
1The First Few Steps

1.1 What Is a Program? AndWhat Is Programming?

Today, most people are experienced with computer programs, typically programs
such asWord, Excel, PowerPoint, Internet Explorer, and Photoshop. The interaction
with such programs is usually quite simple and intuitive: you click on buttons, pull
down menus and select operations, drag visual elements into locations, and so forth.
The possible operations you can do in these programs can be combined in seemingly
an infinite number of ways, only limited by your creativity and imagination.

Nevertheless, programs often make us frustrated when they cannot do what we
wish. One typical situation might be the following. Say you have some measure-
ments from a device, and the data are stored in a file with a specific format. You

1© The Author(s) 2016
S. Linge, H.P. Langtangen, Programming for Computations – Python,
Texts in Computational Science and Engineering 15, DOI 10.1007/978-3-319-32428-9_1

2 1 The First Few Steps

may want to analyze these data in Excel and make some graphics out of it. How-
ever, assume there is no menu in Excel that allows you to import data in this specific
format. Excel can work with many different data formats, but not this one. You start
searching for alternatives to Excel that can do the same and read this type of data
files. Maybe you cannot find any ready-made program directly applicable. You
have reached the point where knowing how to write programs on your own would
be of great help to you! With some programming skills, you may write your own
little program which can translate one data format to another. With that little piece
of tailored code, your data may be read and analyzed, perhaps in Excel, or perhaps
by a new program tailored to the computations that the measurement data demand.

The real power of computers can only be utilized if you can program them.
By programming you can get the computer to do (most often!) exactly what you
want. Programming consists of writing a set of instructions in a very specialized
language that has adopted words and expressions from English. Such languages
are known as programming or computer languages. The set of instructions is given
to a program which can translate the meaning of the instructions into real actions
inside the computer.

The purpose of this book is to teach you to write such instructions dedicated to
solve mathematical and engineering problems by fundamental numerical methods.

There are numerous computer languages for different purposes. Within the en-
gineering area, the most widely used computer languages are Python, MATLAB,
Octave, Fortran, C, C++, and to some extent Maple, and Mathematica. How you
write the instructions (i.e. the syntax) differs between the languages. Let us use an
analogy.

Assume you are an international kind of person, having friends abroad in Eng-
land, Russia and China. They want to try your favorite cake. What can you do?
Well, you may write down the recipe in those three languages and send them over.
Now, if you have been able to think correctly when writing down the recipe, and
you have written the explanations according to the rules in each language, each of
your friends will produce the same cake. Your recipe is the “computer program”,
while English, Russian and Chinese represent the “computer languages” with their
own rules of how to write things. The end product, though, is still the same cake.
Note that you may unintentionally introduce errors in your “recipe”. Depending on
the error, this may cause “baking execution” to stop, or perhaps produce the wrong
cake. In your computer program, the errors you introduce are called bugs (yes,
small insects! . . . for historical reasons), and the process of fixing them is called
debugging. When you try to run your program that contains errors, you usually
get warnings or error messages. However, the response you get depends on the er-
ror and the programming language. You may even get no response, but simply the
wrong “cake”. Note that the rules of a programming language have to be followed
very strictly. This differs from languages like English etc., where the meaning might
be understood even with spelling errors and “slang” included.

This book comes in two versions, one that is based on Python, and one based on
Matlab. Both Python and Matlab represent excellent programming environments
for scientific and engineering tasks. The version you are reading now, is the Python
version.

Some of Python’s strong properties deserve mention here: Many global func-
tions can be placed in only one file, functions are straightforwardly transferred as

1.2 A Python Programwith Variables 3

arguments to other functions, there is good support for interfacing C, C++ and For-
tran code (i.e., a Python program may use code written in other languages), and
functions explicitly written for scalar input often work fine (without modification)
also with vector input. Another important thing, is that Python is available for free.
It can be downloaded from the Internet and will run on most platforms.

Readers who want to expand their scientific programming skills beyond the
introductory level of the present exposition, are encouraged to study the book
A Primer on Scientific Programming with Python [13]. This comprehensive book
is as suitable for beginners as for professional programmers, and teaches the art
of programming through a huge collection of dedicated examples. This book is
considered the primary reference, and a natural extension, of the programming
matters in the present book.

Some computer science terms
Note that, quite often, the terms script and scripting are used as synonyms for
program and programming, respectively.

The inventor of the Perl programming language, Larry Wall, tried to explain
the difference between script and program in a humorous way (from perl.com1):
Suppose you went back to Ada Lovelace2 and asked her the difference between
a script and a program. She’d probably look at you funny, then say something
like: Well, a script is what you give the actors, but a program is what you give
the audience. That Ada was one sharp lady . . . Since her time, we seem to
have gotten a bit more confused about what we mean when we say scripting. It
confuses even me, and I’m supposed to be one of the experts.

There are many other widely used computer science terms to pick up. Writing
a program (or script or code) is often expressed as implementing the program.
Executing a program means running the program. An algorithm is a recipe for
how to construct a program. A bug is an error in a program, and the art of
tracking down and removing bugs is called debugging. Simulating or simulation
refers to using a program to mimic processes in the real world, often through
solving differential equations that govern the physics of the processes.

1.2 A Python Programwith Variables

Our first example regards programming a mathematical model that predicts the po-
sition of a ball thrown up in the air. From Newton’s 2nd law, and by assuming
negligible air resistance, one can derive a mathematical model that predicts the ver-
tical position y of the ball at time t . From the model one gets the formula

y D v0t � 0:5gt2;

where v0 is the initial upwards velocity and g is the acceleration of gravity, for
which 9:81ms�2 is a reasonable value (even if it depends on things like location
on the earth). With this formula at hand, and when v0 is known, you may plug in
a value for time and get out the corresponding height.

1 http://www.perl.com/pub/2007/12/06/soto-11.html
2 http://en.wikipedia.org/wiki/Ada_Lovelace

http://www.perl.com/pub/2007/12/06/soto-11.html
http://en.wikipedia.org/wiki/Ada_Lovelace
http://www.perl.com/pub/2007/12/06/soto-11.html
http://en.wikipedia.org/wiki/Ada_Lovelace

4 1 The First Few Steps

1.2.1 The Program

Let us next look at a Python program for evaluating this simple formula. Assume
the program is contained as text in a file named ball.py. The text looks as follows
(file ball.py):

Program for computing the height of a ball in vertical motion

v0 = 5 # Initial velocity

g = 9.81 # Acceleration of gravity

t = 0.6 # Time

y = v0*t - 0.5*g*t**2 # Vertical position

print y

Computer programs and parts of programs are typeset with a blue background
in this book. A slightly darker top and bottom bar, as above, indicates that the code
is a complete program that can be run as it stands. Without the bars, the code is just
a snippet and will (normally) need additional lines to run properly.

1.2.2 Dissection of the Program

A computer program is plain text, as here in the file ball.py, which contains in-
structions to the computer. Humans can read the code and understand what the
program is capable of doing, but the program itself does not trigger any actions on
a computer before another program, the Python interpreter, reads the program text
and translates this text into specific actions.

You must learn to play the role of a computer
Although Python is responsible for reading and understanding your program, it is
of fundamental importance that you fully understand the program yourself. You
have to know the implication of every instruction in the program and be able to
figure out the consequences of the instructions. In other words, you must be able
to play the role of a computer. The reason for this strong demand of knowledge is
that errors unavoidably, and quite often, will be committed in the program text,
and to track down these errors, you have to simulate what the computer does
with the program. Next, we shall explain all the text in ball.py in full detail.

When you run your program in Python, it will interpret the text in your file line
by line, from the top, reading each line from left to right. The first line it reads is

Program for computing the height of a ball in vertical motion.

This line is what we call a comment. That is, the line is not meant for Python to read
and execute, but rather for a human that reads the code and tries to understand what
is going on. Therefore, one rule in Python says that whenever Python encounters

https://github.com/hplgit/prog4comp/tree/master/src/py/ball.py

1.2 A Python Programwith Variables 5

the sign # it takes the rest of the line as a comment. Python then simply skips
reading the rest of the line and jumps to the next line. In the code, you see several
such comments and probably realize that they make it easier for you to understand
(or guess) what is meant with the code. In simple cases, comments are probably not
much needed, but will soon be justified as the level of complexity steps up.

The next line read by Python is

v0 = 5 # Initial velocity

In Python, a statement like v0 = 5 is known as an assignment statement (very
different from a mathematical equation!). The result on the right-hand side, here the
integer 5, becomes an object and the variable name on the left-hand side is a named
reference for that object. Whenever we write v0, Python will replace it by an integer
with value 5. Doing v1 = v0 creates a new name, v1, for the same integer object
with value 5 and not a copy of an integer object with value 5. The next two lines

g = 9.81 # Acceleration of gravity

t = 0.6 # Time

are of the same kind, so having read them too, Python knows of three variables (v0,
g, t) and their values. These variables are then used by Python when it reads the
next line, the actual “formula”,

y = v0*t - 0.5*g*t**2 # Vertical position

Again, according to its rules, Python interprets * as multiplication, - as minus and
** as exponent (let us also add here that, not surprisingly, + and / would have
been understood as addition and division, if such signs had been present in the
expression). Having read the line, Python performs the mathematics on the right-
hand side, and then assigns the result (in this case the number 1.2342) to the variable
name y. Finally, Python reads

print y

This makes Python print the value of y out in that window on the screen where
you started the program. When ball.py is run, the number 1.2342 appears on the
screen.

In the code above, you see several blank lines too. These are simply skipped by
Python and you may use as many as you want to make a nice and readable layout
of the code.

1.2.3 Why Not Just Use a Pocket Calculator?

Certainly, finding the answer as done by the program above could easily have been
done with a pocket calculator. No objections to that and no programming would
have been needed. However, what if you would like to have the position of the ball

6 1 The First Few Steps

for every milli-second of the flight? All that punching on the calculator would have
taken you something like four hours! If you know how to program, however, you
could modify the code above slightly, using a minute or two of writing, and easily
get all the positions computed in one go within a second. A much stronger argu-
ment, however, is that mathematical models from real life are often complicated and
comprehensive. The pocket calculator cannot cope with such problems, even not
the programmable ones, because their computational power and their programming
tools are far too weak compared to what a real computer can offer.

1.2.4 Why YouMust Use a Text Editor toWrite Programs

When Python interprets some code in a file, it is concerned with every character
in the file, exactly as it was typed in. This makes it troublesome to write the code
into a file with word processors like, e.g., Microsoft Word, since such a program
will insert extra characters, invisible to us, with information on how to format the
text (e.g., the font size and type). Such extra information is necessary for the text
to be nicely formatted for the human eye. Python, however, will be much annoyed
by the extra characters in the file inserted by a word processor. Therefore, it is
fundamental that you write your program in a text editor where what you type on
the keyboard is exactly the characters that appear in the file and that Python will
later read. There are many text editors around. Some are stand-alone programs
like Emacs, Vim, Gedit, Notepad++, and TextWrangler. Others are integrated in
graphical development environments for Python, such as Spyder. This book will
primarily refer to Spyder and its text editor.

1.2.5 Installation of Python

You will need access to Python and several add-on packages for doing mathemat-
ical computations and display graphics. An obvious choice is to install a Python
environment for scientific computing on your machine. Alternatively, you can use
cloud services for running Python, or you can remote login on a computer system
at a school or university. Available and recommended techniques for getting access
to Python and the needed packages are documented in Appendix A.

The quickest way to get started with a Python installation for this book on your
Windows, Mac, or Linux computer, is to install Anaconda3.

1.2.6 Write and Run Your First Program

Reading only does not teach you computer programming: you have to program
yourself and practice heavily before you master mathematical problem solving via
programming. Therefore, it is crucial at this stage that you write and run a Python
program. We just went through the program ball.py above, so let us next write
and run that code.

3 http://continuum.io/downloads

http://continuum.io/downloads
http://continuum.io/downloads

1.3 A Python Programwith a Library Function 7

But first a warning: there are many things that must come together in the right
way for ball.py to run correctly on your computer. There might be problems
with your Python installation, with your writing of the program (it is very easy
to introduce errors!), or with the location of the file, just to mention some of the
most common difficulties for beginners. Fortunately, such problems are solvable,
and if you do not understand how to fix the problem, ask somebody. Typically,
once you are beyond these common start-up problems, you can move on to learn
programming and how programs can do a lot of otherwise complicated mathematics
for you.

We describe the first steps using the Spyder graphical user interface (GUI), but
you can equally well use a standard text editor for writing the program and a termi-
nal window (Terminal on Mac, Power Shell on Windows) for running the program.
Start up Spyder and type in each line of the program ball.py shown earlier. Then
run the program. More detailed descriptions of operating Spyder are found in Ap-
pendix A.3.

If you have had the necessary luck to get everything right, you should now get
the number 1.2342 out in the rightmost lower window in the Spyder GUI. If so,
congratulations! You have just executed your first self-written computer program
in Python, and you are ready to go on studying this book! You may like to save the
program before moving on (File, save as).

1.3 A Python Programwith a Library Function

Imagine you stand on a distance, say 10m away, watching someone throwing a ball
upwards. A straight line from you to the ball will then make an angle with the
horizontal that increases and decreases as the ball goes up and down. Let us consider
the ball at a particular moment in time, at which it has a height of 10m.

What is the angle of the line then? Again, this could easily be done with a cal-
culator, but we continue to address gentle mathematical problems when learning
to program. Before thinking of writing a program, one should always formulate
the algorithm, i.e., the recipe for what kind of calculations that must be performed.
Here, if the ball is x m away and y m up in the air, it makes an angle � with the
ground, where tan � D y=x. The angle is then tan�1.y=x/.

Let us make a Python program for doing these calculations. We introduce names
x and y for the position data x and y, and the descriptive name angle for the angle
� . The program is stored in a file ball_angle_first_try.py:

x = 10 # Horizontal position

y = 10 # Vertical position

angle = atan(y/x)

print (angle/pi)*180

Before we turn our attention to the running of this program, let us take a look
at one new thing in the code. The line angle = atan(y/x), illustrates how the
function atan, corresponding to tan�1 in mathematics, is called with the ratio

https://github.com/hplgit/prog4comp/tree/master/src/py/ball_angle_first_try.py

8 1 The First Few Steps

y/x as input parameter or argument. The atan function takes one argument,
and the computed value is returned from atan. This means that where we see
atan(y/x), a computation is performed (tan�1.y=x/) and the result “replaces” the
text atan(y/x). This is actually no more magic than if we had written just y/x:
then the computation of y/x would take place, and the result of that division would
replace the text y/x. Thereafter, the result is assigned to the name angle on the
left-hand side of =.

Note that the trigonometric functions, such as atan, work with angles in radians.
The return value of atan must hence be converted to degrees, and that is why we
perform the computation (angle/pi)*180. Two things happen in the print
statement: first, the computation of (angle/pi)*180 is performed, resulting in
a real number, and second, print prints that real number. Again, we may think that
the arithmetic expression is replaced by its results and then print starts working
with that result.

If we next execute ball_angle_first_try.py, we get an error message on
the screen saying

NameError: name ’atan’ is not defined

WARNING: Failure executing file: <ball_angle_first_try.py>

We have definitely run into trouble, but why? We are told that

name ’atan’ is not defined

so apparently Python does not recognize this part of the code as anything famil-
iar. On a pocket calculator the inverse tangent function is straightforward to use
in a similar way as we have written in the code. In Python, however, this function
has not yet been imported into the program. A lot of functionality is available to
us in a program, but much more functionality exists in Python libraries, and to ac-
tivate this functionality, we must explicitly import it. In Python, the atan function
is grouped together with many other mathematical functions in the library called
math. Such a library is referred to as a module in correct Python language. To get
access to atan in our program we have to write

from math import atan

Inserting this statement at the top of the program and rerunning it, leads to a new
problem: pi is not defined. The variable pi, representing � , is also available in the
mathmodule, but it has to be imported too:

from math import atan, pi

It is tedious if you need quite some math functions and variables in your program,
e.g., also sin, cos, log, exp, and so on. A quick way of importing everything in
math at once, is

from math import *

1.4 A Python Programwith Vectorization and Plotting 9

We will often use this import statement and then get access to all common
mathematical functions. This latter statement is inserted in a program named
ball_angle.py:

from math import *

x = 10 # Horizontal position

y = 10 # Vertical position

angle = atan(y/x)

print (angle/pi)*180

This program runs perfectly and produces 45.0 as output, as it should.
At first, it may seem cumbersome to have code in libraries, since you have to

know which library to import to get the desired functionality. Having everything
available anytime would be convenient, but this also means that you fill up the
memory of your program with a lot of information that you rather would use for
computations on big data. Python has so many libraries with so much functionality
that one simply needs to import what is needed in a specific program.

1.4 A Python Programwith Vectorization and Plotting

We return to the problem where a ball is thrown up in the air and we have a formula
for the vertical position y of the ball. Say we are interested in y at every milli-
second for the first second of the flight. This requires repeating the calculation of
y D v0t � 0:5gt2 one thousand times.

We will also draw a graph of y versus t for t 2 Œ0; 1�. Drawing such graphs on
a computer essentially means drawing straight lines between points on the curve,
so we need many points to make the visual impression of a smooth curve. With one
thousand points, as we aim to compute here, the curve looks indeed very smooth.

In Python, the calculations and the visualization of the curve may be done with
the program ball_plot.py, reading

from numpy import linspace

import matplotlib.pyplot as plt

v0 = 5

g = 9.81

t = linspace(0, 1, 1001)

y = v0*t - 0.5*g*t**2

plt.plot(t, y)

plt.xlabel(’t (s)’)

plt.ylabel(’y (m)’)

plt.show()

https://github.com/hplgit/prog4comp/tree/master/src/py/ball_angle.py
https://github.com/hplgit/prog4comp/tree/master/src/py/ball_plot.py

10 1 The First Few Steps

This program produces a plot of the vertical position with time, as seen in Fig-
ure 1.1. As you notice, the code lines from the ball.py program in Chapter 1.2
have not changed much, but the height is now computed and plotted for a thousand
points in time!

Let us take a look at the differences between the new program and our previous
program. From the top, the first difference we notice are the lines

from numpy import *

from matplotlib.pyplot import *

You see the word import here, so you understand that numpy must be a library, or
module in Python terminology. This library contains a lot of very useful functional-
ity for mathematical computing, while the matplotlib.pyplotmodule contains
functionality for plotting curves. The above import statement constitutes a quick
way of populating your program with all necessary functionality for mathematical
computing and plotting. However, we actually make use of only a few functions
in the present program: linspace, plot, xlabel, and ylabel. Many computer
scientists will therefore argue that we should explicitly import what we need and
not everything (the star *):

from numpy import linspace

from matplotlib.pyplot import plot, xlabel, ylabel

Others will claim that we should do a slightly different import and prefix library
functions by the library name:

import numpy as np

import matplotlib.pyplot as plt

...

t = np.linspace(0, 1, 1001)

...

plt.plot(t, y)

plt.xlabel(’t (s)’)

plt.ylabel(’y (m)’)

We will use all three techniques, and since all of them are in so widespread use, you
should be familiar with them too. However, for the most part in this book we shall
do

from numpy import *

from matplotlib.pyplot import *

for convenience and for making Python programs that look very similar to their
Matlab counterparts.

The function linspace takes 3 parameters, and is generally called as

linspace(start, stop, n)

This is our first example of a Python function that takes multiple arguments. The
linspace function generates n equally spaced coordinates, starting with start

1.4 A Python Programwith Vectorization and Plotting 11

Fig. 1.1 Plot generated by the script ball_plot.py showing the vertical position of the ball at
a thousand points in time

and ending with stop. The expression linspace(0, 1, 1001) creates 1001 co-
ordinates between 0 and 1 (including both 0 and 1). The mathematically inclined
reader will notice that 1001 coordinates correspond to 1000 equal-sized intervals in
Œ0; 1� and that the coordinates are then given by ti D i=1000 (i D 0; 1; : : : ; 1000).

The value returned from linspace (being stored in t) is an array, i.e., a collec-
tion of numbers. When we start computing with this collection of numbers in the
arithmetic expression v0*t - 0.5*g*t**2, the expression is calculated for every
number in t (i.e., every ti for i D 0; 1; : : : ; 1000), yielding a similar collection of
1001 numbers in the result y. That is, y is also an array.

This technique of computing all numbers “in one chunk” is referred to as vec-
torization. When it can be used, it is very handy, since both the amount of code and
computation time is reduced compared to writing a corresponding for or while
loop (Chapter 2) for doing the same thing.

The plotting commands are simple:

1. plot(t, y) means plotting all the y coordinates versus all the t coordinates
2. xlabel(’t (s)’) places the text t (s) on the x axis
3. ylabel(’y (m)’) places the text y (m) on the y axis

At this stage, you are strongly encouraged to do Exercise 1.4. It builds on the
example above, but is much simpler both with respect to the mathematics and the
amount of numbers involved.

12 1 The First Few Steps

1.5 More Basic Concepts

So far we have seen a few basic examples on how to apply Python programming to
solve mathematical problems. Before we can go on with other and more realistic
examples, we need to briefly treat some topics that will be frequently required in
later chapters. These topics include computer science concepts like variables, ob-
jects, error messages, and warnings; more numerical concepts like rounding errors,
arithmetic operator precedence, and integer division; in addition to more Python
functionality when working with arrays, plotting, and printing.

1.5.1 Using Python Interactively

Python can also be used interactively. That is, we do not first write a program in
a file and execute it, but we give statements and expressions to what is known as
a Python shell. We recommend to use IPython as shell (because it is superior to
alternative Python shells). With Spyder, Ipython is available at startup, appearing
as the lower right window. Following the IPython prompt In [1]: (a prompt
means a “ready sign”, i.e. the program allows you to enter a command, and different
programs often have different looking prompts), you may do calculations:

In [1]: 2+2

Out [1]: 4

In [2]: 2*3

Out [2]: 6

In [3]: 10/2

Out [3]: 5

In [4]: 2**3

Out [4]: 8

The response from IPython is preceded by Out [q]:, where q equals p when the
response is to input “number” p.

Note that, as in a program, you may have to use import before using pi or
functions like sin, cos, etc. That is, at the prompt, do the command from math
import * before you use pi or sin, etc. Importing other modules than math may
be relevant, depending on what your aim is with the computations.

You may also define variables and use formulas interactively as

In [1]: v0 = 5

In [2]: g = 9.81

In [3]: t = 0.6

In [4]: y = v0*t - 0.5*g*t**2

In [5]: print y

------> print(y)

1.2342

1.5 More Basic Concepts 13

Sometimes you would like to repeat a command you have given earlier, or per-
haps give a command that is almost the same as an earlier one. Then you can use
the up-arrow key. Pressing this one time gives you the previous command, pressing
two times gives you the command before that, and so on. With the down-arrow key
you can go forward again. When you have the relevant command at the prompt,
you may edit it before pressing enter (which lets Python read it and take action).

1.5.2 Arithmetics, Parentheses and Rounding Errors

When the arithmetic operators +, -, *, / and ** appear in an expression, Python
gives them a certain precedence. Python interprets the expression from left to right,
taking one term (part of expression between two successive + or -) at a time. Within
each term, ** is done before * and /. Consider the expression x = 1*5**2 +
10*3 - 1.0/4. There are three terms here and interpreting this, Python starts
from the left. In the first term, 1*5**2, it first does 5**2 which equals 25. This is
then multiplied by 1 to give 25 again. The second term is 10*3, i.e., 30. So the first
two terms add up to 55. The last term gives 0.25, so the final result is 54.75 which
becomes the value of x.

Note that parentheses are often very important to group parts of expressions
together in the intended way. Let us say x = 4 and that you want to divide 1.0 by
x + 1. We know the answer is 0.2, but the way we present the task to Python is
critical, as shown by the following example.

In [1]: x = 4

In [2]: 1.0/x+1

Out [2]: 1.25

In [3]: 1.0/(x+1)

Out [3]: 0.20000000000000001

In the first try, we see that 1.0 is divided by x (i.e., 4), giving 0.25, which is
then added to 1. Python did not understand that our complete denominator was
x+1. In our second try, we used parentheses to “group” the denominator, and we
got what we wanted. That is, almost what we wanted! Since most numbers can be
represented only approximately on the computer, this gives rise to what is called
rounding errors. We should have got 0.2 as our answer, but the inexact number
representation gave a small error. Usually, such errors are so small compared to the
other numbers of the calculation, that we do not need to bother with them. Still,
keep it in mind, since you will encounter this issue from time to time. More details
regarding number representations on a computer is given in Section 3.4.3.

1.5.3 Variables and Objects

Variables in Python will be of a certain type. If you have an integer, say you have
written x = 2 in some Python program, then x becomes an integer variable, i.e.,
a variable of type int. Similarly, with the statement x = 2.0, x becomes a float

14 1 The First Few Steps

variable (the word float is just computer language for a real number). In any case,
Python thinks of x as an object, of type int or float. Another common type of
variable is str, i.e. a string, needed when you want to store text. When Python
interprets x = "This is a string", it stores the text (in between the quotes) in
the variable x. This variable is then an object of type str. You may convert between
variable types if it makes sense. If, e.g., x is an int object, writing y = float(x)
will make y a floating point representation of x. Similarly, you may write int(x)
to produce an int if x is originally of type float. Type conversion may also occur
automatically, as shown just below.

Names of variables should be chosen so that they are descriptive. When com-
puting a mathematical quantity that has some standard symbol, e.g. ˛, this should
be reflected in the name by letting the word alpha be part of the name for the cor-
responding variable in the program. If you, e.g., have a variable for counting the
number of sheep, then one appropriate name could be no_of_sheep. Such naming
makes it much easier for a human to understand the written code. Variable names
may also contain any digit from 0 to 9, or underscores, but can not start with a digit.
Letters may be lower or upper case, which to Python is different. Note that certain
names in Python are reserved, meaning that you can not use these as names for vari-
ables. Some examples are for, while, if, else, global, return and elif. If
you accidentally use a reserved word as a variable name you get an error message.

We have seen that, e.g., x = 2 will assign the value 2 to the variable x. But how
do we write it if we want to increase x by 4? We may write an assignment like x
= x + 4, or (giving a faster computation) x += 4. Now Python interprets this as:
take whatever value that is in x, add 4, and let the result become the new value of
x. In other words, the old value of x is used on the right hand side of =, no matter
how messy the expression might be, and the result becomes the new value of x. In
a similar way, x -= 4 reduces the value of x by 4, x *= 4multiplies x by 4, and x
/= 4 divides x by 4, updating the value of x accordingly.

What if x = 2, i.e., an object of type int, and we add 4.0, i.e., a float? Then
automatic type conversion takes place, and the new x will have the value 6.0, i.e.,
an object of type float as seen here,

In [1]: x = 2

In [2]: x = x + 4.0

In [3]: x

Out [3]: 6.0

Note that Python programmers, and Python (in printouts), often write, e.g., 2. which
by definition is the integer 2 represented as a float.

1.5.4 Integer Division

Another issue that is important to be aware of is integer division. Let us look at
a small example, assuming we want to divide one by four.

1.5 More Basic Concepts 15

In [1]: 1/4

Out [1]: 0

In [2]: 1.0/4

Out [2]: 0.25

We see two alternative ways of writing it, but only the last way of writing it gave
the correct (i.e., expected) result! Why?

With Python version 2, the first alternative gives what is called integer division,
i.e., all decimals in the answer are disregarded, so the result is rounded down to
the nearest integer. To avoid it, we may introduce an explicit decimal point in
either the numerator, the denominator, or in both. If you are new to programming,
this is certainly strange behavior. However, you will find the same feature in many
programming languages, not only Python, but actually all languages with significant
inheritance from C. If your numerator or denominator is a variable, say you have
1/x, you may write 1/float(x) to be on safe grounds.

Python version 3 implements mathematical real number division by / and re-
quires the operator // for integer division (// is also available in Python version 2).
Although Python version 3 eliminates the problems with unintended integer divi-
sion, it is important to know about integer division when doing computing in most
other languages.

1.5.5 Formatting Text and Numbers

Results from scientific computations are often to be reported as a mixture of text and
numbers. Usually, we want to control how numbers are formatted. For example, we
may want to write 1/3 as 0.33 or 3.3333e-01 (3:3333�10�1). The print command
is the key tool to write out text and numbers with full control of the formatting. The
first argument to print is a string with a particular syntax to specify the formatting,
the so-called printf syntax. (The peculiar name stems from the printf function in
the programming language C where the syntax was first introduced.)

Suppose we have a real number 12.89643, an integer 42, and a text ’some
message’ that we want to write out in the following two alternative ways:

real=12.896, integer=42, string=some message

real=1.290e+01, integer= 42, string=some message

The real number is first written in decimal notationwith three decimals, as 12.896,
but afterwards in scientific notation as 1.290e+01. The integer is first written as
compactly as possible, while on the second line, 42 is formatted in a text field of
width equal to five characters.

The following program, formatted_print.py, applies the printf syntax to con-
trol the formatting displayed above:

https://github.com/hplgit/prog4comp/tree/master/src/py/formatted_print.py

16 1 The First Few Steps

real = 12.89643

integer = 42

string = ’some message’

print ’real=%.3f, integer=%d, string=%s’ % (real, integer, string)

print ’real=%9.3e, integer=%5d, string=%s’ % (real, integer, string)

The output of print is a string, specified in terms of text and a set of variables
to be inserted in the text. Variables are inserted in the text at places indicated by %.
After % comes a specification of the formatting, e.g, %f (real number), %d (integer),
or %s (string). The format %9.3f means a real number in decimal notation, with 3
decimals, written in a field of width equal to 9 characters. The variant %.3f means
that the number is written as compactly as possible, in decimal notation, with three
decimals. Switching f with e or E results in the scientific notation, here 1.290e+01
or 1.290E+01. Writing %5dmeans that an integer is to be written in a field of width
equal to 5 characters. Real numbers can also be specified with %g, which is used
to automatically choose between decimal or scientific notation, from what gives the
most compact output (typically, scientific notation is appropriate for very small and
very large numbers and decimal notation for the intermediate range).

A typical example of when printf formatting is required, arises when nicely
aligned columns of numbers are to be printed. Suppose we want to print a column
of t values together with associated function values g.t/ D t sin.t/ in a second
column. The simplest approach would be

from math import sin

t0 = 2

dt = 0.55

Unformatted print

t = t0 + 0*dt; g = t*sin(t)

print t, g

t = t0 + 1*dt; g = t*sin(t)

print t, g

t = t0 + 2*dt; g = t*sin(t)

print t, g

with output

2.0 1.81859485365

2.55 1.42209347935

3.1 0.128900053543

(Repeating the same set of statements multiple times, as done above, is not good
programming practice - one should use a for loop, as explained later in Section 2.3.)
Observe that the numbers in the columns are not nicely aligned. Using the printf
syntax ’%6.2f %8.3f’ % (t, g) for t and g, we can control the width of each
column and also the number of decimals, such that the numbers in a column are

1.5 More Basic Concepts 17

aligned under each other and written with the same precision. The output then
becomes

Formatting via printf syntax

2.00 1.819

2.55 1.422

3.10 0.129

We shall frequently use the printf syntax throughout the book so there will be
plenty of further examples.

The modern alternative to printf syntax
Modern Python favors the new format string syntax over printf:

print ’At t={t:g} s, y={y:.2f} m’.format(t=t, y=y)

which corresponds to the printf syntax

print ’At t=%g s, y=%.2f m’ % (t, y)

The slots where variables are inserted are now recognized by curly braces, and
in format we list the variable names inside curly braces and their equivalent
variables in the program.

Since the printf syntax is so widely used in many programming languages,
we stick to that in the present book, but Python programmers will frequently also
meet the newer format string syntax, so it is important to be aware its existence.

1.5.6 Arrays

In the program ball_plot.py from Chapter 1.4 we saw how 1001 height com-
putations were executed and stored in the variable y, and then displayed in a plot
showing y versus t, i.e., height versus time. The collection of numbers in y (or
t, respectively) was stored in what is called an array, a construction also found in
most other programming languages. Such arrays are created and treated according
to certain rules, and as a programmer, you may direct Python to compute and handle
arrays as a whole, or as individual array elements. Let us briefly look at a smaller
such collection of numbers.

Assume that the heights of four family members have been collected. These
heights may be generated and stored in an array, e.g., named h, by writing

h = zeros(4)

h[0] = 1.60

h[1] = 1.85

h[2] = 1.75

h[3] = 1.80

where the array elements appear as h[0], h[1], etc. Generally, when we read or
talk about the array elements of some array a, we refer to them by reading or saying

18 1 The First Few Steps

“a of zero” (i.e., a[0]), “a of one” (i.e., a[1]), and so on. The very first line in the
example above, i.e.

h = zeros(4)

instructs Python to reserve, or allocate, space in memory for an array h with four
elements and initial values set to 0. The next four lines overwrite the zeros with the
desired numbers (measured heights), one number for each element. Elements are,
by rule, indexed (numbers within brackets) from 0 to the last element, in this case 3.
We say that Python has zero based indexing. This differs from one based indexing
(e.g., found in Matlab) where the array index starts with 1.

As illustrated in the code, you may refer to the array as a whole by the name h,
but also to each individual element by use of the index. The array elements may
enter in computations as individual variables, e.g., writing z = h[0] + h[1] +
h[2] + h[3] will compute the sum of all the elements in h, while the result is
assigned to the variable z. Note that this way of creating an array is a bit different
from the one with linspace, where the filling in of numbers occurred automati-
cally “behind the scene”.

By the use of a colon, you may pick out a slice of an array. For example,
to create a new array from the two elements h[1] and h[2], we could write
slice_h = h[1:3]. Note that the index specification 1:3 means indices 1 and 2,
i.e., the last index is not included. For the generated slice_h array, indices are as
usual, i.e., 0 and 1 in this case. The very last entry in an array may be addressed as,
e.g., h[-1].

Copying arrays requires some care since simply writing new_h = h will, when
you afterwards change elements of new_h, also change the corresponding elements
in h! That is, h[1] is also changed when writing

new_h = h

new_h[1] = 5.0

print h[1]

In this case we do not get 1.85 out on the screen, but 5.0. To really get a copy that
is decoupled from the original array, you may write new_h = copy(h). However,
copying a slice works straightforwardly (as shown above), i.e. an explicit use of
copy is not required.

1.5.7 Plotting

Sometimes you would like to have two or more curves or graphs in the same plot.
Assume we have h as above, and also an array H with the heights 0.50m, 0.70m,
1.90m, and 1.75m from a family next door. This may be done with the program
plot_heights.py given as

https://github.com/hplgit/prog4comp/tree/master/src/py/plot_heights.py

1.5 More Basic Concepts 19

Fig. 1.2 Generated plot for the heights of family members from two families

from numpy import zeros

import matplotlib.pyplot as plt

h = zeros(4)

h[0] = 1.60; h[1] = 1.85; h[2] = 1.75; h[3] = 1.80

H = zeros(4)

H[0] = 0.50; H[1] = 0.70; H[2] = 1.90; H[3] = 1.75

family_member_no = zeros(4)

family_member_no[0] = 0; family_member_no[1] = 1

family_member_no[2] = 2; family_member_no[3] = 3

plt.plot(family_member_no, h, family_member_no, H)

plt.xlabel(’Family member number’)

plt.ylabel(’Height (m)’)

plt.show()

Running the program gives the plot shown in Figure 1.2.
Alternatively, the two curves could have been plotted in the same plot by use of

two plot commands, which gives more freedom as to how the curves appear. To do
this, you could plot the first curve by

plt.plot(family_member_no, h)

plt.hold(’on’)

20 1 The First Few Steps

Then you could (in principle) do a lot of other things in your code, before you plot
the second curve by

plt.plot(family_member_no, H)

plt.hold(’off’)

Notice the use of hold here. hold(’on’) tells Python to plot also the following
curve(s) in the same window. Python does so until it reads hold(’off’). If you
do not use the hold(’on’) or hold(’off’) command, the second plot command
will overwrite the first one, i.e., you get only the second curve.

In case you would like the two curves plotted in two separate plots, you can do
this by plotting the first curve straightforwardly with

plt.plot(family_member_no, h)

then do other things in your code, before you do

plt.figure()

plt.plot(family_member_no, H)

Note how the graphs are made continuous by Python, drawing straight lines be-
tween the four data points of each family. This is the standard way of doing it and
was also done when plotting our 1001 height computations with ball_plot.py in
Chapter 1.4. However, since there were so many data points then, the curve looked
nice and smooth. If preferred, one may also plot only the data points. For example,
writing

plt.plot(h, ’*’)

will mark only the data points with the star symbol. Other symbols like circles etc.
may be used as well.

There are many possibilities in Python for adding information to a plot or for
changing its appearance. For example, you may add a legend by the instruction

plt.legend(’This is some legend’)

or you may add a title by

plt.title(’This is some title’)

The command

plt.axis([xmin, xmax, ymin, ymax])

will define the plotting range for the x axis to stretch from xmin to xmax and,
similarly, the plotting range for the y axis from ymin to ymax. Saving the figure to
file is achieved by the command

1.5 More Basic Concepts 21

plt.savefig(’some_plot.png’) # PNG format

plt.savefig(’some_plot.pdf’) # PDF format

plt.savefig(’some_plot.jpg’) # JPG format

plt.savefig(’some_plot.eps’) # Encanspulated PostScript format

For the reader who is into linear algebra, it may be useful to know that standard
matrix/vector operations are straightforward with arrays, e.g., matrix-vector multi-
plication. What is needed though, is to create the right variable types (after having
imported an appropriate module). For example, assume you would like to calculate
the vector y (note that boldface is used for vectors and matrices) as y D Ax, where
A is a 2 � 2 matrix and x is a vector. We may do this as illustrated by the program
matrix_vector_product.py reading

from numpy import zeros, mat, transpose

x = zeros(2)

x = mat(x)

x = transpose(x)

x[0] = 3; x[1] = 2 # Pick some values

A = zeros((2,2))

A = mat(A)

A[0,0] = 1; A[0,1] = 0

A[1,0] = 0; A[1,1] = 1

The following gives y = x since A = I, the identity matrix

y = A*x

print y

Here, x is first created as an array, just as we did above. Then the variable type
of x is changed to mat, i.e., matrix, by the line x = mat(x). This is followed
by a transpose of x from dimension 1 � 2 (the default dimension) to 2 � 1 with
the statement x = transpose(x), before some test values are plugged in. The
matrix A is first created as a two dimensional array with A = zeros((2,2))before
conversion and filling in values take place. Finally, the multiplication is performed
as y = A*x. Note the number of parentheses when creating the two dimensional
array A. Running the program gives the following output on the screen:

[[3.]

[2.]]

1.5.8 Error Messages andWarnings

All programmers experience error messages, and usually to a large extent during the
early learning process. Sometimes error messages are understandable, sometimes
they are not. Anyway, it is important to get used to them. One idea is to start with
a program that initially is working, and then deliberately introduce errors in it, one
by one. (But remember to take a copy of the original working code!) For each error,

https://github.com/hplgit/prog4comp/tree/master/src/py/matrix_vector_product.py

22 1 The First Few Steps

you try to run the program to see what Python’s response is. Then you know what
the problem is and understand what the error message is about. This will greatly
help you when you get a similar error message or warning later.

Very often, you will experience that there are errors in the program you have
written. This is normal, but frustrating in the beginning. You then have to find the
problem, try to fix it, and then run the program again. Typically, you fix one error
just to experience that another error is waiting around the corner. However, after
some time you start to avoid the most common beginner’s errors, and things run
more smoothly. The process of finding and fixing errors, called debugging, is very
important to learn. There are different ways of doing it too.

A special program (debugger) may be used to help you check (and do) different
things in the program you need to fix. A simpler procedure, that often brings you
a long way, is to print information to the screen from different places in the pro-
gram. First of all, this is something you should do (several times) during program
development anyway, so that things get checked as you go along. However, if the
final program still ends up with error messages, you may save a copy of it, and do
some testing on the copy. Useful testing may then be to remove, e.g., the latter half
of the program (by inserting comment signs #), and insert print commands at clever
places to see what is the case. When the first half looks ok, insert parts of what
was removed and repeat the process with the new code. Using simple numbers and
doing this in parallel with hand calculations on a piece of paper (for comparison) is
often a very good idea.

Python also offers means to detect and handle errors by the program itself! The
programmer must then foresee (when writing the code) that there is a potential for
error at some particular point. If, for example, some user of the program is asked
(by the running program) to provide a number, and intends to give the number 5, but
instead writes the word five, the program could run into trouble. A try-exception
construction may be used by the programmer to check for such errors and act appro-
priately (see Chapter 6.2 for an example), avoiding a program crash. This procedure
of trying an action and then recovering from trouble, if necessary, is referred to as
exception handling and is the modern way of dealing with errors in a program.

When a program finally runs without error messages, it might be tempting to
think that Ah. . . , I am finished!. But no! Then comes program testing, you need to
verify that the program does the computations as planned. This is almost an art and
may take more time than to develop the program, but the program is useless unless
you have much evidence showing that the computations are correct. Also, having
a set of (automatic) tests saves huge amounts of time when you further develop the
program.

Verification versus validation
Verification is important, but validation is equally important. It is great if your
program can do the calculations according to the plan, but is it the right plan? Put
otherwise, you need to check that the computations run correctly according to
the formula you have chosen/derived. This is verification: doing the things right.
Thereafter, you must also check whether the formula you have chosen/derived
is the right formula for the case you are investigating. This is validation: doing
the right things. In the present book, it is beyond scope to question how well
the mathematical models describe a given phenomenon in nature or engineering,

1.5 More Basic Concepts 23

as the answer usually involves extensive knowledge of the application area. We
will therefore limit our testing to the verification part.

1.5.9 Input Data

Computer programs need a set of input data and the purpose is to use these data to
compute output data, i.e., results. In the previous program we have specified input
data in terms of variables. However, one often wants to get the input through some
dialog with the user. Here is one example where the program asks a question, and
the user provides an answer by typing on the keyboard:

age = input(’What is your age? ’)

print "Ok, so you’re half way to %d, wow!" % (age*2)

So, after having interpreted and run the first line, Python has established the variable
age and assigned your input to it. The second line combines the calculation of
twice the age with a message printed on the screen. Try these two lines in a little
test program to see for yourself how it works.

The input function is useful for numbers, lists (Chapter 2), and tuples (Chap-
ter 2). For pure text, the user must either enclose the input in quotes, or the program
must use the raw_input function instead:

name = raw_input(’What is your name? ’)

There are other ways of providing input to a program as well, e.g., via a graphical
interface (as many readers will be used to) or at the command line (i.e., as param-
eters succeeding, on the same line, the command that starts the program). Reading
data from a file is yet another way. Logically, what the program produces when run,
e.g. a plot or printout to the screen or a file, is referred to as program output.

1.5.10 Symbolic Computations

Even though the main focus in this book is programming of numerical methods,
there are occasions where symbolic (also called exact or analytical) operations are
useful. Doing symbolic computations means, as the name suggests, that we do com-
putations with the symbols themselves rather than with the numerical values they
could represent. Let us illustrate the difference between symbolic and numerical
computations with a little example. A numerical computation could be

x = 2

y = 3

z = x*y

print z

which will make the number 6 appear on the screen. A symbolic counterpart of this
code could be

24 1 The First Few Steps

from sympy import *

x, y = symbols(’x y’)

z = x*y

print z

which causes the symbolic result x*y to appear on the screen. Note that no numer-
ical value was assigned to any of the variables in the symbolic computation. Only
the symbols were used, as when you do symbolic mathematics by hand on a piece
of paper.

Symbolic computations in Python make use of the SymPy package. Each symbol
is represented by a standard variable, but the name of the symbol must be declared
with Symbol(name) for a single symbol, or symbols(name1 name2 ...) for
multiple symbols.. The following script example_symbolic.py is a quick demon-
stration of some of the basic symbolic operations that are supported in Python.

from sympy import *

x = Symbol(’x’)

y = Symbol(’y’)

print 2*x + 3*x - y # Algebraic computation

print diff(x**2, x) # Differentiates x**2 wrt. x

print integrate(cos(x), x) # Integrates cos(x) wrt. x

print simplify((x**2 + x**3)/x**2) # Simplifies expression

print limit(sin(x)/x, x, 0) # Finds limit of sin(x)/x as x->0

print solve(5*x - 15, x) # Solves 5*x = 15

Other symbolic calculations like Taylor series expansion, linear algebra (with
matrix and vector operations), and (some) differential equation solving are also
possible.

Symbolic computations are also readily accessible through the (partly) free on-
line tool WolframAlpha4, which applies the very advanced Mathematica5 package
as symbolic engine. The disadvantage with WolframAlpha compared to the SymPy
package is that the results cannot automatically be imported into your code and
used for further analysis. On the other hand, WolframAlpha has the advantage that
it displays many additional mathematical results related to the given problem. For
example, if we type 2x + 3x - y in WolframAlpha, it not only simplifies the ex-
pression to 5x - y, but it also makes plots of the function f .x; y/ D 5x � y,
solves the equation 5x � y D 0, and calculates the integral

R R
.5x C y/dxdy.

The commercial Pro version can also show a step-by-step of the analytical compu-
tations in the problem. You are strongly encouraged to try out these commands in
WolframAlpha:

� diff(x^2, x) or diff(x**2, x)
� integrate(cos(x), x)
� simplify((x**2 + x**3)/x**2)

4 http://www.wolframalpha.com
5 http://en.wikipedia.org/wiki/Mathematica

https://github.com/hplgit/prog4comp/tree/master/src/py/example_symbolic.py
http://www.wolframalpha.com
http://en.wikipedia.org/wiki/Mathematica
http://www.wolframalpha.com
http://en.wikipedia.org/wiki/Mathematica

1.5 More Basic Concepts 25

� limit(sin(x)/x, x, 0)
� solve(5*x - 15, x)

WolframAlpha is very flexible with respect to syntax.
Another impressive tool for symbolic computations is Sage6, which is a very

comprehensive package with the aim of “creating a viable free open source alterna-
tive to Magma, Maple, Mathematica and Matlab”. Sage is implemented in Python.
Projects with extensive symbolic computations will certainly benefit from exploring
Sage.

1.5.11 Concluding Remarks

Programming demands you to be accurate!
In this chapter, you have seen some examples of how simple things may be done
in Python. Hopefully, you have tried to do the examples on your own. If you
have, most certainly you have discovered that what you write in the code has
to be very accurate. For example, with our previous example of four heights
collected in an array h, writing h(0) instead of h[0] gives an error, even if you
and I know perfectly well what you mean! Remember that it is not a human
that runs your code, it is a machine. Therefore, even if the meaning of your
code looks fine to a human eye, it still has to comply in detail to the rules of the
programming language. If not, you get warnings and error messages. This also
goes for lower and upper case letters. If you do from math import * and give
the command pi, you get 3:1415 : : :. However, if you write Pi, you get an error
message. Pay attention to such details also when they are given in later chapters.

Remember to insert comments to explain your code
When you write a computer program, you have two very different kinds of read-
ers. One is Python, which will interpret and run your program according to the
rules. The other is some human, for example, yourself or a peer. It is very impor-
tant to organize and comment the code so that you can go back to your own code
after, e.g., a year and still understand what clever constructions you put in there.
This is relevant when you need to change or extend your code (which usually
happens often in reality). Organized coding and good commenting is even more
critical if other people are supposed to understand code that you have written.

Fast code versus readable and correct code
Numerical computing has a strong tradition in paying much attention to creating
fast code. Real industrial applications of numerical computing often involves
simulations that run for hours, days, and even weeks. Fast code is tremendously
important in those cases. The problem with a strong focus on fast code, un-
fortunately, is sometimes that clear and easily understandable constructions are
replaced by clever and less readable, but faster code. However, for beginners it is
most important to learn to write readable and correct code. We will make some

6 http://sagemath.org/

http://sagemath.org/
http://sagemath.org/

26 1 The First Few Steps

comments on constructions that are fast or slow, but the main focus of this book
is to teach how to write correct programs, not the fastest possible programs.

Deleting data no longer in use
Python has automatic garbage collection, meaning that there is no need to delete
variables (or objects) that are no longer in use. Python takes care of this by
itself. This is opposed to, e.g., Matlab, where explicit deleting sometimes may
be required.

Tip: how to deal with long lines
If a statement in a program gets too long, it may be continued on the next line by
inserting a back-slash at the end of the line before proceeding on the next line.
However, no blanks must occur after the back-slash!

The present introductory book just provides a tiny bit of all the functionality
that Python has to offer. An important source of information is the official Python
documentation website (http://docs.python.org/), which provides a Python tutorial,
the Python Library Reference, a Language Reference, and more. Several excel-
lent books are also available (http://wiki.python.org/moin/PythonBooks), but not so
many with a scientific computing focus. One exception is Langtangen’s compre-
hensive book A Primer on Scientific Programming with Python, Springer, 2016.

1.6 Exercises

Exercise 1.1: Error messages
Save a copy of the program ball.py and confirm that the copy runs as the original.
You are now supposed to introduce errors in the code, one by one. For each error
introduced, save and run the program, and comment how well Python’s response
corresponds to the actual error. When you are finished with one error, re-set the
program to correct behavior (and check that it works!) before moving on to the next
error.

a) Insert the word hello on the empty line above the assignment to v0.
b) Remove the # sign in front of the comment initial velocity.
c) Remove the = sign in the assignment to v0.
d) Change the reserved word print into pint.
e) Change the calculation of y to y = v0*t.
f) Change the line print y to print x.
g) Replace the statement

y = v0*t - 0.5*g*t**2

by

y = v0*t - (1/2)*g*t**2

Filename: testing_ball.py.

http://docs.python.org/
http://wiki.python.org/moin/PythonBooks

1.6 Exercises 27

Exercise 1.2: Volume of a cube
Write a program that computes the volume V of a cube with sides of length L D 4

cm and prints the result to the screen. Both V and L should be defined as separate
variables in the program. Run the program and confirm that the correct result is
printed.

Hint See ball.py in the text.
Filename: cube_volume.py.

Exercise 1.3: Area and circumference of a circle
Write a program that computes both the circumference C and the area A of a circle
with radius r D 2 cm. Let the results be printed to the screen on a single line with
an appropriate text. The variables C , A and r should all be defined as a separate
variables in the program. Run the program and confirm that the correct results are
printed.
Filename: circumference_and_area.py.

Exercise 1.4: Volumes of three cubes
We are interested in the volume V of a cube with length L: V D L3, computed for
three different values of L.

a) Use the linspace function to compute three values of L, equally spaced on the
interval Œ1; 3�.

b) Carry out by hand the computation V D L3 if L is an array with three elements.
That is, compute V for each value of L.

c) In a program, write out the result V of V = L**3 when L is an array with three
elements as computed by linspace in a). Compare the resulting volumes with
your hand calculations.

d) Make a plot of V versus L.

Filename: volume3cubes.py.

Exercise 1.5: Average of integers
Write a program that stores the sum 1 C 2 C 3 C 4 C 5 in one variable and then
creates another variable with the average of these five numbers. Print the average to
the screen and check that the result is correct.
Filename: average_int.py.

Exercise 1.6: Interactive computing of volume and area

a) Compute the volume in Exercise 1.2 by using Python interactively, i.e., do the
computations at the command prompt (in a Python shell as we also say). Com-
pare with what you got previously from the written program.

b) Do the same also for Exercise 1.3.

28 1 The First Few Steps

Exercise 1.7: Peculiar results from division
Consider the following interactive Python session:

In [1]: x=2; y=4

In [2]: x/y

Out[2]: 0

What is the problem and how can you fix it?

Exercise 1.8: Update variable at command prompt
Invoke Python interactively and perform the following steps.

1. Initialize a variable x to 2.
2. Add 3 to x. Print out the result.
3. Print out the result of x + 1*2 and (x+1)*2. (Observe how parentheses make

a difference).
4. What variable type is x?

Exercise 1.9: Formatted print to screen
Write a program that defines two variables as x = pi and y = 2. Then let the
program compute the product z of these two variables and print the result to the
screen as

Multiplying 3.14159 and 2 gives 6.283

Filename: formatted_print.py.

Exercise 1.10: Python documentation and random numbers
Write a program that prints four random numbers to the screen. The numbers should
be drawn from a uniform distribution over the interval Œ0; 10/ (0 inclusive, 10 exclu-
sive). Find the information needed for the task, see for example http://docs.python.
org.

Hint Python has a module random that contains a function by the name uniform.
Filename: drawing_random_numbers.py.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

http://docs.python.org
http://docs.python.org
http://creativecommons.org/licenses/by-nc/4.0/

