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Abstract For a century or so, the multidisciplinary nature of neuroscience has left

the field fractured into distinct areas of research. In particular, the subjects of

consciousness and perception present unique challenges in the attempt to build a

unifying understanding bridging between the micro-, meso-, and macro-scales of

the brain and psychology. This chapter outlines an integrated view of the neuro-

physiological systems, psychophysical signals, and theoretical considerations

related to consciousness. First, we review the signals that correlate to consciousness

during psychophysics experiments. We then review the underlying neural mecha-

nisms giving rise to these signals. Finally, we discuss the computational and

theoretical functions of such neural mechanisms, and begin to outline means in

which these are related to ongoing theoretical research.

Introduction

It was with considerable surprise that, 30 years later, in examining the literature of

modern psychology I found that the particular problem with which I had been

concerned had remained pretty much in the same state in which it had been when it

first occupied me. It seems, if this is not too presumptuous for an outsider to

suggest, as if this neglect of one of the basic problems of psychology were the

result of the prevalence during this period of an all too exclusively empirical

approach and of an excessive contempt for ‘speculation’. It seems almost as if

‘speculation’ (which, be it remembered, is merely another word for thinking) had

become so discredited among psychologists that it has to be done by outsiders who
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have no professional reputation to lose. But the fear of following out complex

processes of thought, far from having made discussion more precise, appears to

have created a situation in which all sorts of obscure concepts, such as ‘represen-
tative processes’, ‘perceptual organization’, or ‘organized field’, are used as if they

described definite facts, while actually they stand for somewhat vague theories

whose exact content requires to be made clear. Nor has the concentration on those

facts which were most readily accessible to observation always meant that attention

was directed to what is most important. Neither the earlier exclusive emphasis on

peripheral responses, nor the more recent concentration on macroscopic or mass

processes accessible to anatomical or electrical analysis, have been entirely bene-

ficial to the understanding of the fundamental problems.

– Friedrich Hayek, Preface to The Sensory Order: An Inquiry into the Founda-
tions of Theoretical Psychology (1953).

In 1920, a 21-year-old Friedrich Hayek (later to become the famous economist

and winner of the 1974 Nobel Prize in Economic Sciences) wrote one of the first

explicit proposals linking the coordinated activity of neural assemblies to con-

sciousness and the representation of percepts in the brain (Hayek 1991). Though

Hayek would devote the majority of his adult life to economic theory,1 he would,

some three decades later in 1953, publish an extended book on those same ideas in

The Sensory Order: An Inquiry into the Foundations of Theoretical Psychology
(Hayek 1999).2 The general “problem of theoretical psychology” that Hayek

introduced in The Sensory Order was to first describe what, and then explain

how, physical states of the brain give rise to sensory perception. To satisfy these

criteria he postulated a mechanism for how the collective action of individual

neurons could carry out a highly complex hierarchical classification function and

how such aggregate activity binds sensory primitives to represent percepts—a

defining problem still fundamental to modern neuroscience. By recasting the

problem of perceptual representation in terms of classification, Hayek made a

great leap forward in suggesting a specific framework of neural processing that

accounts for our subjective experience. The mechanistic descriptions offered by

Hayek point to unparalleled insightfulness at the conceptual level, ultimately

bridging the gap between the seemingly ineffable psyche and the algorithmic

framework of computation.

Theoretical (and often philosophical) work has continued in the decades since

Hayek’s work, but perhaps the most progress has been in identifying biophysical

signals that correlate to different behavioral and psychological states. Most typi-

cally, electrical activity, as measured via electroencephalography (EEG) or

1 There has been some discussion about the relationship between his thought in theoretical

psychology and economics, especially as it relates to the distribution of information in complex

networks of individual nodes, e.g., neurons in the brain or humans in a society (Butos and Koppl

2007; Caldwell 2004; Horwitz 2000).
2 Interestingly, Hayek considered this work to be one of his most important intellectual achieve-

ments and was disappointed that it did not achieve the popularity of his others works (Caldwell

2004).
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fluctuations of magnetism assayed via magnetoencephalography (MEG) gathered

from the scalp of humans, has been shown to correlate with behavioral and

psychological states. An offspring of such studies is the well-known framework

of the neural correlates of consciousness (or NCC), i.e., the minimal set of neural

events and mechanisms jointly sufficient for a specific conscious percept. The NCC

framework, first proposed by one of the discoverers of DNA structure and Nobel

prize winner, Francis Crick, and his colleague Christof Koch, was suggested as a

scientific framework in which to study consciousness (Crick and Koch 1990, 2003).

Generally, the study of consciousness can be separated into studying “contents” and

“level.” The contents of consciousness refer to those perceptual objects that a

subject is aware of, for instance, when a subject reports being aware of a tree in

their visual field. Level, on the other hand, refers to the continuum spanning from

dreamless sleep to normal waking life.

The use of NCC, studying both contents and level, has yielded a fruitful but

extremely nuanced list of candidate signals that correlate (in varying degrees and

with varying evidence) with consciousness and other related subjects, like attention

and decision-making. Due to the necessary use of noninvasive techniques in

humans, these signals are often found using EEG or imaging techniques such as

functional magnetic resonance imaging (fMRI). Alternatively, in a clinical setting,

human patients that have to undergo brain surgery (e.g., to treat epilepsy) live days

with intracranial depth electrodes implanted in their brains recording extracellular

voltage time-series, allowing neuroscientists to work with them and study how

cognitive processing is related to neural signals. Thus, when measured with EEG,

MEG, or depth electrodes, the NCC usually consist of modulations in amplitude of

these extracellular signals (alongside their timing) or modulations of oscillatory

power in certain frequency bands. When measured with fMRI, blood-oxygen level-

dependent (BOLD) signals are used as a proxy for neural activity and to find spatial

locations of activation mainly in the primate brain. Despite the immense advances

in this kind of research, they have taken place largely independent from more

theoretical concerns, like those discussed by Hayek.

To understand psychological phenomena, neuroscience must find mechanistic

explanations for how these signals reflect, support or even constitute the conscious

mind, ultimately explaining theoretical concerns through an understanding of the

function of neurons and the circuits they compose. Moreover, we will show how an

investigation of the details of physiology and anatomy of the brain can drive the

creation of experimentally testable psychological theories. Importantly, neurosci-

ence is now at a point where biophysical and anatomical details can be used to close

the gap between experimental neuroscience, psychology and theoretical concerns.

In this chapter we introduce and discuss the tight relationship between abstract

theoretical concerns, detailed physiological and anatomical facts, and population

signals often used in psychophysics experiments. Although much work has been

done to find explanations that relate signals to psychological phenomena, it is

important to realize that it is the physiology and anatomy of neurons and the

networks they create that actually compute and perform tasks in the brain. In

other words, within the framework presented herein, the neural substrate of
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psychology is cells and their networks and not (directly) extracellular fields,

oxygenation levels, or frequencies in certain bandwidths (though alternative ideas

exist; Hameroff 1994; McFadden 2002; Pockett 2012). Thus, theories of conscious-

ness and perception acknowledge that the signals mentioned are proxies for the

activity of cells and their networks. The method is thus easily described by a

triumvirate of areas of study (in no particular order) related to each other as

shown in Fig. 1. We will quickly introduce these three concepts and then delve

into them more concretely in the subsequent sections of this chapter.

First are the empirically reported signals that correlate with psychological

phenomena. As discussed, these can include signatures of the EEG, anatomical

locations found via fMRI, extracellular recorded spiking of cells in the

thalamocortical system, and power spectrum analysis in different bands. Second

are the theoretical considerations regarding psychological phenomena. These

include questions regarding computational and functional concerns; for example,

what does it mean in terms of a general algorithm to attend to something or

represent a conscious percept? Answers to these questions are often given using

some mathematical framework, for instance Bayesian inference (Knill and Pouget

Fig. 1 Signals correlated to conscious perception and theoretical concerns can be connected by

considering the biophysics of signals and the computations they perform. Theory concerns itself

with what it means in terms of computation and algorithm to consciously perceive something.

Signals refer to the population level measurements found in the psychophysics literature (e.g.,

EEG, fMRI, ECoG). The underlying biophysics of these signals can be uncovered using the tools

of experimental neuroscience, and then the computational functionalities of networks made from

those biophysics can be explored to bridge theory and signals
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2004; Ma et al. 2006; Yuille and Kersten 2006), predictive coding (Carandini and

Ringach 1997; Rao and Ballard 1999), integrated information theory (Oizumi

et al. 2014), or the free-energy principle (Friston 2010), or they can take a more

conceptual form such as neural Darwinism (Edelman 1993), global workspace

theory (Baars 2005), or indeed the ideas of Hayek and their modern extensions

like the cognit (Fuster 2003, 2006).

Bridging the empirical signals and theoretical concerns are the biophysical

mechanisms. One natural area of study arises in elucidating the physiological

underpinnings of signals that correlate to specific psychological states. For instance,

given a specific EEG amplitude occurring over the visual cortex, which networks,

cell types, transmembrane currents, etc., contribute to that signal? Because these

anatomical and physiological details are the substrates of neural computation, we

can then delve into the computational role these physical mechanisms play. These

questions connect high-level (macro-scale) theory, low-level (micro-scale) bio-

physical details, and mid-level (meso-scale) psychophysical signals.

In this chapter we explore how distinct biophysical processes connect between

signals and psyche. Specifically, using the physiology and anatomy of pyramidal

neurons in the neocortex, we explore a mechanism for perceptual binding. Notably,

we focus exclusively on the contents of conscious perception. It is important to state

at the onset that the connections presented herein are just one of a set of plausible

frameworks for understanding how the different scales studied by neuroscientists

connect to each other. This chapter is meant not to present the final word on how to

comprehensively think about the micro-, meso-, and macro-scales in neuroscience

as they relate to consciousness but, instead, to present, by way of example, one

possible path to bridge these multiple concerns. Importantly, the task of finding the

relationship between biophysics, network computation, theory, and psychology is

still very much an open area of study.

Signals of Conscious Perception

What processes in the brain accompany and support conscious perception? In the

attempt to answer this question, scientists and clinicians have carried out more than

a century’s work, often under the area of study called psychophysics, to find

measurable signals in the brain that correlate to consciousness. In particular, we

discuss the evidence for three such neural signatures: (1) late extracellular signals,

(2) distributed information sharing in the cortex, and (3) long-range feedback

connections within the cortex. As we will see, the boundaries between these topics

are often overlapping but have been studied in an independent enough manner to

discuss individually (though not necessarily independently). Notably, given that

many of these subjects are discussed in other chapters of this book, we review a

number of perceptual correlates rather succinctly in order to relate them to the more

general framework discussed in the introduction of this chapter.
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Late Extracellular Signals

In 1964, Haider et al. (1964) used scalp electrodes to record extracellular signals

from humans during a simple detection task. Dim flashes of light were shown to the

subjects, who were asked to report perception of these stimuli. When comparing the

averaged extracellular signature of seen and unseen trials, a significant difference

was found in the amplitude of a negative wave occurring approximately 160 ms

after the signal onset, with the amplitude of the negative wave being positively

correlated to perception. These visual results were later reproduced in the auditory

cortex (Spong et al. 1965).

Similar conclusions were formed in a series of papers in the 1980s and 1990s.

Cauller and Kulics performed a go/no-go discrimination task on forepaw stimula-

tion in monkeys (Kulics and Cauller 1986, 1989). They compared the extracellular

signal in the somatosensory cortex and found that an early positive component

(called P1, occurring about 50 ms after the stimulus) correlated well with the signal

strength whereas a later negative component (called N1) correlated with the

behavioral report of the signal (interpreted as the conscious perception). In a later

study using depth electrodes, the laminar structure of these signals was examined

using current source density analysis. Interestingly, the early P1 signal was found to

be attributal to a current sink in layer 4, whereas the later N1 signal was attributed to

a current sink in layer 1. Later work also showed that the later N1 signal was absent

during sleep and anesthesia (Cauller and Kulics 1988).

More recent psychophysical work, using a spectrum of masking techniques, has

suggested a variety of different extracellularly recorded signals that might correlate

with consciousness. Two of the most plausible seem to be the Visual Awareness

Negativity (VAN; Koivisto et al. 2008) and the p3b (also known as p300 or late

potential). Discussion of whether these signals correlate with consciousness itself,

or with pre- or post-conscious events, is ongoing (for reviews see Koivisto and

Revonsuo 2010; Railo et al. 2011). The p3b is a signal occurring in a largely all-or-

none fashion from 300 to 400 ms after stimulus onset (Fig. 2a), but it can occur

earlier based on expectation (Melloni et al. 2011).3 The VAN (Fig. 2a) shows a

more graded response than p3b and occurs from 100 to 200 ms after the stimulus,

but it has been shown to occur as late as 400 ms under specific stimulus conditions.

One study asked subjects to report the subjective awareness of a change in a visual

stimulus. EEG signals in aware and unaware trials from the occipital lobe were

compared (Fig. 2a). Both the p3b (referred to as P3 in their figure) and the VAN can

be seen to clearly signify the difference in awareness (Koivisto and Revonsuo

2007). We will not review all the differences between these signals and all the

evidence for their correlation (or absence of correlation) to conscious perception

here, but suffice it to say, there seems to be an NCC in a late signal occurring at least

100 ms after the stimulus onset, extracellularly measurable from the scalp. The

3Debate over the p3b and what it correlates with has increased recently, with evidence both

pointing to (Gaillard et al. 2009; Salti et al. 2015) and against (Silverstein et al. 2015) its status as

an NCC.
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VAN is particularly interesting as the timing of this signal corresponds to the timing

of the signals measured in the Haider et al. (1964) study as well as the Kulics and

Cauller work discussed above.4 As argued below, the VAN or p3b might even

correspond to recent measurements in behaving rodents.

One of the main advantages of primate experiments is the relatively direct

knowledge of what the subjects’ perception is, though of course this advantage is

offset by more limited access to physiological properties. Rodent experiments have
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Fig. 2 (a) EEG signals taken from occipital sites during a change blindness task. On the left are
averaged responses from trials where the subject was aware or unaware of the change. On the right
is the difference between aware and unaware trials. Data from Koivisto and Revonsuo (2003),

figure from Koivisto et al. (2007). (b) The subthreshold membrane potential of a mouse L2/3

pyramidal neuron during a whisker stimulus task. Behavioral hits and misses are shown in black
and red. There are two epochs of depolarization, with the late epoch correlating to the behavioral

output. Figure from Sachidhanandam et al. (2013). (c) Weighted symbolic mutual information

between EEG sites in control (CS), minimally conscious (MCS), and vegetative (VS) patients. As

the distance between sites increases, the differences in wSMI become more and more significant

between the different conscious states. Figure from King et al. (2013). (d) Phosphene report after
TMS stimulation in area V5 followed by V1, after a time delay shown on the x-axis. When V1

stimulation followed V5 stimulation within ~50 ms, phosphene report was abolished. Figure from

Pascual-Leone and Walsh (2001)

4 Though care must be taken not to over-interpret. It is important to realize, for instance, that these

signals all come from different perceptual modalities and cognitive tasks.
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been used as a model organism for cortical physiology at the synaptic, single-

neuron (including dendrites), and small network level. Recent genetic tools (e.g.,

cre-lines, opsins) have made the mouse a preferred animal in cellular and systems

neuroscience, despite the relative difficulty in establishing complex behavioral

tasks and inferring perceptual state. By establishing measurable (often population

or indirect) signals in primates, experimentalists are now able to find analogous

signals in the rodent cortex as they attempt to establish links between behavior and

perception. One recent example is from Sachidhanandam et al. (2013) (Fig. 2b). In

this experiment, mice were trained to report a whisker stimulus during whole-cell

patch recording of single pyramidal neurons in the barrel cortex. Two periods of

depolarization were found. The first, occurring within 50 ms of stimulus onset,

correlated well with stimulus strength. The second signal, occurring 50–400 ms

after stimulus onset, correlated well with the behavioral report. Taking advantage of

the animal preparation, optogenetics was used to silence pyramidal neurons during

both the early and late epochs. Both types of inhibition abolished the behavioral

report. In a control experiment, inactivation of the forepaw somatosensory cortex

(and not the whisker cortex) had no effect on performance. These experiments

established a causal influence of the late depolarization specifically in the whisker

cortex for the perception of whisker deflection.

Taken together, these findings suggest a potential NCC in a late (~150 ms) signal

that originates in the upper layers of the neocortex.

Distributed Processing in the Cortex

How distributed is the cortical representation for a given conscious percept? What

are the necessary and sufficient conditions related to the communication between

different areas of the brain and representation of such percepts? Here we review the

evidence pointing to the distributed nature of cortical percepts.

Perhaps the earliest work hinting at the distributed mode in which the cortex

operates was given by the pioneering physiologist Flourens, who sought to test the

theory of localized function in the brain made popular by phrenologists like Gall

and Spurzheim around the turn of the nineteenth century.5 Flourens removed

different parts of the brain in rabbits and pigeons and assessed a range of behavioral

abilities. Although he was able to ascribe differences in function between the

cerebellum and cerebrum, for instance, he was unable to relate different parts of

the cerebrum to different cognitive and memory-dependent behaviors, ultimately

positing that memory and cognition were highly distributed throughout the cere-

brum (Flourens 1842).

5 This task was actually assigned to Flourens by the French Academy of Sciences in Paris, on order

of Napoleon Bonaparte. Gall was not seen to have carried out his experiments with ample scientific

rigor by the Academy (Pearce 2009).

114 C.A. Anastassiou and A.S. Shai



Alongside medical results from the injured soldiers of WW1 (Goldstein 1942)

and a number of famous case studies (Harlow 1999), this line of study was

continued a century later by Lashley. In this body of work (Lashley 1929, 1950),

Lashley aimed to study the relationship between cerebral damage and cognitive

behavior, wanting to more quantitatively explain results in human patients with

cortical damage who had their visual discrimination assessed by using more

invasive experiments in rodents, very similar to those of Flourens. In this work,

rats were trained to run through a maze. Upon removing varying volumes of cortex

in different areas, rats were reintroduced into the maze, and their ability to complete

the maze was assessed. Lashley found that the maze-running ability was related to

the volume, but importantly not the location, of the cortical lesion. He thus posited

that the ability to run through the maze was not contained in any specific local part

of the cerebrum but was, instead, distributed among the entirety of the cortex.

One caveat of the work presented so far is that it is often not explicitly testing the

distributed nature of a conscious percept per se but instead a more general cortex-

dependent behavior. More recently, psychophysical experiments in humans have

suggested that widely distributed cortical activity is associated with conscious

perception, whereas activity more localized to the primary sensory areas is not.

Using intracortical EEG, Gaillard et al. (2009) used a masking paradigm to compare

conscious and unconscious extracellular signatures. They found that conscious

perception of the stimulus was associated with widely distributed voltage deflec-

tions sustained across the cortex, increased beta (12–20 Hz) synchrony across the

cortex, as well as gamma (30–60 Hz) power. The timing of these changes was late,

occurring most obviously 300 ms after stimulus presentation (this was interpreted

as being the p3b, though significant differences could be measured starting at

200 ms). Other similar studies showed that more localized gamma band activity

relegated to the visual cortex accompanied conscious perception (Fisch et al. 2009),

though follow-up studies argued that these signals were related more to pre- or post-

conscious processing (e.g., decision making and report; Aru et al. 2012) than with

conscious perception itself, a general weakness of the contrastive method (Aru

et al. 2012; de Graaf et al. 2012; Tsuchiya et al. 2015).

Two recent studies used mathematical concepts related to information sharing

across the cortex to successfully quantify the amount of consciousness in patients.

King et al. (2013) used weighted symbolic mutual information, a novel measure of

information sharing, between pairs of EEG recording sites (Fig. 2c). Importantly, in

comparing this information measure using different distances between electrodes, it

was found that differences between different levels of consciousness (e.g., vegeta-

tive vs. minimally conscious vs. healthy) were most significant for mid- to long-

range distances, implicating information sharing between far-away parts of cortex

in consciousness. Casali et al. (2013) used TMS evoked potentials to assess the

amount of integration and differentiation distributed across the scalp EEG of

patients. Importantly, this method was able to accurately and quantifiably assess

the level of consciousness in patients undergoing anesthesia, sleep (Massimini

et al. 2005), and varying degrees of brain injury. Similar results were more recently

shown by Sarasso et al. (2015) by comparing propofol and xenon anesthesia, which
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induce states of unconsciousness with no dreams, to dream-inducing ketamine

anesthesia. In propofol and xenon anesthesia, integration and differentiation mea-

sures were found to be low, whereas in ketamine, these same measures were high.

These two studies show that the concept of long-range distributed information

sharing is not only a qualitatively useful correlate of consciousness but is also

quantifiable and workable in a medically applicable setting. Similar studies using

transfer entropy measures have been used to study anesthesia in rats (Imas

et al. 2005).

How distributed the representation for a conscious percept needs to be is a matter

of ongoing debate. For visual perception, it is quite clear that V1 is generally

necessary but not in itself sufficient to support a conscious content (Blake and

Fox 1974; Crick and Koch 1995; Cumming and Parker 1997; Gawne and Martin

2000; Rees et al. 2002), though it is unclear if information processing needs to reach

extrastriate areas or the most frontal regions or the entirety of cortex. Whatever the

case, long-range communication in the cortex6 between at least several centimeters

in a human (or on the order of a millimeter in the mouse) is a necessary condition

for representation of a conscious percept.

Feedback Processing

A separable but not completely independent area of study from the distributed

nature of processing in the cortex is the study of feedback processing of extrastriate

areas or frontal regions to primary visual cortex. Here, the data in any one study do

not often explicitly implicate feedback processing but are instead interpreted to be

feedback from considerations like timing and anatomy.

The timing of extracellularly measured potentials that correlate to conscious-

ness, like the VAN discussed previously, suggests that they might have their origin

in long-range feedback connections from other areas of cortex. The sensory driven,

feedforward step of information processing follows a stereotyped succession of

cortical areas and is completed in ~100 ms (Lamme and Roelfsema 2000). Indeed,

many theories of consciousness rest on this fact, and some even go so far as to

equate recurrent processing with consciousness (Lamme 2006). Experiments using

TMS and other stimulation techniques have tested the causal influence of late,

presumably long-range feedback processing, on perception. Multiple studies using

different sensory paradigms have now shown interruption of perception by TMS

over V1 during two distinct time periods, the early one interpreted to be the

feedforward sweep and a later one (>200 ms) interpreted to be a feedback sweep

6One interesting possibility is that such long-range communication is mediated through the

thalamus via L5b pyramidal neurons and not directly within the cortex. Some evidence exists

that such a pathway is indeed the main mode in which different areas of cortex communicate with

each other (Sherman and Guillery 2002, 2011).
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(Heinen et al. 2005; Juan and Walsh 2003). Additionally, phosphenes induced by

TMS over V5 (an extrastriate visual area) can be reduced by a lagging TMS pulse

over V1, presumably interrupting the feedback of information from V5 to V1

(Fig. 2d; Pascual-Leone and Walsh 2001).

Another line of evidence comes from single cell recordings, showing that cells in

the cortex continue spiking past initial feedforward activity. Many cells in macaque

V1 have been found to possess dynamic orientation tuning, having precise tuning to

one orientation starting at around 50 ms and then inverting at 120 ms (Ringach

et al. 1997). Network simulations have shown that feedback, but not feedforward,

networks can recapitulate these dynamic tuning curves (Carandini and Ringach

1997). Furthermore, single unit recordings have shown the early firing of cells

codes tuned for the general category (e.g., face), whereas later spiking, ~165 ms,

was tuned for specific identity (Sugase et al. 1999). Finally, inactivation of higher

areas of cortex (e.g., area MT) greatly altered the response properties of cells in

lower areas (e.g., V1 and V2), where feedback axons project (Nowak and Bullier

1997).

A host of studies using a technique called backwards masking might also be

explained by the need for feedback processing in consciousness. In backwards

masking, a target stimulus is followed, after ~50 ms, by a mask (Breitmeyer and

Ogmen 2000). The subject is not aware of the target stimulus, even though on trials

without a mask the target is consciously perceived. One explanation for this

phenomenon is that, while the feedforward information flow through the cortex is

preserved, the feedback signals conflict with the mask, rendering the target uncon-

scious. A similar effect is found in patients with V1 lesions. These so-called

“blindsight” patients retain the ability to perform forced choice tasks even though

they can no longer consciously perceive visual stimuli into the affected visual field

(Weiskrantz 1986). Although the exact neural underpinnings of blindsight are

unknown, one candidate mechanism implicates the largely intact feedforward

sweep in the retained information processing capabilities and the disturbed feed-

back processing in the absence of consciousness (Lamme 2001). Feedback

processing has also been implicated in “contextual modulation,” which is the

altering of cellular responses by changes of the stimuli outside of their classical

receptive field. Interestingly, blindsight of stimulus that would normally create

contextual modulation abolishes such modulation (Zipser et al. 1996), as does

anesthesia (Lamme et al. 1998).

Biophysical Foundations of Signals Associated
with Conscious Perception

The aforementioned relationships between conscious perception and a number of

characteristic signals and signatures point to the importance of understanding the

neural substrate of these signals. Such understanding bridges the gap between the
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underlying cellular biophysics, the network effects, and the high-level behavioral

readouts. To gain insights into the signals associated with conscious perception, it is

important to understand the underlying physics, in terms of the physical laws

governing the generation of these signals as well as the neural origins that brings

them about.

We first present the physics underlying electric measurements in the brain

(‘Biophysics Related to Electric Measurements’). We have chosen to specifically

focus on electric signals and measurements such as the VAN as they have produced

the largest body of evidence in terms of psychophysics of conscious perception.

(Later in this chapter we also present other methods that have impacted or will

potentially critically impact the field.) In a next step, we introduce the most

significant cellular contributors of electric activity in brain matter as a means to

understand which processes (synapses, cells, circuits, etc.) contribute to these

signals (‘Biological Electric Field Contributors’). Finally, we present the most

prominent methods and technologies used to monitor brain activity (‘Monitoring

Neural Activity’).
The previous section featured results using several different types of electrical

measurements, including EEG (Koivisto and Revonsuo 2010), single unit record-

ings (Sugase et al. 1999), and depth electrodes to compute the power of different

frequency spectrum (Aru et al. 2012), as well as both local field potential (LFP) and

current source density (CSD) recordings (Kulics and Cauller 1986). These tech-

niques as well as others used in the field of neuroscience will be presented.

Additionally, the biophysical underpinnings of the late current sink in layer

1 (Kulics and Cauller 1986) that correlates to conscious perception is discussed.

Biophysics Related to Electric Measurements

Charge transfer across the membrane of all structures in brain matter such as

neurons, glial cells, etc., induces so-called extracellular sinks and sources that, in

turn, give rise to an extracellular field, i.e., a negative spatial gradient of the

extracellular voltage (Ve) measured in comparison to a distant reference signal.

The physics governing such events are described by Maxwell’s equations. In their

simplest form, Maxwell’s equations of electromagnetism dictate that Ve depends on

the transmembrane current amplitude (I), the conductivity of the extracellular

medium (σ) and the distance between the location of the ionic flux and the

recording. Specifically, when assuming a so-called point-source (i.e., when a

localized current injection occurs within an electrically conductive medium), the

relationship between the aforementioned variables and the resulting Ve is (Fig. 3a):

Ve dð Þ ¼ I

4πσd
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Based on the point-source equation, one can note the following: first, there is an

inverse relationship between distance d and the amplitude of the resulting voltage

deflection Ve, i.e., the farther away to recording site is from the location of

the current point-source, the larger the attenuation of the amplitude of the

Ve-deflection; the stronger the point-source I, the larger the Ve-deflection; finally,

the conductivity of the extracellular medium critically impact propagation of the

signals from the point-source to the recording site.

Notably, when the source is not limited to a point but instead possesses physical

extent, the approximation needs to be re-formulated accordingly to account for such
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Fig. 3 Biophysics of extracellular signatures and conductivity of the extracellular medium. (a)
Illustration of Ve calculation in a population through the superposition of contributions from all

compartments in all cells. Individual compartment contributions are primarily determined by their

transmembrane currents and distances from the electrode. (b) Charge transfer elicited across the

membrane (dark region) of a long, small diameter cable gives rise to an extracellular field. The

extracellular potential close to the cable was calculated using the line-source and the cylinder-

source approximation. The difference between the two approximations is very small (they

overlap). (c) Simulated location dependence of the extracellular action potential (EAP) waveform

of a pyramidal neuron. The peak-to-peak voltage range is indicated in this simulation by the color
of each trace. EAPs are calculated at the location of the start of each trace. EAP amplitude

decreases rapidly with distance. (d) Experimentally obtained values of components of the con-

ductivity tensor in the frog (Rana) and toad (Bufo) cerebellum as a function of depth. (e) In vivo

measurements of impedance as a function of cortical depth in monkey. (f) Microscopic measure-

ments of the relationship between intracellular and extracellular spike signals in rodent slice.

Whole-cell patched neurons are brought to spike (blue line) and a proximally positioned extracel-

lular silicon probe with eight contacts is used to record the elicited extracellular voltage transients

(red line). At the initiation time of the spike, the extracellular negativities (red) associated with the
intracellular spikes attenuate with distance from the soma (see also panel c), with the attenuation

occurring per the point-source approximation. Figure contributions are from (a, c) Schomburg

et al. (2012), (b) Holt and Koch (1999), (d) Nicholson and Freeman (1975), (e) Logothetis

et al. (2007), (f) Anastassiou et al. (2015)
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physical extent. For example, when charge transfer takes place along the elongated,

cable-like morphologies of neurons, it gives rise to a spatially distributed extracel-

lular source not compatible with the aforementioned point-source expression.

Probably the most prominent such approximation accounts for the field induced

by a linear, one-dimensional (line) source of infinitesimally small diameter. The

line source approximation (LSA) makes the simplification of locating the trans-

membrane net current for each neurite on a line down the center of the neurite. By

assuming a line distribution of current, Ve is described via a two-dimensional

solution in cylindrical coordinates. For an elongated current source of length Δs,
the resulting Ve(r, q) is given by:

Ve r; qð Þ ¼ 1

4πσ

ð0
�Δs

I

Δs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ q� sð Þ2

q ds ¼ I

4πσΔs
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ r2

p
� qffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ r2
p

� l

 !

where r is the radial distance from the line, q the longitudinal distance from the end

of the line, and l¼Δs + q is the distance from the origin of the line. Holt and Koch

(1999) analyzed the accuracy of the LSA and found it to be highly accurate except

at very close distances (i.e., about 1 μm) to the cable (see also Rosenfalck 1969;

Trayanova and Henriquez 1991; Fig. 3b). The LSA has been the primary method of

calculating extracellular voltages arising from transmembrane currents (Gold

et al. 2006, 2009; Holt 1998; Holt and Koch 1999; Pettersen and Einevoll 2008;

Fig. 3c).

Notably, the aforementioned relationships assume that the extracellular medium

in the brain is described via electrostatics and not by much more elaborate elements

of electrodynamics. Furthermore, a widespread assumption is that the extracellular

medium is isotropic and homogeneous. What evidence exists for such claims to be

made? It turns out that this question has remained unresolved, with a number of

studies reporting an anisotropic and homogeneous σ (Nicholson and Freeman 1975;

Logothetis et al. 2007) (Fig. 3d, e) to strongly anisotropic and inhomogeneous

(Goto et al. 2010; Hoeltzell and Dykes 1979; Ranck 1973) and, finally, even of

capacitive nature (Bédard and Destexhe 2009; Bédard et al. 2004; Gabriel

et al. 1996).

Part of the difficulty in determining the properties of σ, especially at the local,

microscopic scale, has to do with the inhomogeneity of the brain as a structure. In

that sense, the questions to be answered are where, in what species, in what

frequency band and at what spatial scale should σ be measured. The danger is

that measuring σ over larger volumes leads to possibly quite different results

(attributed to averaging) than recording σ over tens of μm. Moreover, measuring

σ within distances of tens micrometers, i.e., the relevant spatial scale for signals

related to spiking, poses significant technical challenges given the large number of

sites (both for current injection and voltage recording) that need to be positioned

within μm-distances and the resulting tissue deformation/damage.

Recently, detailed whole-cell patch recordings of excitatory and inhibitory

neurons in rat somatosensory cortex slices were performed in parallel to positioning
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a silicon probe in the vicinity of the patched somata, allowing concurrent recording

of intra- and extracellular voltages (Anastassiou et al. 2015). Using this experimen-

tal setup, the authors characterized biophysical events and properties (intracellular

spiking, extracellular resistivity, temporal jitter, etc.) related to extracellular spike

recordings at the single-neuron level. It was shown that the extracellular action

potential (EAP) amplitude decayed as the inverse of distance between the soma and

the recording electrode at the time of spike (Fig. 3f). The spatial decay of the

EAP-amplitude at the spike time was very close to the prediction of the point-

source approximation: at the spike time, transmembrane charge transfer was still

spatially localized (close or at the axon initial segment), resulting effectively in a

point-source. Even fractions of a ms after the spike time, the relationship between

the EAP-amplitude and distance was shown to become more intricate as more

extended sections of the cellular morphology acted as sources, leading to more

complex superposition rules (e.g., based on the LSA). On that limit, various

contributions of a cell’s different compartments need to be accounted for. Interest-

ingly, in the same experiments, a time lag was observed at the extracellular spike

waveform with increasing distance of the electrode location from the cell body with

respect to the spike time at the soma. While such time lags could be explained by

the presence of a non-ohmic extracellular medium, the authors showed that they

were actually attributed to the spatial propagation of the action potential along the

neural morphology, i.e., backpropagating action potentials. Finally, this study

demonstrated that different cortical layers exhibited different conductivity, with

the conductivity of layer 4 being higher than the conductivity of layer 2/3 and 5, i.e.,

an observation in line with the finding that layer 4 possesses a higher density of

neurons compared to layers 2/3 and 5.

Do these observations hold in vivo? A number of experimental studies have

appeared offering compelling insights into the physics of the extracellular medium.

Nicholson and Freeman (1975) studied the conductivity profile in the cerebellum of

bullfrogs using current injections through micropipettes and concluded that it is

anisotropic, homogeneous, and purely ohmic, with later measurements by

Logothetis et al. (2007) confirming these observations (Fig. 3d, e). Yet, others

found the extracellular medium to be strongly anisotropic and inhomogeneous

(Hoeltzell and Dykes 1979; Ranck 1973) or even of capacitive nature (Gabriel

et al. 1996; Bédard et al. 2004; Bédard and Destexhe 2009). In a more recent study,

Goto et al. (2010) used extracellular recordings to measure the conductivity profile

along the entire somatosensory barrel cortex in rodents using depth multi-electrode

recordings and reported that radial and tangential conductivity values varied con-

sistently across the six neocortical laminas. Thus, they showed that the electric

properties of the extracellular medium in the living animal were anisotropic and

inherently inhomogeneous, agreeing with the in vitro findings of Anastassiou

et al. (2015). Importantly, in their work Goto and colleagues provided evidence

that (at least for frequencies less than 500 Hz) σ can be assumed to be purely ohmic.

Based on the aforementioned, the temporal characteristics of the extracellular field

and signals like the VAN are not due to extracellular medium properties but,

instead, solely attributed to cellular functioning.
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Biological Electric Field Contributors

Given the aforementioned biophysics dictating how transmembrane currents are

generated and propagated in brain matter, what cellular processing gives rise to

these electric signals? Here we present the most important contributors of the

extracellular field. In principle, any charge transfer along the membranes of the

neural morphology elicits extracellular sinks and sources, as will be discussed

below. (For a more thorough treatise, the interested reader is pointed to Buzsáki

et al. 2012; Einevoll et al. 2013.)

Synaptic Activity

In physiological situations, synaptic activity and postsynaptic currents, in partic-

ular, are often the most prominent sources of extracellular current flow. While the

majority of individual synaptic connections induce fairly small extracellular signals

(e.g., Bazelot et al. 2010; Glickfeld et al. 2009), thousands of synapses are present

along a single neuron’s morphology (e.g., a rat layer five pyramidal neurons has

approximately 10,000 synapses along its processes). Thus, even if the individual

contribution of such postsynaptic events is fairly small, the fact that thousands of

them may become co-activated within a small time increment suggests a substantial

overall effect (Fig. 4a). Furthermore, the time constant of synaptic events can vary

substantially: while the time constant of fast excitatory AMPA- and inhibitory

GABA subtype A-receptors ranges approximately 1–15 ms (Hille 1992), excitatory

NMDA and inhibitory GABA subtype B-receptor dynamics can be particularly

slow (i.e., 50–300 ms; Pérez-Garci et al. 2006) and, as such, may readily contribute

to slow bands of the electric signal (Elul 1971; Logothetis and Wandell 2004).

The influx of cations when excitatory synaptic input impinges along the neural

membrane from the extracellular into the intracellular space gives rise to a local

extracellular sink. To achieve effective electroneutrality within the time constants

of relevance for systems neuroscience, the extracellular sink needs to be balanced

by an extracellular source, that is, an opposing ionic flux from the intracellular to

the extracellular space, along the neuron. In this case, the counter-flux is termed

passive or return current. It follows that such passive return currents do not only

depend on where synaptic input impinges along the neural morphology but also on

the actual morphological features of the neuron itself. For example, impinging

inputs in one area of the elongated morphology of pyramidal neurons gives rise to

passive return currents along the same neuron (Fig. 4a). On the other hand, the

symmetric location of the dendrites of inhibitory basket cells does not allow the

formation of such strong passive return currents due to cancellation effects, even

when these neurons receive strong synaptic input (Pettersen and Einevoll 2008;

Reimann et al. 2013). Depending on the location of the sink current(s) and its

distance from the source current(s), a dipole or a higher-order n-pole is formed.
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Beyond the location-related aspects of synaptic input, another important factor

crucially dictating the characteristics of extracellular electrophysiology signals is

input correlation, i.e., the amount of synaptic input impinging along a neuron or

neural population in a unit of time. Typically, enhanced input correlation is

manifested in larger Ve and local field potential (the lowpass filtered part of Ve or

LFP) amplitude, even if such intuition is not always warranted (see below). Beyond

the extracellular LFP magnitude, an additional feature of electrophysiology record-

ings impacted by input correlation is the spatial extent or spread. For example, for

uncorrelated input the majority of the extracellular voltage signal measured by an

electrode originates from neurons within a lateral distance of approximately 200 μm
(Katzner et al. 2009; Xing et al. 2009; Lindén et al. 2011; Reimann et al. 2013).

Notably, such low input correlation results in the independence of the region size

generating the LFP from neural morphology and the spatial distribution of the

synapses. In the presence of more considerable input correlation, the picture

changes drastically: pyramidal neurons with their extended spatial morphologies

as well as their synaptic specialization tend to dominate the extracellular field.

Moreover, correlated synaptic inputs give rise to correlated neural membrane

sources that result overall in stronger LFP amplitude. Yet, the degree of LFP

amplitude enhancement depends on the spatial separation between impinging

synaptic currents and return currents—for substantial separation (i.e., spatially

inhomogeneous input along the extended dendritic arbor), the LFP amplitude

enhancement becomes significant whereas for smaller separation (i.e., spatially

homogeneous input along more compact dendritic arbor), LFP enhancement

becomes weaker. Such interdependence between neural morphology features, loca-

tion of synaptic inputs, input correlation, etc., can putatively explain the disparate

length scales encoded by extracellular recordings (Kreiman et al. 2006; Liu and

Newsome 2006; Katzner et al. 2009; Xing et al. 2009).

Thus far, we have mostly considered chemical communication via dedicated

synapses that are prevalent in brain tissue. Another component whose impact on

population dynamics and, as a result, the extracellular voltage remains unaccounted

for is electrical synapses, which provide a low-resistance pathway between neurons

permitting the direct transmission of electrical signals. Gap junctions (GJs), the

morphological correlate of electrical synapses, have been used as a proxy for

electrical coupling and to infer electrically coupled network architectures. Numer-

ous studies have revealed such networks of electrically coupled neurons in many

mammalian brain structures. In cortex, extensive coupling has been reported

primarily between inhibitory parvalbumin-positive (PV) interneurons and between

somatostatin (SST)-expressing neurons. Such PV- and SST-expressing inhibitory

neurons critically contribute to many aspects of ensemble encoding in the mam-

malian brain (Hu et al. 2014), with one of their most prominent roles being

balancing excitation and shaping rhythmic activity. In addition, PV interneurons,

the most populous among inhibitory cortical cell types, shape cortical ensemble

activity, both during gamma (Szabadics et al. 2001; Traub et al. 2001) and during

other rhythms and events such as hippocampal theta or sharp waves. Given that

proximally located SST and PV neurons are connected both via chemical and
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electrical synapses (for a recent review, see Pereda 2014) in the developing and in

the developed neocortex (Connors et al. 1983), can GJs alter extracellular electric

fields? Because ions passing through GJs do not enter the extracellular space, it

follows that GJ themselves contribute neither to the extracellular current flow nor to

the extracellular field explicitly. On the other hand, because GJs contribute to the

functioning of inhibitory cells and cell populations altering, for example, their

spiking characteristics, they can have an implicit effect on field activity that hitherto

has remained unexplored.

Active Membrane Currents

Most neurons produce brief action potentials or spikes that travel along their axons

and give rise to synaptic currents at the synapses. It is through the propagation of

such electric activity from one neuron to its post-synaptic targets that information is

generated and processed within neural populations. Action potentials are produced

through active ionic membrane mechanisms allowing the exchange of ions such as

Na+, K+ and Ca2+ across the membrane. Specifically, fast, Na+-dependent spikes
and spike afterpotentials generated at the axon initial segment and somata of

neurons give rise to the strongest currents across the neuronal membrane, detected

as ‘unit’ or ‘spike’ activity in the extracellular medium. Although Na+-spikes

generate large-amplitude and transient (typically lasting 0.5–1 ms) Ve deflections

proximal to the soma with a cascade of ionic mechanisms, spike- and spike

afterpotential-associated fields remain local (Fig. 3c). The fact that spikes typically

last less than a few ms has led to the assumption that they only contribute to

extracellular unit activity whereas not appreciably to slower signals such as the

LFP or the scalp-recorded EEG like the VAN. Yet, synchronously elicited action

potentials (e.g., due to increased spike correlation) from many proximal neurons

can contribute substantially to slower bands of extracellular recordings

(Anastassiou et al. 2015; Belluscio et al. 2012; Schomburg et al. 2012; Taxidis

et al. 2015; Zanos et al. 2011). In addition, it has been shown that spikes give rise to

slower, smaller-amplitude afterpotential currents. These spike afterpotentials have

recently gathered much attention with studies showing that they can impact bands

as low as 20 Hz (Fig. 4b; see also sections below).

Another type of active membrane current is constituted by Ca-spikes and
Ca-related signals. Decades of work, mostly in vitro, have revealed that the

dendrites of cortical pyramidal neurons support a variety of nonlinear signals

such as so-called NMDA spikes, Ca-spikes, Na-spikelets and backpropagating

action potentials. Of particular interest are the temporally extended NMDA spikes

and dendritic Ca-spikes. With regards to NMDA spikes, basal, oblique, and apical

tuft dendrites of cortical pyramidal neurons receive a high density of glutamatergic

synaptic contacts. The synchronous activation of 10–50 such neighboring

glutamatergic synapses triggers a local dendritic regenerative potential, NMDA

spike/plateau, that is characterized by significant local amplitude (40–50 mV) and

an extraordinary duration (up to several hundred milliseconds). Notably, the
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conductance of the glutamate-dependent NMDA receptor (NMDAr) channel is also

dependent on voltage, giving the NMDAr its spiking ability. NMDArs are found on

the thin tuft dendrites of pyramidal neurons, such as those that reside in layer 1, and

have been shown to support spatially localized (~30 μm) all-or-none spiking events,

due to the glutamate binding requirement. Given the electrotonic distance to the

spike initiation zone, single NMDA-spikes do not, in general, cause somatic action

potential output. Yet, the effect of such NMDA spikes depends on the location

where they take place: if occurring in the apical tuft, they have the ability to

substantially depolarize the entire tuft region whereas, if occurring closer to the

cell body, they can depolarize the soma in a fashion similar to an UP-state. In

addition, it has been shown that a distributed set of multiple NMDA-spikes across

the dendritic tuft has the ability to cause action potentials during in vivo sensory

stimulation (Palmer et al. 2014).

Dendritic Ca-spikes are nonlinear events mainly attributed to large conductance,

high-voltage activated channels along the pyramidal dendrites that mediate a

sustained Ca2+-influx in a variety of dendrites (Larkum et al. 1999, 2009; Shai

et al. 2015). The apical dendrite of pyramidal neurons has a main bifurcation that

occurs in L2/3 or L1 and contains a high density of voltage-dependent Ca-channels.

This “hot spot” of Ca-channels, alongside other nonlinear channels, supports a

relatively slow but large all-or-none depolarizing current known as the Ca-spike.

Lasting for ~20–100 ms in in vitro conditions, and possibly longer in vivo, the

Ca-spike has the ability to depolarize a pyramidal neuron for an extended period of

time. These Ca-spikes can be triggered with a variety of mechanisms: by strong

synaptic drive, by a triplet of back-propagating action potentials or via an extra-

cellular stimulus.

Due to the location of the channels responsible for NMDA and Ca-spikes, these

signals are well-suited to being controlled and evoked by inputs into the dendritic

arbors of excitatory neurons. One such cortical pathway is long-range connections

into layer 1. Indeed, channel-rhodopsin-assisted mapping techniques have shown

that higher-order areas send strong-direct excitatory input into the apical dendrites

of pyramidal neurons (Fig. 5; see also Yang et al. 2013). What are the functional

consequences of NMDA and Ca-spikes in the dendrites of a pyramidal neuron? In

vitro experiments have shown that the Ca-spike can integrate with a

backpropagating action potential to elicit a spike burst (i.e., a multitude of somatic

spikes elicited within a few tens of milliseconds) at the soma (Larkum et al. 1999).

It is difficult to precisely control the amount and timing of synaptic inputs into

spatially segregated areas of a single neuron experimentally, though some efforts

deserve recognition (Jarsky et al. 2005). Modeling approaches present themselves

as useful tools to explore the possible functional roles of a complicated mixture of

linear and nonlinear channels across the dendritic membrane, as well as their

interactions with large barrages of synaptic input (e.g., Shai et al. 2014).

After creating a detailed multi-compartmental model of a L5 pyramidal neuron

based on a combination of previous modeling work (Hay et al. 2011) and dual soma

and dendrite patch clamp recordings in V1, Shai et al. (2015) imposed barrages of

dendritic and somatic excitatory synapses onto a single cell. The results of this

simulation showed that the coincident input of perisomatic and apical input elicited
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a burst of high-frequency action potentials at the soma, whereas only perisomatic or

apical input in isolation would not. Furthermore, this effect was dependent on the

Ca hot-spot around the bifurcation point. This finding was further summarized in a

simple abstract model whereby input into dendrites of the abstracted cell would

modulate, in a thresholded manner, the input-output relationship between

perisomatic input and output frequency. This “composite-sigmoid” model captured

the complicated interaction of perisomatically elicited backpropagating action

potentials (mediated by nonlinear sodium channels in the apical trunk) and the

tuft elicited Ca-spike, in a compact form, thus elucidating the computational

structure of a single pyramidal neuron.

In particular, the Ca-spike, being a relatively slow and large-amplitude signal in

the superficial layers, may constitute a candidate for NCC. Multi-compartmental

modeling is well suited to disentangling the potential contributions of different cell

types of channels to extracellular signals (e.g., Reimann et al. 2013; Fig. 4c).

Although more thorough investigations are needed, both in terms of modeling

and experiments, to establish the role of the Ca-spike in the superficial extracellular

signature, these simulations show that the Ca-spike is indeed a plausible mechanism

for these signals (Fig. 6).

Fig. 5 (continued) maps of the three main CA1 independent components from a rat with an

electrode array spanning the transverse axis of the hippocampus (seven shanks spaced 300 mm;

one shank shown on the left) indicates activation of different projections (CA1pyr pyramidal layer,

rad radiatum, lm lacunosum moleculare). (b) Electrocorticography (ECoG) records indicating

periods of behavior-relevant slow oscillations (orange) and spindles (gray). (Bottom)
Intraoperative ECoG recordings in human patients using new technologies have the ability to

detect spiking. Highpass filtered traces from a novel 64-grid electrode containing spiking activity

(black traces). Below, sample spike waveforms are shown. (c) Simulation of an individual neuron

(layer 5 pyramidal injected with intracellular somatic current by a pipette: intracellular somatic

spiking shown in blue is detected in the extracellular space by a proximal electrode (red; part of a
silicon depth electrode) as well as by the ECoG strip electrode (simulating the same layout as the

one in panel b)). The spike-triggered average ECoG signal from the middle of the ECoG strip is

shown (right). (Bottom) The spike triggered average ECoG field for two cell types extending to

superficial layers: a layer 23 pyramidal (left) and a layer 5 pyramidal neuron (right). While the

amplitude of the spiking ECoG signature is very similar, the spatial extent is markedly different.

(d, left) A large-scale, biophysically realistic model of thousands of reconstructed and

interconnected neocortical layer 4 (red) and layer 5 (green) pyramidal neurons emulating a

patch of deep cortical volume. The population model was used to study the extent to which active

membrane conductances impact the extracellular LFP and CSD signals. (Right) Two scenarios

were instantiated: passive-only membranes and active ones. The simulated LFPs and CSDs show

the result of these simulations (top: passive-only; bottom: active) with the spatiotemporal charac-

teristics of the LFP and CSD being markedly different. (e, left) Hippocampal model of the CA1

region consisting of reconstructed excitatory neurons capturing the various projections during

sharp wave ripples accounts for the extracellular signals during such events. (Right) Replay

sequences during sharp waves yield consistent LFP patterns in the ripple (150–200 Hz) bandwidth.

As observed, simulations point to the spatiotemporal patterned activity that is also observed in the

same band in vivo, reflecting the spiking activity of cell assemblies activated during sharp waves.

Figure contributions are from (a) Schomburg et al. (2014), (b) Khodagholy et al. (2015), (c)
simulations by C.A. Anastassiou and A.S. Shai, (d) Reimann et al. (2013), (e) Taxidis et al. (2015)
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Fig. 6 A mechanism of coincidence detection via feedback into layer 1. (a) A top view of the

mouse brain showing the anterior cingulated cortex (ACA, a frontal region) and primary visual

cortex (V1). (b) The anterograde projections of ACA axons into V1 show a clear striation in layer

1 (green fluorescence). Subcellular channel-rhodopsin-assisted mapping (sCRACM) on a layer

5 pyramidal neuron (red) shows strong excitatory input into the apical tuft dendrites. (c) 100 tuft

and 175 basal NMDA/AMPA synapses are distributed randomly across the apical tuft and basal

dendrites of a multi-compartmental L5 pyramidal neuron model. All synapses are randomly and

uniformly elicited in time across 100 ms. In the following panels, somatic traces are in black and
dendritic (location shown by the red arrow in c), are in red. (d) Simultaneous tuft and basal inputs

trigger a burst of somatic action potentials and a dendritic Ca2+ spike, whereas (e) basal inputs
alone evoke only a single somatic spike. (f) Apical tuft inputs alone do not evoke somatic spiking.

(g) Reducing Ca2+ channel conductance by 50 % during tuft and basal input gives rise to a single

somatic spike. (h) When applying a 200 pA hyperpolarizing DC current to the soma, the

subthreshold response of the tuft and basal inputs are similar to the case with Ca2+conductances

reduced shown in (i), even though the suprathreshold (b, c) cases are remarkably different. (a)
Taken from the Allen Institute Brain Explorer. (b) Experiments performed by Adam Shai, but also

see Yang et al. (2013), for similar results. (c–i) Taken with permission from Shai et al. (2015)
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Non-neural Contributors (Glia, etc.)

During the last two decades, glial cells have been shown to be of great significance

for brain signaling (Volterra and Meldolesi 2005) while also possessing active ionic

conductances that result in fairly slow but prominent transmembrane processes

being activated during neural activity (Perea and Araque 2007). Electrically passive

astrocytes coexist with others that show voltage-dependent currents such as

inwardly rectifying or delayed, outwardly rectifying K+ or both types (D’Ambrosio

et al. 1998). Given the abundance of glia in brain tissue, how do these contribute to

the extracellular electric field (Wang et al. 2006)? Can certain LFP or EEG bands

(such as the slow 0.1–1 Hz band) be influenced by glial and astrocytic transmem-

brane activity? Such questions are also related to the link between LFP activity, the

blood oxygen-level dependent (BOLD) signal and the overall metabolic demands

of specific brain areas. Interestingly, the BOLD signal, which has been linked to

neural as well as astrocytic activity, has been found to correlate preferentially with

specific LFP bandwidths.

Monitoring Neural Activity

In this section of the chapter we present the most prominent methods of monitoring

brain activity. We separate this section into two parts: a part on monitoring spatially
local brain activity and a part on methods used to monitor spatially extended (even

whole-brain) activity. While local monitoring can offer superior spatiotemporal

resolution from identified signal sources, spatially diffuse monitoring offers

insights from multiple brain regions, as discussed previously, such distributed

processing has been often implied to be a cornerstone for the formation of con-

scious percepts.

Local Monitoring

Local monitoring refers to measurements of neural activity within fairly small

volumes of brain tissue. Historically, the most prominent of these local monitoring

techniques have been extracellular voltage recordings either from a single location

(e.g., via a metal wire) or multiple locations (multiple wires bundled together or

multiple contacts manufactured along the length of a silicon shank; Buzsáki 2004).

The exact sampling volume of such extracellular electrodes remains the object of

investigations. In the past, various distances have been suggested ranging from a

few tens to a few hundreds of micrometers. Here we present and succinctly discuss

the most prominent methods (also beyond extracellular recordings) that allow

monitoring neural activity within similar volumes.
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Action potential elicitation of neurons proximal to a recording electrode is

typically reflected in the approximately 1 ms long and 50–200 μV deep negativities

of the extracellular voltage time series. These rapid and spatially localized Ve-

deflections reflect membrane currents in the axonal and perisomatic region (Fig. 3b,

c) but are also impacted by more distributed currents such as backpropagating

action potentials traveling along the dendritic arbor of a neuron. An important

aspect of monitoring spiking activity in the extracellular space is the inherent,

activity-dependent variability of the EAP waveform. Indeed, the EAP amplitude

of hippocampal pyramidal neurons can vary as much as 60 % during a high-

frequency (approximately 200 Hz) burst (Buzsáki et al. 1996) for example, within

a place field (Harris et al. 2001). These features, together with artefactual sources of

variability from electromyogram contamination or hardware sources, pose chal-

lenges for spike waveform-based clustering and classification of neurons in vivo.

Specifically, the most salient features of EAPs, the EAP negativity attributed to fast

sodium- and potassium-dependent currents and the immediately proceeding EAP

positivity attributed to slower potassium (but also calcium) currents, can substan-

tially vary as a function of spike frequency. In general, the spike variability of the

EAP amplitude is more pronounced compared with intracellular spike variability

(Anastassiou et al. 2015; Henze et al. 2000) and is non-monotonic as a function of

spike frequency. The temporal EAP waveform features, such as halfwidth or decay

time of spike repolarization, vary more reliably with the intracellular waveform

than the amplitude (Anastassiou et al. 2015; Barth�o et al. 2004). It follows that,

while EAP recordings are fairly straightforward to obtain compared to more

elaborate methodologies, can be performed in deeper brain structures and offer

superior temporal resolution, their disadvantage lies in the difficulty of the proce-

dure involved in separating spikes and EAP waveforms originating from different

neurons, a process often referred to as spike clustering.

When the wideband signal from extracellular recordings is lowpass filtered

(typically below 300 Hz), the resulting time series is referred to as the local field
potential (LFP). The LFP has been studied extensively in the past as, in contrary to

highpass part of the recordings, it reflects electrogenesis from a spatially more

distributed region (Fig. 5a). What the length scale of the LFP is has been a debated

topic and remains a vibrant field of science (e.g., Katzner et al. 2009; Xing

et al. 2009; Ray and Maunsell 2011; Lindén et al. 2011; Reimann et al. 2013).

What is clear is that the spatial extent of the LFP is not a static feature depending on

multiple factors such as cytoarchitecture, input correlations (see above), etc. Hith-

erto, the LFP has been considered to mainly reflect postsynaptic and associated

return currents (even if recently more LFP-contributors have been identified); as

such, it is uniquely positioned to measure input into and output from a particular

brain region (e.g., Mitzdorf 1985; Colgin et al. 2009; Einevoll et al. 2013;

Logothetis et al. 2007; Buzsáki et al. 2012; Schomburg et al. 2014; Taxidis

et al. 2015).

A method used in conjunction with LFP recordings is the so-called current
source density (CSD) analysis. The CSD analysis is a particularly useful tool in

deciphering the location of the extracellular current sources and sinks giving rise to
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the LFP (Fig. 5a). CSD per se represents the volume density of the net current

entering or leaving the extracellular space (Nicholson and Freeman 1975; Mitzdorf

1985; Buzsáki et al. 2012). Unfortunately, it is not possible to conclude from the

CSD analysis alone whether, for example, an outward current close to the cell body

layer is due to active inhibitory synaptic currents or reflects the passive return

current of active excitatory currents impinging along the dendritic arbor. Such

insights have to be gathered from complementary information such as the cytoarch-

itecture of the brain region under investigation, its anatomy, projecting pathways,

etc. Even so, CSD analysis can point to regions of interest to be studied more

elaborately.

Conventionally it has been thought that spiking currents cannot affect tempo-

rally slower signals such as the LFP or the EEG due to the rapid, approximately

1-ms transient sodium/potassium charge transfer giving rise to the stereotypical

intracellular positivity (or extracellular negativity). Lately this view has been

challenged by a number of studies showing that neural spiking can affect electric

signals at much lower frequencies than the typical time scales suggested by action

potentials (Belluscio et al. 2012; Zanos et al. 2011; Ray and Maunsell 2011;

Schomburg et al. 2012; Reimann et al. 2013; Anastassiou et al. 2015). What part

of the EAP waveform can impact power at slow bands of extracellular recordings?

This has been the focus of a few studies (e.g., Zanos et al. 2011; Belluscio

et al. 2012; Anastassiou et al. 2015). In a recent one, the authors performed

so-called “de-spiking,” i.e., the procedure of substituting a window of 0.6 ms before

and after spike initiation time with a different (non-spiking) time series in the

extracellular voltage time series (Belluscio et al. 2012), in experiments where

both the intracellular and extracellular spikes were monitored concurrently

(Anastassiou et al. 2015). This resulted in EAP waveforms lacking the typical

spike negativity but containing the characteristic afterpotential repolarization.

Performing spectral analyses of the de-spiked time series led to a surprising

conclusion: spike afterpotential currents of pyramidal neurons can impacted the

spectrum of recorded signals as low as 20 Hz, i.e., bands hitherto solely related to

synaptic processing (Fig. 4b). Importantly, when the same analyses using the EAP

waveform from basket cells was performed, the outcome was very different:

spiking of these neurons minimally contributed to spectral power under 100 Hz

and, even then, did so only for elevated spike frequencies. The lack of impact of

basket cell spiking to LFPs under 100 Hz was attributed to their temporally narrow

EAP waveform as well as the lack of long-lasting depolarizing currents (compared

to pyramidal neurons). The study concluded that the effect of EAPs in such low

frequencies was attributed to the slower, smaller amplitude repolarization typically

attributed to slower potassium- and calcium-dependent currents difficult to distin-

guish in vivo.

Electrocorticography (ECoG) is the intracranial recording of electrophysiolog-

ical signals using electrodes and multi-electrode arrangements (grids) from the

surface of the brain after craniotomy and has been used for decades to monitor

(and sometimes perturb) cortical activity. Specifically, ECoG recordings have

conventionally been used to record slow signals (similar to the LFP) related to
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brain states or evoked activity, though spiking activity has been difficult to detect

(Fig. 5b). In that sense, ECoG has been largely used as a spatially distributed

monitoring method much related to electroencephalography and magnetoencepha-

lography (see below). Yet, very recently, advances in technology and materials

have for the first time allowed robust recording of cortical spiking (Khodagholy

et al. 2015) using ECoG (Fig. 5b, c), rendering the possibility of concurrent

monitoring of intra- and inter-cortical processing in terms of spiking and slower

activity from the brain surface.

Beyond electric recording methodologies, optical imaging techniques capturing

electric or ionic activity in neurons have flourished over the past decade or

so. Specifically, voltage changes can also be detected by membrane-bound volt-

age-sensitive dyes or by genetically expressed voltage-sensitive proteins (Siegel

and Isacoff 1997; Grinvald and Hildesheim 2004; Akemann et al. 2010). Using the

voltage-sensitive dye imaging (VSDI) method, the membrane voltage changes of

neurons in a region of interest can be detected optically, using a high-resolution

fast-speed digital camera, at the excitation wavelength of the dye. A major advan-

tage of VSDI is that it directly measures localized transmembrane voltage changes,

as opposed to the extracellular potential. A second advantage is that the provenance

of the signal can be identified if a known promoter is used to express the voltage-

sensitive protein. Limitations are inherent in all optical probe-based methods (Denk

et al. 1994); for VSDI these include interference with the physiological functions of

the cell membrane, photoxicity, a low signal-to-noise ratio and the fact that it can

only measure surface events.

Calcium imaging has emerged as a promising technology for observing hundreds

to thousands of neurons within a micro-circuit with both high spatial resolution and

precise localization to specific brain regions. The technique works by introducing

calcium-sensitive indicators into neural populations of interest and then imaging these

neurons in vivo through a light microscope. These fluorescence measurements are

interpreted as a proxy for the underlying neural spiking activity, as there is a biological

relationship between elicited action potentials and changes in calcium concentration; a

spike causes increases in [Ca2+], which gradually decays due to cell buffering and

other extrusion mechanisms. Amajor advantage of Ca-imaging is that, in combination

with genetically modified cre-animals, it offers the ability to record activity from

different cell types. In addition, fluorophore kinetics have been drastically reduced so

that, in principle, single-spike resolution is obtainable in a limited volume. On the

other hand, a major problem arises when intending to monitor spiking activity in larger

volumes; instead, what is recorded is a noisy and temporally sub-sampled version of

the spiking activity, which in some cases can be orders of magnitude slower than the

underlying neural dynamics. Even so, technology advances are continuously offering

indicators with faster response times and increased signal-to-noise ratio.

Finally, a method recently revamped as a test bed for understanding the origin

and functionality of signals is computational modeling. The first model to link intra-

and extracellular voltages was the work of Pitts (1952) describing the extracellular

negativity appearing as a result of spiking. Accordingly, the first simulations shed-

ding light into the LFP signal were the pioneering work by Shepherd and Rall

explaining the LFP recordings in the olfactory bulb of rabbit from first principles
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(Rall and Shepherd 1968). Since that time, a number of significant contributions

have been made with respect to the neural underpinning of brain signals, where more

involved computational models have been employed, for example, accounting for

different cell types, varying ratio of excitation and inhibition, etc.

A caveat of simulations typically used to study brain functioning and recreate

brain signals is that they have remained somewhat too conceptual. Neurons are

typically taken as point-like processes with rules of connectivity imposed upon

such nodes. While such simulations have proven informative with regards to

analyzing network dynamics (Koch 2004), signals related to electric field activity

are induced by the multitude of synaptic and membrane conductances activated

along the intricate, three-dimensional morphology of neurons (see also previous

sections) and are critically impacted by factors such as the alignment of dendrites

and other neural processes, input impinging along these processes, etc. (see above;

Buzsáki et al. 2012). Thus, the use of point neurons, while informative for illumi-

nating computational principles, either presumes or even fully neglects the primary

means by which such effects are mediated, that is, ionic fluxes along the neural

membrane and the extracellular medium. These restrictions are by no means limited

to models of electric activity (Fig. 5d, e). For example, a similar lack of under-

standing is combined with models attempting to replicate Ca-imaging response. In

this case, limitations do not arise from the lack of morphology features anymore but

instead from the lack of understanding and accurate representation between intra-

cellular Ca-dynamics and the resulting fluorescence signal.

The recent rise in computational power and advances in parallelization have

allowed larger, more realistic models to be implemented. Such models carry the

potential of being able to link subcellular and cellular biophysics with locally

measured signals such as cortical spiking, LFPs, Ca-imaging, etc. For example,

morphologically detailed and biophysically realistic single-neuron (Gold

et al. 2006; Druckmann et al. 2007; Hay et al. 2011) and population models

(Pettersen and Einevoll 2008; Lindén et al. 2011; Schomburg et al. 2012; Reimann

et al. 2013; Taxidis et al. 2015) have offered considerable insights into extracellular

spiking and LFP signals. Even more recently, large-scale simulation programs

combining unprecedented level of detail have been initialized promising to unravel

novel insights into a plethora of brain signals (e.g., Markram et al. 2015).

Spatially Distributed Monitoring

Spatially distributed monitoring relies on the same biophysical principles as local

monitoring, yet the inability of measuring highly localized sinks and sources due to

spatially undersampling renders the origins of electric activity spatially equally

diffuse.

Electroencephalography (EEG) is one of the oldest and most widely used

methods for the investigation of the electric activity of the brain (Niedermeyer

and Lopes da Silva 2005; Nunez and Srinivasan 2006). The scalp electroencepha-

logram is a spatiotemporally smoothed version of the ECoG (though the impact of

the skull on the recorded signal needs also to be accounted for) or LFP, integrated
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over an area of 10 cm2 or more. Under most conditions, it has little discernible

relationship with the firing patterns of the contributing individual neurons, largely

due to the distorting and attenuating effects of the soft and hard tissues between the

current source and the recording electrode. The recently introduced ‘high-density’
EEG recordings, in combination with source modelling that can account for the gyri

and sulci (as inferred from structural MRI imaging) of the subject, have substan-

tially improved the spatial resolution of EEG (Nunez and Srinivasan 2006; Ebersole

and Ebersole 2010).

Magnetoencephalography (MEG) uses superconducting quantum interference

devices (SQUIDs) to measure tiny magnetic fields outside the skull (typically in the

10–1000 fT range) from currents generated by the neurons (Hämäläinen

et al. 1993). Because MEG is non-invasive and has a relatively high spatiotemporal

resolution (~1 ms, and 2–3 mm in principle), it has become a popular method for

monitoring neuronal activity in the human brain. An advantage of MEG is that

magnetic signals are much less dependent on the conductivity of the extracellular

space than EEG. The scaling properties (that is, the frequency versus power

relationship) of EEG and MEG often show differences, typically in the higher-

frequency bands, that have been attributed to capacitive properties of the extracel-

lular medium (such as skin and scalp muscles) that distort the EEG signal but not

the MEG signal (Dehghani et al. 2010).

Functional magnetic resonance imaging (fMRI) is an imaging technique that

monitors oxygenation levels of blood flow in the brains of animals and humans.

Specifically, the BOLD contrast has been used as a proxy for neural activity, though

the exact relationship between neural processing and the output signal is a complicated

one (Logothetis and Wandell 2004). A number of pivotal studies have appeared over

the years relating the BOLD signal with depth LFP recordings rather than spiking

(Logothetis et al. 2001; Logothetis and Wandell 2004; Nir et al. 2007; Sch€olvinck
et al. 2010). The main advantage of fMRI is that it can be applied in a brain-wide

fashion, allowing for whole-brain associations, and it is non-invasive. At the same

time, the temporal sampling rate is fairly slow (typically fractions or a few Hz) and the

voxel size of the signal acquisition is considerable (e.g., from fractions to a few mm).

Linking spatially distributed measurements with the biophysics and workings of

networks and circuits all the way to single-cell and synaptic contributions typically

measured via local measurements has remained a challenge, mainly due to the

multiple spatiotemporal scales involved requiring simultaneous monitoring at all

levels. While such monitoring is difficult to pursue in humans, recent advances in

sensing technology have allowed performing it in other animals, particularly

rodents. For example, as mentioned earlier, recent advances in material and tech-

nology have allowed simultaneous measurement of spiking, LFPs and ECoG in

rodents (but also humans), offering the possibility to link between micro-, meso-

and macroscopic electric signals (Khodagholy et al. 2015). In similar fashion, the

relationship between the BOLD fMRI signal has been studied in conjunction with

spiking and LFP measurements (e.g., Logothetis et al. 2001; Nir et al. 2007;

Whittingstall and Logothetis 2009) and, recently, by engaging specific neural

population via optical perturbation (Lee et al. 2010).
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Computational modeling has the ability to link across scales and relate micro-

scopic with meso- and macroscopic observables. Yet, at the level of distributed brain

circuits, detailed representations of each circuit and its elements—such as synapses or

single-neuron morphologies—becomes prohibitive. Even so, more abstract models of

neural processing, such as circuits consisting of leaky-integrate-and-fire units, have

provided many insights into the functioning of distributed brain circuits during sleep

and wakefulness (Hill and Tononi 2005), the perception-action cycle (Eliasmith

et al. 2012), etc. With regards to conscious perception, modeling has been employed

in attempts to link between the various signals and neural dynamics during tasks. In

an important study, Dehaene and colleagues (2003) used a neural network model to

investigate mechanisms underlying visual perception typically giving rise to activity

patterns such as sustained activity in V1, amplification of perceptual processing,

correlation across distant regions, joint parietal, frontal, and cingulate activation,

band oscillations, and the p3b waveform. The neural network model indicated that

access awareness (the step of conscious perception) is related to the entry of

processed visual stimuli into a global brain state that links distant areas, including

the prefrontal cortex, through reciprocal connections and thus makes perceptual

information reportable by multiple means. This study is an excellent example of

the kinds of insights computational modeling can offer towards relating signals linked

to conscious processing with underlying neural processing in distributed areas.

From Cellular Biophysics to Systems and Computations
Associated with Conscious Perception

In the previous section, we reviewed a single-cell mechanism for spike bursting via

the dendritic Ca-spike of pyramidal neurons, whose extracellular signature is a

plausible candidate for a late superficial current sink. Cortical layer 1 is unique in

that it is extremely sparse, and the vast majority (upwards of 90 %; Hubel 1982) of

the synapses there are from long-range inputs rather than from the local circuit.

Importantly, the pyramidal neurons whose dendrites support Ca-spikes are pre-

cisely those neurons that make long-range connections themselves, both cortically

(feedforward, horizontal, and feedback7) and subcortically. What computational

role could be played by such a physiological and anatomical setup?

One intriguing possibility, which we will call Association by Apical Amplifica-

tion (AAA), was described by Matthew Larkum (2013). AAA takes a largely

bottom-up approach, starting from the detailed physiology of pyramidal neurons

and the anatomy of long-range connections in the cortex. Of particular importance

is the laminar structure of long-range feedforward and feedback axons in the cortex.

There is now ample evidence that feedforward connections strongly innervate the

7 There is an “indirect” pathway for cortico-cortico information flow through the thalamus, and

some argue that this might be the main way that information is transferred from one area of cortex

to another (Sherman and Guillery 2011).
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basal dendrites of layer 5 pyramidal neurons with excitatory synapses. Feedback

axons innervate layer 1, where the dendritic tufts of pyramidal neurons reside. As

discussed previously, the physiology of layer 5 pyramidal neurons allows for a

coincidence detection mechanism, whereby concurrent excitatory input into both

the basal and apical tuft dendrites causes a high frequency burst.

Additionally, the local inhibitory circuit consists of a number of different cell

types that can generally be classified into distinct groups based on their specific

effects on either the somatic or apical areas of the pyramidal neuron. For instance,

neurogliaform cells in layer 1 metabotropically inhibit voltage-gated calcium

channels in the apical dendrites (Palmer et al. 2012; Pérez-Garci et al. 2013),

whereas single bouquet cells in layer 1 disinhibit the apical dendrite via their

inhibitory effects on layer 2/3 inhibitory cells (Jiang et al. 2013). SST-positive

inhibitory neurons are known to directly inhibit the apical dendrites, whereas

PV-positive inhibitory neurons directly inhibit the basal dendrites, affording these

groups of neurons distinct computational roles in the regulation of pyramidal

neuron output (Royer et al. 2012; Shai et al. 2014). In this way, inhibition of the

apical dendrites by neurogliaform cells or SST-positive interneurons can act as a

form of gain control, regulating the frequency of firing in pyramidal neurons.

Alternatively, inhibition of neurogliaform cells, for instance via cholinergic action

(though under certain conditions, acetylcholine can have opposite effects; Brombas

et al. 2014), can bias pyramidal neurons to high frequency firing.

Taken together, pyramidal neurons and the local inhibitory circuit that surrounds

them are well suited to associate feedback and feedforward information streams

(Fig. 7). That association, signaled via a high-frequency spike burst in a pyramidal

neuron, is then communicated to other areas of the brain, including other areas of

cortex. For instance, a pyramidal neuron receiving feedforward orientation informa-

tion from V1 and motion information via feedback from V5 can bind these two

information streams. These associated signals can then contribute, via their influence

on the apical or basal dendrites of far-away pyramidal neurons, to other associations.

The single-cell mechanism through which concurrent basal and tuft excitatory input

creates spike bursting has been named the BAC mechanism (Larkum 2013). In this

way, the BAC mechanism causes high-frequency burst firing, as is often observed

in vivo (de Kock and Sakmann 2008; Buzsáki and Mizuseki 2014), whereas input

into only the basal dendrites will only cause tonic low-frequency firing (Fig. 5). Long-

range input can also robustly regulate the BAC mechanism indirectly by recruiting

the effect of the different cell types in local inhibitory circuit.

Importantly, low-frequency firing is still available as a unit of information

transfer in cases where excitatory input exists into the basal dendrites in the absence

of excitation in the apical tufts or when the BAC mechanism is inhibited. These

different modes of firing (low-frequency vs. high frequency bursting) can have

substantially different influences postsynaptically (Buzsáki and Mizuseki 2014;

Lisman 1997). For instance, different short-term plasticity mechanisms act as

filters, allowing only certain frequencies to effectively communicate with down-

stream neurons (Markram et al. 1998; Tsodyks and Markram 1997; Tsodyks

et al. 1998). There is evidence that presynaptic bursts cause postsynaptic potentials

with substantially greater efficacy (>90 %) than single action potentials (~40 %;
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Lisman 1997). In this way, the coincident excitatory input into a pyramidal neuron,

representing the association of information from different areas of cortex, can

create a unique signal that has markedly different influence on other cortical

areas than the integration of a purely feedforward (basal dendrite) input.

Fig. 7 Association by apical amplification (AAA) connects physiological and anatomical details

to network level computation and perceptual representation in the cortex. (a) As shown in Fig. 6,

input into the basal dendrites of a cell causes steady low-frequency firing in a pyramidal neuron.

This feedforward input into the basal dendrites, when combined with feedback input into the apical

tufts, causes high frequency burst firing. In the scheme of AAA, feedforward input into the basal

dendrites carries sensory information from the periphery, while feedback input into the apical tufts

carries predictive information about the stimulus. (b) The parallel feedforward/feedback interac-

tions in multiple areas acts as a selection mechanism to choose which pyramidal neurons are in a

state of high frequency firing, ultimately binding different aspects to represent the percept, in this

case a tiger (figure from Larkum 2013)
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AAA importantly serves as a concrete mechanism linking details of electrophys-

iology and anatomy to larger-scale concepts like perceptual binding and the repre-

sentation of conscious percepts. The connection between forming a bound

representation and consciousness are matters of current debate and require some

discussion. The topic of binding is generally separated into two issues (Revonsuo

1999). The first concerns the grouping of sensory inputs to form distinct objects (e.g.,

combining color, shape, and motion to represent a tiger); the second concerns the

inherent grouping of the phenomenal mind to give a single conscious experience

(a property called the unity of consciousness). The difference between these two sets
of concerns is also contentious. One way to think of the difference between these two

issues is that the first relates to computational function whereas the second relates to

phenomenology. Another interpretation is that the first relates to defining distinct

objects and the second refers to arranging those objects into some kind of unified

structure. This interpretation holds great relevance to the ideas discussed in the final

section. Yet another interpretation is that there is no real difference between the two

sets of concerns or even that the unity of consciousness is illusory (Dennett and

Kinsbourne 1992). For the purposes of this chapter, it is important to point out that for

AAA to be a mechanism of consciousness, it assumes that the functional substrate of

phenomenology is the binding of sensory information to form unified wholes.

Let us take into account the different facts that are put together here. The most

basic starts with the distribution of nonlinear channels in the apical dendrites of

pyramidal neurons, which support nonlinear regenerative spiking, and acts as a

mechanism for high frequency burst firing in those cells. Anatomically, these cells

make long range connections, both in feedforward pathways where they synapse onto

the basal dendrites of other pyramidal neurons, and in feedback pathways, where they

synapse into layer 1, and they can act to manipulate the apical dendrites of pyramidal

neurons. The extracellular signature of such manipulation, in particular, the dendritic

Ca spike, is a large current sink in the upper layers. Psychophysics experiments have

found that such a signal correlates to conscious perception. In terms of cortical

computation, the association of feedforward and feedback signals might act to bind

different aspects of a percept together, though the exact details of such a process at the

network level remain elusive. In the next section we discuss candidate theoretical

frameworks that might be able to describe such a process in cortex.

Towards a (Unifying) Theory/Framework of Conscious
Perception

Before delving into the details of theoretical considerations, it will be useful to

quickly review what has been covered in this chapter so far. We began by looking

at psychophysical results describing signals that correlate to conscious perception. In

particular, late extracellular voltage signals that occur in the superficial layers as well

as distributed information processing between different cortical regions were
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presented as candidate NCC. From there we considered the physical origins of these

extracellular signals, residing in the transmembrane currents brought about by the

electrical structure of dendrites and synapses. Dendrites of pyramidal neurons,

supporting highly nonlinear NMDA and Ca-spiking, were presented as a likely origin

for late extracellular signals in the superficial layers. Next, we asked what computa-

tional role such an electrogenic structure could play in terms of single neuron

processing of synaptic inputs, and we discussed how pyramidal neurons and their

dendrites act as coincidence detectors between inputs into the basal and apical

dendrites and additionally have powerful mechanisms to regulate such a coincidence

mechanism. Importantly, the output of this single cell mechanism is given by a

nonlinear increase in the frequency of action potential outputs, in the form of a

burst at 100 Hz or greater. As discussed elsewhere (Larkum 2013) the network

implication of such a single cell mechanism is a general principle by which pyramidal

neurons distributed across the cortex can be associated with each other, ultimately

serving as the physical representation of any given conscious percept.

This series of connections—from psychology to signals, signals to neural bio-

physics, from biophysics to single cell computation, and single cell computation to

network level computation—is built upon more than a century of work in a variety

of fields. Still, the connections between these levels of understanding require

substantial amounts of work to be sufficiently fleshed out before becoming widely

agreed-upon scientific fact. Instead, what has been presented so far should be

understood as an attempt to combine results from psychology to physiology in a

coherent and testable framework. The testability of this framework is of special

import, as this requires (in the best case) taking the somewhat ineffable topic of

consciousness into the realm of neurons and their functions.

As an important part of that project, a number of theoretical (and often mathe-

matical) frameworks emerged attempting to describe the abstract underpinnings of

representation and consciousness in the brain, ultimately providing a description for

what it means, in terms of algorithm or function, to create a representation or to be

conscious. In the subsection that follows, we will discuss some of these frameworks

and explore how they might be related to the ideas mentioned so far. This discussion

will not be an in-depth review but will instead feature a largely conceptual overview.

Importantly, the discussion that follows should not be interpreted as arguing for an

equivalence between these various theories. Instead, what follows is a discussion of

the potential areas of conceptual overlap between seemingly disparate ideas and how

they might be brought together, at least at certain points of conceptual intersection.

We will frame this section with Friedrich Hayek’s contributions to theoretical

psychology, most explicitly given in his 1953 work The Sensory Order: An Inquiry
into the Foundations of Theoretical Psychology. The reasons for this are multifold.

First, Hayek’s contributions mark a stark departure from multiple theoretical

frameworks of that time, for instance behaviorism8 and the theory of psycho-

8 In its’ most extreme form behaviorism studies the link between sensory input and behavioral

output, and denies that anything is really going on in the mind.
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physical parallelism,9 ultimately arriving at the modern understanding of the role of

the brain in perception. Second, as we will see, there are direct conceptual parallels

between his ideas and many of the more mathematically rigorous modern ideas.

Third, Hayek’s work in theoretical psychology is underappreciated, especially

given both its breadth and depth. We will see that Hayek’s work provides a

conceptual framework that suggests overlap between a number of modern theoret-

ical ideas and AAA (Fig. 8d). With regards to AAA, the main point here is the

connection between computation at the single cell level (e.g., as discussed,

coincidence-detection, association) and more network-level implications. This

link is what Hayek explores.

Hayek’s foundational idea is quite straightforward. He posited three orders:

(1) the external world (which he called the physical order), (2) the brain (which

he called the sensory order), and (3) the mind (which he called the phenomenal

order), and he focused his efforts on understanding the relationship between the

three. In Hayek’s formulation, the state of the brain has an isomorphic correspon-

dence with that of the mind. The structure of the psychological realm, for Hayek,

was relational (e.g., psychological objects are defined relative to other psycholog-

ical objects), and as such, that structure of relationships that make up the psyche had

to be recapitulated in the structure of the neural network and its activity. This strict

correspondence contrasts with the correspondence between the outside world and

the structure of the brain (and thus the mind), which is imperfect, as shown by the

existence of sensory illusions. The problem for Hayek was then to describe how the

relational network that is the psyche can be encoded in the structure and activity of a

neural network, given the computational properties of single neurons that make up

that network. Although this might seem trivial to today’s standards, it cannot be
overstated how important this development was, especially given prevailing ideas

at the time. In the end, we will see that Hayek’s solution comes in a form that is in

many ways remarkably similar (though missing the details of biophysics and

anatomy that remained uncovered until the 1990s) to the ideas of AAA, Integrated

Information theory, and Predictive Coding and discuss their connections. For

Hayek the main questions were:

1. How can a relational network be encoded in the structure and activity of a neural

network?10

2. How are the relations between objects in the outside world learned and encoded

(imperfectly) in the neural network of the brain11?

9 Psycho-physical parallelism is the idea that there is a one-to-one correspondence between

sensory input and the contents of the psyche.
10 Quote from Hayek: “The question which thus arises for us is how it is possible to construct from

the known elements of the neural system a structure which would be capable of performing such

discrimination in its response to stimuli as we know our mind in fact to perform.” (Hayek 1999).
11 Quote from Hayek: “Our task will be to show how the kind of mechanism which the central

nervous system provides may arrange this set of undifferentiated events in an order which

possesses the same formal structure as the order of sensory qualities,” and “Our task will thus
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Fig. 8 Hayek’s types of classification and their relationship to Integrated Information Theory. In

Hayek’s theory of cortical function, neurons perform a classification function by grouping

presynaptic cells that have similar postsynaptic effects together. (a) In simple classification,

classes are defined via their different effects on different cells. Here neuron X defines a class {r,

s}, because each of that class causes neuron X to fire. Similarly, neuron Y defines a different class

{t}. In the conceptual framework of integrated information theory, these “differences that cause a

difference” (i.e., the groups {r,s} and {t} each cause different cells to fire) confer the network with

high differentiation but not high integration. (b) In hierarchical classification, simple classification

occurs in multiple stages. This allows the network to create classes of classes, and, importantly, to

classify the relationships between different classes. For example, each of neurons W, X, Y, and Z

defines a class made up of three cells. The cells postsynaptic to W, X, Y, and Z require two

simultaneous inputs to fire, signified by the dotted lines. This defines {W&X}, and {Y&Z} as two

groups. The neuron R defines a group {W&X,Y&Z}. In this way, the neuron R requires any one of

the three cells in groups W and any one of the three cells in group X, or any one of Y and any one

of Z, to fire. In this way, the cell R is said to fire to the relationship between W and X or to the

relationship between Y and Z. Because each of these relationships similarly causes R to fire, these

relationships are thus the same. (c) In multiple classifications, neurons can be in multiple classes,

and different classes can have overlapping members. In this way, neuron r is in group X and in

group Y, and neuron s is in groups X, Y, and Z. In terms of information theory, this type of

classification confers the network with integrated information, since neurons r and s have distinct,
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The answers to these questions came by positing that a foundational computation

the brain performs is classification.12 Hayek described types of classification of

increasing complexity (Fig. 8). Simple classification is the sorting of externally

different objects into one of a set of different classes by virtue of their differing

effects. One example of this is a machine that sorts balls of even diameter into a bin

marked A and balls of an odd diameter into a bin marked B. The machine is said to

have classified each ball into either group A or B. Simple classification of this sort

can describe simple reflexes, which act to group external stimuli by the behaviors

that are produced, often by a chain of very few neurons. Hierarchical classifica-
tion13 occurs when successive acts of classification occur in successive stages. In

this way, the groupings that occur in a previous stage become the objects to be

grouped in the next stage.Multiple classification allows for stimuli to be in multiple

groups at once and also for multiple stimuli to be classified differently than when

they occur individually.14

It is this classification, carried out by the activity of postsynaptic neurons (as a

function of presynaptic activity and the structure of anatomical connections), that

builds up a system of relations. Here, we already see a conceptual overlap with

some modern ideas. For instance, Buzsáki’s (2010) reader concept is a framework

for defining cell assemblies by virtue of postsynaptic effects (e.g., by collective

effects on reader neurons). Similarly, an important aspect of integrated information
theory, which will be discussed more below, is the defining of causal groups as
differences that make a difference, in other words, defined by their causal postsyn-

aptic effects (Oizumi et al. 2014). There are even mathematical theories of com-

putation in dynamical systems, which have not been created or even used in

thinking about neural systems, that use the same conceptual idea, such as epsilon

machine reconstruction (Crutchfield 1994), and could potentially be used to analyze

network function.

⁄�

Fig. 8 (continued) but semi-overlapping, causal effects. Thus the network has “differences that

cause a difference” but also causal dependencies. (d) A conceptual network of the connections

between different aspects of biophysics, signals, and theory

be to show how these undifferentiated individual impulses or groups of impulses may obtain such a

position in a system of relations to each other that in their functional significance they will

resemble on each other in a manner which corresponds strictly to the relations between the sensory

qualities which are evoked by them.”
12 Quote from Hayek: “All the different events which whenever they occur produce the same effect

will be said to be events of the same class, and the fact that every one of them produces the same

effect will be the sole criterion which makes them members of the same class.”
13 Hayek does not use the term hierarchical in his description and instead just treats it as a more

complicated form of multiple classification.
14 This classification may thus be ‘multiple’ in more than one respect. Not only may each

individual event belong to more than one class, but it may also contribute to produce different

responses of the machine if and only if it occurs in combination with certain other events.
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In the simplest case of classification, two neurons that individually cause the

same postsynaptic effect are seen by the network as being equivalent, that is, as

being in one class. Thus, the position of these two neurons in the entire system of

relationships is the same. Different neurons will in general have varying degrees of

overlap in their postsynaptic effects, making it possible to talk about varying

degrees of similarity with respect to their position in the system of relations. In

this way, Hayek spoke of the postsynaptic activity representing the common

attributes of presynaptic impulses that bring about that postsynaptic effect, though

he preferred to say that the postsynaptic activity constitutes the attribute, rather than
represents it. This was to make the ontological point that these neural systems are
what the common attributes actually are and that they do not exist outside of the

material actions of the neural network. In other words, the contents of conscious-

ness have a one-to-one correspondence not only with the activity of neurons but

also in the structure of the network in which that activity exists. Importantly, this

theory differed radically from contemporaneous theories where the qualitative

aspects of the mind were somehow attached to the properties of electrical signals

themselves. Here, instead, we see the beginnings of an understanding of the psyche

that has at its core relations and information: “it is thus the position of the individual

impulse or group of impulses in the whole system of connections which gives it its

distinctive quality.” (Hayek 1999).

Indeed, it is important to point out that there are two separable aspects of this

scheme. The first is the (simple) classification of different signals by their differing

effects (“to respond differently to different impulses”). In this way, if each of a

group of cells causes the firing of a postsynaptic cell A, and each of a different

group of cells causes the firing of a different cell B, then the network has classified

these groups of cells into two distinct classes. This alone, however, does not make

up a system of relations, because so far we have only described distinct attributes, A

and B, with no real relationship between them. The second aspect is then that of

putting those attributes in a relationship with one another. This is where multiple

classification comes in. By way of example, this process occurs when a postsyn-

aptic cell requires the concurrent input of any of a member of class A alongside any

of a member of class B, or the concurrent input of any member of class C and any

member of class D. In such a case, we can say that the postsynaptic cell responds to

the relationship between A and B, which is the same relationship as between C

and D.

These two processes have been put to quantitative work in a modern theory of

consciousness, called integrated information theory (IIT), proposed by Giulio

Tononi (2008). We will not describe the theory in all of its conceptual and

mathematical detail here. For our purposes, it is important to point out the concep-

tual overlap with Hayek’s ideas of classification, even though the two theories start

from a very different set of considerations. The two concepts necessary for Hayek’s
scheme to set up a network of relations, that of setting up distinct attributes by

virtue of them having distinct postsynaptic effects and that of relating these

attributes to each other by virtue of their overlapping (classifying classes) and

diverging (being in multiple classes at once) inputs onto postsynaptic cells, can
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be conceptually reformulated into the language of information theory. In an infor-

mation theoretic framework, the setting up of distinct postsynaptic effects (simple

classification) confers a high entropy to the network, and thus a high informational

content (information here can be estimated as the negative logarithm of the number

of different potential states of the system). On the other hand, this information

needs to somehow be put in a relational network. This is done by the cooperative

effects of different classes both postsynaptically and on each other (multiple

classification). This informational dependency is called integration in IIT. Impor-

tantly, for a system to have both high information content and high integration, and

thus high integrated information, the system must simultaneously have dependen-

cies between different attributes to put them in a relation with one another, but not

so much dependency as to erase distinctions between different attributes. Because

of a set of principled reasons, IIT posits that systems with high integrated informa-

tion are conscious.

The exact physiological underpinnings of the thalamocortical system that might

give the brain high amounts of integrated information, and thus consciousness, are

still illusive. However, by considering the similarities between integrated informa-

tion and classification, a way forward is seen whereby specific network and

physiological structures are found to be plausible candidates. In particular, we

will find that, by considering increasingly complex structures of classification

(and by extension increasingly complex amounts of integrated information), a

hierarchical network of feedforward and feedback interactions can work as the

substrate for the representation of conscious percepts.

After the general description of classification and how it can be used to set up a

series of relationships, Hayek goes on to find implications for this idea in terms of

the structure of the cortex and how it might act to build representations. He begins

by considering the simplest of automatic reflexes, which performs a simple classi-

fication by grouping sensory inputs by the movements they produce. The evolution

of the brain led to these pathways of these reflexes, often carried out by a small

number of nerve cells from the periphery to the afferent, branching off and sending

axons to higher areas of the brain.15 This allows the brain to receive information

about both the state of the periphery and the actions that the organism is about to

take. Unlike pure afferent information, information in the higher centers is available

to be used for multiple classification, which can eventually send out motor

commands.

Hayek posited a hierarchical scheme whereby the cortex would perform classi-

fication in successive layers and could even perform classifications on relationships

15 It is in this idea, which is the main focus of Chapter 4 in Hayek’s book (1999), where Hayek

posits a potential use for axons that send the same information to the spinal cord and back to within

the cortex. Hayek talks of how there is no evidence for such axons; however, we now know that

layer 5b pyramidal neurons have axons that split, sending the same information directly to the

spinal cord and to relay cells in the thalamus that feed back into the cortex. The implications of this

process has been put into a theory of thalamocortical function, with many parallels to the ideas of

Hayek, described by Sherman and Guillery (2002).
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themselves, thus providing a highly complex and structured substrate for the

psyche. As classifications continue on up the hierarchy, classes become more

general and abstracted (classes of classes of classes, and classes of relations

between classes, etc.). In the case of the evolution of more complicated control of

motor responses, the higher levels can thus act to represent and control more

general groups or motor commands. Importantly, sensory input comes into an

already active network and thus interacts not only with the anatomical structure

of the network but with the activity already present in the network. Hayek describes

the type of information processing that feedforward and feedback connections

might serve in such a case:

The position of the highest centres [of the brain] in this respect is somewhat like that of the

commander of an army (or the head of any other hierarchical organization), who knows that

his subordinates will respond to various events in a particular manner, and who will often

recognize the character of what has happened as much from the response of his sub-

ordinates as from direct observation. It will also be similar in the sense that, so long as

the decision taken by his subordinates in the light of their limited but perhaps more detailed

observation seems appropriate in view of his more comprehensive knowledge, he will not

need to interfere; and that only if something known only to him but not to his subordinates

makes those normal responses inappropriate will he have to overrule their decisions by

issuing special orders.

In this way, certain cells (or groups of cells) in the brain act by comparing their

knowledge with what they receive from sensorium, only interfering in the network

when there is a mismatch. A framework for neural computation, called predictive
coding, is the mathematical description of such a process. The predictive coding

framework posits that the brain uses an efficient coding scheme to represent the

external world. In particular, this idea posits that natural redundancies in the

external environment acting on the sensory apparatus are not explicitly represented

in the brain, and instead what is represented is the deviation of the sensory drive

from what is predicted. Rao and Ballard (1999) have used this idea to explain the

tuning properties of cells in the retina, LGN, and V1. Importantly, this framework

puts an emphasis on efficient coding in the brain, something that Hayek did not

consider. Despite this, we will see that the biophysical mechanism in which

feedforward and feedback signals interact to represent sensory perceptions is

conceptually consistent with the predicting coding framework.

In the parlance of predictive coding, feedback signals, from higher to lower

levels in the hierarchy, convey predictions of the activity of the lower levels to

which they project, that is, predictions of general classes of motor commands given

the sensory input. In turn, cells compare predictions with information from lower

levels and send error signals forward in the hierarchy. In this way the predictions

are continually refined. The diction here becomes conceptually important. A

restatement of the processes of refining predictions via error signals representing

the comparison of prediction and feedforward sensory driven information puts the

ideas regarding network level computation discussed earlier in the chapter squarely

in the framework of predictive coding. Indeed, a comparison is biophysically

nothing more than the local integration of feedforward and feedback signals that
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occur in a single pyramidal neuron (and influenced by the surrounding local

circuit). A prediction is the feedback activity that predisposes specific neurons in

lower cortical areas to varying degrees of activity (or inactivity). An error signal is
then the result of the integration of feedforward and feedback signals, which are

then broadcast to higher areas of the hierarchy. Feedback activity, and its robust

control over the output of pyramidal neurons via dendritic nonlinearities (NMDA

and Ca-spikes), serves here as a physiological mechanism in which these kinds of

computations might be carried out in the brain. Importantly, NMDA and Ca-spikes

are physical mechanisms that can be both monitored and exquisitely manipulated in

experiment and thus provide a way to test hypotheses about how the cortex

implements predicting coding.

In thinking of the further evolution of cortex, Hayek posits that there is funda-

mentally no difference between the increased control of more complicated motor

responses (for instance, being able to account for context) and the representation of

complex percepts. Indeed, the addition of more and more layers alongside more

complicated forms of classification in the network allows for the network to form a

map of the outside world. In this way the role of convergent fibers to higher levels

of the hierarchy confers the binding of different attributes into more abstract

attributes, whereas divergence confers the distribution of common attributes to

different categories (Hayek 1999; Fuster 2003). Associations between different

attributes are given by connections that predispose but do not on their own elicit

activity in a postsynaptic cell or group of cells. Associations of this type can occur

in any direction of the hierarchy. An important aspect of such a distributed network

is that higher levels of the hierarchy can, through feedback connectivity to lower

cortical areas, act to predispose certain cells in the lower areas to fire. Hayek

describes the process through which multiple categorization and multiple associa-

tions interact to create a dynamic and ongoing selection of categories at multiple

levels of the hierarchy:

The different associations attaching to individual impulses. . . will often not only not be

convergent but even conflicting; and not all the representations which will form part of the

following [ie. postsynaptic effects] of the elements of the complete situation will be capable

of simultaneous realization, or would produce a significant new pattern if they did. Since

from each element of the structure of connected fibers impulses can pass in a great variety

of directions, the initial stream of impulses would merely diffuse and dissipate itself if the

overlapping of the following [ie postsynaptic effects] did not determine a selection of some

among the many potential paths on which they might travel.

This type of selection, which occurs on account of multiple associations

interacting with each other, is consistent with the network level computation that

follows from the single-cell biophysics of pyramidal neurons discussed. The main

single cell computation in AAA is that of coincident detection or, more generally

stated, of integration from multiple axonal pathways. Individually, these pathways

bias, but do not cause, the neuron to fire a burst of high-frequency action potentials.

The pyramidal neuron thus acts as a highly nonlinear classifier of the thousands of

excitatory and inhibitory inputs (and in reality even neuromodulatory inputs) that

impinge on the basal and tuft dendrites. These classifying neurons then send their
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own long-range axons to many cells in far away areas, establishing hierarchical and

multiple classification. In direct analogy to what Hayek discussed, it is the collec-

tive action of this process that works to select which pyramidal neurons are active in

different areas of the cortex and which act to form the bound representation of

percepts in the brain.

The ideas presented in this section are all active areas of research. The connec-

tions between these topics (Fig. 8d) range from scientific fact (e.g., NMDA and

Ca-spikes) to plausible speculation (the connection between the single cell BAC

mechanism and network level binding), or are even philosophical in nature (the

relationship between consciousness and binding). In the coming decade, it will be

important to establish exactly where, in both mathematical and physiological

foundations, these ideas overlap and differ. At the very least, Hayek’s stream of

thought suggests that there are connections waiting to be uncovered. Ultimately,

understanding the cortical network implications of single cell and local network

computation would be made easier if a more direct connection between ideas like

AAA, which explicitly take into account physiological and anatomical details of the

type that are experimentally measurable and readily manipulated, and the more

theoretical ideas of network computation like predictive coding and IIT was better

understood.
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Buzsáki G, Penttonen M, Nádasdy A, Bragin A (1996) Pattern and inhibition-dependent invasion

of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. Proc Natl Acad Sci USA

93:9921–9925
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Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalogra-

phy—theory, instrumentation, and applications to noninvasive studies of the working human

brain. Rev Mod Phys 65:413–497

Hameroff SR (1994) Quantum coherence in microtubules: a neural basis for emergent conscious-

ness? J Conscious Stud 1:91–118

Harlow JM (1999) Passage of an iron rod through the head. 1848. J Neuropsychiatr Clin Neurosci

11:281–283

Harris KD, Hirase H, Leinekugel X, Henze DA, Buzsáki G (2001) Temporal interaction between
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Pérez-Garci E, Gassmann M, Bettler B, Larkum ME (2006) The GABA B1b isoform mediates

long-lasting inhibition of dendritic Ca 2+ spikes in layer 5 somatosensory pyramidal neurons.

Neuron 50:603–616
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