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Abstract In memory, the continuous flow of experience is punctuated at mean-

ingful boundaries between one episode and the next. When salient events are

separated by increasing amounts of space or time, memory systems can accommo-

date in two ways. One option is to increase the amount of neural resources devoted

to longer event segments. The other is to maintain the same neural resources with

sacrificed spatiotemporal resolution. Here we review how the spatial coding system

is affected by the segmentation of space by goals and boundaries. We argue that the

resolution of the place code is dictated by the amount of space encoded within

periods of theta. Thus, the theta cycle is viewed as a ‘neural word’ that segregates
segments of space and its cognitive equivalents (memory, planning). In support of

this conclusion, we report that, as rats traverse a linear track, the beginning of a

journey is represented at the falling phase of theta whereas the journey’s end is

represented on the ascending phase. The current location is represented in the

temporal context of the past and future event boundaries. These results are

discussed in relation to the changes in physiology observed across the longitudinal

axis of the hippocampus, with a special consideration for how sequence information

could be integrated by downstream ‘reader’ neurons.

Introduction

A typical morning is naturally described by a sequential list of events that are

demarked by completion of sub-goals, like making a pot of coffee, leaving the

apartment, and encounters with people during the subway commute. This

discretization of experience has a profound influence on how information is learned

and recalled (Kosslyn et al. 1974; Block 1982; Kahl et al. 1984; McNamara 1986;
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Mensink and Raaijmakers 1988; Montello 1991; Howard and Kahana 2002; Kurby

and Zacks 2008; Unsworth 2008; Kiliç et al. 2013). Depending on the spacing of

salient events, varying extents of space and time can be chunked together in

memory. For instance, the start and end points of journeys of different length

serve as salient boundaries that influence memory segmentation (Downs and Stea

1973; Golledge 1999; Bonasia et al. 2016).

Memory for events that unfold over space and time is known to depend upon the

hippocampus (Tulving and Markowitsch 1998; Eichenbaum 2004; Buzsáki and

Moser 2013). Recordings from hippocampal place fields have shown that salient

locations and physical boundaries influence the neural representation of space. For

example, when the physical size of a familiar space is extended, place field size

shows a concomitant expansion (O’Keefe and Burgess 1996; Diba and Buzsáki

2008). Rescaling of the place field size has the effect of decreasing the resolution of

the hippocampal code for that space. The critical role boundaries play in dictating

the organization of memory may be due to an underlying influence on place field

organization (Krupic et al. 2015).

Map-based spatial navigation has at least four requirements: first is the existence

of a cognitive map (O’Keefe and Nadel 1978); second is self-localization on that

map (O’Keefe and Nadel 1978); third is an appropriate orientation of the map

assisted by the head-direction system (Ranck 1984); and fourth is the calibration of

the distance scale of the map with the help of external landmarks. This latter

requirement is essential for allocating neuronal resources for any journey and for

an a priori determination of the place field size and their distances from each other.

Currently, there is no agreed-upon mechanism to explain how the hippocampus or

surrounding regions scale the representation of space.

The sequential firing of cell sequences bounded within the prominent hippo-

campal theta rhythm (Skaggs et al. 1996; Dragoi and Buzsáki 2006; Foster and

Wilson 2007; Wang et al. 2014) may be essential for this scaling. As an extension to

existing theories, we propose that the clustering of cells within theta periods defines

event segmentation (Gupta et al. 2012; Wikenheiser and Redish 2015). In building

this argument, we first discuss the influence that goals and landmarks have on the

hippocampal representation of space. Then, we present recent electrophysiological

evidence that the representations of the boundaries tend to bookend theta

sequences. This observation suggests that the spatial scale of memory and the

amount of allotted resources are dictated by the chunking of space within theta,

which depends upon the distance between salient landmarks. Finally, we discuss

outstanding challenges for sequence-based computations in the hippocampus and,

potentially, other regions of the brain.
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Goals and Other Boundaries Anchor and Alter

the Hippocampal Place Code

Boundaries, goals and landmarks have been shown to anchor place fields (Muller

et al. 1987; Knierim et al. 1995; Rivard et al. 2004). The importance of environ-

mental geometry was clearly demonstrated in one study where rats explored a

walled open arena and place fields were recorded. When rats were returned to the

same space without walls, the place fields became much more diffuse and irregular

(Barry et al. 2006). The walls were essential to the place field integrity. This same

study found that cells that fire on one side of a boundary tend not to fire on the other,

showing that spatial division causes segmentation of the hippocampal representa-

tion (Barry et al. 2006). Finally, in a study in which rats were trained to run down a

linear track starting at different points, place fields tended to be anchored to either

the start or end of journey (Gothard et al. 1996; Redish et al. 2000b). Fields closer to

the moveable start location shifted to maintain a fixed spatial distance from the start

box, whereas those fields closer to the track’s end maintained their place field

location even as the start box location was moved. A subset of neurons, typically

with place fields in the center of the track, maintained their firing fields to the distal

room cues.

These observations and others (O’Keefe and Burgess 1996) led to the hypothesis
that place fields are formed by summation of input from boundary vector cells

(BVCs) that fire maximally when the subject is at particular distance from a border

at a preferred orientation. According to this model, hippocampal cells will fire in

different locations according to the orientation and distance from a border coded by

pre-synaptic neurons. In support of this model, cells that fire along boundaries have

been found in the medial entorhinal cortex (mEC), the parasubiculum and the

subiculum (Solstad et al. 2008; Lever et al. 2009). Importantly, if these cells fire

in response to a border oriented north/south in one environment, for example, they

will also fire, on the equivalent side of a parallel wall inserted in the same

environment, in response to similarly oriented walls in other environments, and

even to gaps that restrict movement instead of walls (Lever et al. 2009). The

generality of the tuning curve suggests that the BVCs, and border cells, are truly

sensitive to the edges of space.

Head direction cells that fire when subjects face a particular direction (Taube

et al. 1990; Sargolini et al. 2006; Giocomo et al. 2014; Peyrache et al. 2015) may be

crucial for anchoring place fields to the environmental boundaries. Consistent with

this conclusion is the observation that head direction cells and place cells rotate in

concert when landmarks are shifted (Knierim et al. 1995). Interestingly, head

direction cells can align to different compass headings within connected regions

of space (Taube and Burton 1995), further showing the critical role environmental

boundaries have in segmenting the representation of space.

Another important component of the spatial coding system is the grid cells

observed in mEC (Hafting et al. 2005). These cells tile the environment with

multiple firing fields that are arranged in a hexagonal grid. Although the grid cell
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representation was first assumed to be independent of environmental boundaries

and the size of the testing arena (Fyhn et al. 2004; Hafting et al. 2005), recent grid

cell studies have shown the critical role that boundaries play in dictating firing field

location. In symmetrical environments, the grid appears to be aligned to the

boundaries of the space (Stensola et al. 2015), whereas in non-symmetrical, open

arenas grid spacing is strongly influenced by the angle at which the environmental

walls meet (Krupic et al. 2015). Similarity analysis of the representation of contig-

uous regions of space reveals that sharp turns around corners in a zig-zag maze

cause a de-correlation of the representation of neighboring spatial bins (Derdikman

et al. 2009; Whitlock and Derdikman 2012). These low correlations were hypoth-

esized to be the result of a reset of the integration of the distance travelled from the

preceding wall (Derdikman et al. 2009). Similar resets have been observed in the

hippocampus due to 180� turns on linear tracks (Redish et al. 2000a). Overall, these
results show that the grid fields, like place fields and head direction tuning, are

locked in the spatial boundaries.

In addition to walls and physical barriers, rewarded locations are also route

boundaries that profoundly affect the hippocampal representation of space. Several

studies have demonstrated that changing where an animal is rewarded causes cells

to fire in different positions—to remap (Markus et al. 1995; Dupret et al. 2010;

McKenzie et al. 2013). This remapping results in an accumulation of place fields at

the goal locations (Dupret et al. 2010). Over-representation of goal locations

depends upon NMDA receptor-dependent plasticity and correlates with learning

(Dupret et al. 2010, 2013).

Many studies have emphasized the random nature in which place fields remap

(Muller and Kubie 1987; Leutgeb et al. 2004; Vazdarjanova and Guzowski 2004;

Rolls 2013; Alme et al. 2014; Rich et al. 2014). However, the remapping of place

fields to goal locations can be predicted. In a recent study that addressed which cells

became goal cells, rats were trained to find a new reward site in a maze in which

several locations were already rewarded. Cells that began to fire at the new goal

were those that had fired to other, previously learned goal locations (McKenzie

et al. 2013). This distortion that reward plays on the spatial representation can be

appreciated in Fig. 1. In this experiment, rats were trained to retrieve a cereal

reward buried within pots that differed by how they were scented and what they

were filled with (see McKenzie et al. 2014 for full details). To visualize these

representations, a principal component analysis was conducted on the mean rate

vectors as rats sampled each pot in each position. The first two principal compo-

nents corresponded to two positions. Differences in reward potential scaled the

representations along these dimensions, as if by causing a scalar increase in the

firing rates of cells contributing to these components. Note that the rewarded events

were associated with representations closer to the origin, due to cells that fired

similarly to the rewarded item irrespective of its position (Lee et al. 2012;

McKenzie et al. 2014). Therefore, the presence of reward caused some locations

to be represented more similarly than others.

Grid cells, head direction cells and place cells are all anchored to boundaries and

goals. In the hippocampus the presence of a goal location not only dictates where a
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cell fires, but also which cells are active. In the following sections, we will argue

that these salient locations anchor and distort the hippocampal spatial map by

biasing which cells initiate and finish cell sequences bounded by the periods of

the theta rhythm.

The Hippocampus Organizes the Spatial Code into

Temporal Sequences

In addition to spatial location, hippocampal firing is modulated by the theta rhythm,

which, in the rat, is a 6- to 12-Hz oscillation that can be observed in the local field

potential (LFP) throughout the hippocampal system (Grastyan et al. 1959;

Vanderwolf 1969; Buzsáki 2002). Early models of the origin of theta posited that

hippocampal cells oscillated at theta due to an external pacemaker drive from the

medial septum (Petsche et al. 1962; Lewis and Shute 1967; Lee et al. 1994). It is

now clear that theta-like activity can be induced in hippocampal slices (Konopacki

et al. 1988; Goutagny et al. 2009) and that there are multiple theta generators

(Buzsáki et al. 1986; Kamondi et al. 1998) driven by the entorhinal cortex (Mitchell

and Ranck 1980; Alonso and Llinás 1989), CA3 (Konopacki et al. 1988; Kocsis

et al. 1999), the subiculum (Jackson et al. 2014), and other areas within the

hippocampal circuit (Konopacki et al. 1988). Even single cells show resonance at

theta frequencies (Leung and Yu 1998; Stark et al. 2013; Vaidya and Johnston

2013). Modeling work has demonstrated that a network of resonant cells can
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Fig. 1 Coding of rewards across different locations. CA1 and CA3 neurons (N¼ 438) were

recorded as rats sampled rewarded (+) and not rewarded (�) pots (N¼ 4) that could appear in

different positions (N¼ 4). Pots differed by odor and the material in which hidden reward was

buried (labeled A, B, C, D). The mean firing rate during sampling of the 16 conditions (four pots,

four positions) was calculated to generate a 438� 16 firing rate matrix. The first two principal

components (PC) of this matrix for eight item/place combinations are plotted. The PCA was

computed over all 16 item and place combinations
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develop rhythmic firing activity (Traub et al. 1989; White et al. 2000; Thurley

et al. 2013; Tchumatchenko and Clopath 2014). Regardless of the origin of theta,

the strong rhythmic activity provides temporal windows in which presynaptic

inputs can be integrated, other windows in which cells fire, and windows of

refractoriness in which the network is relatively silent (Buzsaki 2006).

Hippocampal pyramidal cells fire maximally at the trough of local theta (Rudell

et al. 1980; Csicsvari et al. 1999). Therefore, the actual firing rate profile as subjects

run through a cell’s place field is a series of rhythmic bursts on a skewed Gaussian

place field envelope. In a purely rate-based coding scheme, the fact that both

position and theta phase dictate spiking probability presents a fundamental problem

for a downstream place decoder that relies on firing rate estimation. Low firing rates

could be indicative of two scenarios: either the subject is far from the center of the

cell’s place field, or the rat was in the center of the place field but during a

non-preferred phase of theta.

Resolving this ambiguity depends upon the time scale with which presynaptic

input is integrated. A systematic relationship between spiking phase and position

suggests that the hippocampus is capable of sub-theta period resolution. Upon entry

to the place field, cells tend to spike at late phases of theta, after the activity of the

majority of other cells. Moving through the place field, not only does the firing rate

increase but there is also a systematic advance in the phase in which the cell fires. In

the center of the field, where firing rate is the highest, cells spike just before the

chorus of other neurons. Upon exiting the field, the cell’s spikes occur at early theta
phases, preceding the bulk of spikes from other cells. This systematic relationship

between position and the theta phase in which a cell fires is known as theta phase

precession (O’Keefe and Recce 1993; Skaggs et al. 1996).

There is a close relationship between the change in rate and the change in firing

phase across different types of behavior. For example, during rapid eye movement

sleep, when the subject is clearly not physically moving through space, phase

analysis can be done on action potentials emitted early or late in spike trains.

Like in the experiments with rats running through space, spikes initiating the

train are observed on late phases whereas late spikes occur on early phases (Harris

et al. 2002). This phase advance can be observed in other situations. In virtual

reality, phase advancement is observed in cases when spiking is fixed to virtual

positions (Harvey et al. 2009; Ravassard et al. 2013) and in cases where spiking

seems to occur randomly in the virtual environment (Aghajan et al. 2014). When

rats run on running wheels (Harris et al. 2002; Pastalkova et al. 2008; Wang

et al. 2014) or treadmills (Kraus et al. 2013), cells can become tuned to specific

time intervals into running, analogous to the place field sensitivity to space. As time

spent running elapses through the ‘time field,’ firing rates increase and decrease and
precession can be observed (Pastalkova et al. 2008; Wang et al. 2014). Intriguingly,

in wheel running protocols that lack a memory demand, neurons tend to fire for

seconds at a fixed phase (Hirase et al. 1999; Pastalkova et al. 2008). Phase

precession seems to be linked to the waxing and waning of firing rates more so

than the absolute firing rate observed on a trial-to-trial basis. Phase precession is

therefore a fundamental organizing principal for changes in the hippocampal state.
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Despite decades of debate and study, there is no agreed-upon biological mech-

anism for phase precession. One class of model posits that phase precession is a

reflection of spikes being driven by an intracellular oscillation that is a higher

frequency than the theta observed in the LFP (O’Keefe and Recce 1993; O’Keefe
and Burgess 2005; Hasselmo et al. 2007). Intracellular recordings of place cells

show that sub-threshold oscillations increase in frequency as rats traverse a place

field and that action potentials lock to peaks on this intracellular rhythm. This

frequency increase rides on top of a place-locked depolarization (Harvey

et al. 2009). Several models predict that that depolarization directly drives the

higher frequency oscillation which causes spikes to precess (Kamondi et al. 1998;

Lengyel et al. 2003). A similar conversion of a rate code into a temporal code has

been suggested for spatial tuning of entorhinal grid cells, where cells are thought to

integrate head direction and velocity, rather than position, into changes in firing

frequency (O’Keefe and Burgess 2005; Hasselmo et al. 2007). This class of model

is challenged by the observation that silencing the hippocampus for >200 ms via

hippocampal commissural stimulation does not cause a reset in spiking phase

(Zugaro et al. 2005). Therefore spiking phase is likely determined on a cycle-to-

cycle basis, a conclusion that is at odds with oscillatory interference models for

hippocampal phase precession.

A single cell mechanism of phase precession has been proposed that focuses on

the rhythmic dendritic excitation that is phase synchronized with somatic inhibition

(Kamondi et al. 1998; Magee 2001; Losonczy et al. 2010). Moving to the place field

center causes greater amplitude dendritic excitation that progressively overcomes

somatic inhibition at early times, thus causing spikes early and often (Mehta

et al. 1997; Kamondi et al. 1998). This type of model requires an additional

mechanism—spike adaptation (Kamondi et al. 1998) or delayed inhibition

(Losonczy et al. 2010) have been suggested—to prevent late phase spiking upon

place field departure. Therefore, the decrease in the period between bursts of spikes,

relative to the LFP, is driven directly by increases in depolarization. Importantly,

tangential passes through place fields that miss crossing the field center result in a

symmetric place by position relationship, one that roughly mirrors how rate varies

across position (Huxter et al. 2008). This type of behavior is predicted if peak rates

must be achieved to prevent late phase spiking upon place field exit.

There have also been network models of phase precession. In a simple version of

the model, CA3 place cells are wired in a feedforward chain where the cells most

strongly driven fire first and at the highest rate (Jensen and Lisman 1996; Tsodyks

et al. 1996; Lengyel et al. 2005). These cells then excite, through recurrent

connections in CA3 and perhaps the dentate, other cells with place fields in front

of the animal. Cell spiking in this model is driven both by place-related excitation

and from activation of other cells with place fields between the subject and the

coded position. The synaptic activation causes a time (phase) delay proportional to

the distance between the current position and the cell’s place field due to greater

numbers of intervening cells that must be chained for more distant locations. This

type of model places a heavy onus on pre-existing wiring as phase precession can be

observed for first time passes through a place field (Feng et al. 2015) and in unique

Hippocampal Mechanisms for the Segmentation of Space by Goals and Boundaries 7



trajectories in two-dimensional environments (Harris et al. 2002; Huxter

et al. 2008; Jeewajee et al. 2014). These results necessitate pre-existing chains for

every running direction for every position, an unlikely scenario.

In another type of network model that is not mutually exclusive with those

mentioned, the most excited cells fire first, which drives inhibitory cells to delay

the activity of other place cells that code for more distant positions (Dragoi and

Buzsáki 2006; Maurer et al. 2006; Geisler et al. 2007; Stark et al. 2013). Silencing of

soma-targeting interneurons (Royer et al. 2012), or decoupling retrograde communi-

cation between pyramidal and inhibitory cells through endocannabinoid receptor

antagonism (Robbe et al. 2006; Robbe and Buzsáki 2009; Losonczy et al. 2010),

causes large disruptions in assembly coordination and a redistribution of spiking

across theta phase. These findings show a clear role of inhibition in phase precession.

Several observations support network models of precession. Place cells show

trial-to-trial variance in their firing rates that cannot be explained by changes in

position or theta phase alone (Lánský et al. 2001). Statistical models have shown

that the precise trial-to-trial timing can be predicted by the spiking activity of other

neurons, as would be expected if sequencing was brought about through a chaining

of co-active ensembles oscillating faster than the baseline LFP (Harris et al. 2002;

Dragoi and Buzsáki 2006; Geisler et al. 2007). However, principal cells respond to

many environment stimuli and therefore a misspecification of the model may

mistake common external modulation for a causal network interaction (Chadwick

et al. 2015). Therefore further experimentation is needed to resolve whether theta

sequences truly reflect network level synchronization.

Theta Sequences Code for Behaviorally Relevant Spatial

Segments

Early investigators realized that phase precession could reflect cell sequences

chunked into theta periods (Skaggs et al. 1996; Dragoi and Buzsáki 2006; Foster

and Wilson 2007). Theta periods tend to begin with cells that have mean firing

fields behind the present location and end with cells with mean fields slightly ahead.

Accordingly, decoding of position on sub-theta time scales reveals spatial

sequences that begin behind the animal and sweep in front (Itskov et al. 2008;

Maurer et al. 2012).

Theta sequences reflect about a ten-times compression of the timing of events in

the real world to time lags observed during theta (Skaggs et al. 1996) that increases

with the size of the environment (Diba and Buzsáki 2008). The compression ratio

can be reached by taking the cross correlation of pairs of spike trains and consid-

ering the lag in the peak at different time scales. For two place cells, the cross

correlation will have a global maximum at a lag that is proportional to the distance

between the place fields (Dragoi and Buzsáki 2006). These experiments are typi-

cally conducted on linear tracks with stereotyped velocity to allow a rough
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equivalence between space and time. In addition, the cross correlation is strongly

modulated by theta. The lags of the local maximum, on theta time scales, correlate

with the time taken to traverse between the place fields. The ratio of these lags

reflects the degree of compression.

A recent study explicitly tested the link between theta phase precession and theta

sequencing as rats explored a novel linear track (Feng et al. 2015). This study found

that phase precession was observed on the first trial, though theta sequences were

not. The sequencing emerged rapidly, by the second trial, and this development

coincided with a decrease in the phase variability in which cells fired upon place

field entry. Therefore, theta sequencing seems to be a natural consequence of a

group of cells that phase precess at the same rate (slope) and begin firing at the same

phase (Dragoi and Buzsáki 2006). It is unknown what causes cells to fire at more

reliable theta phases. The known importance of inhibitory cells in dictating firing

phase (Royer et al. 2012) and the hypothesized role of inhibition in phase preces-

sion (Kamondi et al. 1998; Geisler et al. 2010; Losonczy et al. 2010; Stark

et al. 2013) suggest a potential candidate for this phase alignment may be plasticity

between excitatory and inhibitory cells. Interestingly, cells recorded at the same site

tended to have more uniform phases upon place field entry (Feng et al. 2015),

consistent with models in which interneurons coordinated place cells within the

range of their axonal arbor.

There is growing evidence that theta sequences represent a meaningful segmen-

tation of space. In one experiment that addressed this issue, rats were habituated to a

linear track and the place field order and theta sequences were identified. Then, the

track was expanded, a manipulation known to cause concomitant increases in place

field size (O’Keefe and Burgess 1996). Remarkably, the theta time-scale lag

remained fixed, thereby causing an increase in the compression of the amount of

behavioral time represented within a theta cycle (Diba and Buzsáki 2008).

A recent experiment found that the magnitude of compression observed within

each theta sequence varied significantly according to where the rat was on the maze.

The amount of space represented ahead of, or behind, the rat varied systematically

according to where the rat was relative to the experimentally defined landmarks

(Gupta et al. 2012). This heterogeneity of theta sequence content suggests that one

role of theta could be to divide space into meaningful segments.

In the aforementioned study, theta sequences could have chunked space

according to the physical geometry or due to some process related to route planning.

To dissociate these two possibilities, rats were trained to traverse around a circular

track, collecting rewards by waiting a variable amount of time at each of three

locations (Wikenheiser and Redish 2015). Rats had a choice to stay and wait for a

reward or run to the next location, which was the optimal strategy if the wait time

for reward at the more distant site was shorter (Wikenheiser et al. 2013). When

activity on the late phases of theta was analyzed, there was a strong correlation

between the distance the rat was about to run and the places represented by the

active cells. Different cells spiked in the same location depending on where the rat

would run next. Importantly, there was no relationship between the distance the rat

had just run and the distances represented in these late theta phases. These data
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showed that hippocampal activity during theta could reflect more than a represen-

tation of current state and may reflect a vicarious trial-and-error important for

planning (Schmidt et al. 2013).

A similar observation has been made by decoding position using CA3 firing rates

at the choice points. This analysis reveals transient moments in which CA3

represented positions ahead of the rat, sweeping down the potential paths before

the rat made its decision (Johnson and Redish 2007). These findings are closely

related to the fact that the phase of spiking contains information about heading

direction in two-dimensional environments (Huxter et al. 2008), as would be

expected if theta sequences code for upcoming positions.

Overall, studies to date have demonstrated that theta sequences always begin

with place representations behind the subject and end with representations of the

future. However, the exact span coded by theta sequences has not been addressed

carefully. If the cells that are active at the trough of the CA1 theta cycle code for the

current position in the context of past and future locations, how is the span of the

past and future determined at the physiological level? One possibility is that theta

sequences code for a fixed amount of time or distance around the current location.

Alternatively, each geometric segment (e.g., individual corridors) and event along

the journey could be represented separately as a ‘neural word’ and such words

would be concatenated, perhaps via sharp wave ripples (Foster and Wilson 2006;

Davidson et al. 2009; Wu and Foster 2014), to represent the entire journey from the

beginning to the end. Yet another possibility is that the start and end (reward)

locations of a complex trajectory through a maze are coded in a given cycle. This

final option raises the question of just how much space could be segmented within a

theta cycle.

Data collected in our lab demonstrate that theta periods segment the environ-

ment either according to goals or to environmental geometry. As a rat ran down the

track, the probability that it occupied any given position given the observed CA1

spiking pattern was computed by comparing the instantaneous rates to a template of

the session averages, the cells’ place fields. When these posterior probability

distributions were calculated at every theta phase (Zhang et al. 1998), we observed

theta sequences that started at one end of the track and finished at the other (Fig. 2).

Thus, in addition to the goal being represented at late theta phases (Wikenheiser and

Redish 2015), our findings show that the start location is represented at early

phases. Combining these observations, the phase code is defined by the current

location in the context of a past bounded by a journey’s beginning and a future

bounded by the journey’s end. Separation of the future and past boundaries is

assured by the strongest inhibition at the peak of the theta cycle (Buzsáki 2002).

Recall the studies in which place fields expanded when familiar environments

were stretched. How do place fields expand with the environment? An answer

begins to emerge when one considers that the theta sequences are anchored to the

boundaries. The amount of space represented within the sequence, the compression,

dictates the resolution of the spatial code. When boundaries are moved apart, either

in the stretched environments or for journeys of different lengths, theta sequences

that are bookended by those boundaries necessarily represent more space which, in
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turn, causes place fields to expand (Diba and Buzsáki 2008). As Redish and

colleagues have shown, subjects can, on a moment-to-moment basis, allocate

computational resources as a function of the planned trajectory length. Long

trajectories were associated with larger place fields, and thus the resolution of the

spatial code for these trials was coarser (Wikenheiser and Redish 2015). Our

findings expand on these observations by demonstrating that it is not only the

goal but both the beginning and end of a continuous stretch (such as a linear

track) that are simultaneously represented by the theta assemblies. In our linear

track experiments, the environmental boundaries and the goal locations were the

same, and therefore further studies are needed to determine whether the route

boundaries or the environmental geometry dictated the reliable phase coding of

the start and stop locations.

Given the rapid formation of place fields upon entry into a new environment

(Frank 2004; Dragoi and Tonegawa 2011; Feng et al. 2015), there must be some

mechanism that estimates the spatiotemporal extent of the event segment to allocate

resources appropriately. The fact that nearby neurons exhibit similarly sized place

fields (Jung et al. 1994; Kjelstrup et al. 2008) suggests that there is a characteristic

segment size for a species that moves through space at a particular rate. It is

possible that salient events tend to happen at regular temporal or spatial intervals

(Sreekumar et al. 2014). Alternatively, the segment size may depend upon internal

limitations of hippocampal processing, for example, the limited amount of time in

which information can be held across a delay or a limited amount of time a cell can

fire at a faster rate than the overall population (Geisler et al. 2010). It is telling that,

Fig. 2 Left, as rats run on a 1.2-m linear track, the decoded probability (high probability¼ red) of
the rat occupying each track position (y-axis) is calculated at each phase of theta (x-axis, white sine
wave). In each subplot, the range of the white sine wave demarks the rat’s actual position.

Generally, there is a high probability of the rat occupying its actual position. However, within a

subplot, theta sequencing can be visualized by diagonal streaks of high probability that begin at the

START position on the falling phase of theta and finish at the END position at the rising phase.

Right, the same data averaged across all positions actually occupied by the rat. Note that theta

sequences are bookended by representations of the linear track START and END positions at the

falling and rising phases, respectively. Note that decoding was done on simultaneous ensembles

measured across 4 mm of the hippocampus
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even in large stretches of ‘open space,’ rodents choose certain spots as ‘home bases’
(Eilam and Golani 1989), perhaps to subdivide the space into spatial segments

tailored for hippocampal processing. A recent study of neurons in the ventral

hippocampus showed that, with learning, place fields shrank to encompass the

space that equivalently predicted which objects contained a hidden reward

(Komorowski et al. 2013). In this study, the default place field size was a poor

predictor of the spatial extent of the context boundaries and therefore the system

was modified to resolve the mismatch.

In an intriguing parallel to the organization of theta sequences, firing of cells in

the ventral striatum has been shown to phase precess relative to hippocampal theta

(van der Meer and Redish 2011; Malhotra et al. 2012). Cells in the ventral striatum

showed ramped firing as subjects ran towards goals. Remarkably, striatal phase

precession occurred over a long spatial extent for distant goals and over much

shorter spatial segments when goals were close together. The phase precession

appeared to be bookended by experimentally defined boundaries—the goal sites.

Striatal activity might be driven by cells in the ventral hippocampus, which showed

precession (Kjelstrup et al. 2008), ramped firing towards goals (Royer et al. 2010)

and connectivity with the ventral striatum (Groenewegen et al. 1987). These results

suggest that downstream areas may be sensitive to how space is segmented by

hippocampal theta sequences (Pezzulo et al. 2014), though future studies in which

both regions are recorded simultaneously are needed to assure the link between

these two observations.

How Could Theta Sequences Be Integrated by Post-synaptic

Readers?

Aside from the distance between place fields, there are other factors that influence

the temporal lags in cell activity. The mutual dependency of the distance between

place fields and anything else in determining spiking phase lag seriously compli-

cates the aforementioned models for the computation role of cell sequences.

Cells recorded in different regions of the hippocampus have different properties.

Septal CA1 cells tend to have smaller, unimodal place fields whereas more tempo-

ral cells have larger, multi-modal fields (Jung et al. 1994; Kjelstrup et al. 2008;

Royer et al. 2010; Komorowski et al. 2013). Hippocampal place cells have been

shown to phase precess, with spikes initiating the spike train emitted on the late

phases of local theta (Maurer et al. 2005; Kjelstrup et al. 2008). Therefore,

considering a pair of cells with their place fields centered at the same location,

the timing difference between spikes will change in sign as the rat crosses the place

fields’ common center. A range of place field sizes will cause a range in timing

offsets, all of which equivalently code for the same position.

The situation is complicated further by the systematic shift in theta phase across

the longitudinal axis of the hippocampus. Simultaneous recording of the LFP or
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current source density analysis has shown that theta is a traveling wave (Lubenov

and Siapas 2009; Patel et al. 2012) that begins at the most septal end of the

hippocampus closest to the subiculum and moves temporally and proximally,

resulting in a 180� phase shift at the two poles of the hippocampus (Patel

et al. 2012). The speed of the travelling wave and, therefore, the maximal phase

offset also change between waking and REM sleep (Patel et al. 2012). Importantly,

the phase preference for spiking, with respect to local theta, does not change across

the longitudinal axis (Patel et al. 2012) and, as mentioned, the phase onset and

offset of precession are the same regardless of cell location (Maurer et al. 2005;

Kjelstrup et al. 2008; Patel et al. 2012). Therefore, every instant in time is associ-

ated with cells at different parts of their phase precession cycle.

This observation led to the realization that moments in time do not represent

points in space but could instead represent line segments (Lubenov and Siapas

2009). Since there are a range of phases that can be observed in any snapshot of

time, there could theoretically be a range of represented positions, if spike phase

codes for a point in space. Unless cells had equivalent place fields and were located

at the same transverse lamellae along the longitudinal axis, the time delays between

cells would not convey any reliable information about the distance between the

place fields. The reports for this correlation in the literature are likely due to the

sampling from ensembles that conform to these restrictions (Dragoi and Buzsáki

2006; Feng et al. 2015).

It is unknown whether the hippocampus acts as a single computational unit or

whether transverse lamellae have different, and independent, computational roles

(Andersen et al. 2000; Strange et al. 2014). If lamellae have a relative degree of

independence, then the conditions could be met for phase lags to represent place

field separation. Early track tracing studies showed mainly parallel fibers along

transverse lamellae, implying that the trisynaptic loop is the fundamental

processing module that repeats across the longitudinal axis (Andersen et al. 1969,

2000; Tamamaki and Nojyo 1991). Subsequent cell tracing studies revealed that the

Schaffer collateral fans broadly from CA3 to CA1, thus allowing for substantial

integration across the longitudinal axis (Amaral and Witter 1989; Ishizuka

et al. 1990; Li et al. 1994), in addition to the well-known CA3 recurrent collaterals

(Lorente De N�o 1934; Wittner et al. 2007). Furthermore, the axonal arborization of

GABAergic cells can innervate as much 800 μm of the longitudinal axis, allowing

for considerable inter-laminar crosstalk (Sik et al. 1995; see also Sloviter and Lømo

2012).

Despite this newer anatomical evidence, others have argued for relative inde-

pendence of the transverse lamellae (Sloviter and Lømo 2012). Stimulation of a

small region of CA3 causes maximal axonal volleys in CA1 regions in the same

transverse plane (Andersen et al. 2000). Lesion and inactivation studies have also

shown dissociations in the function of the septal and temporal hippocampus.

Lesions to the septal hippocampus cause spatial memory deficits whereas those to

the temporal hippocampus are often associated with anxiolytic measures and

motivation (Moser et al. 1995; Kjelstrup et al. 2002; Pentkowski et al. 2006; Bast

et al. 2009; Jarrard et al. 2012; Kheirbek et al. 2013; Wu and Hen 2014). There are
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also large differences in efferent and afferent connections as well as sharp genetic

variations that delineate regions across the longitudinal axis (reviewed in Strange

et al. 2014). In further support of anatomical segregation is the finding that place

cells in the septal versus the temporal hippocampus have been shown to remap at

different rates (Komorowski et al. 2013) and to possess different place field

properties on the radial arm maze, linear track, and zig-zag maze (Royer

et al. 2010).

The anatomy and physiology of CA1 projections to the subiculum strongly

suggest that single subicular cells have access to a large range of the longitudinal

axis of CA1. Cell reconstruction studies have shown that CA1 cells project to

“slabs” of the subiculum that span a narrow range of the transverse axis but up to

2 mm along the longitudinal axis (Tamamaki and Nojyo 1990, 1991). Those

subicular cells would integrate across a broad range of hippocampal theta phases

(~60�). In vitro comparisons of physiology in hippocampal slices versus that in an

intact preparation showed large differences in the theta phase offsets between CA3

and the subiculum and in the theta frequency, suggesting that the slice preparation

severed processes necessary for communication across lamellae (Jackson

et al. 2014). Physiological studies, like those done between CA3 and CA1 (Ander-

sen et al. 2000), are needed to determine the strength of these cross-laminar

projections.

If cross-laminar communication is substantial, the compression that had been

hypothesized to occur over time may occur instead over co-active neurons firing at

different local phases (Lubenov and Siapas 2009). In this scheme, information is

communicated by which neurons are co-active and not by their inter-spike intervals

(Harris 2005). Segmentation of the environment would still be evidenced by which

regions of space were represented by the ensemble at each phase, though these

segments may not change within a theta period (for a different perspective see

Shankar and Howard 2015).

Conclusion

Goal locations have been shown to discretize memory and to segment the hippo-

campal representation of space. Here we have presented evidence that salient

boundaries play an important role in defining how theta sequences begin and end.

We propose that this segmentation anchors place cell firing and consequently the

organization of memory. However, basic questions remain as to how the hippo-

campal spatial code becomes coordinated during theta. What causes different areas

of space to be chunked within a theta sequence and consequently the resolution of

the spatial code? How do certain locations become over-represented? Are these

phenomena related? How does a planning-related signal shift the represented

position further ahead (or behind) the rat with the expected (or realized) journey

length? Simultaneous recordings from across the longitudinal axis of the hippo-

campus and between the hippocampus and its output regions will help resolve the
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spatial and temporal scale in which information is integrated. Finally, behavioral

tests combined with recordings are required to establish whether segmentation of

space into theta sequences is linked to how subjects behaviorally segment experi-

ence. Future experiments that address these questions may reveal important evi-

dence as to how the continuous nature of experience becomes discretized in our

memory.
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dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature

417:738–741

Harvey CD, Collman F, Dombeck DA, Tank DW (2009) Intracellular dynamics of hippocampal

place cells during virtual navigation. Nature 461:941–946

Hasselmo ME, Giocomo LM, Zilli EA (2007) Grid cell firing may arise from interference of theta

frequency membrane potential oscillations in single neurons. Hippocampus 17:1252–1271
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