Exercise 4.3 and Problem 4.4 if they follow after each
other).

All program and data files referred to in this book are available from the book’s
primary web site: http://hplgit.github.io/decay-book/doc/web/.

Acknowledgments Professor Svein Linge provided very detailed and constructive
feedback on this text, and all his efforts are highly appreciated. Many students have
also pointed out weaknesses and found errors. A special thank goes to Yapi Dona-
tien Achou’s proof reading. Many thanks also to Linda Falch-Koslung, Dr. Olav
Dajani, and the rest of the OUS team for feeding me with FOLFIRINOX and
thereby keeping me alive and in good enough shape to finish this book. As al-
ways, the Springer team ensured a smooth and rapid review process and production
phase. This time special thanks go to all the efforts by Martin Peters, Thanh-Ha Le
Thi, and Yvonne Schlatter.

Oslo, August 2015 Hans Petter Langtangen


http://hplgit.github.io/decay-book/doc/web/

