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Abstract Recently it has become clear that too many findings reported in the
scientific literature are irreproducible. We study the causes of this phenomenon
from a statistical perspective. Although a certain amount of irreproducible research
is unavoidable due to the randomness inherent to scientific observation, two related
phenomena conspire to increase the proportion of such findings: publication bias,
i.e. the custom that negative findings are usually not published, and confirmation
bias, i.e. the human inclination to interpret observations in a way that confirms prior
beliefs. Both biases are poorly held in check in the current scientific publication
model in which there is no explicit role for the views of a critic, i.e. a scientist with
opposing theoretical views. We argue that if researchers are able to play the critic’s
role imaginatively, they will publish science of higher methodological quality that
is not only more reproducible, but also more relevant for theory. To allow for this,
we must promote a different view on statistical methodology, seeing statistics not as
the gatekeeper of scientific evidence, but as a language scientists may use to discuss
uncertainty when they talk about the implications of observations for theory.

1 Introduction

In 2009, a highly remarkable scientific experiment was performed by Bennett,
Baird, Miller and Wolford, four American brain researchers. They used functional
magnetic resonance imaging (fMRI), a brain imaging technique, to determine which
brain areas respond to emotional stimuli in a test subject. The subject was shown
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several emotionally laden pictures and was asked to verbalize the emotion shown.
The display of pictures was alternated with rest, and by comparing the brain
readings between exposure and rest, the researchers were able to clearly identify a
brain area that showed a response to the stimulus offered (Bennett et al. 2011).

What was so remarkable about this experiment? Certainly not the idea of
measuring brain response to pictures using fMRI; this had been done countless
times by other researchers in the past. Also not the statistical methods used to find
the relevant brain regions by comparing exposure and rest states; the same tech-
niques had been used in many influential publications in brain imaging before. The
originality of the study lay in the choice of the test subject. This was not, as usual, a
human, but an Atlantic salmon. Moreover, the salmon was stone dead, having been
bought in the local supermarket on the very morning of the experiment.

The paper describing the experiment, when finally published, created quite a
storm among brain imaging researchers, and was credited with the Ig Nobel prize in
2012.1 Apparently, standard imaging techniques with standard analysis methods
could produce clearly nonsensical results. In the future, the authors of the salmon
experiment argued, more stringent statistical methods should be used in fMRI
research that have a smaller risk of false positive results. As a result of this paper,
methodological standards in brain imaging have increased substantially in the last
few years. However, the salmon experiment not only had implications for future
research, but also casts doubt on past results. How many published papers on brain
imaging would have used the same methods as the salmon experiment to come to
equally wrong conclusions? How reliable, then, is the brain imaging literature?

Other authors in other fields have also raised questions about the reliability of the
scientific literature. Prominent among these is the epidemiologist John Ioannidis
with his (2005) essay “Why most published research findings are false.” Ioannidis
argued quite generally from statistical arguments that a large proportion of the
results presented in medical publications can be expected to be wrong. This pro-
portion may differ between subfields of medicine, and depends on several factors,
which we will come back to later. He comes to several surprising conclusions,
among which one is that ‘hot’ scientific fields, in which many teams work on the
same problems, and scientific breakthroughs are eagerly anticipated, are especially
prone to produce unreliable findings. Consequently, results in high status journals,
such as Nature and Science, would be especially unreliable.

Ioannidis’ theoretical arguments have been confirmed by researchers that have
actually tried to reproduce published scientific results. The results of such attempts
have varied greatly. In psychology, where Ioannidis’ arguments can be expected to
hold as well, the journal Social Psychology published a special issue that reported
replications of 13 recent studies (Klein et al. 2015). In 10 out of 13 cases, the effects
reported in the original papers were found again, although often with a smaller
magnitude. One study was on the borderline, replicating with a very small effect.
The other 2 studies (14 %) failed to reach the same conclusions. More dramatic was

1The Ig Nobel Prizes honor scientific achievements that make people laugh, and then think.
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the experience reported by Begley and Ellis (2012), scientists working at Amgen, a
pharmaceutical company in California, who tried to replicate the results of many
‘landmark’ papers describing promising drug targets. They failed in no less than 47
out of 53 cases (89 %). Statisticians have tried to quantify the proportion of
unreliable results in larger chunks of the scientific literature. Jager and Leek (2014)
estimated the proportion of unreliable results in the whole medical literature at
14 %. Statisticians commenting on this effort almost invariably stressed that the
percentage is very likely to be an underestimate, and possibly a severe one. The
discussion of the reliability of scientific results has also reached the popular media,
where regularly a bleak image is sketched of science in crisis. As to the cause and
prevention of the unreliability scientific results, different opinions are voiced. Two
competing explanations dominate the debate.

According to the first, scientists striving for fame and status deliberately engage
in ‘sloppy science’. They make their results look better than they are in order to
publish them in higher ranking journals. Results are not fabricated, and ‘sloppy
science’ is not the same as downright fraud, but ‘sloppy’ scientists are accused of
wilfully neglecting proper checks and validations in order to publish more quickly.
In variants of this argument, scientists are the victims rather than the perpetrators, as
they are forced into their behavior by external institutional pressures. Because of
savage competition between scientists and the demands from universities and
funding agencies for ever longer lists of publications, scientists would have no
choice but to engage in this type of dubious behavior.

A second explanation does not blame the scientists, but the methods they use.
Since statistical methods are supposed to protect scientists against spurious find-
ings, a high incidence of unreliable scientific results clearly indicates a design error
in these methods. The type of statistical method most commonly denounced is the
hypothesis test and the p-value, which, as critics point out, are frequently misun-
derstood and often used in a wrong way. Some authors argue that these methods
should be banned altogether, a policy recently implemented by the journal Basic
and Applied Psychology (Trafimow and Marks 2015). Some commentators advo-
cate different statistical methods instead, e.g. Bayesian statistics. Others such as the
editors of Basic and Applied Psychology simply advise against all advanced sta-
tistical methods, advocating simple descriptive statistics instead.

Interestingly, these two explanations suggest radically different solutions to the
problem of unreliable results in science. If ‘sloppy science’ is the problem, scien-
tists should be forced to adhere more strictly to proper statistical methodology.
They should be kept in check by statisticians, who would then be cast into the role
of policing various fields of science. Conversely, if statistics itself is the problem,
the solution would be to free scientists from the influence of statisticians as much as
possible. Scientists would then either convert to a completely different way of doing
statistics, or just report their findings unencumbered by any need to demonstrate
statistical significance.

More statistics or less? Which is better for the advancement of science? Which
of the two explanations for the current flood of irreproducible research is the right
one? Discussing the second explanation first, we will first review where
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randomness and irreproducibility in science come from, and discuss the way sta-
tistical methods deal with this. We will explain that randomness is inherent to
scientific observation, and that statistics provides scientists with a way to discuss
the implications of this randomness on their experiments. Next, to shed light on the
first explanation, we discuss several models for the way scientists interact with each
other. We emphasize the important role of critics with different theoretical views in
scientific inquiry, arguing that statistical reasoning is an essential part of the dia-
logue between scientist and critic. Finally, we look at the current publication model
for reporting scientific results, and how it encourages a different, much more
mechanical view of statistics. In this view statistics is seen as an arbiter of truth
rather than as a language for discussing uncertainty. Rejecting both of the expla-
nations given above, we will argue that it is primarily this distorted view of sta-
tistical methods that explains the current reproducibility crisis in science.

2 Randomness in Science

“Everything changes and nothing remains still; you cannot step twice into the same
stream” said the Greek philosopher Heraclitus, stressing the ever-changing nature of
reality. This truism applies very much to research, where no two experiments ever
return exactly the same result: different subjects respond differently to treatment,
and measurements are always variable. Randomness is inherent to scientific
observation.

Randomness, moreover, is bound to produce flukes. Since scientific observation
is subject to variability, seemingly meaningful patterns that the researcher observes
may well be one-time events rather than repeatable ones. For example, the patients
in a treated group may happen to recover very well, while the patients in the
untreated group do poorly, all because of their own particular reasons not related to
the treatment. To the researcher this may suggest a strong effect for a treatment that
is in reality not effective. When the experiment is subsequently replicated by the
same group of scientists or by a different one, the spurious patterns are very likely
not observed again. Irreproducible results, therefore, are a fundamental conse-
quence of randomness in scientific observation, and are unavoidable even in the
most meticulous and honest scientific practice. We can, however, try to limit the
frequency of the occurrence of such result. This is what statistics tries to do.2

Statistical theory makes an explicit distinction between the sample, i.e. the
concrete observations the researcher has in hand, and the population, i.e. a larger
pool that these observations were drawn from. For example in a preelection poll, the

2This statistical view on (lack of) reproducibility is a limited one. There are of course many other
ways in which research can be irreproducible, for example because of systematic measurement
error, such as when the CERN-OPERA group in 2011 reported neutrino's that traveled faster than
light, or downright fraud, such as for example with the Dutch social psychologist Diederik Stapel.
See Baggerly and Coombes (2009) for an shocking account of how wrong things can go.
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sample consists of the voters that have been interviewed by the pollsters, whereas
the population is the much larger group of all voters. In many cases the ‘population’
is more abstract, such as in a lab experiment, where the sample might consist of a
number of measurements the scientist has made, and the population we assume they
have been drawn from is then the abstract collection of all possible measurement
outcomes.3

The distinction between sample and population allows for an explicit definition
of what replication of scientific experiments means. From a statistical perspective
replication of an experiment means taking a new sample from the same population.
Each sample is similar to the population it is drawn from, but deviates from the
population in its own random way. Irreproducible findings then are statements that
hold for a particular sample, but not for the underlying population, so that they do
not typically occur again in other samples.

The central tenet of statistics is that we are not generally interested in the
capricious sample, but only in the stable population behind it. Descriptive statistics
describing the sample are therefore of limited use. We use the sample only as a
means to learn about the population, a type of reverse engineering that we call
statistical inference.4 To do this in a quantitative way we must make an additional
assumption on the manner in which the sample was obtained from the population,
typically that it was drawn randomly. This assumption makes the powerful math-
ematical instrument of probability theory available that describes exactly how much
the sample and the population are likely to differ, which in turn allows us to
quantify the reliability of inferences about the population.

In particular, we can quantify the probability of drawing a wrong conclusion
about the population from a sample. If we assume that a researcher has set out to
find a certain relationship or pattern, i.e. to make a scientific discovery, then we can
distinguish two possible erroneous conclusions. In the first place, the pattern can be
visible in the sample, but not in the population. We call this a false positive or a
false discovery. Secondly, the pattern can be present in the population, but obscured
in the sample, called a false negative. While both types of errors are harmful, false
discoveries are generally considered the more serious of the two. Where a false
negative represents a waste of resources because a scientific experiment fails to
produce a result, a false positive typically initiates an even greater waste of
resources, as it will often be a trigger for misguided follow-up research. In terms of
scientific progress, a false negative is a failure to take a step forward, but a false
discovery is a step in the wrong direction.

With limited resources it is impossible to prevent both false positive and false
negative results completely. A researcher could be very restrained, only publishing
a result if there is ample evidence. Such a researcher will incur many false negative
results while avoiding false positives. Conversely, an audacious researcher

3In such situations statistics is very explicitly platonic in its philosophy. It supposes that the
unobservable abstract population really exists and is of more interest than the observable sample.
4As opposed to descriptive statistics, which describe the sample.
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publishing results on precarious evidence can expect to have many false positives
and few false negatives. Both researchers, however, risk both false positive and
false negative results. The only way to avoid false positives completely is never to
publish, and the only way to avoid false negatives completely is to always to
publish, regardless of the evidence. The inherent randomness of scientific inquiry
causes it to have elements of a game of chance. Even the best designed experiment
may, by sheer bad luck, produce a sample that is different from the underlying
population in crucial aspects and that therefore suggests a wrong conclusion.

False positive and false negative results are an inevitable consequence of the
randomness of scientific data. They are not caused by statistical thinking, or
inherent to any particular statistical method. Rather, by making the distinction
between sample and population explicit statistics provides a language to discuss
randomness of empirical data. Avoiding inferential statistics as Applied Social
Psychology proposed, mostly ignores the problem. Switching to a different statis-
tical framework, such as the Bayesian, merely rephrases it. Wrong conclusions will
result from empirical research whatever methods we use, and this fact must be
somehow taken into account.

3 The Likelihood of Irreproducible Research

The outcome of the experiment is never fully under the researcher’s control, but the
probability with which an adverse outcome occurs can be. One way to take ran-
domness into account is to control the probability of an adverse outcome (a false
positive or a false negative result). To avoid large differences between researches
regarding the reliability of the evidence they present, in most scientific fields the
acceptable risk of a false positive result is pre-specified for all researchers. It is
conventionally set to 5 %, which implies that 19 out of 20 times that a researcher
performs an experiment the result should not be a false positive, and should
therefore be reproducible at least in the limited statistical sense.

This may seem to imply that 19 out of 20 published scientific results are reliable.
Ioannidis, however, argued that this is not the case. This ratio of 19 out of 20
represents the perspective of the researcher, but is not immediately relevant from
the perspective of the readers of the scientific literature. Even if 95 % of the time
researchers produce results that are not false positives, this does not mean that 95 %
of all scientific publications are not false positives. This is because negative results,
being less newsworthy, are seldom published. Looking only at published results,
the proportion of false positives is likely to be much higher than 5 %.

The argument follows from Bayes’ rule. It is most conveniently illustrated with a
table. Suppose that 200 experiments have been carried out by researchers in a certain
field of science in a certain period of time. Sometimes the conjecture the researchers
set out to prove was correct, sometimes it was not. For some experiments the
researchers accumulated enough evidence to prove the conjecture; for others they
were not. Based on these two dichotomies we can summarize these 200 experiments
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in a 2 × 2 contingency table. If we suppose that half of the conjectures that
researchers try to prove are in fact true, then we have 100 experiments on true and
false conjectures each. If 5 % false positive results are allowed, then 5 out of 100
experiments on false conjectures re- gardlessly accumulate enough evidence lead to
a publication. Conversely, researchers typically accept a 20 % chance of false
negative results, so that 80 out of the other 100 experiments lead to a publication.
These numbers are summarized in Table 1. As readers of the scientific literature we
only see the 85 published results, not the 115 experiments in which the researchers
failed to demonstrate their point. The percentage of false positive results among the
publications is 5/85 = 6 %, clearly more than 5 %, but not dramatically so.

This changes if we think of a field in which researchers try much more ambitious
conjectures. Let us suppose that instead of 50 %, only 10 % of the conjectures that
the researchers attempt are in fact true. In this case we can create a similar table,
which will look like the one in Table 2. Now the researchers have to work a lot
harder for their publications, and only 25 publications result from their 200
experiments. More importantly, the percentage of irreproducible findings soars to
9/25 = 36 %.

The percentage of irreproducible results can also be high if many of the
experiments on true conjectures are underpowered, i.e. if researchers have a small
probability of finding evidence for a conjecture even if it is true. If we would have
50 % true conjectures as in Table 1, but only for 30 out of 100 true conjectures
enough evidence would be accumulated, then the proportion of false positive would
be as high as 5/35 = 14 %, as we can see in Table 3. In general, even when the
percentage of false positive results per experiment is at most 5 %, the percentage of
false positive, i.e. irreproducible results will be large if most of the conjectures
researchers set out to prove are false, or if the probability of accumulating enough
evidence for publication of a true result is low.

It is interesting to note that in both Tables 2 and 3 we see that the percentage of
experiments that leads to a publication is relatively low: 12.5 and 17.5 %,

Table 1 Illustration of Ioannidis’ argument with 50 % true conjectures

True conjecture False conjecture Total

Evidence for conjecture 80 5 85

No evidence for conjecture 20 95 115

Total 100 100 200

Table 2 Illustration of Ioannidis’ argument with 10 % true conjectures

True conjecture False conjecture Total

Evidence for conjecture 16 9 25

No evidence for conjecture 4 171 175

Total 20 180 200
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respectively. One of the things that is crucial for judging the viability of scientific
findings is therefore the success rate, i.e. the proportion of failed experiments for
every successful one. This success rate is typically hidden from the view of the
reader of the scientific literature, who only gets to see the successful experiments.
The resulting selection bias, also known as publication bias, is inherent to the
publication model that is currently dominant in science. Here, the initiative for
performing experiments and publishing about them lies with the researchers. The
experiment has clearly defined positive and negative outcomes, with positive out-
comes being the only ones of real interest. The scientific readership has an
exclusively passive role, only taking note of the experiment at a late stage after an
apparent positive result has been obtained. Even the reviewers and editors who
judge the manuscript are limited to retrospective checking of quality and plausi-
bility. In this model no one except the researchers themselves can see the success
rate. No one except the researchers themselves can therefore judge the probability
that published results are false positives.

A third way, however, in which the proportion of false positive results in the
literature may be high is when there is a large probability that evidence is seemingly
found for a conjecture that is wrong. This probability is supposed to be at most 5 %,
but it can be much larger because of the well-known psychological mechanism of
confirmation bias. This is a natural tendency to look for evidence that supports our
initial views, and to discard evidence that seems to counter those. Confirmation bias
is a very strong force in human thinking, and one which is very difficult to counter.
In research, confirmation bias works in rather the same way as publication bias, but
at an earlier stage.

Confirmation bias in science may arise for example when there are multiple
ways to perform an experiment, a number of statistical models and tests that can be
used, or a number of ways to pre-process the data prior to that analysis. Some of
these methods are better than others, but which ones those are is often not clear. If
an experiment does not give the result that the researcher expected, this may
therefore be due to several reasons. Of course the researcher’s theory may be false,
but it is also likely that something just went wrong in the experiment or that the
right analysis method has not been chosen. It is perfectly reasonable, then, and
scientifically sensible, to redo the experiment or the analysis. If a second experiment
or a reanalysis now turns out to support the scientist’s views, a natural explanation
will be that there was an error in the first experiment or analysis, which has been
corrected by the second.

Table 3 Illustration of Ioannidis’ argument: underpowered studies

True conjecture False conjecture Total

Evidence for conjecture 30 5 35

No evidence for conjecture 70 95 165

Total 100 100 200
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In practice, researchers therefore do not usually perform one single analysis, but
perform several, selecting relatively favorable ones by their confirmation bias. Even
if every individual experiment yields a false positive result only once every 20
times, a series of experiments like this may easily have a much larger probability a
false positive result, because a researcher trying to demonstrate something that is
not true will make several attempts, each of which again has a probability of a
seemingly favorable result. When the existence of confirmation bias is taken into
account in Ioannidis’ argument, it is easy to see that it will result in an even larger
proportion of false positive results in the scientific literature.

Ioannidis’ simple reasoning can be used to pinpoint areas in science in which we
would expect false positive rates to be exceptionally high. These are for example
areas with small studies that have low power, areas with exploratory studies where
error control is lacking, areas in which statistical methods are not well standardized
so that many will be tried out, areas with cheap but difficult experiments in which it
is accepted that many experiments fail. However, these are especially those areas in
which the scientific conjectures are a long shot, so that most of them are actually
false. The resulting findings, paradoxically, are typically the most newsworthy ones
which tend to get the attention of the high profile journals. As a rule of thumb,
according to Ioannidis’ analysis, the more excitement surrounding a scientific
result, the greater the probability that it is a false positive. As an extreme case,
Ioannidis also describes the existence of null fields, areas of research based on false
prepositions, in which all researchers are working on research conjectures that are
not true. From the reader’s perspective, it is difficult to unmask such a field, because
the failed experiments remain under the waterline, and a steady trickle of promising
results will still be published, especially if many researchers are working in the area.
Note that null fields are often sparked by an initial false positive result.

Confirmation and publication bias work together to increase the number of
irreproducible results in the scientific literature. The argument we have given here is
reminiscent of the ‘sloppy science’ argument for explaining irreproducible research
described in the introduction, but subtly and importantly different. The ‘sloppy
science’ argument implies wilful neglect of proper checks on scientific quality by
scientists eager to publish, either because of their own ambition or because they are
forced by external pressures. The argument implicitly assumes that if there would
be no sloppy science (i.e. if scientists would adhere to statistical rules) there would
not be many false positive results. Although it is true, of course, that ‘sloppy
science’, when practiced, would increase confirmation biases and lead to irrepro-
ducible results, not all confirmation bias arises from ‘sloppy science’. It is also clear
from Ioannidis’ arguments that large proportions of false positive findings would
still arise if ‘sloppy science’ would cease to exist. Both publication and confir-
mation bias are inherent to the publication model used to disseminate results in
science. We will discuss that model later in more detail, but first look at alternatives.
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4 The Dialogue with the Critic

The discussion so far carried an implicit assumption about the way scientists
communicate with each other. We take it for granted that they do so via scientific
publications, which are well-prepared solitary efforts by a single research group,
made public after extensive quality checking by editors and reviewers. This is the
current dominant model for science, but it is not the only possible model. To see
how other models might function, it is helpful to look back into the history of
science. Current science has an amazing productivity in terms of sheer volume of
knowledge, but early pre-20th century science has an even more surprising pro-
ductivity if we take into account the relatively small number of scientists active at
the time. In this period, when the foundations of many modern fields were laid out,
how did science progress?

Let us illustrate this with an example. In the eighteenth century two Italian
scientists were interested in electricity and its relationship to life. It was known that
application of static electricity to the limbs of dead animals could cause them to jerk
in movements similar to those a living creature would make. Surely, therefore, there
was a relationship between electricity and life. This was at least the opinion of Luigi
Galvani, a researcher from Bologna. He believed that electricity was an essential
life force in animals. According to him, static electricity was sent to the muscles,
where it was stored and used as energy for movement. By applying external
electricity to the limbs, the researcher released the reservoir of ‘animal electricity’,
thus causing the movement that was observed. Not everyone agreed with his views,
however. Alessandro Volta, from Pavia, did not agree with Galvani’s views. He did
not believe in reservoirs of animal electricity, but held the opinion that it was the
externally applied electricity alone that caused the movements.

Galvani and Volta corresponded extensively on this issue, each trying to con-
vince the other. In 1781 Galvani performed what he thought was the definitive
experiment. He hung a dead frog on an iron wire on which he had also attached a
copper wire. When he touched the frog’s leg with the copper, it jerked in the same
way as when he applied static electricity to the frog’s leg. The interpretation, to
Galvani, was obvious. No outside static electricity had been applied, and still the
frog’s leg had moved. The electricity for the movement must have come from inside
the frog. Volta replicated the experiment, getting exactly the same result. However,
he remained unconvinced, while Galvani set out his grand theory of animal elec-
tricity in a large monograph entitled De Viribus Electicitatis.5

Volta still maintained that the electricity that caused the frog’s movement must
be external, but for a long time he stood alone in his opinion. Only many years later,
in 1800, was he able to show that contact between two different metals, such as the
copper and iron used by Galvani, may generate a minute electrical current, and that

5Although Galvani's theory turned out to be wrong, this is not irreproducible research in the
statistical sense. All experiments the theory was based on were reproducible. Reproducibility is
necessary but not sufficient for good theory.
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this current was sufficient to cause the jerking of the frog’s leg. The electricity was
external after all. The exchange between Galvani and Volta has been of crucial
importance both for physiology and for physics, as Volta’s insights eventually led
him to develop the first battery.

It is helpful to look more closely into the dialogue between these two scientists,
which represented a type of scientific interaction quite typical for their time. We see
a hefty competition that is fueled by irreconcilable theoretical views. Despite, or
perhaps because of their differences the two researchers remain in frequent contact.
Each tries to challenge his opponent by designing and performing an experiment of
which he expects that the result will be in concordance with his own theory while at
odds with his opponent’s. In this ‘duel’, it is natural for each of the scientists to
immediately try to replicate any crucial experiments in order to try to understand the
results and to dismiss them should they turn out to be irreproducible. Volta never
believed the results of Galvani’s experiment until he had seen them with his own
eyes. When he did see them, he still had his own explanation for the result, of
course. Reproducibility of an experiment is not enough; in the end it is the
implications of the experiment for theory that matter.

A competitive collaboration between scientists with diametrically opposed the-
oretical ideas can lead to research of high methodological quality, as we can see in
the example of Galvani and Volta. For Galvani’s experiments, Volta functions as a
professional critic, always alert to false assumptions, wrongly designed experiments
or hasty conclusions. Galvani could count on Volta immediately replicating every
crucial experiment, attacking any weak spots in the design. Irreproducible research
would be immediately exposed by him. Moreover, the competition with Volta gave
focus to Galvani’s experiments. It was not enough if his experiments lent support to
his own theory, but they had to simultaneously discredit Volta’s. Only experiments
for which Volta and Galvani would expect a different result would be relevant to
their argument.

The insight that collaboration between scientists with different views can be
highly productive motivated the psychologist Willem Hofstee to advocate a ‘wager
model’ for scientific research.6 In this model, a scientist who wants to conduct an
experiment first tries to find a scientist with different theoretical views and who, on
the basis of these views, expects different findings from the experiment than the
researcher him or herself. Let us call this scientist the critic. He will play a similar
role as Volta in Galvani’s experiments. If a critic cannot be found it is not necessary
to perform the experiment, since no one would be surprised by the results. Such
experiments apparently have no implications for theory. Once a critic is found, the
researcher and the critic should sit together to discuss the details of the way the
experiment will be performed, making sure that methodological biases do not favor
the researcher or the critic. The experiment can proceed when both scientists agree
on its validity, and it should possibly be executed in duplicate in both labs to

6‘Weddenschapsmodel’ in Dutch (Hofstee 1980). My translation.
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prevent confirmation bias. An experiment set up in this way will have scientific
merit whether the outcome is positive or negative for the researcher, and the
researchers should commit themselves to publication whatever the outcome. From
their competing theoretical views, it is likely that the two researchers will disagree
on the final interpretation, with the ‘losing’ side trying to salvage their theory by
alternative explanations.

The name of wager model has been appropriately chosen for two reasons.
Firstly, because it suggests a clear investment of both parties into the experiment,
with a commitment for each party to ‘pay up’ and proceed with the publication even
in case of an adverse outcome. Secondly, because the word wager invokes the
image of betting, suggesting that an element of chance plays a role. In fact, this is
usually the case. As we have described above, the competing researchers will have
to draw their conclusions on the basis of a sample, while their theoretical dispute is
about the underlying population. Since the sample is variable, the risk is that the
experiment favors the researcher although the critic’s theory is right, or vice versa.
This risk the contestants should be prepared to take.

Statistics can help to even the odds for both parties. In fact, the original
framework of statistical hypothesis testing as proposed by Neyman and Pearson is
highly suitable for the wager model. It uses a ‘null hypothesis’ representing the
critic’s view and an ‘alternative hypothesis’ representing the researchers view, and
treats them symmetrically. The famous lemma of Neyman and Pearson tells us how
to summarize the data most effectively in order to discriminate between these two
hypotheses. The probabilities of a false conclusion favoring either the researcher or
the critic can easily be calculated. Using this information a decision boundary can
be set in such a way that the wager is a fair one, and the investment can be
calculated that is needed to make the probability of both erroneous conclusions
acceptably small. The statistician, therefore, has all the tools to stand as a natural
arbiter between the researcher and the critic.

Like with the exchange between Galvani and Volta, close attention to
methodology is naturally built into the wager model. The crucial element in both
cases is the influential presence of a critic. The critic will insist on publication in
those cases in which the researcher may not want to publish, thus countering
publication bias. The critic will not share the confirmation bias of the researcher
because of his competing theoretical views, and will thus be vigilant to counter it.
The wager model thus avoids both confirmation and publication bias in a natural
way. Since Ioannidis’ causes for the large number of false positive results in the
literature do not apply, we could expect far fewer irreproducible results if this
model would be widely adopted. Sadly, this model is hardly ever used in practice,
for various historical, psychological, practical and institutional reasons that we will
not explore here.

The value of the wager model here is that provides a very useful ideal that can be
used to study the current publication model of science, which we can see as an
approximation to the wager model. This perspective will help to understand the
methodology better, and also the extent to which this methodology is appropriate.
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5 Publishing

Current research practice almost never involves an explicit critic. In contrast to the
wager model we can refer to the dominant scientific model as a ‘betting model’. It
differs from the wager model mostly by the fact that the critic is abstracted and
impersonal.

How does this work? Let us first review an example in which the model works
very well.

A group of nutrition researchers from Amsterdam led by Martijn Katan wanted
to demonstrate that the consumption of sugar through soft drinks makes children
gain weight. This may seem obvious, but other researchers (and soft drink com-
panies) maintained that children would automatically compensate for their sugar
intake by being more active or eating less of other foods, negating the weight gain
of the sugar intake. To prove their point, Katan’s group enrolled 650 children in
several schools and randomly allocated them into two groups. The first group was
handed out a daily sugared soft drink. The second group received a daily sugar-free
version. The two drinks tasted the same and the children and their parents were kept
in the dark as to which child received which drink. After 1.5 year the researchers
measured the weight gain of each of the children. They found that on average the
children who drank the sugared drink gained one kilo more weight than the children
who drank the sugar-free version. They submitted a description of the experiment
and their conclusions to the New England Journal of Medicine, writing that con-
sumption of sugar via soft drinks does indeed cause substantial weight gain in
children. His manuscript was judged and commented on by an editor and two or
more anonymous referees, and found acceptable for publication (De Ruyter et al.
2012b).

Before the study was started, the precise design of the study was laid down in a
study protocol published separately (De Ruyter et al. 2012a).7 This protocol stip-
ulated exactly how the study would be executed, what measurements would be
taken at what time, what statistical analyses would be performed and what would be
done with the data (or the absence of data) of children who did not follow the study
to the end. The protocol also motivates the number of participating children. This
was chosen in such a way that if Katan’s theory was right and children would
indeed gain weight as a result of drinking soft drinks, Katan would have 80 %
chance of demonstrating it with this trial.

If we compare the approach that Katan followed with the wager model of
Hofstee, then we can easily see a number of parallels. Katan investigated an issue
about which there was clear disagreement in the field. Katan did not explicitly
involve a scientist of a different opinion on the matter at stake, but if we imagine
that he would have, the design of the experiment would probably have been very
similar. He built in many of the methodological checks that would have resulted
from negotiation with a critic and which make the experiment impartial to either

7This is usual in clinical trials but not in nutrition research.
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outcome, such as the blinding of the children and their parents for the type of drink
received. In fact, Katan even put himself at a disadvantage when he accepted a
20 % chance of not being able to demonstrate his case even if he was right, against
only 5 % for the absent critic. The protocol thus serves as a strong protection of the
interest of the critic.

We call the model that Katan uses a betting model, since it is similar to the wager
model, except that the researcher plays the game essentially against himself. Katan
also played the role of the critic. Other critical scientists, namely Katan’s peers, did
come into play, but only at the peer review stage after the experiment had been
conducted and reported. Like the critic in the wager model, they judged whether
they were convinced by Katan’s experiment. However, their role was in many
respects very different from the role of the critic. They became involved only at a
very late stage, and their power to influence the experiment was therefore extremely
limited. Moreover, they had the power to influence whether the experiment would
be published, a power that the critic in the wager model does not have. Reviewers
do not themselves play the role of the critic, they can only judge whether Katan
himself played that role convincingly.

The statistical framework that Katan used to analyze the outcome of his
experiment, i.e. Fisher’s approach to hypothesis testing, clearly reflects the char-
acteristics of the betting model. In contrast to the symmetric framework of Neyman
and Pearson that was suitable for the wager model, Fisher’s approach is asym-
metric. The null hypothesis, which represents the critic’s opinion, becomes more
formalized, and assumes a greater importance than the alternative hypothesis.
Central to Fisher’s approach is the concept of a p-value. This value between 0 and 1
is a measure of how extreme the outcome of the experiment would be from the
critic’s point of view. High values indicate outcomes that conform to the critic’s
theory. Low values indicate outcomes that are difficult to reconcile with it, but
which would more easily fit the researcher’s perspective. The p-value can therefore
be seen as a quantitative measure that describes to what extent the absent critic is
convinced by the outcome of the experiment. Numerically, the p-value is calibrated
to take small values below 0.05 only 5 % of the time if the null hypothesis is true,
i.e. the critic is right. Conventionally, this five percent is the threshold below which
the critic will be convinced. With a p-value below this cut-off, the researcher may
claim to have a convincing (in statistical parlance: ‘significant’) result.

We can see that the absent critic’s role and opinions have been completely
formalized in this approach. Katan found that children who drink a daily sugared
beverage gained about kilo of weight in a year. He also maintained that these results
were very difficult (p = 0.001) to reconcile with the theoretical view that it does not
matter for children’s weight whether or not they drink sugar. How convincing this
latter statement is crucially depends on how well Katan represented this theoretical
view that he did not himself support. We have seen that Katan built in all kinds of
safeguards into his experimental design, such as the blinding and the protocol, to
protect the experiment from his own biases. Essentially, these measures limit his
own freedom in analyzing his results, evening out the odds between him and the
critic, and by doing that making the outcome more convincing.
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Not all research is as well designed. Headlines in newspapers in 1995 announced
that eating tomatoes would dramatically decrease the risk of prostate cancer.
Surprisingly, the beneficial effect was not found in fresh tomatoes, but rather in
tomato concentrate in the form of ketchup, pizza, tomato soup and even potato
crisps with ketchup flavor. The source of the news was a publication by a group led
by Edward Giovannucci from Harvard (Giovannucci et al. 1995). According to
him, the substance lycopene, found abundantly in tomato concentrate, eliminated
the free radicals which caused the cancer. Giovannucci’s article has had a major
impact, with over a 1000 citations in the scientific literature over the last twenty
years. How did Giovannucci come to his conclusion? He asked a large group of
health professionals to fill out food intake questionnaires, focusing on intake of 46
vegetables and fruits. Next, he followed his subjects in time to see who would
develop prostate cancer, to check whether people who ate more or less of certain
foodstuffs would on average develop prostate cance more frequently. In only 4 of
the 46 food types he investigated was he able to find the relationship he was looking
for, supported by p-values smaller than 0.05. Upon closer examination, those four
were all related to industrially processed tomatoes. A plausible explanation was
found in the lycopene theory, and this was the result that was highlighted in the
publication.

How convincing is the result? To answer this question it is helpful to imagine
how the investigation would have turned out if Giovannucci would have involved a
critic. We have to remember that Giovannucci did not yet have his theory about
lycopene when he started his study, so that at the moment he contacted a critic, he
would have only had a relatively vague theory that the risk of prostate cancer might
be influenced by diet. We can therefore suppose that such a critic would be
skeptical about this idea, maintaining that the risk of prostate cancer might depend
on all manner of things, such as genetic and lifestyle factors, but that food intake
did not matter. To settle this difference of opinion, it would be unethical and
unpractical to use a clinical trial design such as the one that Katan followed, and
Giovannucci and his critic would have quickly decided to study observational data.
This is a methodological quagmire because it is difficult to distinguish the effects of
different factors. For example, people who eat more vegetables typically also
exercise more and are more highly educated. If we find that people who eat more
vegetables have less prostate cancer, is that due to the vegetables or due to the
exercise? Still, discussing these issues at length, it is conceivable that Giovannucci
and an open-minded critic might have come to a wager. Would that wager have
taken the form described as the evidence in the eventual paper?

Giovannucci investigated 46 different foodstuffs separately, calculating a sepa-
rate p-value for each of them. In 4 out of these 46 did he find a p-value smaller than
0.05. In terms of the betting model with which we can interpret the meaning of
these p-values, this is equivalent to betting against the critic 46 times, of which he
lost 42 times and won only 4. If a real critic would be present, it is likely that he or
she would claim victory over Giovannucci rather than the other way around. If we
remember that p-values are calculated in such a way that the critic will lose the bet
about one out of twenty times even when the critic is right, we can expect
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Giovannucci to win about 2.3 times out of 46 even when there is no relationship
between diet and prostate cancer. Winning at least 4 times in this situation is not an
unlikely event, with an occurrence almost 20 %.8 Under a wager model, therefore,
the conclusion of the study would most likely have been support of the critic’s view
that diet and prostate cancer are unrelated. If the four foodstuffs for which a rela-
tionship is suggested may be the product of chance, it is especially unlikely that a
critic would be convinced by the mechanistic explanation about lycopene, made up
only after the experiment. The critic may have wondered what explanations
Giovannucci might have come up with had four other foodstuffs come out.

The difference between Giovannucci and Katan does not lie in the statistical
methods they used. These are broadly the same. The difference is in the way they
realized the meaning of the methods they used. Katan took great care to look at his
own experiment from the perspective of a critic, taking that point of view into
account in every aspect of the study. Giovannucci seems to have done this to a
much lesser extent. He applies the rules of the statistical methods he uses, but he
does not seem to realize that the results he presents are not as convincing as they
have to be. Interestingly, also the reviewers who deemed his work suitable for
publication did not notice this.

It is of course the reviewer’s job to check a manuscript’s quality before advising
publication. We could expect that reviewer’s take the same perspective as the critic,
checking manuscripts meticulously for methodological errors, vigilantly aware of
possible confirmation bias on the side of the researcher. In practice, sadly, this is not
the rule. Since the reviewers come into play at a late stage, after the experiment has
been carried out and reported, many the important problems resulting from con-
firmation bias remain invisible to them.9 For example, they cannot see how many
other analysis methods the researcher tried, or what the original hypothesis was that
the experiment was designed for. Moreover, reviewers tend to focus much more on
the conclusions of the papers than on the methods. This was demonstrated in 1998
by Fiona Godlee, editor of the British Medical Journal. She sent an article with 8
deliberate serious methodological errors to more than 200 regular reviewers of her
journal. On average, each reviewer only observed 2 of the 8 errors. Of the
reviewers, 33 % suggested to accept the article with only minor changes, while only
30 % advised to reject it (Godlee et al. 1998). Reviewers naturally bring their own
confirmation bias. When they disagree with the conclusions they will study the
methods much more critically than when they agree with them.

The betting model used for scientific publication can best be described as a
watered-down version of the wager model. It calls for the scientist to win a bet
against a critic of his or her own making, and it is completely up to him or her how

8Calculated under the assumption of independence. If—as is likely here—the p-values are
dependent, this probability will typically be even larger.
9This is not the case for the paper of Giovannucci, who (to his credit) makes his confirmation bias
very explicit in the description of the experiment and the analysis. The reviewers should have
protested and demanded a proper multiple testing correction here.
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formidable an opponent the critic is. Some researchers play the role of the critic
very convincingly, others just set up a straw man. The statistical methods used are
the same in both cases.

6 Speaking About Uncertainty

We now return to the original question about the role of statistics in creating or
preventing irreproducible science. We have seen that the randomness of scientific
observation makes it impossible to forestall irreproducible results completely, but
that two types of bias may dramatically increase the proportion of such findings in
the scientific literature: publication bias and confirmation bias. Both of these are
tied closely to the current model we use for communication of scientific results via
publications, a model I have called the betting model.

At first sight the role of statistics in this betting model seems a rather mechanical
one, emphasizing the calculations that have to be done and the cut-offs that have to
be exceeded ‘to get the statistics right’ and to achieve the necessary statistical proof
needed for publication. This is often how statistics is taught, as a cookbook full of
prescriptions that researchers have to follow in order to analyze their data in a
correct way. This mechanical view underrates the role that statistics can play in
scientific discourse. In the mechanical view, statistics is seen as an arbiter of truth.
This is something it cannot be. Statistics is just a language researchers can use to
speak about chance and uncertainty.

To be relevant for scientific progress, experiments must be designed and ana-
lyzed in such a way that they make a difference, changing at least some people’s
opinions about theory. To be convincing requires to be empathic, studying the other
side’s arguments and taking them seriously. The betting model, as we have seen,
only works well if the researcher is prepared to take a critical point of view
throughout the design and analysis of his experiment, while maintaining focus on
the theoretical issues at stake. A scientific experiment is only valuable if it furthers
theoretical discussion in some way.

The scientific attitude necessary for this is under pressure in many countries due
to the demands on scientists to publish and acquire grants. In this rat race publi-
cations are often viewed as personal achievements of scientists, and as end products
rather than as arguments in an ongoing scientific discussion. Regarding a publi-
cation as a personal achievement emphasizes competition between scientists for
honors, instead of their collaboration on furthering theory. It is based on the mis-
conception that the essence of science is competition between individuals rather
than between theories. Regarding publications as end products promotes the idea
that the publication should present definite proof. This, in turn, encourages the
mechanical perspective on methodology and statistics.

It may be clear that throwing inferential statistics out of the window represents a
step back, leaving us with no language to even discuss the problem of irrepro-
ducible research. However, having statisticians police scientists is equally pointless
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if these checks are only executed at the final stage when the experiment has already
been performed. At this stage, much of the confirmation bias is not visible anymore,
and should any clear mistakes be found, there is no way to mend them. In the words
of the famous statistician Ronald Fisher ‘To consult the statistician after an
experiment is finished is often merely to ask him to conduct a post mortem
examination. He can perhaps say what the experiment died of’ (Fisher 1938).
Moreover, involving statisticians in the role of arbiters only serves to emphasize the
mechanical view of statistics. This will hamper the discussion between scientists
about uncertainty more than it will stimulate it.

Reduction of the proportion of irreproducible research findings calls for a
renewed interest in methodology. The mechanistic view of statistical analysis has
made many scientists see methodology and statistics as a necessary evil. Better
understanding of methodology might help scientists to think about statistics in
terms of convincing rather than in terms of proof, and to see how statistical lan-
guage is a necessary element of the dialogue between researchers with opposing
views. The wager model, even if not practical, may help as a thought experiment for
researchers setting up an experiment, and may help to create awareness of confir-
mation biases, and to design more imaginative experiments. To facilitate this
thought experiment in the absence of a critic with opposing theoretical views,
collaboration with a neutral methodologist may be a good alternative.
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