
6Solving Nonlinear Algebraic Equations

As a reader of this book you are probably well into mathematics and often “ac-
cused” of being particularly good at “solving equations” (a typical comment at
family dinners!). However, is it really true that you, with pen and paper, can solve
many types of equations? Restricting our attention to algebraic equations in one
unknown x, you can certainly do linear equations: ax C b D 0, and quadratic ones:
ax2 C bx C c D 0. You may also know that there are formulas for the roots of cu-
bic and quartic equations too. Maybe you can do the special trigonometric equation
sin x C cosx D 1 as well, but there it (probably) stops. Equations that are not re-
ducible to one of the mentioned cannot be solved by general analytical techniques,
which means that most algebraic equations arising in applications cannot be treated
with pen and paper!

If we exchange the traditional idea of finding exact solutions to equations with
the idea of rather finding approximate solutions, a whole new world of possibilities
opens up. With such an approach, we can in principle solve any algebraic equation.

Let us start by introducing a common generic form for any algebraic equation:

f .x/ D 0 :

Here, f .x/ is some prescribed formula involving x. For example, the equation

e�x sin x D cosx
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186 6 Solving Nonlinear Algebraic Equations

has
f .x/ D e�x sin x � cosx :

Just move all terms to the left-hand side and then the formula to the left of the
equality sign is f .x/.

So, when do we really need to solve algebraic equations beyond the simplest
types we can treat with pen and paper? There are two major application areas. One
is when using implicit numerical methods for ordinary differential equations. These
give rise to one or a system of algebraic equations. The other major application type
is optimization, i.e., finding the maxima or minima of a function. These maxima and
minima are normally found by solving the algebraic equation F 0.x/ D 0 if F.x/ is
the function to be optimized. Differential equations are very much used throughout
science and engineering, and actually most engineering problems are optimization
problems in the end, because one wants a design that maximizes performance and
minimizes cost.

We first consider one algebraic equation in one variable, with our usual emphasis
on how to program the algorithms. Systems of nonlinear algebraic equations with
many variables arise from implicit methods for ordinary and partial differential
equations as well as in multivariate optimization. Our attention will be restricted to
Newton’s method for such systems of nonlinear algebraic equations.

Terminology
When solving algebraic equations f .x/ D 0, we often say that the solution x

is a root of the equation. The solution process itself is thus often called root
finding.

6.1 Brute Force Methods

The representation of a mathematical function f .x/ on a computer takes two forms.
One is a Python function returning the function value given the argument, while the
other is a collection of points .x; f .x// along the function curve. The latter is the
representation we use for plotting, together with an assumption of linear variation
between the points. This representation is also very suited for equation solving
and optimization: we simply go through all points and see if the function crosses
the x axis, or for optimization, test for a local maximum or minimum point. Be-
cause there is a lot of work to examine a huge number of points, and also because
the idea is extremely simple, such approaches are often referred to as brute force
methods. However, we are not embarrassed of explaining the methods in detail and
implementing them.
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6.1.1 Brute Force Root Finding

Assume that we have a set of points along the curve of a function f .x/:

We want to solve f .x/ D 0, i.e., find the points x where f crosses the x axis.
A brute force algorithm is to run through all points on the curve and check if one
point is below the x axis and if the next point is above the x axis, or the other way
around. If this is found to be the case, we know that f must be zero in between
these two x points.

Numerical algorithm More precisely, we have a set of n C 1 points .xi ; yi /, yi D
f .xi /, i D 0; : : : ; n, where x0 < : : : < xn. We check if yi < 0 and yiC1 > 0 (or
the other way around). A compact expression for this check is to perform the test
yi yiC1 < 0. If so, the root of f .x/ D 0 is in Œxi ; xiC1�. Assuming a linear variation
of f between xi and xiC1, we have the approximation

f .x/ � f .xiC1/ � f .xi /

xiC1 � xi

.x � xi / C f .xi / D yiC1 � yi

xiC1 � xi

.x � xi / C yi ;

which, when set equal to zero, gives the root

x D xi � xiC1 � xi

yiC1 � yi

yi :

Implementation Given some Python implementation f(x) of our mathematical
function, a straightforward implementation of the above numerical algorithm looks
like
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x = linspace(0, 4, 10001)

y = f(x)

root = None # Initialization

for i in range(len(x)-1):

if y[i]*y[i+1] < 0:

root = x[i] - (x[i+1] - x[i])/(y[i+1] - y[i])*y[i]

break # Jump out of loop

if root is None:

print ’Could not find any root in [%g, %g]’ % (x[0], x[-1])

else:

print ’Find (the first) root as x=%g’ % root

(See the file brute_force_root_finder_flat.py.)
Note the nice use of setting root to None: we can simply test if root is

None to see if we found a root and overwrote the None value, or if we did not find
any root among the tested points.

Running this program with some function, say f .x/ D e�x2
cos.4x/ (which has

a solution at x D �
8
), gives the root 0.392701, which has an error of 1:9 � 10�6.

Increasing the number of points with a factor of ten gives a root with an error of
2:4 � 10�8.

After such a quick “flat” implementation of an algorithm, we should always try
to offer the algorithm as a Python function, applicable to as wide a problem domain
as possible. The function should take f and an associated interval Œa; b� as input, as
well as a number of points (n), and return a list of all the roots in Œa; b�. Here is our
candidate for a good implementation of the brute force rooting finding algorithm:

def brute_force_root_finder(f, a, b, n):

from numpy import linspace

x = linspace(a, b, n)

y = f(x)

roots = []

for i in range(n-1):

if y[i]*y[i+1] < 0:

root = x[i] - (x[i+1] - x[i])/(y[i+1] - y[i])*y[i]

roots.append(root)

return roots

(See the file brute_force_root_finder_function.py.)
This time we use another elegant technique to indicate if roots were found or not:

roots is an empty list if the root finding was unsuccessful, otherwise it contains all
the roots. Application of the function to the previous example can be coded as

def demo():

from numpy import exp, cos

roots = brute_force_root_finder(

lambda x: exp(-x**2)*cos(4*x), 0, 4, 1001)

if roots:

print roots

else:

print ’Could not find any roots’

https://github.com/hplgit/prog4comp/tree/master/src/py/brute_force_root_finder_flat.py
https://github.com/hplgit/prog4comp/tree/master/src/py/brute_force_root_finder_function.py
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Note that if roots evaluates to True if roots is non-empty. This is a general
test in Python: if X evaluates to True if X is non-empty or has a nonzero value.

6.1.2 Brute Force Optimization

Numerical algorithm We realize that xi corresponds to a maximum point if
yi�1 < yi > yiC1. Similarly, xi corresponds to a minimum if yi�1 > yi < yiC1.
We can do this test for all “inner” points i D 1; : : : ; n � 1 to find all local minima
and maxima. In addition, we need to add an end point, i D 0 or i D n, if the
corresponding yi is a global maximum or minimum.

Implementation The algorithm above can be translated to the following Python
function (file brute_force_optimizer.py):

def brute_force_optimizer(f, a, b, n):

from numpy import linspace

x = linspace(a, b, n)

y = f(x)

# Let maxima and minima hold the indices corresponding

# to (local) maxima and minima points

minima = []

maxima = []

for i in range(n-1):

if y[i-1] < y[i] > y[i+1]:

maxima.append(i)

if y[i-1] > y[i] < y[i+1]:

minima.append(i)

# What about the end points?

y_max_inner = max([y[i] for i in maxima])

y_min_inner = min([y[i] for i in minima])

if y[0] > y_max_inner:

maxima.append(0)

if y[len(x)-1] > y_max_inner:

maxima.append(len(x)-1)

if y[0] < y_min_inner:

minima.append(0)

if y[len(x)-1] < y_min_inner:

minima.append(len(x)-1)

# Return x and y values

return [(x[i], y[i]) for i in minima], \

[(x[i], y[i]) for i in maxima]

The max and min functions are standard Python functions for finding the maxi-
mum and minimum element of a list or an object that one can iterate over with a for
loop.

https://github.com/hplgit/prog4comp/tree/master/src/py/brute_force_optimizer.py
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An application to f .x/ D e�x2
cos.4x/ looks like

def demo():

from numpy import exp, cos

minima, maxima = brute_force_optimizer(

lambda x: exp(-x**2)*cos(4*x), 0, 4, 1001)

print ’Minima:’, minima

print ’Maxima:’, maxima

6.1.3 Model Problem for Algebraic Equations

We shall consider the very simple problem of finding the square root of 9, which
is the positive solution of x2 D 9. The nice feature of solving an equation whose
solution is known beforehand is that we can easily investigate how the numerical
method and the implementation perform in the search for the solution. The f .x/

function corresponding to the equation x2 D 9 is

f .x/ D x2 � 9 :

Our interval of interest for solutions will be Œ0; 1000� (the upper limit here is chosen
somewhat arbitrarily).

In the following, we will present several efficient and accurate methods for solv-
ing nonlinear algebraic equations, both single equation and systems of equations.
The methods all have in common that they search for approximate solutions. The
methods differ, however, in the way they perform the search for solutions. The idea
for the search influences the efficiency of the search and the reliability of actually
finding a solution. For example, Newton’s method is very fast, but not reliable,
while the bisection method is the slowest, but absolutely reliable. No method is
best at all problems, so we need different methods for different problems.

What is the difference between linear and nonlinear equations?
You know how to solve linear equations ax C b D 0: x D �b=a. All other
types of equations f .x/ D 0, i.e., when f .x/ is not a linear function of x, are
called nonlinear. A typical way of recognizing a nonlinear equation is to observe
that x is “not alone” as in ax, but involved in a product with itself, such as in
x3 C 2x2 � 9 D 0. We say that x3 and 2x2 are nonlinear terms. An equation like
sin x C ex cosx D 0 is also nonlinear although x is not explicitly multiplied by
itself, but the Taylor series of sin x, ex , and cosx all involve polynomials of x

where x is multiplied by itself.

6.2 Newton’s Method

Newton’s method, also known as Newton-Raphson’s method, is a very famous and
widely used method for solving nonlinear algebraic equations. Compared to the
other methods we will consider, it is generally the fastest one (usually by far). It
does not guarantee that an existing solution will be found, however.
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A fundamental idea of numerical methods for nonlinear equations is to construct
a series of linear equations (since we know how to solve linear equations) and hope
that the solutions of these linear equations bring us closer and closer to the solution
of the nonlinear equation. The idea will be clearer when we present Newton’s
method and the secant method.

6.2.1 Deriving and Implementing Newton’sMethod

Figure 6.1 shows the f .x/ function in our model equation x2 � 9 D 0. Numer-
ical methods for algebraic equations require us to guess at a solution first. Here,
this guess is called x0. The fundamental idea of Newton’s method is to approxi-
mate the original function f .x/ by a straight line, i.e., a linear function, since it
is straightforward to solve linear equations. There are infinitely many choices of
how to approximate f .x/ by a straight line. Newton’s method applies the tangent
of f .x/ at x0, see the rightmost tangent in Fig. 6.1. This linear tangent function
crosses the x axis at a point we call x1. This is (hopefully) a better approximation
to the solution of f .x/ D 0 than x0. The next fundamental idea is to repeat this
process. We find the tangent of f at x1, compute where it crosses the x axis, at
a point called x2, and repeat the process again. Figure 6.1 shows that the process
brings us closer and closer to the left. It remains, however, to see if we hit x D 3 or
come sufficiently close to this solution.

How do we compute the tangent of a function f .x/ at a point x0? The tangent
function, here called Qf .x/, is linear and has two properties:

Fig. 6.1 Illustrates the idea of Newton’s method with f .x/ D x2 � 9, repeatedly solving for
crossing of tangent lines with the x axis
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1. the slope equals to f 0.x0/

2. the tangent touches the f .x/ curve at x0

So, if we write the tangent function as Qf .x/ D ax C b, we must require Qf 0.x0/ D
f 0.x0/ and Qf .x0/ D f .x0/, resulting in

Qf .x/ D f .x0/ C f 0.x0/.x � x0/ :

The key step in Newton’s method is to find where the tangent crosses the x axis,
which means solving Qf .x/ D 0:

Qf .x/ D 0 ) x D x0 � f .x0/

f 0.x0/
:

This is our new candidate point, which we call x1:

x1 D x0 � f .x0/

f 0.x0/
:

With x0 D 1000, we get x1 � 500, which is in accordance with the graph in
Fig. 6.1. Repeating the process, we get

x2 D x1 � f .x1/

f 0.x1/
� 250 :

The general scheme of Newton’s method may be written as

xnC1 D xn � f .xn/

f 0.xn/
; n D 0; 1; 2; : : : (6.1)

The computation in (6.1) is repeated until f .xn/ is close enough to zero. More
precisely, we test if jf .xn/j < �, with � being a small number.

We moved from 1000 to 250 in two iterations, so it is exciting to see how
fast we can approach the solution x D 3. A computer program can automate
the calculations. Our first try at implementing Newton’s method is in a function
naive_Newton:

def naive_Newton(f, dfdx, x, eps):

while abs(f(x)) > eps:

x = x - float(f(x))/dfdx(x)

return x

The argument x is the starting value, called x0 in our previous mathematical de-
scription. We use float(f(x)) to ensure that an integer division does not happen
by accident if f(x) and dfdx(x) both are integers for some x.

To solve the problem x2 D 9 we also need to implement

def f(x):

return x**2 - 9

def dfdx(x):

return 2*x

print naive_Newton(f, dfdx, 1000, 0.001)
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Why not use an array for the x approximations?
Newton’s method is normally formulated with an iteration index n,

xnC1 D xn � f .xn/

f 0.xn/
:

Seeing such an index, many would implement this as

x[n+1] = x[n] - f(x[n])/dfdx(x[n])

Such an array is fine, but requires storage of all the approximations. In large
industrial applications, where Newton’s method solves millions of equations at
once, one cannot afford to store all the intermediate approximations in memory,
so then it is important to understand that the algorithm in Newton’s method has
no more need for xn when xnC1 is computed. Therefore, we can work with one
variable x and overwrite the previous value:

x = x - f(x)/dfdx(x)

Running naive_Newton(f, dfdx, 1000, eps=0.001) results in the ap-
proximate solution 3.000027639. A smaller value of eps will produce a more
accurate solution. Unfortunately, the plain naive_Newton function does not re-
turn how many iterations it used, nor does it print out all the approximations
x0; x1; x2; : : :, which would indeed be a nice feature. If we insert such a printout,
a rerun results in

500.0045

250.011249919

125.02362415

62.5478052723

31.3458476066

15.816483488

8.1927550496

4.64564330569

3.2914711388

3.01290538807

3.00002763928

We clearly see that the iterations approach the solution quickly. This speed of
the search for the solution is the primary strength of Newton’s method compared to
other methods.

6.2.2 Making aMore Efficient and Robust Implementation

The naive_Newton function works fine for the example we are considering here.
However, for more general use, there are some pitfalls that should be fixed in an
improved version of the code. An example may illustrate what the problem is: let
us solve tanh.x/ D 0, which has solution x D 0. With jx0j � 1:08 everything
works fine. For example, x0 leads to six iterations if � D 0:001:
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-1.05895313436

0.989404207298

-0.784566773086

0.36399816111

-0.0330146961372

2.3995252668e-05

Adjusting x0 slightly to 1.09 gives division by zero! The approximations com-
puted by Newton’s method become

-1.09331618202

1.10490354324

-1.14615550788

1.30303261823

-2.06492300238

13.4731428006

-1.26055913647e+11

The division by zero is caused by x7 D �1:26055913647�1011, because tanh.x7/

is 1.0 to machine precision, and then f 0.x/ D 1 � tanh.x/2 becomes zero in the
denominator in Newton’s method.

The underlying problem, leading to the division by zero in the above example,
is that Newton’s method diverges: the approximations move further and further
away from x D 0. If it had not been for the division by zero, the condition in
the while loop would always be true and the loop would run forever. Divergence
of Newton’s method occasionally happens, and the remedy is to abort the method
when a maximum number of iterations is reached.

Another disadvantage of the naive_Newton function is that it calls the f .x/

function twice as many times as necessary. This extra work is of no concern when
f .x/ is fast to evaluate, but in large-scale industrial software, one call to f .x/ might
take hours or days, and then removing unnecessary calls is important. The solution
in our function is to store the call f(x) in a variable (f_value) and reuse the value
instead of making a new call f(x).

To summarize, we want to write an improved function for implementing New-
ton’s method where we

� avoid division by zero
� allow a maximum number of iterations
� avoid the extra evaluation of f .x/

A more robust and efficient version of the function, inserted in a complete program
Newtons_method.py for solving x2 � 9 D 0, is listed below.

def Newton(f, dfdx, x, eps):

f_value = f(x)

iteration_counter = 0

while abs(f_value) > eps and iteration_counter < 100:

try:

x = x - float(f_value)/dfdx(x)

https://github.com/hplgit/prog4comp/tree/master/src/py/Newtons_method.py
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except ZeroDivisionError:

print "Error! - derivative zero for x = ", x

sys.exit(1) # Abort with error

f_value = f(x)

iteration_counter += 1

# Here, either a solution is found, or too many iterations

if abs(f_value) > eps:

iteration_counter = -1

return x, iteration_counter

def f(x):

return x**2 - 9

def dfdx(x):

return 2*x

solution, no_iterations = Newton(f, dfdx, x=1000, eps=1.0e-6)

if no_iterations > 0: # Solution found

print "Number of function calls: %d" % (1 + 2*no_iterations)

print "A solution is: %f" % (solution)

else:

print "Solution not found!"

Handling of the potential division by zero is done by a try-except construction.
Python tries to run the code in the try block. If anything goes wrong here, or more
precisely, if Python raises an exception caused by a problem (such as division by
zero, array index out of bounds, use of undefined variable, etc.), the execution jumps
immediately to the except block. Here, the programmer can take appropriate ac-
tions. In the present case, we simply stop the program. (Professional programmers
would avoid calling sys.exit inside a function. Instead, they would raise a new
exception with an informative error message, and let the calling code have another
try-except construction to stop the program.)

The division by zero will always be detected and the program will be stopped.
The main purpose of our way of treating the division by zero is to give the user
a more informative error message and stop the program in a gentler way.

Calling sys.exit with an argument different from zero (here 1) signifies that
the program stopped because of an error. It is a good habit to supply the value 1,
because tools in the operating system can then be used by other programs to detect
that our program failed.

To prevent an infinite loop because of divergent iterations, we have introduced
the integer variable iteration_counter to count the number of iterations in New-
ton’s method. With iteration_counterwe can easily extend the condition in the
while such that no more iterations take place when the number of iterations reaches
100. We could easily let this limit be an argument to the function rather than a fixed
constant.

The Newton function returns the approximate solution and the number of itera-
tions. The latter equals �1 if the convergence criterion jf .x/j < � was not reached
within the maximum number of iterations. In the calling code, we print out the
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solution and the number of function calls. The main cost of a method for solving
f .x/ D 0 equations is usually the evaluation of f .x/ and f 0.x/, so the total num-
ber of calls to these functions is an interesting measure of the computational work.
Note that in function Newton there is an initial call to f .x/ and then one call to f

and one to f 0 in each iteration.
Running Newtons_method.py, we get the following printout on the screen:

Number of function calls: 25

A solution is: 3.000000

As we did with the integration methods in Chapter 3, we will collect our solvers
for nonlinear algebraic equations in a separate file named nonlinear_solvers.py
for easy import and use. The first function placed in this file is then Newton.

The Newton scheme will work better if the starting value is close to the solution.
A good starting value may often make the difference as to whether the code actually
finds a solution or not. Because of its speed, Newton’s method is often the method
of first choice for solving nonlinear algebraic equations, even if the scheme is not
guaranteed to work. In cases where the initial guess may be far from the solution,
a good strategy is to run a few iterations with the bisection method (see Chapter 6.4)
to narrow down the region where f is close to zero and then switch to Newton’s
method for fast convergence to the solution.

Newton’s method requires the analytical expression for the derivative f 0.x/.
Derivation of f 0.x/ is not always a reliable process by hand if f .x/ is a com-
plicated function. However, Python has the symbolic package SymPy, which we
may use to create the required dfdx function. In our sample problem, the recipe
goes as follows:

from sympy import *

x = symbols(’x’) # define x as a mathematical symbol

f_expr = x**2 - 9 # symbolic expression for f(x)

dfdx_expr = diff(f_expr, x) # compute f’(x) symbolically

# Turn f_expr and dfdx_expr into plain Python functions

f = lambdify([x], # argument to f

f_expr) # symbolic expression to be evaluated

dfdx = lambdify([x], dfdx_expr)

print dfdx(5) # will print 10

The nice feature of this code snippet is that dfdx_expr is the exact analytical
expression for the derivative, 2*x, if you print it out. This is a symbolic expression
so we cannot do numerical computing with it, but the lambdify constructions turn
symbolic expressions into callable Python functions.

The next method is the secant method, which is usually slower than Newton’s
method, but it does not require an expression for f 0.x/, and it has only one function
call per iteration.
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6.3 The Secant Method

When finding the derivative f 0.x/ in Newton’s method is problematic, or when
function evaluations take too long; we may adjust the method slightly. Instead of
using tangent lines to the graph we may use secants1. The approach is referred to as
the secant method, and the idea is illustrated graphically in Fig. 6.2 for our example
problem x2 � 9 D 0.

The idea of the secant method is to think as in Newton’s method, but instead
of using f 0.xn/, we approximate this derivative by a finite difference or the se-
cant, i.e., the slope of the straight line that goes through the points .xn; f .xn// and
.xn�1; f .xn�1// on the graph, given by the two most recent approximations xn and
xn�1. This slope reads

f .xn/ � f .xn�1/

xn � xn�1

: (6.2)

Inserting this expression for f 0.xn/ in Newton’s method simply gives us the secant
method:

xnC1 D xn � f .xn/
f .xn/�f .xn�1/

xn�xn�1

;

or
xnC1 D xn � f .xn/

xn � xn�1

f .xn/ � f .xn�1/
: (6.3)

Fig. 6.2 Illustrates the use of secants in the secant method when solving x2�9 D 0; x 2 Œ0; 1000�.
From two chosen starting values, x0 D 1000 and x1 D 700 the crossing x2 of the corresponding
secant with the x axis is computed, followed by a similar computation of x3 from x1 and x2

1 https://en.wikipedia.org/wiki/Secant_line

https://en.wikipedia.org/wiki/Secant_line
https://en.wikipedia.org/wiki/Secant_line
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Comparing (6.3) to the graph in Fig. 6.2, we see how two chosen starting points
(x0 D 1000, x1 D 700, and corresponding function values) are used to compute
x2. Once we have x2, we similarly use x1 and x2 to compute x3. As with Newton’s
method, the procedure is repeated until f .xn/ is below some chosen limit value,
or some limit on the number of iterations has been reached. We use an iteration
counter here too, based on the same thinking as in the implementation of Newton’s
method.

We can store the approximations xn in an array, but as in Newton’s method,
we notice that the computation of xnC1 only needs knowledge of xn and xn�1, not
“older” approximations. Therefore, we can make use of only three variables: x for
xnC1, x1 for xn, and x0 for xn�1. Note that x0 and x1 must be given (guessed) for
the algorithm to start.

A program secant_method.py that solves our example problemmay be written
as:

def secant(f, x0, x1, eps):

f_x0 = f(x0)

f_x1 = f(x1)

iteration_counter = 0

while abs(f_x1) > eps and iteration_counter < 100:

try:

denominator = float(f_x1 - f_x0)/(x1 - x0)

x = x1 - float(f_x1)/denominator

except ZeroDivisionError:

print "Error! - denominator zero for x = ", x

sys.exit(1) # Abort with error

x0 = x1

x1 = x

f_x0 = f_x1

f_x1 = f(x1)

iteration_counter += 1

# Here, either a solution is found, or too many iterations

if abs(f_x1) > eps:

iteration_counter = -1

return x, iteration_counter

def f(x):

return x**2 - 9

x0 = 1000; x1 = x0 - 1

solution, no_iterations = secant(f, x0, x1, eps=1.0e-6)

if no_iterations > 0: # Solution found

print "Number of function calls: %d" % (2 + no_iterations)

print "A solution is: %f" % (solution)

else:

print "Solution not found!"

The number of function calls is now related to no_iterations, i.e., the number
of iterations, as 2 + no_iterations, since we need two function calls before en-
tering the while loop, and then one function call per loop iteration. Note that, even
though we need two points on the graph to compute each updated estimate, only

https://github.com/hplgit/prog4comp/tree/master/src/py/secant_method.py
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a single function call (f(x1)) is required in each iteration since f(x0) becomes the
“old” f(x1) and may simply be copied as f_x0 = f_x1 (the exception is the very
first iteration where two function evaluations are needed).

Running secant_method.py, gives the following printout on the screen:

Number of function calls: 19

A solution is: 3.000000

Aswith the function Newton, we place secant in the file nonlinear_solvers.
py for easy import and use later.

6.4 The BisectionMethod

Neither Newton’s method nor the secant method can guarantee that an existing so-
lution will be found (see Exercises 6.1 and 6.2). The bisection method, however,
does that. However, if there are several solutions present, it finds only one of them,
just as Newton’s method and the secant method. The bisection method is slower
than the other two methods, so reliability comes with a cost of speed.

To solve x2 � 9 D 0, x 2 Œ0; 1000�, with the bisection method, we reason as
follows. The first key idea is that if f .x/ D x2 �9 is continuous on the interval and
the function values for the interval endpoints (xL D 0, xR D 1000) have opposite
signs, f .x/ must cross the x axis at least once on the interval. That is, we know
there is at least one solution.

The second key idea comes from dividing the interval in two equal parts, one
to the left and one to the right of the midpoint xM D 500. By evaluating the sign
of f .xM /, we will immediately know whether a solution must exist to the left or
right of xM . This is so, since if f .xM / � 0, we know that f .x/ has to cross the x

axis between xL and xM at least once (using the same argument as for the original
interval). Likewise, if instead f .xM / � 0, we know that f .x/ has to cross the x

axis between xM and xR at least once.
In any case, we may proceed with half the interval only. The exception is if

f .xM / � 0, in which case a solution is found. Such interval halving can be
continued until a solution is found. A “solution” in this case, is when jf .xM /j
is sufficiently close to zero, more precisely (as before): jf .xM /j < �, where � is
a small number specified by the user.

The sketched strategy seems reasonable, so let us write a reusable function that
can solve a general algebraic equation f .x/ D 0 (bisection_method.py):

def bisection(f, x_L, x_R, eps, return_x_list=False):

f_L = f(x_L)

if f_L*f(x_R) > 0:

print "Error! Function does not have opposite \

signs at interval endpoints!"

sys.exit(1)

x_M = float(x_L + x_R)/2.0

f_M = f(x_M)

iteration_counter = 1

https://github.com/hplgit/prog4comp/tree/master/src/py/bisection_method.py
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if return_x_list:

x_list = []

while abs(f_M) > eps:

if f_L*f_M > 0: # i.e. same sign

x_L = x_M

f_L = f_M

else:

x_R = x_M

x_M = float(x_L + x_R)/2

f_M = f(x_M)

iteration_counter += 1

if return_x_list:

x_list.append(x_M)

if return_x_list:

return x_list, iteration_counter

else:

return x_M, iteration_counter

def f(x):

return x**2 - 9

a = 0; b = 1000

solution, no_iterations = bisection(f, a, b, eps=1.0e-6)

print "Number of function calls: %d" % (1 + 2*no_iterations)

print "A solution is: %f" % (solution)

Note that we first check if f changes sign in Œa; b�, because that is a requirement
for the algorithm to work. The algorithm also relies on a continuous f .x/ function,
but this is very challenging for a computer code to check.

We get the following printout to the screen when bisection_method.py is run:

Number of function calls: 61

A solution is: 3.000000

We notice that the number of function calls is much higher than with the previous
methods.

Required work in the bisection method
If the starting interval of the bisection method is bounded by a and b, and the
solution at step n is taken to be the middle value, the error is bounded as

jb � aj
2n

; (6.4)

because the initial interval has been halved n times. Therefore, to meet a toler-
ance �, we need n iterations such that the length of the current interval equals
�: jb � aj

2n
D � ) n D ln..b � a/=�/

ln 2
:
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This is a great advantage of the bisection method: we know beforehand how
many iterations n it takes to meet a certain accuracy � in the solution.

As with the two previous methods, the function bisection is placed in the file
nonlinear_solvers.py for easy import and use.

6.5 Rate of Convergence

With the methods above, we noticed that the number of iterations or function calls
could differ quite substantially. The number of iterations needed to find a solution
is closely related to the rate of convergence, which dictates the speed of error re-
duction as we approach the root. More precisely, we introduce the error in iteration
n as en D jx � xnj, and define the convergence rate q as

enC1 D Ceq
n; (6.5)

where C is a constant. The exponent q measures how fast the error is reduced from
one iteration to the next. The larger q is, the faster the error goes to zero, and the
fewer iterations we need to meet the stopping criterion jf .x/j < �.

A single q in (6.5) is defined in the limit n ! 1. For finite n, and especially
smaller n, q will vary with n. To estimate q, we can compute all the errors en and
set up (6.5) for three consecutive experiments n � 1, n, and n C 1:

en D Ce
q
n�1;

enC1 D Ceq
n :

Dividing these two equations by each other and solving with respect to q gives

q D ln.enC1=en/

ln.en=en�1/
:

Since this q will vary somewhat with n, we call it qn. As n grows, we expect qn

to approach a limit (qn ! q). To compute all the qn values, we need all the xn

approximations. However, our previous implementations of Newton’s method, the
secant method, and the bisection method returned just the final approximation.

Therefore, we have extended the implementations in the module file
nonlinear_solvers.py such that the user can choose whether the final value
or the whole history of solutions is to be returned. Each of the extended im-
plementations now takes an extra parameter return_x_list. This parameter is
a boolean, set to True if the function is supposed to return all the root approxima-
tions, or False, if the function should only return the final approximation. As an
example, let us take a closer look at Newton:

def Newton(f, dfdx, x, eps, return_x_list=False):

f_value = f(x)

iteration_counter = 0

if return_x_list:

x_list = []
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while abs(f_value) > eps and iteration_counter < 100:

try:

x = x - float(f_value)/dfdx(x)

except ZeroDivisionError:

print "Error! - derivative zero for x = ", x

sys.exit(1) # Abort with error

f_value = f(x)

iteration_counter += 1

if return_x_list:

x_list.append(x)

# Here, either a solution is found, or too many iterations

if abs(f_value) > eps:

iteration_counter = -1 # i.e., lack of convergence

if return_x_list:

return x_list, iteration_counter

else:

return x, iteration_counter

The function is found in the file nonlinear_solvers.py.
We can now make a call

x, iter = Newton(f, dfdx, x=1000, eps=1e-6, return_x_list=True)

and get a list x returned. With knowledge of the exact solution x of f .x/ D 0

we can compute all the errors en and all the associated qn values with the compact
function

def rate(x, x_exact):

e = [abs(x_ - x_exact) for x_ in x]

q = [log(e[n+1]/e[n])/log(e[n]/e[n-1])

for n in range(1, len(e)-1, 1)]

return q

The error model (6.5) works well for Newton’s method and the secant method.
For the bisection method, however, it works well in the beginning, but not when the
solution is approached.

We can compute the rates qn and print them nicely,

def print_rates(method, x, x_exact):

q = [’%.2f’ % q_ for q_ in rate(x, x_exact)]

print method + ’:’

for q_ in q:

print q_,

print

The result for print_rates(’Newton’, x, 3) is

Newton:

1.01 1.02 1.03 1.07 1.14 1.27 1.51 1.80 1.97 2.00

https://github.com/hplgit/prog4comp/tree/master/src/py/nonlinear_solvers.py
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indicating that q D 2 is the rate for Newton’s method. A similar computation
using the secant method, gives the rates

secant:

1.26 0.93 1.05 1.01 1.04 1.05 1.08 1.13 1.20 1.30 1.43

1.54 1.60 1.62 1.62

Here it seems that q � 1:6 is the limit.

Remark If we in the bisection method think of the length of the current interval
containing the solution as the error en, then (6.5) works perfectly since enC1 D
1
2
en, i.e., q D 1 and C D 1

2
, but if en is the true error jx � xnj, it is easily seen

from a sketch that this error can oscillate between the current interval length and
a potentially very small value as we approach the exact solution. The corresponding
rates qn fluctuate widely and are of no interest.

6.6 Solving Multiple Nonlinear Algebraic Equations

So far in this chapter, we have considered a single nonlinear algebraic equation.
However, systems of such equations arise in a number of applications, foremost
nonlinear ordinary and partial differential equations. Of the previous algorithms,
only Newton’s method is suitable for extension to systems of nonlinear equations.

6.6.1 Abstract Notation

Suppose we have n nonlinear equations, written in the following abstract form:

F0.x0; x1; : : : ; xn/ D 0; (6.6)

F1.x0; x1; : : : ; xn/ D 0; (6.7)

::: D ::: (6.8)

Fn.x0; x1; : : : ; xn/ D 0 : (6.9)

(6.10)

It will be convenient to introduce a vector notation

F D .F0; : : : ; F1/; x D .x0; : : : ; xn/ :

The system can now be written as F .x/ D 0.
As a specific example on the notation above, the system

x2 D y � x cos.�x/ (6.11)

yx C e�y D x�1 (6.12)
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can be written in our abstract form by introducing x0 D x and x1 D y. Then

F0.x0; x1/ D x2 � y C x cos.�x/ D 0;

F1.x0; x1/ D yx C e�y � x�1 D 0 :

6.6.2 Taylor Expansions for Multi-Variable Functions

We follow the ideas of Newton’s method for one equation in one variable: approxi-
mate the nonlinear f by a linear function and find the root of that function. When
n variables are involved, we need to approximate a vector function F .x/ by some
linear function QF D J x C c, where J is an n � n matrix and c is some vector of
length n.

The technique for approximating F by a linear function is to use the first two
terms in a Taylor series expansion. Given the value of F and its partial derivatives
with respect to x at some point xi , we can approximate the value at some point
xiC1 by the two first term in a Taylor series expansion around xi :

F .xiC1/ � F .xi / C rF .xi /.xiC1 � xi / :

The next terms in the expansions are omitted here and of size jjxiC1 � xi jj2, which
are assumed to be small compared with the two terms above.

The expression rF is the matrix of all the partial derivatives of F . Component
.i; j / in rF is

@Fi

@xj

:

For example, in our 2 � 2 system (6.11)-(6.12) we can use SymPy to compute the
Jacobian:

>>> from sympy import *

>>> x0, x1 = symbols(’x0 x1’)

>>> F0 = x0**2 - x1 + x0*cos(pi*x0)

>>> F1 = x0*x1 + exp(-x1) - x0**(-1)

>>> diff(F0, x0)

-pi*x0*sin(pi*x0) + 2*x0 + cos(pi*x0)

>>> diff(F0, x1)

-1

>>> diff(F1, x0)

x1 + x0**(-2)

>>> diff(F1, x1)

x0 - exp(-x1)

We can then write

rF D
 

@F0

@x0

@F0

@x1
@F1

@x0

@F1

@x1

!

D
 

2x0 C cos.�x0/ � �x0 sin.�x0/ �1

x1 C x�2
0 x0 � e�x1

!

The matrix rF is called the Jacobian of F and often denoted by J .
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6.6.3 Newton’sMethod

The idea of Newton’s method is that we have some approximation xi to the root and
seek a new (and hopefully better) approximation xiC1 by approximating F .xiC1/

by a linear function and solve the corresponding linear system of algebraic equa-
tions. We approximate the nonlinear problem F .xiC1/ D 0 by the linear problem

F .xi / C J .xi /.xiC1 � xi / D 0; (6.13)

where J .xi / is just another notation for rF .xi /. The equation (6.13) is a linear
system with coefficient matrix J and right-hand side vector F .xi /. We therefore
write this system in the more familiar form

J .xi /ı D �F .xi /;

where we have introduce a symbol ı for the unknown vector xiC1 � xi that multi-
plies the Jacobian J .

The i-th iteration of Newton’s method for systems of algebraic equations con-
sists of two steps:

1. Solve the linear system J .xi /ı D �F .xi / with respect to ı.
2. Set xiC1 D xi C ı.

Solving systems of linear equations must make use of appropriate software. Gaus-
sian elimination is the most common, and in general the most robust, method for
this purpose. Python’s numpy package has a module linalg that interfaces the
well-known LAPACK package with high-quality and very well tested subroutines
for linear algebra. The statement x = numpy.linalg.solve(A, b) solves a sys-
tem Ax D b with a LAPACK method based on Gaussian elimination.

When nonlinear systems of algebraic equations arise from discretization of par-
tial differential equations, the Jacobian is very often sparse, i.e., most of its elements
are zero. In such cases it is important to use algorithms that can take advantage of
the many zeros. Gaussian elimination is then a slow method, and (much) faster
methods are based on iterative techniques.

6.6.4 Implementation

Here is a very simple implementation of Newton’s method for systems of nonlinear
algebraic equations:

import numpy as np

def Newton_system(F, J, x, eps):

"""

Solve nonlinear system F=0 by Newton’s method.

J is the Jacobian of F. Both F and J must be functions of x.

At input, x holds the start value. The iteration continues

until ||F|| < eps.

"""
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F_value = F(x)

F_norm = np.linalg.norm(F_value, ord=2) # l2 norm of vector

iteration_counter = 0

while abs(F_norm) > eps and iteration_counter < 100:

delta = np.linalg.solve(J(x), -F_value)

x = x + delta

F_value = F(x)

F_norm = np.linalg.norm(F_value, ord=2)

iteration_counter += 1

# Here, either a solution is found, or too many iterations

if abs(F_norm) > eps:

iteration_counter = -1

return x, iteration_counter

We can test the function Newton_systemwith the 2 � 2 system (6.11)-(6.12):

def test_Newton_system1():

from numpy import cos, sin, pi, exp

def F(x):

return np.array(

[x[0]**2 - x[1] + x[0]*cos(pi*x[0]),

x[0]*x[1] + exp(-x[1]) - x[0]**(-1)])

def J(x):

return np.array(

[[2*x[0] + cos(pi*x[0]) - pi*x[0]*sin(pi*x[0]), -1],

[x[1] + x[0]**(-2), x[0] - exp(-x[1])]])

expected = np.array([1, 0])

tol = 1e-4

x, n = Newton_system(F, J, x=np.array([2, -1]), eps=0.0001)

print n, x

error_norm = np.linalg.norm(expected - x, ord=2)

assert error_norm < tol, ’norm of error =%g’ % error_norm

print ’norm of error =%g’ % error_norm

Here, the testing is based on the L2 norm of the error vector. Alternatively, we
could test against the values of x that the algorithm finds, with appropriate toler-
ances. For example, as chosen for the error norm, if eps=0.0001, a tolerance of
10�4 can be used for x[0] and x[1].

6.7 Exercises

Exercise 6.1: Understand why Newton’s method can fail
The purpose of this exercise is to understand when Newton’s method works and
fails. To this end, solve tanh x D 0 by Newton’s method and study the intermediate
details of the algorithm. Start with x0 D 1:08. Plot the tangent in each iteration of
Newton’s method. Then repeat the calculations and the plotting when x0 D 1:09.
Explain what you observe.
Filename: Newton_failure.*.
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Exercise 6.2: See if the secant method fails
Does the secant method behave better than Newton’s method in the problem de-
scribed in Exercise 6.1? Try the initial guesses

1. x0 D 1:08 and x1 D 1:09

2. x0 D 1:09 and x1 D 1:1

3. x0 D 1 and x1 D 2:3

4. x0 D 1 and x1 D 2:4

Filename: secant_failure.*.

Exercise 6.3: Understand why the bisection method cannot fail
Solve the same problem as in Exercise 6.1, using the bisection method, but let the
initial interval be Œ�5; 3�. Report how the interval containing the solution evolves
during the iterations.
Filename: bisection_nonfailure.*.

Exercise 6.4: Combine the bisection method with Newton’s method
An attractive idea is to combine the reliability of the bisection method with the
speed of Newton’s method. Such a combination is implemented by running the
bisection method until we have a narrow interval, and then switch to Newton’s
method for speed.

Write a function that implements this idea. Start with an interval Œa; b� and
switch to Newton’s method when the current interval in the bisection method is
a fraction s of the initial interval (i.e., when the interval has length s.b � a/). Po-
tential divergence of Newton’s method is still an issue, so if the approximate root
jumps out of the narrowed interval (where the solution is known to lie), one can
switch back to the bisection method. The value of s must be given as an argument
to the function, but it may have a default value of 0.1.

Try the new method on tanh.x/ D 0 with an initial interval Œ�10; 15�.
Filename: bisection_Newton.py.

Exercise 6.5: Write a test function for Newton’s method
The purpose of this function is to verify the implementation of Newton’s method in
the Newton function in the file nonlinear_solvers.py. Construct an algebraic
equation and perform two iterations of Newton’s method by hand or with the aid of
SymPy. Find the corresponding size of jf .x/j and use this as value for eps when
calling Newton. The function should then also perform two iterations and return the
same approximation to the root as you calculated manually. Implement this idea for
a unit test as a test function test_Newton().
Filename: test_Newton.py.

Exercise 6.6: Solve nonlinear equation for a vibrating beam
An important engineering problem that arises in a lot of applications is the vibra-
tions of a clamped beam where the other end is free. This problem can be analyzed
analytically, but the calculations boil down to solving the following nonlinear alge-
braic equation:

coshˇ cosˇ D �1;
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where ˇ is related to important beam parameters through

ˇ4 D !2 %A

EI
;

where % is the density of the beam, A is the area of the cross section, E is Young’s
modulus, and I is the moment of the inertia of the cross section. The most important
parameter of interest is !, which is the frequency of the beam. We want to compute
the frequencies of a vibrating steel beam with a rectangular cross section having
width b D 25 mm and height h D 8 mm. The density of steel is 7850 kg/m3, and
E D 2�1011 Pa. The moment of inertia of a rectangular cross section is I D bh3=12.

a) Plot the equation to be solved so that one can inspect where the zero crossings
occur.

Hint When writing the equation as f .ˇ/ D 0, the f function increases its ampli-
tude dramatically with ˇ. It is therefore wise to look at an equation with damped
amplitude, g.ˇ/ D e�ˇf .ˇ/ D 0. Plot g instead.

b) Compute the first three frequencies.

Filename: beam_vib.py.
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AGetting Access to Python

This appendix describes different technologies for either installing Python on your
own computer or accessing Python in the cloud. Plain Python is very easy to install
and use in cloud services, but for this bookwe needmany add-on packages for doing
scientific computations. Python together with these packages constitute a complex
software eco system that is non-trivial to build, so we strongly recommend to use
one of the techniques described next1.

A.1 Required Software

The strictly required software packages for working with this book are

� Python2 version 2.7 [25]
� Numerical Python3 (NumPy) [19, 20] for array computing
� Matplotlib4 [8, 9] for plotting

Desired add-on packages are

� IPython5 [22, 23] for interactive computing
� SciTools6 [14] for add-ons to NumPy
� ScientificPython7 [7] for add-ons to NumPy
� pytest8 or nose9 for testing programs
� pip10 for installing Python packages
� Cython11 for compiling Python to C

1 Some of the text is taken from the 4th edition of the book A Primer on Scientifi Programming
with Python, by H. P. Langtangen, published by Springer, 2014.
2 http://python.org
3 http://www.numpy.org
4 http://matplotlib.org
5 http://ipython.org
6 https://github.com/hplgit/scitools
7 http://starship.python.net/crew/hinsen
8 http://pytest.org/latest/
9 https://nose.readthedocs.org
10 http://www.pip-installer.org
11 http://cython.org
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� SymPy12 [2] for symbolic mathematics
� SciPy13 [10] for advanced scientific computing

Python 2 or 3?
Python comes in two versions, version 2 and 3, and these are not fully compati-
ble. However, for the programs in this book, the differences are very small, the
major one being print, which in Python 2 is a statement like

print ’a:’, a, ’b:’, b

while in Python 3 it is a function call

print( ’a:’, a, ’b:’, b)

The authors have written Python v2.7 code in this book in a way that makes
porting to version 3.4 or later trivial: most programs will just need a fix of the
print statement. This can be automatically done by running 2to3 prog.py to
transform a Python 2 program prog.py to its Python 3 counterpart. One can
also use tools like future or six to easily write programs that run under both
versions 2 and 3, or the futurize program can automatically do this for you
based on v2.7 code.

Since many tools for doing scientific computing in Python are still only avail-
able for Python version 2, we use this version in the present book, but emphasize
that it has to be v2.7 and not older versions.

There are different ways to get access to Python with the required packages:

1. Use a computer system at an institution where the software is installed. Such
a system can also be used from your local laptop through remote login over
a network.

2. Install the software on your own laptop.
3. Use a web service.

A system administrator can take the list of software packages and install the missing
ones on a computer system. For the two other options, detailed descriptions are
given below.

Using a web service is very straightforward, but has the disadvantage that you
are constrained by the packages that are allowed to install on the service. There are
services at the time of this writing that suffice for working with most of this book,
but if you are going to solve more complicated mathematical problems, you will
need more sophisticated mathematical Python packages, more storage and more
computer resources, and then you will benefit greatly from having Python installed
on your own computer.

12 http://sympy.org
13 http://scipy.org

http://sympy.org
http://scipy.org
http://sympy.org
http://scipy.org
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A.2 Anaconda and Spyder

Anaconda14 is a free Python distribution produced by Continuum Analytics and
contains about 200 Python packages, as well as Python itself, for doing a wide range
of scientific computations. Anaconda can be downloaded from http://continuum.io/
downloads. Choose Python version 2.7.

The Integrated Development Environment (IDE) Spyder is included with Ana-
conda and is our recommended tool for writing and running Python programs on
Mac and Windows, unless you have preference for a plain text editor for writing
programs and a terminal window for running them.

A.2.1 Spyder onMac

Spyder is started by typing spyder in a (new) Terminal application. If you get an
error message unknown locale, you need to type the following line in the Terminal
application, or preferably put the line in your $HOME/.bashrc Unix initialization
file:

export LANG=en_US.UTF-8; export LC_ALL=en_US.UTF-8

A.2.2 Installation of Additional Packages

Anaconda installs the pip tool that is handy to install additional packages. In a Ter-
minal application on Mac or in a PowerShell terminal on Windows, write

Terminal

pip install --user packagename

A.3 How toWrite and Run a Python Program

You have basically three choices to develop and test a Python program:

1. use a text editor and a terminal window
2. use an Integrated Development Environment (IDE), like Spyder, which offers

a window with a text editor and functionality to run programs and observe the
output

3. use the IPython notebook

The IPython notebook is briefly descried in Sect. A.5, while the other two options
are outlined below.

14 https://store.continuum.io/cshop/anaconda/

https://store.continuum.io/cshop/anaconda/
http://continuum.io/downloads
http://continuum.io/downloads
https://store.continuum.io/cshop/anaconda/
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A.3.1 The Need for a Text Editor

Since programs consist of plain text, we need to write this text with the help of
another program that can store the text in a file. You have most likely extensive
experience with writing text on a computer, but for writing your own programs you
need special programs, called editors, which preserve exactly the characters you
type. The widespread word processors, Microsoft Word being a primary example,
are aimed at producing nice-looking reports. These programs format the text and
are not acceptable tools for writing your own programs, even though they can save
the document in a pure text format. Spaces are often important in Python programs,
and editors for plain text give you complete control of the spaces and all other
characters in the program file.

A.3.2 Text Editors

The most widely used editors for writing programs are Emacs and Vim, which are
available on all major platforms. Some simpler alternatives for beginners are

� Linux: Gedit
� Mac OS X: TextWrangler
� Windows: Notepad++

We may mention that Python comes with an editor called Idle, which can be used
to write programs on all three platforms, but running the program with command-
line arguments is a bit complicated for beginners in Idle so Idle is not my favorite
recommendation.

Gedit is a standard program on Linux platforms, but all other editors must be
installed in your system. This is easy: just google the name, download the file, and
follow the standard procedure for installation. All of the mentioned editors come
with a graphical user interface that is intuitive to use, but the major popularity of
Emacs and Vim is due to their rich set of short-keys so that you can avoid using the
mouse and consequently edit at higher speed.

A.3.3 Terminal Windows

To run the Python program, you need a terminal window. This is a window where
you can issue Unix commands in Linux and Mac OS X systems and DOS com-
mands in Windows. On a Linux computer, gnome-terminal is my favorite, but
other choices work equally well, such as xterm and konsole. On a Mac computer,
launch the application Utilities - Terminal. On Windows, launch PowerShell.

You must first move to the right folder using the cd foldername command.
Then running a python program prog.py is a matter of writing python prog.py.
Whatever the program prints can be seen in the terminal window.
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A.3.4 Using a Plain Text Editor and a Terminal Window

1. Create a folder where your Python programs can be located, say with name
mytest under your home folder. This is most conveniently done in the terminal
window since you need to use this window anyway to run the program. The
command for creating a new folder is mkdir mytest.

2. Move to the new folder: cd mytest.
3. Start the editor of your choice.
4. Write a program in the editor, e.g., just the line print ’Hello!’. Save the

program under the name myprog1.py in the mytest folder.
5. Move to the terminal window and write python myprog1.py. You should see

the word Hello! being printed in the window.

A.3.5 Spyder

Spyder is a graphical application for developing and running Python programs,
available on all major platforms. Spyder comes with Anaconda and some other
pre-built environments for scientific computing with Python. On Ubuntu it is con-
veniently installed by sudo apt-get install spyder.

The left part of the Spyder window contains a plain text editor. Click in this
window and write print ’Hello!’ and return. Choose Run from the Run pull-
down menu, and observe the output Hello! in the lower right window where the
output from programs is visible.

You may continue with more advanced statements involving graphics:

import matplotlib.pyplot as plt

import numpy as np

x = np.linspace(0, 4, 101)

y = np.exp(-x)*np.sin(np.pi*x)

plt.plot(x,y)

plt.title(’First test of Spyder’)

plt.savefig(’tmp.png’)

plt.show()

Choosing Run – Run now leads to a separate window with a plot of the function
e�x sin.�x/. Figure A.1 shows how the Spyder application may look like.

The plot file we generate in the above program, tmp.png, is by default found
in the Spyder folder listed in the default text in the top of the program. You can
choose Run – Configure . . . to change this folder as desired. The program you
write is written to a file .temp.py in the same default folder, but any name and
folder can be specified in the standard File – Save as. . . menu.

A convenient feature of Spyder is that the upper right window continuously dis-
plays documentation of the statements you write in the editor to the left.
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Fig. A.1 The Spyder Integrated Development Environment

A.4 The SageMathCloud andWakari Web Services

You can avoid installing Python on your machine completely by using a web service
that allows you to write and run Python programs. Computational science projects
will normally require some kind of visualization and associated graphics packages,
which is not possible unless the service offers IPython notebooks. There are two
excellent web services with notebooks: SageMathCloud at https://cloud.sagemath.
com/ andWakari at https://www.wakari.io/wakari. At both sites you must create an
account before you can write notebooks in the web browser and download them to
your own computer.

A.4.1 Basic Intro to SageMathCloud

Sign in, click on New Project, give a title to your project and decide whether it
should be private or public, click on the project when it appears in the browser,
and click on Create or Import a File, Worksheet, Terminal or Directory. . . . If your
Python program needs graphics, you need to choose IPython Notebook, otherwise
you can choose File. Write the name of the file above the row of buttons. As-
suming we do not need any graphics, we create a plain Python file, say with name
py1.py. By clicking File you are brought to a browser window with a text editor
where you can write Python code. Write some code and click Save. To run the
program, click on the plus icon (New), choose Terminal, and you have a plain Unix
terminal window where you can write python py1.py to run the program. Tabs
over the terminal (or editor) window make it easy to jump between the editor and
the terminal. To download the file, click on Files, point on the relevant line with the
file, and a download icon appears to the very right. The IPython notebook option
works much in the same way, see Sect. A.5.

https://cloud.sagemath.com/
https://cloud.sagemath.com/
https://www.wakari.io/wakari
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A.4.2 Basic Intro toWakari

After having logged in at the wakari.io site, you automatically enter an IPython
notebook with a short introduction to how the notebook can be used. Click on
the New Notebook button to start a new notebook. Wakari enables creating and
editing plain Python files too: click on the Add file icon in pane to the left, fill in the
program name, and you enter an editor where you can write a program. Pressing
Execute launches an IPython session in a terminal window, where you can run the
program by run prog.py if prog.py is the name of the program. To download
the file, select test2.py in the left pane and click on the Download file icon.

There is a pull-down menu where you can choose what type of terminal window
you want: a plain Unix shell, an IPython shell, or an IPython shell with Matplotlib
for plotting. Using the latter, you can run plain Python programs or commands with
graphics. Just choose the type of terminal and click on+Tab to make a new terminal
window of the chosen type.

A.4.3 Installing Your Own Python Packages

Both SageMathCloud and Wakari let you install your own Python packages. To
install any package packagename available at PyPi15, run

Terminal

pip install --user packagename

To install the SciTools package, which is useful when working with this book, run
the command

Terminal

pip install --user -e \
git+https://github.com/hplgit/scitools.git#egg=scitools

A.5 Writing IPython Notebooks

The IPython notebook is a splendid interactive tool for doing science, but it can
also be used as a platform for developing Python code. You can either run it
locally on your computer or in a web service like SageMathCloud or Wakari. In-
stallation on your computer is trivial on Ubuntu, just sudo apt-get install
ipython-notebook, and also on Windows and Mac16 by using Anaconda or En-
thought Canopy for the Python installation.

The interface to the notebook is a web browser: you write all the code and see
all the results in the browser window. There are excellent YouTube videos on how
to use the IPython notebook, so here we provide a very quick “step zero” to get
anyone started.

15 https://pypi.python.org/pypi
16 http://ipython.org/install.html

https://pypi.python.org/pypi
http://ipython.org/install.html
https://pypi.python.org/pypi
http://ipython.org/install.html
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A.5.1 A Simple Program in the Notebook

Start the IPython notebook locally by the command ipython notebook or go to
SageMathCloud or Wakari as described above. The default input area is a cell for
Python code. Type

g = 9.81

v0 = 5

t = 0.6

y = v0*t - 0.5*g*t**2

in a cell and run the cell by clicking on Run Selected (notebook running locally on
your machine) or on the “play” button (notebook running in the cloud). This action
will execute the Python code and initialize the variables g, v0, t, and y. You can
then write print y in a new cell, execute that cell, and see the output of this state-
ment in the browser. It is easy to go back to a cell, edit the code, and re-execute it.

To download the notebook to your computer, choose the File – Download as
menu and select the type of file to be downloaded: the original notebook format
(.ipynb file extension) or a plain Python program version of the notebook (.py file
extension).

A.5.2 Mixing Text, Mathematics, Code, and Graphics

The real strength of IPython notebooks arises when you want to write a report to
document how a problem can be explored and solved. As a teaser, open a new
notebook, click in the first cell, and chooseMarkdown as format (notebook running
locally) or switch from Code to Markdown in the pull-down menu (notebook in
the cloud). The cell is now a text field where you can write text with Markdown17

syntax. Mathematics can be entered as LATEX code. Try some text with inline math-
ematics and an equation on a separate line:

Plot the curve $y=f(x)$, where

$$

f(x) = e^{-x}\sin (2\pi x),\quad x\in [0, 4]

$$

Execute the cell and you will see nicely typeset mathematics in the browser. In the
new cell, add some code to plot f .x/:

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline # make plots inline in the notebook

x = np.linspace(0, 4, 101)

y = np.exp(-x)*np.sin(2*pi*x)

plt.plot(x, y, ’b-’)

plt.xlabel(’x’); plt.ylabel(’y’)

17 http://daringfireball.net/projects/markdown/syntax

http://daringfireball.net/projects/markdown/syntax
http://daringfireball.net/projects/markdown/syntax
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Executing these statements results in a plot in the browser, see Fig. A.2. It was
popular to start the notebook by ipython notebook –pylab to import everything
from numpy and matplotlib.pyplot and make all plots inline, but the –pylab
option is now officially discouraged18. If you want the notebook to behave more as
MATLAB and not use the np and plt prefix, you can instead of the first three lines
above write %pylab.

Fig. A.2 Example on an IPython notebook

18 http://carreau.github.io/posts/10-No-PyLab-Thanks.ipynb.html

http://carreau.github.io/posts/10-No-PyLab-Thanks.ipynb.html
http://carreau.github.io/posts/10-No-PyLab-Thanks.ipynb.html
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