
5Solving Partial Differential Equations

The subject of partial differential equations (PDEs) is enormous. At the same time,
it is very important, since so many phenomena in nature and technology find their
mathematical formulation through such equations. Knowing how to solve at least
some PDEs is therefore of great importance to engineers. In an introductory book
like this, nowhere near full justice to the subject can be made. However, we still
find it valuable to give the reader a glimpse of the topic by presenting a few basic
and general methods that we will apply to a very common type of PDE.

We shall focus on one of the most widely encountered partial differential equa-
tions: the diffusion equation, which in one dimension looks like

@u

@t
D ˇ

@2u

@x2
C g :

The multi-dimensional counterpart is often written as

@u

@t
D ˇr2u C g :

We shall restrict the attention here to the one-dimensional case.
The unknown in the diffusion equation is a function u.x; t/ of space and time.

The physical significance of u depends on what type of process that is described
by the diffusion equation. For example, u is the concentration of a substance if the
diffusion equation models transport of this substance by diffusion. Diffusion pro-
cesses are of particular relevance at the microscopic level in biology, e.g., diffusive
transport of certain ion types in a cell caused by molecular collisions. There is also
diffusion of atoms in a solid, for instance, and diffusion of ink in a glass of water.

One very popular application of the diffusion equation is for heat transport in
solid bodies. Then u is the temperature, and the equation predicts how the temper-
ature evolves in space and time within the solid body. For such applications, the
equation is known as the heat equation. We remark that the temperature in a fluid
is influenced not only by diffusion, but also by the flow of the liquid. If present,
the latter effect requires an extra term in the equation (known as an advection or
convection term).

The term g is known as the source term and represents generation, or loss, of heat
(by some mechanism) within the body. For diffusive transport, g models injection
or extraction of the substance.
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162 5 Solving Partial Differential Equations

We should also mention that the diffusion equation may appear after simplifying
more complicated partial differential equations. For example, flow of a viscous fluid
between two flat and parallel plates is described by a one-dimensional diffusion
equation, where u then is the fluid velocity.

A partial differential equation is solved in some domain ˝ in space and for
a time interval Œ0; T �. The solution of the equation is not unique unless we also
prescribe initial and boundary conditions. The type and number of such conditions
depend on the type of equation. For the diffusion equation, we need one initial con-
dition, u.x; 0/, stating what u is when the process starts. In addition, the diffusion
equation needs one boundary condition at each point of the boundary @˝ of ˝.
This condition can either be that u is known or that we know the normal derivative,
ru � n D @u=@n (n denotes an outward unit normal to @˝).

Let us look at a specific application and how the diffusion equation with initial
and boundary conditions then appears. We consider the evolution of temperature in
a one-dimensional medium, more precisely a long rod, where the surface of the rod
is covered by an insulating material. The heat can then not escape from the surface,
which means that the temperature distribution will only depend on a coordinate
along the rod, x, and time t . At one end of the rod, x D L, we also assume that the
surface is insulated, but at the other end, x D 0, we assume that we have some de-
vice for controlling the temperature of the medium. Here, a function s.t/ tells what
the temperature is in time. We therefore have a boundary condition u.0; t/ D s.t/.
At the other insulated end, x D L, heat cannot escape, which is expressed by the
boundary condition @u.L; t/=@x D 0. The surface along the rod is also insulated
and hence subject to the same boundary condition (here generalized to @u=@n D 0

at the curved surface). However, since we have reduced the problem to one dimen-
sion, we do not need this physical boundary condition in our mathematical model.
In one dimension, we can set ˝ D Œ0; L�.

To summarize, the partial differential equation with initial and boundary condi-
tions reads

@u.x; t/

@t
D ˇ

@2u.x; t/

@x2
C g.x; t/; x 2 .0; L/ ;t 2 .0; T �; (5.1)

u.0; t/ D s.t/; t 2 .0; T �; (5.2)

@

@x
u.L; t/ D 0; t 2 .0; T �; (5.3)

u.x; 0/ D I.x/; x 2 Œ0; L� : (5.4)

Mathematically, we assume that at t D 0, the initial condition (5.4) holds and that
the partial differential equation (5.1) comes into play for t > 0. Similarly, at the end
points, the boundary conditions (5.2) and (5.3) govern u and the equation therefore
is valid for x 2 .0; L/.

Boundary and initial conditions are needed!
The initial and boundary conditions are extremely important. Without them,
the solution is not unique, and no numerical method will work. Unfortunately,
many physical applications have one or more initial or boundary conditions as
unknowns. Such situations can be dealt with if we have measurements of u, but
the mathematical framework is much more complicated.
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What about the source term g in our example with temperature distribution in
a rod? g.x; t/ models heat generation inside the rod. One could think of chemical
reactions at a microscopic level in some materials as a reason to include g. How-
ever, in most applications with temperature evolution, g is zero and heat generation
usually takes place at the boundary (as in our example with u.0; t/ D s.t/).

Before continuing, we may consider an example of how the temperature distri-
bution evolves in the rod. At time t D 0, we assume that the temperature is 10ı C.
Then we suddenly apply a device at x D 0 that keeps the temperature at 50ı C at
this end. What happens inside the rod? Intuitively, you think that the heat genera-
tion at the end will warm up the material in the vicinity of x D 0, and as time goes
by, more and more of the rod will be heated, before the entire rod has a temperature
of 50ı C (recall that no heat escapes from the surface of the rod).

Mathematically, (with the temperature in Kelvin) this example has I.x/ D 283

K, except at the end point: I.0/ D 323 K, s.t/ D 323 K, and g D 0. The figure
below shows snapshots from four different times in the evolution of the temperature.

5.1 Finite DifferenceMethods

We shall now construct a numerical method for the diffusion equation. We know
how to solve ordinary differential equations, so in a way we are able to deal with
the time derivative. Very often in mathematics, a new problem can be solved by
reducing it to a series of problems we know how to solve. In the present case,
it means that we must do something with the spatial derivative @2=@x2 in order
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to reduce the partial differential equation to ordinary differential equations. One
important technique for achieving this, is based on finite difference discretization
of spatial derivatives.

5.1.1 Reduction of a PDE to a System of ODEs

Introduce a spatial mesh in ˝ with mesh points

x0 D 0 < x1 < x2 < � � � < xN D L :

The space between two mesh points xi and xiC1, i.e. the interval Œxi ; xiC1�, is call
a cell. We shall here, for simplicity, assume that each cell has the same length
�x D xiC1 � xi , i D 0; : : : ; N � 1.

The partial differential equation is valid at all spatial points x 2 ˝, but we may
relax this condition and demand that it is fulfilled at the internal mesh points only,
x1; : : : ; xN �1:

@u.xi ; t/

@t
D ˇ

@2u.xi ; t/

@x2
C g.xi ; t/; i D 1; : : : ; N � 1 : (5.5)

Now, at any point xi we can approximate the second-order derivative by a finite
difference:

@2u.xi ; t/

@x2
� u.xiC1; t/ � 2u.xi ; t/ C u.xi�1; t/

�x2
: (5.6)

It is common to introduce a short notation ui.t/ for u.xi ; t/, i.e., u approximated at
some mesh point xi in space. With this new notation we can, after inserting (5.6)
in (5.5), write an approximation to the partial differential equation at mesh point
.xi ; t) as

dui.t/

dt
D ˇ

uiC1.t/ � 2ui.t/ C ui�1.t/

�x2
C gi .t/; i D 1; : : : ; N � 1 : (5.7)

Note that we have adopted the notation gi .t/ for g.xi ; t/ too.
What is (5.7)? This is nothing but a system of ordinary differential equations in

N � 1 unknowns u1.t/; : : : ; uN �1.t/! In other words, with aid of the finite differ-
ence approximation (5.6), we have reduced the single partial differential equation
to a system of ODEs, which we know how to solve. In the literature, this strategy is
called the method of lines.

We need to look into the initial and boundary conditions as well. The initial con-
dition u.x; 0/ D I.x/ translates to an initial condition for every unknown function
ui.t/: ui.0/ D I.xi /, i D 0; : : : ; N . At the boundary x D 0 we need an ODE in
our ODE system, which must come from the boundary condition at this point. The
boundary condition reads u.0; t/ D s.t/. We can derive an ODE from this equation
by differentiating both sides: u0

0.t/ D s0.t/. The ODE system above cannot be used
for u0

0 since that equation involves some quantity u0
�1 outside the domain. Instead,

we use the equation u0
0.t/ D s0.t/ derived from the boundary condition. For this

particular equation we also need to make sure the initial condition is u0.0/ D s.0/

(otherwise nothing will happen: we get u D 283 K forever).
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We remark that a separate ODE for the (known) boundary condition u0 D s.t/

is not strictly needed. We can just work with the ODE system for u1; : : : ; uN , and
in the ODE for u0, replace u0.t/ by s.t/. However, these authors prefer to have an
ODE for every point value ui , i D 0; : : : ; N , which requires formulating the known
boundary at x D 0 as an ODE. The reason for including the boundary values in the
ODE system is that the solution of the system is then the complete solution at all
mesh points, which is convenient, since special treatment of the boundary values is
then avoided.

The condition @u=@x D 0 at x D L is a bit more complicated, but we can
approximate the spatial derivative by a centered finite difference:

@u

@x

ˇ
ˇ
ˇ
ˇ
iDN

� uN C1 � uN �1

2�x
D 0 :

This approximation involves a fictitious point xN C1 outside the domain. A common
trick is to use (5.7) for i D N and eliminate uN C1 by use of the discrete boundary
condition (uN C1 D uN �1):

duN .t/

dt
D ˇ

2uN �1.t/ � 2uN .t/

�x2
C gN .t/ : (5.8)

That is, we have a special version of (5.7) at the boundary i D N .

What about simpler finite differences at the boundary?
Some reader may think that a smarter trick is to approximate the boundary con-
dition @u=@x at x D L by a one-sided difference:

@u

@x

ˇ
ˇ
ˇ
ˇ
iDN

� uN � uN �1

�x
D 0 :

This gives a simple equation uN D uN �1 for the boundary value, and a corre-
sponding ODE u0

N D u0
N �1. However, this approximation has an error of order

�x, while the centered approximation we used above has an error of order �x2.
The finite difference approximation we used for the second-order derivative in
the diffusion equation also has an error of order �x2. Thus, if we use the sim-
pler one-sided difference above, it turns out that we reduce the overall accuracy
of the method.

We are now in a position to summarize how we can approximate the partial
differential equation problem (5.1)–(5.4) by a system of ordinary differential equa-
tions:

du0

dt
D s0.t/; (5.9)

dui

dt
D ˇ

�x2
.uiC1.t/ � 2ui.t/ C ui�1.t// C gi.t/; i D 1; : : : ; N � 1; (5.10)

duN

dt
D 2ˇ

�x2
.uN �1.t/ � uN .t// C gN .t/ : (5.11)
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The initial conditions are

u0.0/ D s.0/; (5.12)

ui .0/ D I.xi /; i D 1; : : : ; N : (5.13)

We can apply any method for systems of ODEs to solve (5.9)–(5.11).

5.1.2 Construction of a Test Problemwith Known Discrete Solution

At this point, it is tempting to implement a real physical case and run it. However,
partial differential equations constitute a non-trivial topic where mathematical and
programming mistakes come easy. A better start is therefore to address a carefully
designed test example where we can check that the method works. The most attrac-
tive examples for testing implementations are those without approximation errors,
because we know exactly what numbers the program should produce. It turns out
that solutions u.x; t/ that are linear in time and in space can be exactly reproduced
by most numerical methods for partial differential equations. A candidate solution
might be

u.x; t/ D .3t C 2/.x � L/ :

Inserting this u in the governing equation gives

3.x � L/ D 0 C g.x; t/ ) g.x; t/ D 3.x � L/ :

What about the boundary conditions? We realize that @u=@x D 3t C 2 for x D L,
which breaks the assumption of @u=@x D 0 at x D L in the formulation of the
numerical method above. Moreover, u.0; t/ D �L.3t C 2/, so we must set s.t/ D
�L.3tC2/ and s0.t/ D �3L. Finally, the initial condition dictates I.x/ D 2.x�L/,
but recall that we must have u0 D s.0/, and ui D I.xi /, i D 1; : : : ; N : it is
important that u0 starts out at the right value dictated by s.t/ in case I.0/ is not
equal this value.

First we need to generalize our method to handle @u=@x D 	 ¤ 0 at x D L. We
then have

uN C1.t/ � uN �1.t/

2�x
D 	 ) uN C1 D uN �1 C 2	�x;

which inserted in (5.7) gives

duN .t/

dt
D ˇ

2uN �1.t/ C 2	�x � 2uN .t/

�x2
C gN .t/ : (5.14)

5.1.3 Implementation: Forward Euler Method

In particular, we may use the Forward Euler method as implemented in the
general function ode_FE in the module ode_system_FE from Sect. 4.2.6. The
ode_FE function needs a specification of the right-hand side of the ODE system.
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This is a matter of translating (5.9), (5.10), and (5.14) to Python code (in file
test_diffusion_pde_exact_linear.py):

def rhs(u, t):

N = len(u) - 1

rhs = zeros(N+1)

rhs[0] = dsdt(t)

for i in range(1, N):

rhs[i] = (beta/dx**2)*(u[i+1] - 2*u[i] + u[i-1]) + \

g(x[i], t)

rhs[N] = (beta/dx**2)*(2*u[N-1] + 2*dx*dudx(t) -

2*u[N]) + g(x[N], t)

return rhs

def u_exact(x, t):

return (3*t + 2)*(x - L)

def dudx(t):

return (3*t + 2)

def s(t):

return u_exact(0, t)

def dsdt(t):

return 3*(-L)

def g(x, t):

return 3*(x-L)

Note that dudx(t) is the function representing the 	 parameter in (5.14). Also note
that the rhs function relies on access to global variables beta, dx, L, and x, and
global functions dsdt, g, and dudx.

We expect the solution to be correct regardless of N and �t , so we can choose
a small N , N D 4, and �t D 0:1. A test function with N D 4 goes like

def test_diffusion_exact_linear():

global beta, dx, L, x # needed in rhs

L = 1.5

beta = 0.5

N = 4

x = linspace(0, L, N+1)

dx = x[1] - x[0]

u = zeros(N+1)

U_0 = zeros(N+1)

U_0[0] = s(0)

U_0[1:] = u_exact(x[1:], 0)

dt = 0.1

print dt

u, t = ode_FE(rhs, U_0, dt, T=1.2)

https://github.com/hplgit/prog4comp/tree/master/src/py/test_diffusion_pde_exact_linear.py
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tol = 1E-12

for i in range(0, u.shape[0]):

diff = abs(u_exact(x, t[i]) - u[i,:]).max()

assert diff < tol, ’diff=%.16g’ % diff

print ’diff=%g at t=%g’ % (diff, t[i])

With N D 4 we reproduce the linear solution exactly. This brings confidence to the
implementation, which is just what we need for attacking a real physical problem
next.

Problems with reusing the rhs function
The rhs functionmust take u and t as arguments, because that is required by the
ode_FE function. What about the variables beta, dx, L, x, dsdt, g, and dudx
that the rhs function needs? These are global in the solution we have presented
so far. Unfortunately, this has an undesired side effect: we cannot import the rhs
function in a new file, define dudx and dsdt in this new file and get the imported
rhs to use these functions. The imported rhs will use the global variables,
including functions, in its own module.

How can we find solutions to this problem? Technically, we must pack the ex-
tra data beta, dx, L, x, dsdt, g, and dudx with the rhs function, which requires
more advanced programming considered beyond the scope of this text.

A class is the simplest construction for packing a function together with data,
see the beginning of Chapter 7 in [13] for a detailed example on how classes
can be used in such a context. Another solution in Python, and especially in
computer languages supporting functional programming, is so called closures.
They are also covered in Chapter 7 in the mentioned reference and behave in
a magic way. The third solution is to allow an arbitrary set of arguments for rhs
in a list to be transferred to ode_FE and then back to rhs. Appendix H.4 in [13]
explains the technical details.

5.1.4 Application: Heat Conduction in a Rod

Let us return to the case with heat conduction in a rod (5.1)–(5.4). Assume that
the rod is 50 cm long and made of aluminum alloy 6082. The ˇ parameter equals
�=.%c/, where � is the heat conduction coefficient, % is the density, and c is the
heat capacity. We can find proper values for these physical quantities in the case of
aluminum alloy 6082: % D 2:7 � 103 kg/m3, � D 200 W

mK, c D 900 J
Kkg. This

results in ˇ D �=.%c/ D 8:2 � 10�5 m2=s. Preliminary simulations show that we are
close to a constant steady state temperature after 1 h, i.e., T D 3600 s.

The rhs function from the previous section can be reused, only the functions s,
dsdt, g, and dudxmust be changed (see file rod_FE.py):

def dudx(t):

return 0

def s(t):

return 323

https://github.com/hplgit/prog4comp/tree/master/src/py/rod_FE.py


5.1 Finite Difference Methods 169

def dsdt(t):

return 0

def g(x, t):

return 0

Parameters can be set as

L = 0.5

beta = 8.2E-5

N = 40

x = linspace(0, L, N+1)

dx = x[1] - x[0]

u = zeros(N+1)

U_0 = zeros(N+1)

U_0[0] = s(0)

U_0[1:] = 283

Let us use �t D 0:00034375. We can now call ode_FE and then make an animation
on the screen to see how u.x; t/ develops in time:

t0 = time.clock()

from ode_system_FE import ode_FE

u, t = ode_FE(rhs, U_0, dt, T=1*60*60)

t1 = time.clock()

print ’CPU time: %.1fs’ % (t1 - t0)

# Make movie

import os

os.system(’rm tmp_*.png’)

import matplotlib.pyplot as plt

plt.ion()

y = u[0,:]

lines = plt.plot(x, y)

plt.axis([x[0], x[-1], 273, s(0)+10])

plt.xlabel(’x’)

plt.ylabel(’u(x,t)’)

counter = 0

# Plot each of the first 100 frames, then increase speed by 10x

change_speed = 100

for i in range(0, u.shape[0]):

print t[i]

plot = True if i <= change_speed else i % 10 == 0

lines[0].set_ydata(u[i,:])

if i > change_speed:

plt.legend([’t=%.0f 10x’ % t[i]])

else:

plt.legend([’t=%.0f’ % t[i]])

plt.draw()

if plot:

plt.savefig(’tmp_%04d.png’ % counter)

counter += 1

#time.sleep(0.2)
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The plotting statements update the u.x; t/ curve on the screen. In addi-
tion, we save a fraction of the plots to files tmp_0000.png, tmp_0001.png,
tmp_0002.png, and so on. These plots can be combined to ordinary video files.
A common tool is ffmpeg or its sister avconv.

These programs take the same type of command-line options. To make a Flash
video movie.flv, run

Terminal

Terminal> ffmpeg -i tmp_%04d.png -r 4 -vcodec flv movie.flv

The -i option specifies the naming of the plot files in printf syntax, and -r specifies
the number of frames per second in the movie. On Mac, run ffmpeg instead of
avconvwith the same options. Other video formats, such as MP4, WebM, and Ogg
can also be produced:

Terminal

Terminal> ffmpeg -i tmp_%04d.png -r 4 -vcodec libx264 movie.mp4
Terminal> ffmpeg -i tmp_%04d.png -r 4 -vcodec libvpx movie.webm
Terminal> ffmpeg -i tmp_%04d.png -r 4 -vcodec libtheora movie.ogg

The results of a simulation start out as in Figs. 5.1 and 5.2. We see that the solu-
tion definitely looks wrong. The temperature is expected to be smooth, not having
such a saw-tooth shape. Also, after some time (Fig. 5.2), the temperature starts to
increase much more than expected. We say that this solution is unstable, meaning
that it does not display the same characteristics as the true, physical solution. Even
though we tested the code carefully in the previous section, it does not seem to work
for a physical application! How can that be?

The problem is that �t is too large, making the solution unstable. It turns out
that the Forward Euler time integration method puts a restriction on the size of �t .
For the heat equation and the way we have discretized it, this restriction can be
shown to be [15]

�t � �x2

2ˇ
: (5.15)

This is called a stability criterion. With the chosen parameters, (5.15) tells us that
the upper limit is �t D 0:0003125, which is smaller than our choice above. Re-
running the case with a �t equal to �x2=.2ˇ/, indeed shows a smooth evolution of
u.x; t/. Find the program rod_FE.py and run it to see an animation of the u.x; t/

function on the screen.

Scaling and dimensionless quantities
Our setting of parameters required finding three physical properties of a certain
material. The time interval for simulation and the time step depend crucially on
the values for ˇ and L, which can vary significantly from case to case. Often, we
are more interested in how the shape of u.x; t/ develops, than in the actual u, x,
and t values for a specific material. We can then simplify the setting of physical
parameters by scaling the problem.
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Fig. 5.1 Unstable simulation of the temperature in a rod

Fig. 5.2 Unstable simulation of the temperature in a rod



172 5 Solving Partial Differential Equations

Scaling means that we introduce dimensionless independent and dependent
variables, here denoted by a bar:

Nu D u � u�

uc � u� ; Nx D x

xc

; Nt D t

tc
;

where uc is a characteristic size of the temperature, u� is some reference temper-
ature, while xc and tc are characteristic time and space scales. Here, it is natural
to choose u� as the initial condition, and set uc to the stationary (end) temper-
ature. Then Nu 2 Œ0; 1�, starting at 0 and ending at 1 as t ! 1. The length L

is xc , while choosing tc is more challenging, but one can argue for tc D L2=ˇ.
The resulting equation for Nu reads

@ Nu
@Nt D @2 Nu

@ Nx2
; Nx 2 .0; 1/ :

Note that in this equation, there are no physical parameters! In other words, we
have found a model that is independent of the length of the rod and the material
it is made of (!).

We can easily solve this equation with our program by setting ˇ D 1, L D 1,
I.x/ D 0, and s.t/ D 1. It turns out that the total simulation time (to “infin-
ity”) can be taken as 1.2. When we have the solution Nu. Nx; Nt/, the solution with
dimension Kelvin, reflecting the true temperature in our medium, is given by

u.x; t/ D u� C .uc � u�/ Nu.x=L; tˇ=L2/ :

Through this formula we can quickly generate the solutions for a rod made of
aluminum, wood, or rubber - it is just a matter of plugging in the right ˇ value.

Figure 5.3 shows four snapshots of the scaled (dimensionless) solution N. Nx; Nt /.
The power of scaling is to reduce the number of physical parameters in a prob-

lem, and in the present case, we found one single problem that is independent of
the material (ˇ) and the geometry (L).

5.1.5 Vectorization

Occasionally in this book, we show how to speed up code by replacing loops over
arrays by vectorized expressions. The present problem involves a loop for comput-
ing the right-hand side:

for i in range(1, N):

rhs[i] = (beta/dx**2)*(u[i+1] - 2*u[i] + u[i-1]) + g(x[i], t)

This loop can be replaced by a vectorized expression with the following reasoning.
We want to set all the inner points at once: rhs[1:N-1] (this goes from index 1
up to, but not including, N). As the loop index i runs from 1 to N-1, the u[i+1]
term will cover all the inner u values displaced one index to the right (compared
to 1:N-1), i.e., u[2:N]. Similarly, u[i-1] corresponds to all inner u values dis-
placed one index to the left: u[0:N-2]. Finally, u[i] has the same indices as rhs:
u[1:N-1]. The vectorized loop can therefore be written in terms of slices:
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Fig. 5.3 Snapshots of the dimensionless solution of a scaled problem

rhs[1:N-1] = (beta/dx**2)*(u[2:N+1] - 2*u[1:N] + u[0:N-1]) +

g(x[1:N], t)

This rewrite speeds up the code by about a factor of 10. A complete code is found
in the file rod_FE_vec.py.

5.1.6 Using Odespy to Solve the System of ODEs

Let us now show how to apply a general ODE package like Odespy (see Sect. 4.3.6)
to solve our diffusion problem. As long as we have defined a right-hand side func-
tion rhs this is very straightforward:

import odespy

solver = odespy.RKFehlberg(rhs)

solver.set_initial_condition(U_0)

T = 1.2

N_t = int(round(T/float(dt)))

time_points = linspace(0, T, N_t+1)

u, t = solver.solve(time_points)
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Fig. 5.4 Time steps used by the Runge-Kutta-Fehlberg method: error tolerance 10�3 (left) and
10�6 (right)

# Check how many time steps are required by adaptive vs

# fixed-step methods

if hasattr(solver, ’t_all’):

print ’# time steps:’, len(solver.t_all)

else:

print ’# time steps:’, len(t)

The very nice thing is that we can now easily experiment with many different
integration methods. Trying out some simple ones first, like RK2 and RK4, quickly
reveals that the time step limitation of the Forward Euler scheme also applies to
these more sophisticated Runge-Kutta methods, but their accuracy is better. How-
ever, the Odespy package offers also adaptive methods. We can then specify a much
larger time step in time_points, and the solver will figure out the appropriate
step. Above we indicated how to use the adaptive Runge-Kutta-Fehlberg 4–5 solver.
While the �t corresponding to the Forward Euler method requires over 8000 steps
for a simulation, we started the RKFehlbergmethod with 100 times this time step
and in the end it required just slightly more than 2500 steps, using the default tol-
erance parameters. Lowering the tolerance did not save any significant amount of
computational work. Figure 5.4 shows a comparison of the length of all the time
steps for two values of the tolerance. We see that the influence of the tolerance is mi-
nor in this computational example, so it seems that the blow-up due to instability is
what governs the time step size. The nice feature of this adaptive method is that we
can just specify when we want the solution to be computed, and the method figures
out on its own what time step that has to be used because of stability restrictions.

We have seen how easy it is to apply sophisticated methods for ODEs to this
PDE example. We shall take the use of Odespy one step further in the next section.

5.1.7 Implicit Methods

A major problem with the stability criterion (5.15) is that the time step becomes
very small if �x is small. For example, halving �x requires four times as many
time steps and eight times the work. Now, with N D 40, which is a reasonable
resolution for the test problem above, the computations are very fast. What takes
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time, is the visualization on the screen, but for that purpose one can visualize only
a subset of the time steps. However, there are occasions when you need to take
larger time steps with the diffusion equation, especially if interest is in the long-
term behavior as t ! 1. You must then turn to implicit methods for ODEs. These
methods require the solutions of linear systems, if the underlying PDE is linear, and
systems of nonlinear algebraic equations if the underlying PDE is non-linear.

The simplest implicit method is the Backward Euler scheme, which puts no re-
strictions on �t for stability, but obviously, a large �t leads to inaccurate results.
The Backward Euler scheme for a scalar ODE u0 D f .u; t/ reads

unC1 � un

�t
D f .unC1; tnC1/ :

This equation is to be solved for unC1. If f is linear in u, it is a linear equation,
but if f is nonlinear in u, one needs approximate methods for nonlinear equations
(Chap. 6).

In our case, we have a system of linear ODEs (5.9)–(5.11). The Backward Euler
scheme applied to each equation leads to

unC1
0 � un

0

�t
D s0.tnC1/; (5.16)

unC1
i � un

i

�t
D ˇ

�x2
.unC1

iC1 � 2unC1
i C unC1

i�1 / C gi .tnC1/; (5.17)

i D 1; : : : ; N � 1;

unC1
N � un

N

�t
D 2ˇ

�x2
.unC1

N �1 � unC1
N / C gi.tnC1/ : (5.18)

This is a system of linear equations in the unknowns unC1
i , i D 0; : : : ; N , which

is easy to realize by writing out the equations for the case N D 3, collecting all
the unknown terms on the left-hand side and all the known terms on the right-hand
side:

unC1
0 D un

0 C �t s0.tnC1/; (5.19)

unC1
1 � �t

ˇ

�x2
.unC1

2 � 2unC1
1 C unC1

0 / D un
1 C �t g1.tnC1/; (5.20)

unC1
2 � �t

2ˇ

�x2
.unC1

1 � unC1
2 / D un

2 C �t g2.tnC1/ : (5.21)

A system of linear equations like this, is usually written on matrix form Au D b,
where A is a coefficient matrix, u D .unC1

0 ; : : : ; nnC1
N / is the vector of unknowns,

and b is a vector of known values. The coefficient matrix for the case (5.19)–(5.21)
becomes

A D

0

B
@

1 0 0

��t
ˇ

�x2 1 C 2�t
ˇ

�x2 ��t
ˇ

�x2

0 ��t
2ˇ

�x2 1 C �t
2ˇ

�x2

1

C
A



176 5 Solving Partial Differential Equations

In the general case (5.16)–(5.18), the coefficient matrix is an .N C 1/ � .N C 1/

matrix with zero entries, except for

A1;1 D 1 (5.22)

Ai;i�1 D ��t
ˇ

�x2
; i D 2; : : : ; N � 1 (5.23)

Ai;iC1 D ��t
ˇ

�x2
; i D 2; : : : ; N � 1 (5.24)

Ai;i D 1 C 2�t
ˇ

�x2
; i D 2; : : : ; N � 1 (5.25)

AN;N �1 D ��t
2ˇ

�x2
(5.26)

AN;N D 1 C �t
2ˇ

�x2
(5.27)

If we want to apply general methods for systems of ODEs on the form u0 D
f .u; t/, we can assume a linear f .u; t/ D Ku. The coefficient matrix K is found
from the right-hand side of (5.16)–(5.18) to be

K1;1 D 0 (5.28)

Ki;i�1 D ˇ

�x2
; i D 2; : : : ; N � 1 (5.29)

Ki;iC1 D ˇ

�x2
; i D 2; : : : ; N � 1 (5.30)

Ki;i D � 2ˇ

�x2
; i D 2; : : : ; N � 1 (5.31)

KN;N �1 D 2ˇ

�x2
(5.32)

KN;N D � 2ˇ

�x2
(5.33)

We see that A D I � �t K.
To implement the Backward Euler scheme, we can either fill a matrix and call

a linear solver, or we can apply Odespy. We follow the latter strategy. Implicit
methods in Odespy need the K matrix above, given as an argument jac (Jacobian
of f ) in the call to odespy.BackwardEuler. Here is the Python code for the
right-hand side of the ODE system (rhs) and the K matrix (K) as well as state-
ments for initializing and running the Odespy solver BackwardEuler (in the file
rod_BE.py):

def rhs(u, t):

N = len(u) - 1

rhs = zeros(N+1)

rhs[0] = dsdt(t)

for i in range(1, N):

rhs[i] = (beta/dx**2)*(u[i+1] - 2*u[i] + u[i-1]) + \

g(x[i], t)

rhs[N] = (beta/dx**2)*(2*u[i-1] + 2*dx*dudx(t) -

2*u[i]) + g(x[N], t)

return rhs

https://github.com/hplgit/prog4comp/tree/master/src/py/rod_BE.py
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def K(u, t):

N = len(u) - 1

K = zeros((N+1,N+1))

K[0,0] = 0

for i in range(1, N):

K[i,i-1] = beta/dx**2

K[i,i] = -2*beta/dx**2

K[i,i+1] = beta/dx**2

K[N,N-1] = (beta/dx**2)*2

K[N,N] = (beta/dx**2)*(-2)

return K

import odespy

solver = odespy.BackwardEuler(rhs, f_is_linear=True, jac=K)

solver = odespy.ThetaRule(rhs, f_is_linear=True, jac=K, theta=0.5)

solver.set_initial_condition(U_0)

T = 1*60*60

N_t = int(round(T/float(dt)))

time_points = linspace(0, T, N_t+1)

u, t = solver.solve(time_points)

The file rod_BE.py has all the details and shows a movie of the solution. We can
run it with any �t we want, its size just impacts the accuracy of the first steps.

Odespy solvers apply densematrices!
Looking at the entries of the K matrix, we realize that there are at maximum
three entries different from zero in each row. Therefore, most of the entries
are zeroes. The Odespy solvers expect dense square matrices as input, here
with .N C 1/ � .N C 1/ elements. When solving the linear systems, a lot of
storage and work are spent on the zero entries in the matrix. It would be much
more efficient to store the matrix as a tridiagonal matrix and apply a specialized
Gaussian elimination solver for tridiagonal systems. Actually, this reduces the
work from the order N 3 to the order N .

In one-dimensional diffusion problems, the savings of using a tridiagonal ma-
trix are modest in practice, since the matrices are very small anyway. In two- and
three-dimensional PDE problems, however, one cannot afford dense square ma-
trices. Rather, one must resort to more efficient storage formats and algorithms
tailored to such formats, but this is beyond the scope of the present text.

5.2 Exercises

Exercise 5.1: Simulate a diffusion equation by hand
Consider the problem given by (5.9), (5.10) and (5.14). Set N D 2 and com-
pute u0

i , u1
i and u2

i by hand for i D 0; 1; 2. Use these values to construct a test
function for checking that the implementation is correct. Copy useful functions
from test_diffusion_pde_exact_linear.py and make a new test function
test_diffusion_hand_calculation.
Filename: test_rod_hand_calculations.py.
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Exercise 5.2: Compute temperature variations in the ground
The surface temperature at the ground shows daily and seasonal oscillations. When
the temperature rises at the surface, heat is propagated into the ground, and the
coefficient ˇ in the diffusion equation determines how fast this propagation is. It
takes some time before the temperature rises down in the ground. At the surface,
the temperature has then fallen. We are interested in how the temperature varies
down in the ground because of temperature oscillations on the surface.

Assuming homogeneous horizontal properties of the ground, at least locally, and
no variations of the temperature at the surface at a fixed point of time, we can ne-
glect the horizontal variations of the temperature. Then a one-dimensional diffusion
equation governs the heat propagation along a vertical axis called x. The surface
corresponds to x D 0 and the x axis point downwards into the ground. There is
no source term in the equation (actually, if rocks in the ground are radioactive, they
emit heat and that can be modeled by a source term, but this effect is neglected
here).

At some depth x D L we assume that the heat changes in x vanish, so @u=@x D
0 is an appropriate boundary condition at x D L. We assume a simple sinusoidal
temperature variation at the surface:

u.0; t/ D T0 C Ta sin

�
2�

P
t

�

;

where P is the period, taken here as 24 hours (24 � 60 � 60 s). The ˇ coefficient may
be set to 10�6 m2=s. Time is then measured in seconds. Set appropriate values for
T0 and Ta.

a) Show that the present problem has an analytical solution of the form

u.x; t/ D A C Be�rx sin.!t � rx/;

for appropriate values of A, B , r , and !.
b) Solve this heat propagation problem numerically for some days and animate the

temperature. You may use the Forward Euler method in time. Plot both the
numerical and analytical solution. As initial condition for the numerical solu-
tion, use the exact solution during program development, and when the curves
coincide in the animation for all times, your implementation works, and you can
then switch to a constant initial condition: u.x; 0/ D T0. For this latter initial
condition, how many periods of oscillations are necessary before there is a good
(visual) match between the numerical and exact solution (despite differences at
t D 0)?

Filename: ground_temp.py.

Exercise 5.3: Compare implicit methods
An equally stable, but more accurate method than the Backward Euler scheme, is
the so-called 2-step backward scheme, which for an ODE u0 D f .u; t/ can be
expressed by

3unC1 � 4un C un�1

2�t
D f .unC1; tnC1/ :
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The Odespy package offers this method as odespy.Backward2Step. The purpose
of this exercise is to compare three methods and animate the three solutions:

1. The Backward Euler method with �t D 0:001

2. The backward 2-step method with �t D 0:001

3. The backward 2-step method with �t D 0:01

Choose the model problem from Sect. 5.1.4.
Filename: rod_BE_vs_B2Step.py.

Exercise 5.4: Explore adaptive and implicit methods
We consider the same problem as in Exercise 5.2. Now we want to explore the use
of adaptive and implicit methods from Odespy to see if they are more efficient than
the Forward Euler method. Assume that you want the accuracy provided by the
Forward Euler method with its maximum �t value. Since there exists an analytical
solution, you can compute an error measure that summarizes the error in space and
time over the whole simulation:

E D
s

�x�t
X

i

X

n

.U n
i � un

i /2 :

Here, U n
i is the exact solution. Use the Odespy package to run the following implicit

and adaptive solvers:

1. BackwardEuler
2. Backward2Step
3. RKFehlberg

Experiment to see if you can use larger time steps than what is required by the
Forward Euler method and get solutions with the same order of accuracy.

Hint To avoid oscillations in the solutions when using the RKFehlberg method, the
rtol and atol parameters to RKFFehlberg must be set no larger than 0.001 and
0.0001, respectively. You can print out solver_RKF.t_all to see all the time steps
used by the RKFehlberg solver (if solver is the RKFehlberg object). You can then
compare the number of time steps with what is required by the other methods.
Filename: ground_temp_adaptive.py.

Exercise 5.5: Investigate the � rule

a) The Crank-Nicolson method for ODEs is very popular when combined with
diffusion equations. For a linear ODE u0 D au it reads

unC1 � un

�t
D 1

2
.aun C aunC1/ :

Apply the Crank-Nicolson method in time to the ODE system for a one-
dimensional diffusion equation. Identify the linear system to be solved.



180 5 Solving Partial Differential Equations

b) The Backward Euler, Forward Euler, and Crank-Nicolson methods can be given
a unified implementation. For a linear ODE u0 D au this formulation is known
as the � rule:

unC1 � un

�t
D .1 � �/aun C �aunC1 :

For � D 0 we recover the Forward Euler method, � D 1 gives the Backward
Euler scheme, and � D 1=2 corresponds to the Crank-Nicolson method. The
approximation error in the � rule is proportional to �t , except for � D 1=2

where it is proportional to �t2. For � � 1=2 the method is stable for all �t .
Apply the � rule to the ODE system for a one-dimensional diffusion equation.
Identify the linear system to be solved.

c) Implement the � rule with aid of the Odespy package. The relevant object name
is ThetaRule:

solver = odespy.ThetaRule(rhs, f_is_linear=True, jac=K, theta=0.5)

d) Consider the physical application from Sect. 5.1.4. Run this case with the � rule
and � D 1=2 for the following values of �t : 0.001, 0.01, 0.05. Report what you
see.

Filename: rod_ThetaRule.py.

Remarks Despite the fact that the Crank-Nicolson method, or the � rule with � D
1=2, is theoretically more accurate than the Backward Euler and Forward Euler
schemes, it may exhibit non-physical oscillations as in the present example if the
solution is very steep. The oscillations are damped in time, and decreases with de-
creasing �t . To avoid oscillations one must have �t at maximum twice the stability
limit of the Forward Euler method. This is one reason why the Backward Euler
method (or a 2-step backward scheme, see Exercise 5.3) are popular for diffusion
equations with abrupt initial conditions.

Exercise 5.6: Compute the diffusion of a Gaussian peak
Solve the following diffusion problem:

@u

@t
D ˇ

@2u

@x2
; x 2 .�1; 1/; t 2 .0; T � (5.34)

u.x; 0/ D 1p
2�

exp
�

� x2

22

�

; x 2 Œ�1; 1�; (5.35)

@

@x
u.�1; t/ D 0 t 2 .0; T �; (5.36)

@

@x
u.1; t/ D 0 t 2 .0; T � : (5.37)

The initial condition is the famous and widely usedGaussian functionwith standard
deviation (or “width”)  , which is here taken to be small,  D 0:01, such that the
initial condition is a peak. This peak will then diffuse and become lower and wider.
Compute u.x; t/ until u becomes approximately constant over the domain.
Filename: gaussian_diffusion.py.
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Remarks Running the simulation with  D 0:2 results in a constant solution u � 1

as t ! 1, while one might expect from “physics of diffusion” that the solution
should approach zero. The reason is that we apply Neumann conditions as bound-
ary conditions. One can then easily show that the area under the u curve remains
constant. Integrating the PDE gives

1Z

�1

@u

@t
dx D ˇ

1Z

�1

@d 2u

@x2
dx :

Using the Gauss divergence theorem on the integral on the right-hand and moving
the time-derivative outside the integral on the left-hand side results in

@

@t

1Z

�1

u.x; t/dx D ˇ

�
@du

@x

	1

�1

D 0:

(Recall that @u=@x D 0 at the end points.) The result means that
R 1

�1
udx remains

constant during the simulation. Giving the PDE an interpretation in terms of heat
conduction can easily explain the result: with Neumann conditions no heat can
escape from the domain so the initial heat will just be evenly distributed, but not leak
out, so the temperature cannot go to zero (or the scaled and translated temperature
u, to be precise). The area under the initial condition is 1, so with a sufficiently fine
mesh, u ! 1, regardless of  .

Exercise 5.7: Vectorize a function for computing the area of a polygon
Vectorize the implementation of the function for computing the area of a polygon
in Exercise 2.5. Make a test function that compares the scalar implementation in
Exercise 2.5 and the new vectorized implementation for the test cases used in Exer-
cise 2.5.

Hint Notice that the formula x1y2 C x2y3 C � � � C xn�1yn D Pn�1
iD0 xiyiC1 is

the dot product of two vectors, x[:-1] and y[1:], which can be computed as
numpy.dot(x[:-1], y[1:]), or more explicitly as numpy.sum(x[:-1]*y[1:]).
Filename: polyarea_vec.py.

Exercise 5.8: Explore symmetry
One can observe (and also mathematically prove) that the solution u.x; t/ of the
problem in Exercise 5.6 is symmetric around x D 0: u.�x; t/ D u.x; t/. In such
a case, we can split the domain in two and compute u in only one half, Œ�1; 0�

or Œ0; 1�. At the symmetry line x D 0 we have the symmetry boundary condition
@u=@x D 0. Reformulate the problem in Exercise 5.6 such that we compute only
for x 2 Œ0; 1�. Display the solution and observe that it equals the right part of the
solution in Exercise 5.6.
Filename: symmetric_gaussian_diffusion.py.
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Remarks In 2D and 3D problems, where the CPU time to compute a solution of
PDE can be hours and days, it is very important to utilize symmetry as we do above
to reduce the size of the problem.

Also note the remarks in Exercise 5.6 about the constant area under the u.x; t/

curve: here, the area is 0.5 and u ! 0:5 as t ! 0:5 (if the mesh is sufficiently
fine - one will get convergence to smaller values for small  if the mesh is not fine
enough to properly resolve a thin-shaped initial condition).

Exercise 5.9: Compute solutions as t ! 1
Many diffusion problems reach a stationary time-independent solution as t ! 1.
The model problem from Sect. 5.1.4 is one example where u.x; t/ D s.t/ D const
for t ! 1. When u does not depend on time, the diffusion equation reduces to

�ˇu00.x/ D f .x/;

in one dimension, and
�ˇr2u D f .x/;

in 2D and 3D. This is the famous Poisson equation, or if f D 0, it is known as the
Laplace equation. In this limit t ! 1, there is no need for an initial condition, but
the boundary conditions are the same as for the diffusion equation.

We now consider a one-dimensional problem

� u00.x/ D 0; x 2 .0; L/; u.0/ D C; u0.L/ D 0; (5.38)

which is known as a two-point boundary value problem. This is nothing but the
stationary limit of the diffusion problem in Sect. 5.1.4. How can we solve such
a stationary problem (5.38)? The simplest strategy, when we already have a solver
for the corresponding time-dependent problem, is to use that solver and simulate
until t ! 1, which in practice means that u.x; t/ no longer changes in time (within
some tolerance).

A nice feature of implicit methods like the Backward Euler scheme is that one
can take one very long time step to “infinity” and produce the solution of (5.38).

a) Let (5.38) be valid at mesh points xi in space, discretize u00 by a finite difference,
and set up a system of equations for the point values ui ,i D 0; : : : ; N , where ui

is the approximation at mesh point xi .
b) Show that if �t ! 1 in (5.16) - (5.18), it leads to the same equations as in a).
c) Demonstrate, by running a program, that you can take one large time step with

the Backward Euler scheme and compute the solution of (5.38). The solution is
very boring since it is constant: u.x/ D C .

Filename: rod_stationary.py.

Remarks If the interest is in the stationary limit of a diffusion equation, one can
either solve the associated Laplace or Poisson equation directly, or use a Backward
Euler scheme for the time-dependent diffusion equation with a very long time step.
Using a Forward Euler scheme with small time steps is typically inappropriate in
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such situations because the solution changes more and more slowly, but the time
step must still be kept small, and it takes “forever” to approach the stationary state.
This is yet another example why one needs implicit methods like the Backward
Euler scheme.

Exercise 5.10: Solve a two-point boundary value problem
Solve the following two-point boundary-value problem

u00.x/ D 2; x 2 .0; 1/; u.0/ D 0; u.1/ D 1 :

Hint Do Exercise 5.9. Modify the boundary condition in the code so it incorporates
a known value for u.1/.
Filename: 2ptBVP.py.
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