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Multi-curve Modelling Using Trees

John Hull and Alan White

Abstract Since2008 thevaluationof derivatives has evolved so thatOISdiscounting
rather than LIBOR discounting is used. Payoffs from interest rate derivatives usually
depend on LIBOR. This means that the valuation of interest rate derivatives depends
on the evolution of two different term structures. The spread betweenOIS andLIBOR
rates is often assumed to be constant or deterministic. This paper explores how this
assumption can be relaxed. It shows how well-established methods used to represent
one-factor interest rate models in the form of a binomial or trinomial tree can be
extended so that the OIS rate and a LIBOR rate are jointly modelled in a three-
dimensional tree. The procedures are illustrated with the valuation of spread options
and Bermudan swap options. The tree is constructed so that LIBOR swap rates are
matched.

Keywords OIS · LIBOR · Interest rate trees · Multi-curve modelling

1 Introduction

Before the 2008 credit crisis, the spread between a LIBOR rate and the corresponding
OIS (overnight indexed swap) rate was typically around 10 basis points. During the
crisis this spread rose dramatically. This led practitioners to review their derivatives
valuation procedures. A result of this review was a switch from LIBOR discounting
to OIS discounting.

Finance theory argues that derivatives can be correctly valued by estimating ex-
pected cash flows in a risk-neutral world and discounting them at the risk-free rate.
The OIS rate is a better proxy for the risk-free rate than LIBOR.1 Another argument

1See for example Hull and White [15].

J. Hull (B) · A. White
Joseph L. Rotman School of Management, University of Toronto, Toronto, ON, Canada
e-mail: hull@rotman.utoronto.ca

A. White
e-mail: awhite@rotman.utoronto.ca

© The Author(s) 2016
K. Glau et al. (eds.), Innovations in Derivatives Markets, Springer Proceedings
in Mathematics & Statistics 165, DOI 10.1007/978-3-319-33446-2_9

171



172 J. Hull and A. White

(appealing to many practitioners) in favor of using the OIS rate for discounting is
that the interest paid on cash collateral is usually the overnight interbank rate and
OIS rates are longer term rates derived from these overnight rates. The use of OIS
rates therefore reflects funding costs.

Many interest rate derivatives provide payoffs dependent on LIBOR. When LI-
BOR discounting was used, only one rate needed to be modelled to value these
derivatives. Now that OIS discounting is used, more than one rate has to be consid-
ered. The spread between OIS and LIBOR rates is often assumed to be constant or
deterministic. This paper provides a way of relaxing this assumption. It describes
a way in which LIBOR with a particular tenor and OIS can be modelled using a
three-dimensional tree.2 It is an extension of ideas in the many papers that have been
written on how one-factor interest rate models can be represented in the form of a
two-dimensional tree. These papers include Ho and Lee [9], Black, Derman, and
Toy [3], Black and Karasinski [4], Kalotay, Williams, and Fabozzi [18], Hainaut and
MacGilchrist [8], and Hull and White [11, 13, 14, 16].

The balance of the paper is organized as follows. We first describe how LIBOR-
OIS spreads have evolved through time. Second,wedescribe howa three-dimensional
tree can be constructed to model both OIS rates and the LIBOR-OIS spread with a
particular tenor. We then illustrate the tree-building process using a simple three-
step tree. We investigate the convergence of the three-dimensional tree by using it
to calculate the value of options on the LIBOR-OIS spread. We then value Bermu-
dan swap options showing that in a low-interest-rate environment, the assumption
that the spread is stochastic rather than deterministic can have a non-trivial effect on
valuations.

2 The LIBOR-OIS Spread

LIBOR quotes for maturities of one-, three-, six-, and 12-months in a variety of
currencies are produced every day by the British Bankers’ Association based on
submissions from a panel of contributing banks. These are estimates of the unsecured
rates at which AA-rated banks can borrow from other banks. The T -month OIS rate
is the fixed rate paid on a T -month overnight interest rate swap. In such a swap the
payment at the end of T -months is the difference between the fixed rate and a rate
which is the geometric mean of daily overnight rates. The calculation of the payment
on the floating side is designed to replicate the aggregate interest that would be earned
from rolling over a sequence of daily loans at the overnight rate. (In U.S. dollars, the
overnight rate used is the effective federal funds rate.) The LIBOR-OIS spread is the
LIBOR rate less the corresponding OIS rate.

2At the end of Hull and White [17] we described an attempt to do this using a two-dimensional
tree. The current procedure is better. Our earlier procedure only provides an approximate answer
because the correlation between spreads at adjacent tree nodes is not fully modelled.
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LIBOR-OIS spreads were markedly different during the pre-crisis (December
2001–July 2007) and post-crisis (July 2009–April 2015) periods. This is illustrated
in Fig. 1. In the pre-crisis period, the spread term structure was quite flat with the 12-
month spread only about 4 basis points higher than the one-month spread on average.
As shown in Fig. 1a, the 12-month spreadwas sometimes higher and sometimes lower
than one-month spread. The average one-month spread was about 10 basis points
during this period. Because the term structure of spreads was on average fairly flat
and quite small, it was plausible for practitioners to assume the existence of a single
LIBOR zero curve and use it as a proxy for the risk-free zero curve. During the post-
crisis period there has been a marked term structure of spreads. As shown in Fig. 1b,
it is almost always the case that the spread curve is upward sloping. The average
one-month spread continues to be about 10 basis points, but the average 12-month
spread is about 62 basis points.

There are two factors that explain the difference between LIBOR rates and OIS
rates. The first of these may be institutional. If a regression model is used to ex-
trapolate the spread curve for shorter maturities, we find the one-day spread in the
post-crisis period is estimated to be about 5 basis points. This is consistent with the
spread between one-day LIBOR and the effective fed funds rate. Since these are both
rates that a bank would pay to borrow money for 24h, they should be the same. The
5 basis point difference must be related to institutional practices that affect the two
different markets.3

Given that institutional differences account for about 5 basis points of spread,
the balance of the spread must be attributable to credit. OIS rates are based on a
continually refreshed one-day rate whereas τ -maturity LIBOR is a continually re-
freshed τ -maturity rate.4 The difference between τ -maturity LIBOR and τ -maturity
OIS then reflects the degree to which the credit quality of the LIBOR borrower is
expected to decline over τ years.5 In the pre-crisis period the expected decline in the
borrower credit quality implied by the spreads was small but during the post-crisis
period it has been much larger.

The average hazard rate over the life of a LIBOR loan with maturity τ is approx-
imately

λ = L(τ )

1 − R

where L(τ ) is the spread of LIBOR over the risk-free rate and R is the recovery rate
in the event of default. Let h be the hazard rate for overnight loans to high quality
financial institutions (those that can borrow at the effective fed funds rate). This will
also be the average hazard rate associated with OIS rates.

3For a more detailed discussion of these issues see Hull and White [15].
4A continually refreshed τ -maturity rate is the rate realized when a loan is made to a party with a
certain specified credit rating (usually assumed in this context to be AA) for time τ . At the end of
the period a new τ -maturity loan is made to a possibly different party with the same specified credit
rating. See Collin-Dufresne and Solnik [6].
5It is well established that for high quality borrowers the expected credit quality declines with the
passage of time.
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Fig. 1 a Excess of 12-month LIBOR-OIS spread over one-month LIBOR-OIS spread December
4, 2001–July 31, 2007 period (basis points). Data Source: Bloomberg. b Post-crisis LIBOR-OIS
spread for different tenors (basis points). Data Source: Bloomberg
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Define L∗(τ ) as the spread of LIBOR over OIS for a maturity of τ and O(τ ) as the
spread of OIS over the risk-free rate for this maturity. Because L(τ ) = L∗(τ )+O(τ )

λ = L∗(τ ) + O(τ )

1 − R
= h + L∗(τ )

1 − R

This shows that when we model OIS and LIBOR we are effectively modelling OIS
and the difference between the LIBOR hazard rate and the OIS hazard rate.

One of the results of the post-crisis spread term structure is that a single LIBOR
zero curve no longer exists. LIBOR zero curves can be constructed from swap rates,
but there is a different LIBOR zero curve for each tenor. This paper shows how
OIS rates and a LIBOR rate with a particular tenor can be modelled jointly using a
three-dimensional tree.6

3 The Methodology

Suppose that we are interested in modelling OIS rates and the LIBOR rate with tenor
of τ . (Values of τ commonly used are one month, three months, six months and 12
months.) Define r as the instantaneous OIS rate. We assume that some function of
r , x(r), follows the process

dx = [θ(t) − ar x] dt + σr dzr (1)

This is an Ornstein–Uhlenbeck process with a time-dependent reversion level. The
function θ(t) is chosen to match the initial term structure of OIS rates; ar (≥0) is
the reversion rate of x ; σr (>0) is the volatility of r ; and dzr is a Wiener process.7

Define s as the spread between the LIBOR rate with tenor τ and the OIS rate with
tenor τ (both rates being measured with a compounding frequency corresponding to
the tenor). We assume that some function of s, y(s), follows the process:

dy = [φ(t) − as y] dt + σs dzs (2)

This is also an Ornstein–Uhlenbeck process with a time-dependent reversion level.
The function φ(t) is chosen to ensure that all LIBOR FRAs and swaps that can be
entered into today have a value of zero; as (≥0) is the reversion rate of y; σs (>0) is

6Extending the approach so that more than one LIBOR rate is modelled is not likely to be feasible
as it would involve using backward induction in conjunction with a four (or more)-dimensional tree.
In practice, multiple LIBOR rates are most likely to be needed for portfolios when credit and other
valuation adjustments are calculated. Monte Carlo simulation is usually used in these situations.
7This model does not allow interest rates to become negative. Negative interest have been observed
in some currencies (particularly the euro and Swiss franc). If −e is the assumed minimum interest
rate, this model can be adjusted so that x = ln(r + e). The choice of e is somewhat arbitrary, but
changes the assumptions made about the behavior of interest rates in a non-trivial way.
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the volatility of s; and dzs is a Wiener process. The correlation between dzr and dzs
will be denoted by ρ.

We will use a three-dimensional tree to model x and y. A tree is a discrete time,
discrete space approximation of a continuous stochastic process for a variable. The
tree is constructed so that the mean and standard deviation of the variable is matched
over each time step. Results in Ames [1] show that in the limit the tree converges
to the continuous time process. At each node of the tree, r and s can be calculated
using the inverse of the functions x and y.

Wewill first outline a step-by-step approach to constructing the three-dimensional
tree and then provide more details in the context of a numerical example in Sect. 4.8

The steps in the construction of the tree are as follows:

1. Model the instantaneous OIS rate using a tree. We assume that the process for r
is defined by Eq. (1) and that a trinomial tree is constructed as described in Hull
andWhite [11, 13] or Hull [10]. However, the method we describe can be used in
conjunction with other binomial and trinomial tree-building procedures such as
those in Ho and Lee [9], Black, Derman and Toy [3], Black and Karasinski [4],
Kalotay, Williams and Fabozzi [18] and Hull and White [14, 16]. Tree building
procedures are also discussed in a number of texts.9 If the tree has steps of length
Δt , the interest rate at each node of the tree is an OIS rate with maturity Δt .
We assume the tree can be constructed so that both the LIBOR tenor, τ , and all
potential payment times for the instrument being valued are multiples of Δt . If
this is not possible, a tree with varying time steps can be constructed.10

2. Use backward induction to calculate at each node of the tree the price of an OIS
zero-coupon bondwith a life of τ . For a node at time t this involves valuing a bond
that has a value of $1 at time t + τ . The value of the bond at nodes earlier than
t + τ is found by discounting through the tree. For each node at time t + τ − Δt
the price of the bond is e−rΔt where r is the (Δt-maturity) OIS rate at the node.
For each node at time t + τ −2Δt the price is e−rΔt times a probability-weighted
average of prices at the nodes at time t + τ − Δt which can be reached from that
node, and so on. The calculations are illustrated in the next section. Based on the
bond price calculated in this way, P , the τ -maturity OIS rate, expressed with a
compounding period of τ , is11

1/P − 1

τ

3. Construct a trinomial tree for the process for the spread function, y, in Eq. (2)
when the function φ(t) is set equal to zero and the initial value of y is set equal to

8Readers who have worked with interest rate trees will be able to follow our step-by-step approach.
Other readers may prefer to follow the numerical example.
9See for example Brigo and Mercurio [5] or Hull [10].
10See for example Hull and White [14].
11The r -tree shows the evolution of the Δt-maturity OIS rate. Since we are interested in modelling
the τ -maturity LIBOR-OIS spread, it is necessary to determine the evolution of the τ -maturity OIS
rate.
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zero.12 We will refer to this as the “preliminary tree”. When interest rate trees are
built, the expected value of the short rate at each time step is chosen so that the
initial term structure is matched. The adjustment to the expected rate at time t is
achieved by adding some constant, αt , to the value of x at each node at that step.13

The expected value of the spread at each step of the spread tree that is eventually
constructed will similarly be chosen to match forward LIBOR rates. The current
preliminary tree is a first step toward the construction of the final spread tree.

4. Create a three-dimensional tree from the OIS tree and the preliminary spread tree
assuming zero correlation between the OIS rate and the spread. The probabilities
on the branches of this three-dimensional tree are the product of the probabilities
on the corresponding branches of the underlying two-dimensional trees.

5. Build in correlation between the OIS rate and the spread by adjusting the prob-
abilities on the branches of the three-dimensional tree. The way of doing this is
described in Hull and White [12] and will be explained in more detail later in this
paper.

6. Using an iterative procedure, adjust the expected spread at each of the times
considered by the tree. For the nodes at time t , we consider a receive-fixed forward
rate agreement (FRA) applicable to the period between t and t + τ .14 The fixed
rate, F , equals the forward rate at time zero. The value of the FRA at a node, where
the τ -maturity OIS rate is w and the τ -maturity LIBOR-OIS spread is s, is15

F − (w + s)

1 + wτ

The value of the FRA is calculated for all nodes at time t and the values are
discounted back through the three-dimensional tree to find the present value.16

As discussed in step 3, the expected spread (i.e., the amount by which nodes are
shifted from their positions in the preliminary tree) is chosen so that this present
value is zero.

12As in the case of the tree for the interest rate function, x , the method can be generalized to
accommodate a variety of two-dimensional and three-dimensional tree-building procedures.
13This is equivalent to determining the time varying drift parameter, θ(t), that is consistent with the
current term structure.
14A forward rate agreement (FRA) is one leg of a fixed for floating interest rate swap. Typically, the
forward rates underlying some FRAs can be observed in the market. Others can be bootstrapped
from the fixed rates exchanged in interest rate swaps.
15F , w, and s are expressed with a compounding period of τ .
16Calculations are simplified by calculating Arrow–Debreu prices, first at all nodes of the two-
dimensional OIS tree and then at all nodes of the three-dimensional tree. The latter can be calculated
at the end of the fifth step as they do not depend on spread values. This is explained in more detail
and illustrated numerically in Sect. 4.
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4 A Simple Three-Step Example

We now present a simple example to illustrate the implementation of our procedure.
We assume that the LIBOR maturity of interest is 12 months (τ = 1). We assume
that x = ln(r) with x following the process in Eq. (1). Similarly we assume that
y = ln(s) with y following the process in Eq. (2). We assume that the initial OIS
zero rates and 12 month LIBOR forward rates are those shown in Table1. We will
build a 1.5-year tree where the time step, Δt , equals 0.5 years. We assume that the
reversion rate and volatility parameters are as shown in Table2.

As explained in Hull and White [11, 13] we first build a tree for x assuming that
θ(t) = 0. We set the spacing of the x nodes,Δx , equal to σr

√
3Δt = 0.3062. Define

node (i, j) as the node at time iΔt for which x = jΔx . (The middle node at each
time has j = 0.) The normal branching process in the tree is from (i, j) to one of
(i +1, j +1), (i +1, j), and (i +1, j −1). The transition probabilities to these three
nodes are pu , pm , and pd and are chosen to match the mean and standard deviation

Table 1 Percentage interest rates for the examples

Maturity
(years)

OIS zero rate Forward
12-month
LIBOR rate

Forward
12-month OIS
rate

Forward Spread:
12-month LIBOR less
12-month OIS

0 3.000 3.300 3.149 0.151

0.5 3.050 3.410 3.252 0.158

1.0 3.100 3.520 3.355 0.165

1.5 3.150 3.630 3.458 0.172

2.0 3.200 3.740 3.562 0.178

2.5 3.250 3.850 3.666 0.184

3.0 3.300 3.960 3.769 0.191

4.0 3.400 4.180 3.977 0.203

5.0 3.500 4.400 4.185 0.215

7.0 3.700

The OIS zero rates are expressed with continuous compounding while all forward and forward
spread rates are expressed with annual compounding. The OIS zero rates and LIBOR forward
rates are exact. OIS zero rates and LIBOR forward rates for maturities other than those given
are determined using linear interpolation. The rates in the final two columns are rounded values
calculated from the given OIS zero rates and LIBOR forward rates

Table 2 Reversion rates,
volatilities, and correlation
for the examples

OIS reversion rate, ar 0.22

OIS volatility, σr 0.25

Spread reversion rate, as 0.10

Spread volatility, σs 0.20

Correlation between OIS and
spread, ρ

0.05
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of changes in time Δt17

pu = 1

6
+ 1

2
(a2r j

2Δt2 − ar jΔt)

pm = 2

3
− a2r j

2Δt2

pd = 1

6
+ 1

2
(a2r j

2Δt2 + ar jΔt)

As soon as j > 0.184/(arΔt), the branching process is changed so that (i, j) leads
to one of (i + 1, j), (i + 1, j − 1), and (i + 1, j − 2). The transition probabilities
to these three nodes are

pu = 7

6
+ 1

2
(a2r j

2Δt2 − 3ar jΔt)

pm = −1

3
− a2r j

2Δt2 + 2ar jΔt

pd = 1

6
+ 1

2
(a2r j

2Δt2 − ar jΔt)

Similarly, as soon as j < −0.184/(arΔt) the branching process is changed so that
(i, j) leads to one of (i + 1, j + 2), (i + 1, j + 1), and (i + 1, j). The transition
probabilities to these three nodes are

pu = 1

6
+ 1

2
(a2r j

2Δt2 + ar jΔt)

pm = −1

3
− a2r j

2Δt2 − 2ar jΔt

pd = 7

6
+ 1

2
(a2r j

2Δt2 + 3ar jΔt)

We then use an iterative procedure to calculate in succession the amount that the
x-nodes at each time step must be shifted, α0, αΔt , α2Δt , . . . , so that the OIS term
structure is matched. The first value, α0, is chosen so that the tree correctly prices a
discount bondmaturingΔt . The second value,αΔt , is chosen so that the tree correctly
prices a discount bond maturing 2Δt , and so on.

Arrow–Debreu prices facilitate the calculation. The Arrow–Debreu price for a
node is the price of a security that pays off $1 if the node is reached and zero
otherwise. Define Ai, j as the Arrow–Debreu price for node (i, j) and define ri, j as
the Δt-maturity interest rate at node (i, j). The value of αiΔt can be calculated using
an iterative search procedure from the Ai, j and the price at time zero, Pi+1, of a bond
maturing at time (i + 1)Δt using

17See for example Hull ([10], p. 725).
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Pi+1 =
∑

j

Ai, j exp(−ri, jΔt) (3)

in conjunction with
ri, j = exp(αiΔt + jΔx) (4)

where the summation in Eq. (3) is over all j at time iΔt . The Arrow–Debreu prices
can then be updated using

Ai+1,k =
∑

j

Ai, j p j,k exp(−ri, jΔt) (5)

where p( j, k) is the probability of branching from (i, j) to (i + 1, k), and the sum-
mation is over all j at time iΔt . The Arrow–Debreu price at the base of the tree,
A0,0, is one. From this α0 can be calculated using Eqs. (3) and (4). The A1,k can then
be calculated using Eqs. (4) and (5). After that αΔt can be calculated using Eqs. (3)
and (4), and so on.

It is then necessary to calculate the value of the 12-month OIS rate at each node
(step 2 in the previous section). As the tree has six-month time steps, a two-period
roll back is required in the case of our simple example. It is necessary to build a
four-step tree. The value at the j th node at time 4Δt (= 2) of a discount bond that
pays $1 at time 5Δt (= 2.5) is exp(−r4, jΔt).

Discounting these values back to time 3Δt (= 1.5) gives the price of a one-year
discount bond at each node at 3Δt from which the bond’s yield can be determined.
This is repeated for a bond that pays $1 at time 4Δt resulting in the one-year yields at
time 2Δt , and so on. The tree constructed so far and the values calculated are shown
in Fig. 2.18

The next stage (step 3 in the previous section) is to construct a tree for the spread
assuming that the expected future spread is zero (the preliminary tree). As in the case
of the OIS tree, Δt = 0.5 and Δy = σs

√
3Δt = 0.2449. The branching process and

probabilities are calculated as for the OIS tree (with ar replaced by as).
A three-dimensional tree is then created (step 4 in the previous section) by com-

bining the spread tree and the OIS tree assuming zero correlation. We denote the
node at time iΔt where x = jΔx and y = kΔy by node (i, j, k). Consider for
example node (2,−2, 2). This corresponds to node (2,−2) in the OIS tree, node I
in Fig. 2, and node (2, 2) in the spread tree. The probabilities for the OIS tree are
pu = 0.0809, pm = 0.0583, pd = 0.8609 and the branching process is to nodes
where j = 0, j = −1, and j = −2. The probabilities for the spread tree are
pu = 0.1217, pm = 0.6567, pd = 0.2217 and the branching process is to nodes
where k = 1, k = 2, and k = 3. Denote puu as the probability of the highest move
in the OIS tree being combined with the highest move in the spread tree; pum as the
probability of the highest move in the OIS tree being combined with themiddle move
in the spread tree; and so on. The probability, puu of moving from node (2,−2, 2) to

18More details on the construction of the tree can be found in Hull [10].
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Fig. 2 Tree for OIS rates in three-step example

node (3, 0, 3) is therefore 0.0809×0.1217 or 0.0098; the probability, pum of moving
from node (2,−2, 2) to node (3, 0, 2) is 0.0809×0.6567 or 0.0531 and so on. These
(unadjusted) branching probabilities at node (2,−2, 2) are shown in Table4a.

The next stage (step 5 in the previous section) is to adjust the probabilities to build
in correlation between the OIS rate and the spread (i.e., the correlation between dzr
and dzs). As explained in Hull and White [12], probabilities are changed as indi-
cated in Table3.19 This leaves the marginal distributions unchanged. The resulting
adjusted probabilities at node (2,−2, 2) are shown in Table4b. In the example we
are currently considering the adjusted probabilities are never negative. In practice
negative probabilities do occur, but disappear as Δt tends zero. They tend to occur
only on the edges of the tree where the non-standard branching process is used and
do not interfere with convergence. Our approach when negative probabilities are en-
countered at a node is to change the correlation at that node to the greatest (positive
or negative) correlation that is consistent with non-negative probabilities.

19The procedure described in Hull and White [12] applies to trinomial trees. For binomial trees the
analogous procedure is to increase puu and pdd by ε while decreasing pud and pdu by ε where
ε = ρ/4.
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Table 3 Adjustments to probabilities to reflect correlation in a three-dimensional trinomial tree

Probability Change when ρ > 0 Change when ρ < 0

puu +5e +e

pum −4e +4e

pud −e −5e

pmu −4e +4e

pmm +8e −8e

pmd −4e +4e

pdu −e −5e

pdm −4e +4e

pdd +5e +e

(e = ρ/36 where ρ is the correlation)

Table 4 (a) The unadjusted branching probabilities at node (2,−2, 2). The probabilities on the
edge of the table are the branching probabilities at node (2,−2) of the r -tree and (2, 2) of the
s-tree. (b) The adjusted branching probabilities at node (2,−2, 2). The probabilities on the edge of
the table are the branching probabilities at node (2,−2) of the r -tree and (2, 2) of the s-tree. The
adjustment is based on a correlation of 0.05 so e = 0.00139

a

r -tree

pu pm pd
0.0809 0.0583 0.8609

s-tree pu 0.1217 0.0098 0.0071 0.1047

pm 0.6567 0.0531 0.0383 0.5653

pd 0.2217 0.0179 0.0129 0.1908

b

r -tree

pu pm pd
0.0809 0.0583 0.8609

s-tree pu 0.1217 0.0168 0.0015 0.1033

pm 0.6567 0.0475 0.0494 0.5597

pd 0.2217 0.0165 0.0074 0.1978

The tree constructed so far reflects actual OIS movements and artificial spread
movements where the initial spread and expected future spread are zero. We are now
in a position to calculateArrow–Debreu prices for each node of the three-dimensional
tree. These Arrow–Debreu prices remain the same when the positions of the spread
nodes are changed because the Arrow–Debreu price for a node depends only on OIS
rates and the probability of the node being reached. They are shown in Table5.

The final stage involves shifting the position of the spread nodes so that the prices
of all LIBOR FRAs with a fixed rate equal to the initial forward LIBOR rate are
zero. An iterative procedure is used to calculate the adjustment to the values of y
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Table 5 Arrow–Debreu prices for simple three-step example

i = 1 k = −1 k = 0 k = 1

j = 1 0.0260 0.1040 0.0342

j = 0 0.1040 0.4487 0.1040

j = −1 0.0342 0.1040 0.0260

i = 2 k = −2 k = −1 k = 0 k = 1 k = 2

j = 2 0.0004 0.0037 0.0089 0.0051 0.0008

j = 1 0.0045 0.0443 0.1064 0.0516 0.0061

j = 0 0.0112 0.1100 0.2620 0.1100 0.0112

j = −1 0.0061 0.0518 0.1070 0.0445 0.0046

j = −2 0.0008 0.0052 0.0090 0.0037 0.0004

i = 3 k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3

j = 2 0.0001 0.0016 0.0085 0.0163 0.0109 0.0027 0.0002

j = 1 0.0005 0.0094 0.0496 0.0932 0.0551 0.0116 0.0007

j = 0 0.0012 0.0197 0.1016 0.1849 0.1016 0.0197 0.0012

j = −1 0.0008 0.0117 0.0557 0.0941 0.0501 0.0095 0.0005

j = −2 0.0002 0.0028 0.0111 0.0167 0.0087 0.0017 0.0001

at each node at each time step, β0, βΔt , β2Δt , . . . , so that the FRAs have a value of
zero. Given that Arrow–Debreu prices have already been calculated this is a fairly
straightforward search. When the α jΔt are determined it is necessary to first consider
j = 0, then j = 1, then j = 2, and so on because the α-value at a particular time
depends on the α-values at earlier times. The β-values however are independent of
each other and can be determined in any order, or as needed. In the case of our
example, β0 = −6.493, βΔt = −6.459, β2Δt = −6.426, β3Δt = −6.395.

5 Valuation of a Spread Option

To illustrate convergence, we use the tree to calculate the value of a European call
option that pays off 100 times max(s − 0.002, 0) at time T where s is the spread.
First, we let T = 1.5 years and use the three-step tree developed in the previous
section. At the third step of the tree we calculate the spread at each node. The spread
at node (3, j, k) is exp[φ(3Δt) + kΔy]. These values are shown in the second line
of Table6. Once the spread values have been determined the option payoffs, 100
times max(s − 0.002, 0), at each node are calculated. These values are shown in the
rest of Table6. The option value is found by multiplying each option payoff by the
correspondingArrow–Debreu price in Table5 and summing the values. The resulting
option value is 0.00670. Table7 shows how, for a 1.5- and 5-year spread option, the
value converges as the number of time steps per year is increased.
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Table 6 Spread and spread option payoff at time 1.5 years when spread option is evaluated using
a three-step tree

i = 3 k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3

Spread 0.0008 0.0010 0.0013 0.0017 0.0021 0.0027 0.0035

j = 2 0.0000 0.0000 0.0000 0.0000 0.0133 0.0725 0.1482

j = 1 0.0000 0.0000 0.0000 0.0000 0.0133 0.0725 0.1482

j = 0 0.0000 0.0000 0.0000 0.0000 0.0133 0.0725 0.1482

j = −1 0.0000 0.0000 0.0000 0.0000 0.0133 0.0725 0.1482

j = −2 0.0000 0.0000 0.0000 0.0000 0.0133 0.0725 0.1482

Table 7 Value of a European spread option paying off 100 times the greater of the spread less
0.002 and zero

Time steps per year 1.5-year option 5-year option

2 0.00670 0.0310

4 0.00564 0.0312

8 0.00621 0.0313

16 0.00592 0.0313

32 0.00596 0.0313

The market data used to build the tree is given in Tables1 and 2

Table 8 Value of a five-year European spread option paying off 100 times the greater of the spread
less 0.002 and zero

Spread
volatility

Spread/OIS correlation

–0.75 –0.50 –0.25 0 0.25 0.5 0.75

0.05 0.0141 0.0142 0.0142 0.0143 0.0143 0.0144 0.0144

0.10 0.0193 0.0194 0.0195 0.0195 0.0196 0.0196 0.0197

0.15 0.0250 0.0252 0.0253 0.0254 0.0254 0.0255 0.0256

0.20 0.0308 0.0309 0.0311 0.0313 0.0314 0.0316 0.0317

0.25 0.0367 0.0369 0.0371 0.0373 0.0374 0.0376 0.0377

The market data used to build the tree are given in Tables1 and 2 except that the volatility of the
spread and the correlation between the spread and the OIS rate are as given in this table. The number
of time steps is 32 per year

Table8 shows how the spread option price is affected by the assumed correlation
and the volatility of the spread. All of the input parameters are as given in Tables1
and 2 except that correlations between −0.75 and 0.75, and spread volatilities be-
tween 0.05 and 0.25 are considered. As might be expected the spread option price
is very sensitive to the spread volatility. However, it is not very sensitive to the cor-
relation. The reason for this is that changing the correlation primarily affects the
Arrow–Debreu prices and leaves the option payoffs almost unchanged. Increasing
the correlation increases the Arrow–Debreu prices on one diagonal of the final nodes
and decreases them on the other diagonal. For example, in the three-step tree used
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to evaluate the option, the Arrow–Debreu price for nodes (3, 2, 3) and (3,−2,−3)
increase while those for nodes (3,−2, 3) and (3, 2,−3) decrease. Since the option
payoffs at nodes (3, 2, 3) and (3,−2, 3) are the same, the changes on the Arrow–
Debreu prices offset one another resulting in only a small correlation effect.

6 Bermudan Swap Option

We now consider how the valuation of a Bermudan swap option is affected by a
stochastic spread in a low-interest-rate environment such as that experienced in the
years following 2009. Bermudan swap options are popular instruments where the
holder has the right to enter into a particular swap on a number of different swap
payment dates.

The valuation procedure involves rolling back through the tree calculating both
the swap price and (where appropriate) the option price. The swap’s value is set
equal to zero at the nodes on the swap’s maturity date. The value at earlier nodes is
calculated by rolling back adding in the present value of the next payment on each
reset date. The option’s value is set equal to max(S, 0) where S is the swap value at
the option’s maturity. It is then set equal to max(S, V ) for nodes on exercise dates
where S is the swap value and V is the value of the option given by the roll back
procedure.

We assume an OIS term structure that increases linearly from 15 basis points at
time zero to 250 basis points at time 10 years. The OIS zero rate for maturity t is
therefore

0.0015 + 0.0235t

10

The process followed by the instantaneous OIS rate was similar to that derived by
Deguillaume, Rebonato and Pogodin [7], and Hull and White [16]. For short rates
between 0 and 1.5%, changes in the rate are assumed to be lognormalwith a volatility
of 100%. Between 1.5% and 6% changes in the short rate are assumed to be normal
with the standard deviation of rate moves in time Δt being 0.015

√
Δt . Above 6%

rate moves were assumed to be lognormal with volatility 25%. This pattern of the
short rate’s variability is shown in Fig. 3.

The spread between the forward 12-month OIS and the forward 12-month LIBOR
was assumed to be 50 basis points for all maturities. The process assumed for the
12-month LIBOR-OIS spread, s, is that used in the example in Sects. 4 and 5

dln(s) = as[φ(t) − ln(s)] + σs dzs
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Fig. 3 Variability assumed for short OIS rate, r , in Bermudan swap option valuation. The standard
deviation of the short rate in time Δt is s(r)

√
Δt

Table 9 (a) Value in a low-interest rate environment, of a receive-fixed Bermudan swap option on
a 5-year annual-pay swap where the notional principal is 100 and the option can be exercised at
times 1, 2, and 3 years. The swap rate is 1.5%. (b) Value in a low-interest-rate environment of a
received-fixed Bermudan swap option on a 10-year annual-pay swap where the notional principal
is 100 and the option can be exercised at times 1, 2, 3, 4, and 5 years. The swap rate is 3.0%

Spread
volatility

Spread/OIS correlation

a

–0.5 –0.25 –0.1 0 0.1 0.25 0.5

0 0.398 0.398 0.398 0.398 0.398 0.398 0.398

0.3 0.333 0.371 0.393 0.407 0.421 0.441 0.473

0.5 0.310 0.373 0.407 0.429 0.449 0.480 0.527

0.7 0.309 0.389 0.432 0.459 0.485 0.522 0.580

b

–0.5 –0.25 –0.1 0 0.1 0.25 0.5

0 2.217 2.218 2.218 2.218 2.218 2.218 2.218

0.3 2.100 2.164 2.201 2.225 2.248 2.283 2.339

0.5 2.031 2.141 2.203 2.242 2.280 2.335 2.421

0.7 1.980 2.134 2.218 2.271 2.321 2.392 2.503

Amaximum likelihood analysis of data on the 12-month LIBOR-OIS spread over
the 2012 to 2014 period indicates that the behavior of the spread can be approximately
described by a high volatility in conjunction with a high reversion rate. We set as
equal to 0.4 and considered values of σs equal to 0.30, 0.50, and 0.70. A number of
alternative correlations between the spread process and the OIS process were also
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considered. We find that correlation of about −0.1 between one month OIS and the
12-month LIBOR OIS spread is indicated by the data.20

We consider two cases:

1. A 3 × 5 swap option. The underlying swap lasts 5 years and involves 12-month
LIBOR being paid and a fixed rate of 1.5% being received. The option to enter
into the swap can be exercised at the end of years 1, 2, and 3.

2. A 5×10 swap option. The underlying swap lasts 10 years and involves 12-month
LIBOR being paid and a fixed rate of 3.0% being received. The option to enter
into the swap can be exercised at the end of years 1, 2, 3, 4, and 5.

Table9a shows results for the 3 × 5 swap option. In this case, even when the
correlation between the spread rate and the OIS rate is relatively small, a stochastic
spread is liable to change the price by 5–10%. Table9b shows results for the 5× 10
swap option. In this case, the percentage impact of a stochastic spread is smaller.
This is because the spread, as a proportion of the average of the relevant forward
OIS rates, is lower. The results in both tables are based on 32 time steps per year. As
the level of OIS rates increases the impact of a stochastic spread becomes smaller in
both Table9a, b.

Comparing Tables8 and 9, we see that the correlation between the OIS rate and
the spread has a much bigger effect on the valuation of a Bermudan swap option
than on the valuation of a spread option. For a spread option we argued that option
payoffs for high Arrow–Debreu prices tend to offset those for low Arrow–Debreu
prices. This is not the case for a Bermudan swap option because the payoff depends
on the LIBOR rate, which depends on the OIS rate as well as the spread.

7 Conclusions

For investment grade companies it is well known that the hazard rate is an increasing
function of time. This means that the credit spread applicable to borrowing by AA-
rated banks from other banks is an increasing function of maturity. Since 2008,
markets have recognized this with the result that the LIBOR-OIS spread has been an
increasing function of tenor.

Since 2008, practitioners have also switched from LIBOR discounting to OIS
discounting. This means that two zero curves have to bemodelled whenmost interest
rate derivatives are valued. Many practitioners assume that the relevant LIBOR-OIS
spread is either constant or deterministic. Our research shows that this is liable to
lead to inaccurate pricing, particularly in the current low interest rate environment.

The tree approach we have presented provides an alternative to Monte Carlo
simulation for simultaneously modelling spreads and OIS rates. It can be regarded as

20Because of the way LIBOR is calculated, daily LIBOR changes can be less volatile than the
corresponding daily OIS changes (particularly if the Fed is not targeting a particular overnight
rate). In some circumstances, it may be appropriate to consider changes over periods longer than
one day when estimating the correlation.
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an extension of the explicit finite difference method and is particularly useful when
American-style derivatives are valued. It avoids the need to use techniques such as
those suggested by Longstaff and Schwartz [19] and Andersen (2000) for handling
early exercise within a Monte Carlo simulation.

Implying all the model parameters from market data is not likely to be feasible.
One reasonable approach is to use historical data to determine the spread process
and its correlation with the OIS process so that only the parameters driving the OIS
process are implied from the market. The model can then be used in the same way
that two-dimensional tree models for LIBOR were used pre-crisis.
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Derivative Pricing for a Multi-curve
Extension of the Gaussian, Exponentially
Quadratic Short Rate Model
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Abstract The recent financial crisis has led to so-called multi-curve models for the
term structure. Here we study a multi-curve extension of short rate models where,
in addition to the short rate itself, we introduce short rate spreads. In particular,
we consider a Gaussian factor model where the short rate and the spreads are sec-
ond order polynomials of Gaussian factor processes. This leads to an exponentially
quadratic model class that is less well known than the exponentially affine class. In
the latter class the factors enter linearly and for positivity one considers square root
factor processes. While the square root factors in the affine class have more involved
distributions, in the quadratic class the factors remain Gaussian and this leads to
various advantages, in particular for derivative pricing. After some preliminaries on
martingale modeling in the multi-curve setup, we concentrate on pricing of linear
and optional derivatives. For linear derivatives, we exhibit an adjustment factor that
allows one to pass from pre-crisis single curve values to the corresponding post-crisis
multi-curve values.
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1 Introduction

The recent financial crisis has heavily impacted the financial market and the fixed
income markets in particular. Key features put forward by the crisis are counterparty
and liquidity/funding risk. In interest rate derivatives the underlying rates are typically
Libor/Euribor. These are determined by a panel of banks and thus reflect various risks
in the interbankmarket, in particular counterparty and liquidity risk. The standard no-
arbitrage relations between Libor rates of different maturities have broken down and
significant spreads have been observed betweenLibor rates of different tenors, aswell
as between Libor andOIS swap rates, where OIS stands for Overnight Indexed Swap.
For more details on this issue see Eqs. (5)–(7) and the paragraph following them, as
well as the paper by Bormetti et al. [1] and a corresponding version in this volume.
This has led practitioners and academics alike to construct multi-curvemodels where
future cash flows are generated through curves associated to the underlying rates
(typically the Libor, one for each tenor structure), but are discounted by another
curve.

For the pre-crisis single-curve setup various interest rate models have been pro-
posed. Some of the standard model classes are: the short rate models; the instan-
taneous forward rate models in an Heath–Jarrow–Morton (HJM) setup; the market
forward rate models (Libor market models). In this paper we consider a possible
multi-curve extension of the short rate model class that, with respect to the other
model classes, has in particular the advantage of leading more easily to a Markovian
structure. Other multi-curve extensions of short rate models have appeared in the
literature such as Kijima et al. [22], Kenyon [20], Filipović and Trolle [14], Morino
andRunggaldier [27]. The present paper considers an exponentially quadraticmodel,
whereas the models in the mentioned papers concern mainly the exponentially affine
framework, except for [22] in which the exponentially quadratic models are men-
tioned. More details on the difference between the exponentially affine and expo-
nentially quadratic short rate models will be provided below.

Inspired by a credit risk analogy, but also by a common practice of deriving
multi-curve quantities by adding a spread over the corresponding single-curve risk-
free quantities, we shall consider, next to the short rate itself, a short rate spread to
be added to the short rate, one for each possible tenor structure. Notice that these
spreads are added from the outset.

To discuss the basic ideas in an as simple as possible way, we consider just a two-
curve model, namely with one curve for discounting and one for generating future
cash flows; in other words, we shall consider a single tenor structure. We shall thus
concentrate on the short rate rt and a single short rate spread st and, for their dynamics,
introduce a factor model. In the pre-crisis single-curve setting there are two basic
factor model classes for the short rate: the exponentially affine and the exponentially
quadratic model classes. Here we shall concentrate on the less common quadratic
class with Gaussian factors. In the exponentially affine class where, to guarantee
positivity of rates and spreads, one considers generally square root models for the
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factors, the distribution of the factors is χ2. In the exponentially quadratic class the
factors have a more convenient Gaussian distribution.

The paper is structured as follows. In the preliminary Sect. 2 we mainly dis-
cuss issues related to martingale modeling. In Sect. 3 we introduce the multi-curve
Gaussian, exponentially quadratic model class. In Sect. 4 we deal with pricing of
linear interest rate derivatives and, finally, in Sect. 5 with nonlinear/optional interest
rate derivatives.

2 Preliminaries

2.1 Discount Curve and Collateralization

In the presence of multiple curves, the choice of the curve for discounting the future
cash flows, and a related choice of the numeraire for the standard martingale measure
used for pricing, in other words, the question of absence of arbitrage, becomes non-
trivial (see e.g. the discussion inKijima andMuromachi [21]). To avoid issues of arbi-
trage, one should possibly have a common discount curve to be applied to all future
cash flows independently of the tenor. A choice, which has been widely accepted
and became practically standard, is given by theOIS-curveT �→ p(t,T) = pOIS(t,T)

that can be stripped from OIS rates, namely the fair rates in an OIS. The arguments
justifying this choice and which are typically evoked in practice, are the fact that
the majority of the traded interest rate derivatives are nowadays being collateral-
ized and the rate used for remuneration of the collateral is exactly the overnight
rate, which is the rate the OIS are based on. Moreover, the overnight rate bears
very little risk due to its short maturity and therefore can be considered relatively
risk-free. In this context we also point out that prices, corresponding to fully col-
lateralized transactions, are considered as clean prices (this terminology was first
introduced by Crépey [6] and Crépey et al. [9]). Since collateralization is by now
applied in the majority of cases, one may thus ignore counterparty and liquidity risk
between individual parties when pricing interest rate derivatives, but cannot ignore
the counterparty and liquidity risk in the interbank market as a whole. These risks
are often jointly referred to as interbank risk and they are main drivers of the multi-
curve phenomenon, as documented in the literature (see e.g. Crépey and Douady [7],
Filipović and Trolle [14], and Gallitschke et al. [15]). We shall thus consider only
clean valuation formulas, which take into account the multi-curve issue. Possible
ways to account for counterparty risk and funding issues between individual coun-
terparties in a contract are, among others, to follow a global valuation approach that
leads to nonlinear derivative valuation (see Brigo et al. [3, 4] and other references
therein, and in particular Pallavicini and Brigo [28] for a global valuation approach
applied specifically to interest ratemodeling), or to consider various valuation adjust-
ments that are generally computed on top of the clean prices (see Crépey [6]). A fully
nonlinear valuation is preferable, but is more difficult to achieve. On the other hand,
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valuation adjustments are more consolidated and also used in practice and this gives
a further justification to still look for clean prices. Concerning the explicit role of
collateral in the pricing of interest rate derivatives, we refer to the above-mentioned
paper by Pallavicini and Brigo [28].

2.2 Martingale Measures

The fundamental theorem of asset pricing links the economic principle of absence
of arbitrage with the notion of a martingale measure. As it is well known, this is a
measure, under which the traded asset prices, expressed in units of a same numeraire,
are local martingales. Models for interest rate markets are typically incomplete so
that absence of arbitrage admits many martingale measures. A common approach
in interest rate modeling is to perform martingale modeling, namely to model the
quantities of interest directly under a generic martingale measure; one has then to
perform a calibration in order to single out the specificmartingalemeasure of interest.
The modeling under a martingale measure now imposes some conditions on the
model and, in interest rate theory, a typical such condition is the Heath–Jarrow–
Morton (HJM) drift condition.

Starting from the OIS bonds, we shall first derive a suitable numeraire and then
consider as martingale measure a measure Q under which not only the OIS bonds,
but also the FRA contracts seen as basic quantities in the bond market, are local
martingales when expressed in units of the given numeraire. To this basic market
one can then add various derivatives imposing that their prices, expressed in units of
the numeraire, are local martingales under Q.

Having made the choice of the OIS curve T �→ p(t,T) as the discount curve, con-
sider the instantaneous forward rates f (t,T) := − ∂

∂T log p(t,T) and let rt = f (t, t)
be the corresponding short rate at the generic time t. Define the OIS bank account as

Bt = exp

(∫ t

0
rsds

)

(1)

and, as usual, the standard martingale measure Q as the measure, equivalent to the
physical measure P, that is associated to the bank account Bt as numeraire. Hence
the arbitrage-free prices of all assets, discounted by Bt , have to be local martingales
with respect to Q. For derivative pricing, among them also FRA pricing, it is often
more convenient to use, equivalently, the forward measure QT associated to the OIS
bond p(t,T) as numeraire. The two measures Q and QT are related by their Radon–
Nikodym density process

d QT

d Q

∣
∣
∣
Ft

= p(t,T)

Btp(0,T)
0 ≤ t ≤ T . (2)
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As already mentioned, we shall follow the traditional martingale modeling, whereby
the model dynamics are assigned under the martingale measure Q. This leads to
defining the OIS bond prices according to

p(t,T) = EQ

{

exp

[

−
∫ T

t
rudu

]

| Ft

}

(3)

after having specified the Q−dynamics of r.
Coming now to the FRA contracts, recall that they concern a forward rate agree-

ment, established at a time t for a future interval [T ,T + Δ], where at time T + Δ

the interest corresponding to a floating rate is received in exchange for the interest
corresponding to a fixed rate R. There exist various possible conventions concern-
ing the timing of the payments. Here we choose payment in arrears, which in this
case means at time T + Δ. Typically, the floating rate is given by the Libor rate and,
having assumed payments in arrears, we also assume that the rate is fixed at the begin-
ning of the interval of interest, here at T . Recall that for expository simplicity we
had reduced ourselves to a two-curve setup involving just a single Libor for a given
tenor Δ. The floating rate received at T + Δ is therefore the rate L(T;T ,T + Δ),
fixed at the inception time T . For a unitary notional, and using the (T + Δ)-forward
measure QT+Δ as the pricing measure, the arbitrage-free price at t ≤ T of the FRA
contract is then

PFRA(t;T ,T + Δ,R) = Δp(t,T + Δ)ET+Δ {L(T;T ,T + Δ) − R | Ft} , (4)

where ET+Δ denotes the expectation with respect to the measure QT+Δ. From this
expression it follows that the value of the fixed rate R that makes the contract fair at
time t is given by

Rt = ET+Δ {L(T;T ,T + Δ) | Ft} := L(t;T ,T + Δ) (5)

and we shall call L(t;T ,T + Δ) the forward Libor rate. Note that L(·;T ,T + Δ) is
a QT+Δ−martingale by construction.

In view of developing a model for L(T;T ,T + Δ), recall that, by absence of
arbitrage arguments, the classical discrete compounding forward rate at time t for
the future time interval [T ,T + Δ] is given by

F(t;T ,T + Δ) = 1

Δ

(
p(t,T)

p(t,T + Δ)
− 1

)

,

where p(t,T) represents here the price of a risk-free zero coupon bond. This expres-
sion can be justified also by the fact that it represents the fair fixed rate in a forward
rate agreement, where the floating rate received at T + Δ is

F(T;T ,T + Δ) = 1

Δ

(
1

p(T ,T + Δ)
− 1

)

(6)
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and we have
F(t;T ,T + Δ) = ET+Δ {F(T;T ,T + Δ) | Ft} . (7)

This makes the forward rate coherent with the risk-free bond prices, where the latter
represent the expectation of the market concerning the future value of money.

Before the financial crisis, L(T;T ,T + Δ) was assumed to be equal to F(T;T ,

T + Δ), an assumption that allowed for various simplifications in the determina-
tion of derivative prices. After the crisis L(T;T ,T + Δ) is no longer equal to
F(T;T ,T + Δ) and what one considers for F(T;T ,T + Δ) is in fact the OIS
discretely compounded rate, which is based on the OIS bonds, even though the
OIS bonds are not necessarily equal to the risk-free bonds (see Sects. 1.3.1 and
1.3.2 of Grbac and Runggaldier [18] for more details on this issue). In particular,
the Libor rate L(T;T ,T + Δ) cannot be expressed by the right-hand side of (6).
The fact that L(T;T ,T + Δ) �= F(T;T ,T + Δ) implies by (5) and (7) that also
L(t;T ,T + Δ) �= F(t;T ,T + Δ) for all t ≤ T and this leads to a Libor-OIS spread
L(t;T ,T + Δ) − F(t;T ,T + Δ).

Following some of the recent literature (see e.g. Kijima et al. [22], Crépey et al.
[8], Filipović and Trolle [14]), one possibility is now to keep the classical relationship
(6) also for L(T;T ,T + Δ) thereby replacing however the bonds p(t,T) by fictitious
risky ones p̄(t,T) that are assumed to be affected by the same factors as the Libor
rates. Such a bond can be seen as an average bond issued by a representative bank
from the Libor group and it is therefore sometimes referred to in the literature as a
Libor bond. This leads to

L(T;T ,T + Δ) = 1

Δ

(
1

p̄(T ,T + Δ)
− 1

)

. (8)

Recall that, for simplicity of exposition, we consider a single Libor for a single
tenor Δ and so also a single fictitious bond. In general, one has one Libor and one
fictitious bond for each tenor, i.e. LΔ(T;T ,T + Δ) and p̄Δ(T ,T + Δ). Note that we
shall model the bond prices p̄(t,T), for all t and T with t ≤ T , even though only
the prices p̄(T ,T + Δ), for all T , are needed in relation (8). Moreover, keeping in
mind that the bonds p̄(t,T) are fictitious, they do not have to satisfy the boundary
condition p̄(T ,T) = 1, but we still assume this condition in order to simplify the
modeling.

To derive a dynamic model for L(t;T ,T + Δ), we may now derive a dynamic
model for p̄(t,T + Δ), where we have to keep in mind that the latter is not a traded
quantity. Inspired by a credit-risk analogy, but also by a common practice of deriving
multi-curve quantities by adding a spread over the corresponding single-curve (risk-
free) quantities, which in this case is the short rate rt , let us define then the Libor
(risky) bond prices as

p̄(t,T) = EQ

{

exp

[

−
∫ T

t
(ru + su)du

]

| Ft

}

, (9)
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with st representing the short rate spread. In case of default risk alone, st corresponds
to the hazard rate/default intensity, but here it corresponds more generally to all the
factors affecting the Libor rate, namely besides credit risk, also liquidity risk, etc.
Notice also that the spread is introduced here from the outset. Having for simplicity
considered a single tenor Δ and thus a single p̄(t,T), we shall also consider only a
single spread st . In general, however, one has a spread sΔt for each tenor Δ.

We need now a dynamical model for both rt and st and we shall define this model
directly under the martingale measure Q (martingale modeling).

3 Short Rate Model

3.1 The Model

As mentioned, we shall consider a dynamical model for rt and the single spread st
under the martingale measure Q that, in practice, has to be calibrated to the market.
For this purpose we shall consider a factor model with several factors driving rt
and st .

The two basic factor model classes for the short rate in the pre-crisis single-curve
setup, namely the exponentially affine and the exponentially quadratic model classes,
both allow for flexibility and analytical tractability and this in turn allows for closed
or semi-closed formulas for linear and optional interest rate derivatives. The former
class is usually better known than the latter, but the latter has its own advantages. In
fact, for the exponentially affine class onewould consider rt and st as given by a linear
combination of the factors and so, in order to obtain positivity, one has to consider a
square root model for the factors. On the other hand, in the Gaussian exponentially
quadratic class, one considers mean reverting Gaussian factor models, but at least
some of the factors in the linear combination for rt and st appear as a square. In this
way the distribution of the factors remains always Gaussian; in a square-root model it
is a non-central χ2−distribution. Notice also that the exponentially quadratic models
can be seen as dual to the square root exponentially affine models.

In the pre-crisis single-curve setting, the exponentially quadraticmodels have been
considered, e.g. in El Karoui et al. [12], Pelsser [29], Gombani and Runggaldier [17],
Leippold andWu [24], Chen et al. [5], and Gaspar [16]. However, since the pre-crisis
exponentially affinemodels aremore common, there have also beenmore attempts to
extend them to a post-crisis multi-curve setting (for an overview and details see e.g.
Grbac and Runggaldier [18]). A first extension of exponentially quadratic models
to a multi-curve setting can be found in Kijima et al. [22] and the present paper is
devoted to a possibly full extension.

Let us now present the model for rt and st , where we consider not only the short
rate rt itself, but also its spread st to be given by a linear combination of the factors,
where at least some of the factors appear as a square. To keep the presentation simple,
we shall consider a small number of factors and, in order to model also a possible



198 Z. Grbac et al.

correlation between rt and st , the minimal number of factors is three. It also follows
from some of the econometric literature that a small number of factors may suffice
to adequately model most situations (see also Duffee [10] and Duffie and Gârleanu
[11]).

Given three independent affine factor processes Ψ i
t , i = 1, 2, 3, having under Q

the Gaussian dynamics

dΨ i
t = −biΨ i

t dt + σi dwi
t, i = 1, 2, 3, (10)

with bi,σi > 0 and wi
t , i = 1, 2, 3, independent Q−Wiener processes, we let

{
rt = Ψ 1

t + (Ψ 2
t )2

st = κΨ 1
t + (Ψ 3

t )2
, (11)

where Ψ 1
t is the common systematic factor allowing for instantaneous correlation

between rt and st with correlation intensity κ and Ψ 2
t and Ψ 3

t are the idiosyncratic
factors. Other factors may be added to drive st , but the minimal model containing
common and idiosyncratic components requires three factors, as explained above.
The common factor is particularly important because we want to take into account
the realistic feature of non-zero correlation between rt and st in the model.

Remark 3.1 The zero mean-reversion level is here considered only for convenience
of simpler formulas, but can be easily taken to be positive, so that short rates and
spreads can become negative onlywith small probability (seeKijima andMuromachi
[21] for an alternative representation of the spreads in terms of Gaussian factors that
guarantee the spreads to remain nonnegative and still allows for correlation between
rt and st). Note, however, that given the current market situation where the observed
interest rates are very close to zero and sometimes also negative, even models with
negative mean-reversion level have been considered, as well as models allowing for
regime-switching in the mean reversion parameter.

Remark 3.2 For the short rate itself one could also consider the model rt = φt +
Ψ 1
t + (Ψ 2

t )2 where φt is a deterministic shift extension (see Brigo and Mercurio [2])
that allows for a good fit to the initial term structure in short rate models even with
constant model parameters.

In the model (11) we have included a linear term Ψ 1
t which may lead to negative

values of rates and spreads, although onlywith small probability in the case ofmodels
of the type (10) with a positive mean reversion level. The advantage of including this
linear term is more generality and flexibility in the model. Moreover, it allows to
express p̄(t,T) in terms of p(t,T) multiplied by a factor. This property will lead
to an adjustment factor by which one can express post-crisis quantities in terms of
corresponding pre-crisis quantities, see Morino and Runggaldier [27] in which this
idea has been first proposed in the context of exponentially affine short rate models
for multiple curves.
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3.2 Bond Prices (OIS and Libor Bonds)

In this subsection we derive explicit pricing formulas for the OIS bonds p(t,T) as
defined in (3) and the fictitious Libor bonds p̄(t,T) as defined in (9). Thereby, rt and
st are supposed to be given by (11) with the factor processes Ψ i

t evolving under the
standard martingale measure Q according to (10). Defining the matrices

F =
⎡

⎣
−b1 0 0
0 −b2 0
0 0 −b3

⎤

⎦ , D =
⎡

⎣
σ1 0 0
0 σ2 0
0 0 σ3

⎤

⎦ (12)

and considering the vector factor process Ψt := [Ψ 1
t , Ψ 2

t , Ψ 3
t ]′ as well as the mul-

tivariate Wiener process Wt := [w1
t ,w

2
t ,w

3
t ]′, where ′ denotes transposition, the

dynamics (10) can be rewritten in synthetic form as

dΨt = FΨtdt + DdWt . (13)

Using results on exponential quadratic term structures (see Gombani and
Runggaldier [17], Filipović [13]), we have

p(t,T) = EQ
{
e− ∫ T

t rudu
∣
∣
∣Ft

}
= EQ

{
e− ∫ T

t (Ψ 1
u +(Ψ 2

u )2)du
∣
∣
∣Ft

}

= exp
[
−A(t,T) − B′(t,T)Ψt − Ψ ′

t C(t,T)Ψt

]
(14)

and, setting Rt := rt + st ,

p̄(t,T) = EQ
{
e− ∫ T

t Rudu
∣
∣
∣Ft

}
= EQ

{
e− ∫ T

t ((1+κ)Ψ 1
u +(Ψ 2

u )2+(Ψ 3
u )2)du

∣
∣
∣Ft

}

= exp
[
−Ā(t,T) − B̄′(t,T)Ψt − Ψ ′

t C̄(t,T)Ψt

]
, (15)

where A(t,T), Ā(t,T), B(t,T), B̄(t,T), C(t,T) and C̄(t,T) are scalar, vector, and
matrix-valued deterministic functions to be determined.

For this purpose we recall the Heath–Jarrow–Morton (HJM) approach for the case
when p(t,T) in (14) represents the price of a risk-free zero coupon bond. The HJM
approach leads to the so-called HJM drift conditions that impose conditions on the
coefficients in (14) so that the resulting prices p(t,T) do not imply arbitrage possi-
bilities. Since the risk-free bonds are traded, the no-arbitrage condition is expressed
by requiring p(t,T)

Bt
to be a Q−martingale for Bt defined as in (1) and it is exactly this

martingality property to yield the drift condition. In our case, p(t,T) is the price of
an OIS bond that is not necessarily traded and in general does not coincide with the
price of a risk-free bond. However, whether the OIS bond is traded or not, p(t,T)

Bt
is a

Q−martingale by the very definition of p(t,T) in (14) (see the first equality in (14))
and so we can follow the same HJM approach to obtain conditions on the coefficients
in (14) also in our case.
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For what concerns, on the other hand, the coefficients in (15), recall that p̄(t,T) is
a fictitious asset that is not traded and thus is not subject to any no-arbitrage condition.
Notice, however, that by analogy to p(t,T) in (14), by its very definition given in
the first equality in (15), p̄(t,T)

B̄t
is a Q−martingale for B̄t given by B̄t := exp

∫ t
0 Rudu.

The two cases p(t,T) and p̄(t,T) can thus be treated in complete analogy provided
that we use for p̄(t,T) the numeraire B̄t .

We shall next derive from the Q−martingality of p(t,T)

Bt
and p̄(t,T)

B̄t
conditions on

the coefficients in (14) and (15) that correspond to the classical HJM drift condition
and lead thus to ODEs for these coefficients. For this purpose we shall proceed by
analogy to Sect. 2 in [17], in particular to the proof of Proposition 2.1 therein, to
which we also refer for more detail.

Introducing the “instantaneous forward rates” f (t,T) := − ∂
∂T log p(t,T) and

f̄ (t,T) := − ∂
∂T log p̄(t,T), and setting

a(t,T) := ∂

∂T
A(t,T) , b(t,T) := ∂

∂T
B(t,T) , c(t,T) := ∂

∂T
C(t,T) (16)

and analogously for ā(t,T), b̄(t,T), c̄(t,T), from (14) and (15) we obtain

f (t,T) = a(t,T) + b′(t,T)Ψt + Ψ ′
t c(t,T)Ψt, (17)

f̄ (t,T) = ā(t,T) + b̄′(t,T)Ψt + Ψ ′
t c̄(t,T)Ψt . (18)

Recalling that rt = f (t, t) and Rt = f̄ (t, t), this implies, with a(t) := a(t, t),
b(t) := b(t, t), c(t) := c(t, t) and analogously for the corresponding quantities with
a bar, that

rt = a(t) + b′(t)Ψt + Ψ ′
t c(t)Ψt (19)

and
Rt = rt + st = ā(t) + b̄′(t)Ψt + Ψ ′

t c̄(t)Ψt . (20)

Comparing (19) and (20) with (11), we obtain the following conditions where i, j =
1, 2, 3, namely

⎧
⎪⎨

⎪⎩

a(t) = 0

bi(t) = 1{i=1}
cij(t) = 1{i=j=2}

⎧
⎪⎨

⎪⎩

ā(t) = 0

b̄i(t) = (1 + κ)1{i=1}
c̄ij(t) = 1{i=j=2}∪{i=j=3}.

Using next the fact that

p(t,T) = exp

[

−
∫ T

t
f (t, s)ds

]

, p̄(t,T) = exp

[

−
∫ T

t
f̄ (t, s)ds

]

,
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and imposing p(t,T)

Bt
and p̄(t,T)

B̄t
to beQ−martingales, one obtains ordinary differential

equations to be satisfied by c(t,T), b(t,T), a(t,T) and analogously for the quantities
with a bar. Integrating these ODEs with respect to the second variable and recalling
(16) one obtains (for the details see the proof of Proposition 2.1 in [17])

{
Ct(t,T) + 2FC(t,T) − 2C(t,T)DDC(t,T) + c(t) = 0, C(T ,T) = 0

C̄t(t,T) + 2FC̄(t,T) − 2C̄(t,T)DDC̄(t,T) + c̄(t) = 0, C̄(T ,T) = 0
(21)

with

c(t) =
⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦ c̄(t) =
⎡

⎣
0 0 0
0 1 0
0 0 1

⎤

⎦ . (22)

The special forms ofF,D, c(t) and c̄(t) togetherwith boundary conditionsC(T ,T) =
0 and C̄(T ,T) = 0 imply that only C22, C̄22, C̄33 are non-zero and satisfy

⎧
⎪⎨

⎪⎩

C22
t (t,T) − 2b2C22(t,T) − 2(σ2)2(C22(t,T))2 + 1 = 0, C22(T ,T) = 0

C̄22
t (t,T) − 2b2C̄22(t,T) − 2(σ2)2(C̄22(t,T))2 + 1 = 0, C̄22(T ,T) = 0

C̄33
t (t,T) − 2b3C̄33(t,T) − 2(σ3)2(C̄33(t,T))2 + 1 = 0, C̄33(T ,T) = 0

(23)

that can be shown to have as solution
⎧
⎨

⎩

C22(t,T) = C̄22(t,T) = 2(e(T−t)h2−1)
2h2+(2b2+h2)(e(T−t)h2−1)

C̄33(t,T) = 2(e(T−t)h3−1)
2h3+(2b3+h3)(e(T−t)h3−1)

(24)

with hi = √
4(bi)2 + 8(σi)2 > 0, i = 2, 3.

Next, always by analogy to the proof of Proposition 2.1 in [17], the vectors of
coefficients B(t,T) and B̄(t,T) of the first order terms can be seen to satisfy the
following system

{
Bt(t,T) + B(t,T)F − 2B(t,T)DDC(t,T) + b(t) = 0, B(T ,T) = 0

B̄t(t,T) + B̄(t,T)F − 2B̄(t,T)DDC̄(t,T) + b̄(t) = 0, B̄(T ,T) = 0
(25)

with
b(t) = [1, 0, 0] b̄(t) = [(1 + κ), 0, 0].

Noticing similarly as above that only B1(t,T), B̄1(t,T) are non-zero, system (25)
becomes {

B1
t (t,T) − b1B1(t,T) + 1 = 0 B1(T ,T) = 0

B̄1
t (t,T) − b1B̄1(t,T) + (1 + κ) = 0 B̄1(T ,T) = 0

(26)
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leading to the explicit solution

⎧
⎨

⎩

B1(t,T) = 1
b1

(
1 − e−b1(T−t)

)

B̄1(t,T) = 1+κ
b1

(
1 − e−b1(T−t)

)
= (1 + κ)B1(t,T).

(27)

Finally, A(t,T) and Ā(t,T) have to satisfy

{
At(t,T) + (σ2)2C22(t,T) − 1

2 (σ
1)2(B1(t,T))2 = 0,

Āt(t,T) + (σ2)2C̄22(t,T) + (σ3)2C̄33(t,T) − 1
2 (σ

1)2(B̄1(t,T))2 = 0
(28)

with boundary conditions A(T ,T) = 0, Ā(T ,T) = 0. The explicit expressions can
be obtained simply by integrating the above equations.

Summarizing, we have proved the following:

Proposition 3.1 Assume that the OIS short rate r and the spread s are given by
(11) with the factor processes Ψ i

t , i = 1, 2, 3, evolving according to (10) under the
standard martingale measure Q. The time-t price of the OIS bond p(t,T), as defined
in (3), is given by

p(t,T) = exp[−A(t,T) − B1(t,T)Ψ 1
t − C22(t,T)(Ψ 2

t )2], (29)

and the time-t price of the fictitious Libor bond p̄(t,T), as defined in (9), by

p̄(t, T) = exp[−Ā(t,T) − (κ + 1)B1(t,T)Ψ 1
t − C22(t,T)(Ψ 2

t )2 − C̄33(t, T)(Ψ 3
t )2]

= p(t, T)exp[−Ã(t,T) − κB1(t,T)Ψ 1
t − C̄33(t,T)(Ψ 3

t )2],
(30)

where Ã(t,T) := Ā(t,T) − A(t,T) with A(t,T) and Ā(t,T) given by (28),
B1(t,T) given by (27) and C22(t,T) and C33(t,T) given by (24).

In particular, expression (30) gives p̄(t,T) in terms of p(t,T). Based on this we
shall derive in the following section the announced adjustment factor allowing to
pass from pre-crisis quantities to the corresponding post-crisis quantities.

3.3 Forward Measure

The underlying factor model was defined in (10) under the standard martingale
measure Q. For derivative prices, which we shall determine in the following two
sections, it will be convenient to work under forward measures, for which, given the
single tenor Δ, we shall consider a generic (T + Δ)-forward measure. The density
process to change the measure from Q to QT+Δ is
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Lt := d QT+Δ

d Q

∣
∣
∣
Ft

= p(t,T + Δ)

p(0,T + Δ)

1

Bt
(31)

from which it follows by (29) and the martingale property of
(
p(t,T+Δ)

Bt

)

t≤T+Δ
that

dLt = Lt
(−B1(t,T + Δ)σ1dw1

t − 2C22(t,T + Δ)Ψ 2
t σ2dw2

t

)
.

This implies by Girsanov’s theorem that

⎧
⎨

⎩

dw1,T+Δ
t = dw1

t + σ1B1(t,T + Δ)dt
dw2,T+Δ

t = dw2
t + 2C22(t,T + Δ)Ψ 2

t σ2dt
dw3,T+Δ

t = dw3
t

(32)

are QT+Δ−Wiener processes. From the Q−dynamics (10) we then obtain the fol-
lowing QT+Δ−dynamics for the factors

dΨ 1
t = − [

b1Ψ 1
t + (σ1)2B1(t,T + Δ)

]
dt + σ1dw1,T+Δ

t

dΨ 2
t = − [

b2Ψ 2
t + 2(σ2)2C22(t,T + Δ)Ψ 2

t

]
dt + σ2dw2,T+Δ

t

dΨ 3
t = −b3Ψ 3

t dt + σ3dw3,T+Δ
t .

(33)

Remark 3.3 While in the dynamics (10) for Ψ i
t , (i = 1, 2, 3) under Q we had for

simplicity assumed a zero mean-reversion level, under the (T + Δ)-forward mea-
sure the mean-reversion level is for Ψ 1

t now different from zero due to the measure
transformation.

Lemma 3.1 Analogously to the case when p(t,T) represents the price of a risk-free
zero coupon bond, also for p(t,T) viewed as OIS bond we have that p(t,T)

p(t,T+Δ)
is a

QT+Δ−martingale.

Proof We have seen that also for OIS bonds as defined in (3) we have that, with Bt

as in (1), the ratio p(t,T)

Bt
is a Q−martingale. From Bayes’ formula we then have

ET+Δ
{

p(T ,T)

p(T ,T+Δ)
| Ft

}
= EQ

{
1

p(0,T+Δ)
1

BT+Δ

p(T ,T)

p(T ,T+Δ)
|Ft

}

EQ
{

1
p(0,T+Δ)

1
BT+Δ

|Ft

}

= EQ
{

p(T ,T)

p(T ,T+Δ)
EQ

{
1

BT+Δ
|FT

}
|Ft

}

p(t,T+Δ)

Bt

= BtEQ
{

p(T ,T)

p(T ,T+Δ)

p(T ,T+Δ)

BT
|Ft

}

p(t,T+Δ)

= BtEQ
{

p(T ,T)

BT
|Ft

}

p(t,T+Δ)
= p(t,T)

p(t,T+Δ)
,

thus proving the statement of the lemma. �
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We recall that we denote the expectation with respect to the measure QT+Δ by
ET+Δ{·}. The dynamics in (33) lead to Gaussian distributions forΨ i

t , i = 1, 2, 3 that,
given B1(·) and C22(·), have mean and variance

ET+Δ{Ψ i
t } = ᾱi

t = ᾱi
t(b

i,σi) , VarT+Δ{Ψ i
t } = β̄i

t = β̄i
t (b

i,σi),

which can be explicitly computed. More precisely, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ᾱ1
t = e−b1t

[
Ψ 1
0 − (σ1)2

2(b1)2 e
−b1(T+Δ)(1 − e2b

1t) − (σ1)2

(b1)2 (1 − eb
1t)
]

β̄1
t = e−2b1t(e2b

1t − 1) (σ1)2

2(b1)

ᾱ2
t = e−(b2t+2(σ2)2C̃22(t,T+Δ))Ψ 2

0

β̄2
t = e−(2b2t+4(σ2)2C̃22(t,T+Δ))

∫ t
0 e

2b2s+4(σ2)2C̃22(s,T+Δ)(σ2)2ds

ᾱ3
t = e−b3tΨ 3

0

β̄3
t = e−2b3t (σ3)2

2b3 (e2b
3t − 1),

(34)

with

C̃22(t,T + Δ) = 2(2 log(2b2(e(T+Δ−t)h2 − 1) + h2(e(T+Δ−t)h2 + 1)) + t(2b2 + h2))

(2b2 + h2)(2b2 − h2)

− 2(2 log(2b2(e(T+Δ)h2 − 1) + h2(e(T+Δ)h2 + 1))

(2b2 + h2)(2b2 − h2)
(35)

and h2 = √
(2b2)2 + 8(σ2)2, and where we have assumed deterministic initial values

Ψ 1
0 , Ψ 2

0 andΨ 3
0 .For details of the above computation see the proof of Corollary 4.1.3.

in Meneghello [25].

4 Pricing of Linear Interest Rate Derivatives

We have discussed in Sect. 3.2 the pricing of OIS and Libor bonds in the Gaussian,
exponentially quadratic short ratemodel introduced in Sect. 3.1. In the remaining part
of the paperwe shall be concernedwith the pricing of interest rate derivatives, namely
with derivatives having the Libor rate as underlying rate. In the present section we
shall deal with the basic linear derivatives, namely FRAs and interest rate swaps,
while nonlinear derivatives will then be dealt with in the following Sect. 5. For the
FRA rates discussed in the next Sect. 4.1 we shall in Sect. 4.1.1 exhibit an adjustment
factor allowing to pass from the single-curve FRA rate to the multi-curve FRA rate.
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4.1 FRAs

We start by recalling the definition of a standard forward rate agreement. We empha-
size that we use a text-book definition which differs slightly from amarket definition,
see Mercurio [26].

Definition 4.1 Given the time points 0 ≤ t ≤ T < T + Δ, a forward rate agreement
(FRA) is an OTC derivative that allows the holder to lock in at the generic date t ≤ T
the interest rate between the inception date T and the maturity T + Δ at a fixed value
R. At maturity T + Δ a payment based on the interest rate R, applied to a notional
amount of N , is made and the one based on the relevant floating rate (generally the
spot Libor rate L(T;T ,T + Δ)) is received.

Recalling that for the Libor rate we had postulated the relation (8) to hold at the
inception time T , namely

L(T;T ,T + Δ) = 1

Δ

(
1

p̄(T ,T + Δ)
− 1

)

,

the price, at t ≤ T , of the FRA with fixed rate R and notional N can be computed
under the (T + Δ)-forward measure as

PFRA(t;T ,T + Δ,R,N)

= NΔp(t,T + Δ)ET+Δ {L(T;T ,T + Δ) − R | Ft}
= Np(t,T + Δ)ET+Δ

{
1

p̄(T ,T + Δ)
− (1 + ΔR) | Ft

}

, (36)

Defining

ν̄t,T := ET+Δ

{
1

p̄(T ,T + Δ)
| Ft

}

, (37)

it is easily seen from (36) that the fair rate of the FRA, namely the FRA rate, is given
by

R̄t = 1

Δ

(
ν̄t,T − 1

)
. (38)

In the single-curve case we have instead

Rt = 1

Δ

(
νt,T − 1

)
, (39)

where, given that p(·,T)

p(·,T+Δ)
is a QT+Δ−martingale (see Lemma 3.1),

νt,T := ET+Δ

{
1

p(T ,T + Δ)
| Ft

}

= p(t,T)

p(t,T + Δ)
, (40)
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which is the classical expression for the FRA rate in the single-curve case. Notice
that, contrary to (37), the expression in (40) can be explicitly computed on the basis
of bond price data without requiring an interest rate model.

4.1.1 Adjustment Factor

We shall show here the following:

Proposition 4.1 We have the relationship

ν̄t,T = νt,T · AdT ,Δ
t · ResT ,Δ

t (41)

with

AdT ,Δ
t := EQ

{
p(T ,T + Δ)

p̄(T ,T + Δ)
| Ft

}

= EQ
{
exp

[
Ã(T ,T + Δ)

+ κB1(T ,T + Δ)Ψ 1
T + C̄33(T ,T + Δ)(Ψ 3

T )2
]

| Ft

}
(42)

and

ResT ,Δ
t = exp

[
−κ

(σ1)2

2(b1)3

(
1 − e−b1Δ

) (
1 − e−b1(T−t)

)2]
, (43)

where Ã(t,T) is defined after (30), B1(t,T) in (27) and C̄33(t,T) in (24).

Proof Firstly, from (30) we obtain

p(T ,T + Δ)

p̄(T ,T + Δ)
= eÃ(T ,T+Δ)+κB1(T ,T+Δ)Ψ 1

T +C̄33(T ,T+Δ)(Ψ 3
T )2 . (44)

In (37) we now change back from the (T + Δ)-forward measure to the standard
martingale measure using the density process Lt given in (31). Using furthermore
the above expression for the ratio of the OIS and the Libor bond prices and taking
into account the definition of the short rate rt in terms of the factor processes, we
obtain

ν̄t,T = ET+Δ

{
1

p̄(T ,T + Δ)

∣
∣Ft

}

= L −1
t EQ

{
LT

p̄(T ,T + Δ)

∣
∣Ft

}

= 1

p(t,T + Δ)
EQ

{

exp
(
−
∫ T

t
rudu

)p(T ,T + Δ)

p̄(T ,T + Δ)

∣
∣Ft

}

= 1

p(t,T + Δ)
exp[Ã(T ,T + Δ)]EQ

{
eC̄

33(T ,T+Δ)(Ψ 3
T )2
∣
∣Ft

}
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· EQ
{
e− ∫ T

t (Ψ 1
u +(Ψ 2

u )2)dueκB1(T ,T+Δ)Ψ 1
T
∣
∣Ft

}

= 1

p(t,T + Δ)
exp[Ã(T ,T + Δ)]EQ

{
eC̄

33(T ,T+Δ)(Ψ 3
T )2
∣
∣Ft

}

· EQ
{
e− ∫ T

t Ψ 1
u dueκB1(T ,T+Δ)Ψ 1

T
∣
∣Ft

}
EQ
{
e− ∫ T

t (Ψ 2
u )2du

∣
∣Ft

}
, (45)

where we have used the independence of the factors Ψ i, i = 1, 2, 3 under Q.
Recall now from the theory of affine processes (see e.g. Lemma 2.1 in Grbac and

Runggaldier [18]) that, for a process Ψ 1
t satisfying (10), we have for all δ,K ∈ R

EQ

{

exp

[

−
∫ T

t
δΨ 1

u du − KΨ 1
T

]

| Ft

}

= exp[α1(t,T) − β1(t,T)Ψ 1
t ], (46)

where {
β1(t,T) = Ke−b1(T−t) − δ

b1

(
e−b1(T−t) − 1

)

α1(t,T) = (σ1)2

2

∫ T
t (β1(u,T))2du.

Setting K = −κB1(T ,T + Δ) and δ = 1, and recalling from (27) that B1(t,T) =
1
b1

(
1 − e−b1(T−t)

)
, this leads to

EQ
{
e− ∫ T

t Ψ 1
u dueκB1(T ,T+Δ)Ψ 1

T
∣
∣Ft

}

= exp

[
(σ1)2

2
(κB1(T ,T + Δ))2

∫ T

t
e−2b1(T−u)du

− κB1(T ,T + Δ)(σ1)2
∫ T

t
B1(u,T)e−b1(T−u)du + (σ1)2

2

∫ T

t
(B1(u,T))2du

+
(
κB1(T ,T + Δ)e−b1(T−t) − B1(t,T)

)
Ψ 1
t

]

. (47)

On the other hand, from the results of Sect. 3.2 we also have that, for a process Ψ 2
t

satisfying (10),

EQ

{

exp

[

−
∫ T

t
(Ψ 2

u )2du

]

| Ft

}

= exp
[−α2(t,T) − C22(t,T)(Ψ 2

t )2
]
,

where C22(t,T) corresponds to (24) and (see (28))

α2(t,T) = (σ2)2
∫ T

t
C22(u,T)du.
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This implies that

EQ

{

exp

[

−
∫ T

t
(Ψ 2

u )2du

]

| Ft

}

= exp

[

−(σ2)2
∫ T

t
C22(u,T)du − C22(t,T)

(
Ψ 2
t

)2
]

. (48)

Replacing (47) and (48) into (45), and recalling the expression for p(t,T) in (29)
with A(·),B1(·),C22(·) according to (28), (27) and (24) respectively, we obtain

ν̄t,T = p(t,T)

p(t,T + Δ)
eÃ(T ,T+Δ)EQ

[

eC̄
33(T ,T+Δ)(Ψ 3

T )2 ∣∣Ft

]

· exp
[

(σ1)2

2
(κB1(T , T + Δ))2

∫ T

t
e−2b1(T−u)du + κB1(T , T + Δ)e−b1(T−t)Ψ 1

t

]

· exp
[

−κB1(T , T + Δ)(σ1)2
∫ T

t
B1(u, T)e−b1(T−u)du

]

. (49)

We recall the expression (44) for p(T ,T+Δ)

p̄(T ,T+Δ)
and the fact that, according to (46), we

have

EQ
{
eκB

1(T ,T+Δ)Ψ 1
T
∣
∣Ft

}

= exp

[
(σ1)2

2 (κB1(T ,T + Δ))2
∫ T

t
e−2b1(T−u)du + κB1(T ,T + Δ)e−b1(T−t)Ψ 1

t

]

.

Inserting these expressions into (49) we obtain the result, namely

ν̄t,T = p(t,T)

p(t,T+Δ)
EQ
{
p(T ,T+Δ)

p̄(T ,T+Δ)

∣
∣Ft

}

·exp
[
−κB1(T ,T + Δ)(σ1)2

∫ T

t
B1(u,T)e−b1(T−u)du

]

= p(t,T)

p(t,T+Δ)
EQ
{
p(T ,T+Δ)

p̄(T ,T+Δ)

∣
∣Ft

}

·exp
[
− κ

b1 (e
−b1Δ − 1)(σ1)2

(
1

2(b1)2 (1 − e−2b1(T−t)) − 1
(b1)2 (1 − e−b1(T−t))

)]
,

(50)

where we have also used the fact that

∫ T

t
B1(u,T)e−b1(T−u)du =

∫ T

t

1

b1

(
1 − e−b1(T−u)

)
e−b1(T−u)du

= − 1

2(b1)2

(
1 − e−2b1(T−t)

)
+ 1

(b1)2

(
1 − e−b1(T−t)

)
.

�
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Remark 4.1 The adjustment factor AdT ,Δ
t allows for some intuitive interpretations.

Here we mention only the easiest one for the case when κ = 0 (independence of rt
and st). In this case we have rt + st > rt implying that p̄(T ,T + Δ) < p(T ,T + Δ)

so that AdT ,Δ
t ≥ 1. Furthermore, always for κ = 0, the residual factor has value

ResT ,Δ
t = 1. All this in turn implies ν̄t,T ≥ νt,T and with it R̄t ≥ Rt , which is what

one would expect to be the case.

Remark 4.2 (Calibration to the initial term structure). The parameters in the model
(10) for the factors Ψ i

t and thus also in the model (11) for the short rate rt and the
spread st are the coefficients bi and σi for i = 1, 2, 3. From (14) notice that, for
i = 1, 2, these coefficients enter the expressions for the OIS bond prices p(t,T) that
can be assumed to be observable since they can be bootstrapped from the market
quotes for the OIS swap rates. We may thus assume that these coefficients, i.e. bi and
σi for i = 1, 2, can be calibrated as in the pre-crisis single-curve short rate models. It
remains to calibrate b3, σ3 and, possibly the correlation coefficient κ. Via (15) they
affect the prices of the fictitious Libor bonds p̄(t,T) that are, however, not observable.
One may observe though the FRA rates Rt and R̄t and thus also νt,T , as well as ν̄t,T .
Via (41) this would then allow one to calibrate also the remaining parameters. This
task would turn out to be even simpler if one would have access to the value of κ by
other means.

We emphasize that in order to ensure a good fit to the initial bond term structure,
a deterministic shift extension of the model or time-dependent coefficients bi could
be considered. We recall also that we have assumed the mean-reversion level equal
to zero for simplicity; in practice it would be one more coefficient to be calibrated
for each factor Ψ i

t .

4.2 Interest Rate Swaps

Wefirst recall the notion of a (payer) interest rate swap.Given a collection of dates 0 ≤
T0 < T1 < · · · < Tn with γ ≡ γk := Tk − Tk−1 (k = 1, · · · , n), as well as a notional
amountN , a payer swap is a financial contract, where a streamof interest payments on
the notionalN is made at a fixed rateR in exchange for receiving an analogous stream
corresponding to the Libor rate. Among the various possible conventions concerning
the fixing for the Libor and the payment dates, we choose here the one where, for
each interval [Tk−1,Tk], the Libor rates are fixed in advance and the payments are
made in arrears. The swap is thus initiated at T0 and the first payment is made at
T1. A receiver swap is completely symmetric with the interest at the fixed rate being
received; here we concentrate on payer swaps.

The arbitrage-free price of the swap, evaluated at t ≤ T0, is given by the following
expression where, analogously to ET+Δ{·},we denote by ETk {·} the expectation with
respect to the forward measure QTk (k = 1, · · · , n)
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PSw(t;T0,Tn,R) = γ

n∑

k=1

p(t,Tk)E
Tk {L(Tk−1;Tk−1,Tk) − R|Ft}

= γ

n∑

k=1

p(t,Tk) (L(t;Tk−1,Tk) − R) . (51)

For easier notation we have assumed the notional to be 1, i.e. N = 1.
We shall next obtain an explicit expression for PSw(t;T0,Tn,R) starting from the

first equality in (51). To this effect, recalling from (24) that C22(t,T) = C̄22(t,T),
introduce again some shorthand notation, namely

Ak := Ā(Tk−1,Tk),B
1
k := B1(Tk−1,Tk),

C22
k := C22(Tk−1,Tk) = C̄22(Tk−1,Tk), C̄33

k := C̄33(Tk−1,Tk).
(52)

The crucial quantity to be computed in (51) is the following one

ETk {γL(Tk−1;Tk−1,Tk)|Ft} = ETk
{ 1

p̄(Tk−1,Tk)
|Ft

}
− 1

= eAkETk {exp((κ + 1)B1
kΨ

1
Tk−1

+ C22
k (Ψ 2

Tk−1
)2 + C̄33

k (Ψ 3
Tk−1

)2)|Ft} − 1, (53)

where we have used the first relation on the right in (30). The expectations in (53)
have to be computed under the measures QTk , under which, by analogy to (33), the
factors have the dynamics

dΨ 1
t = − [

b1Ψ 1
t + (σ1)2B1(t,Tk)

]
dt + σ1dw1,k

t

dΨ 2
t = − [

b2Ψ 2
t + 2(σ2)2C22(t,Tk)Ψ 2

t

]
dt + σ2dw2,k

t

dΨ 3
t = −b3Ψ 3

t dt + σ3dw3,k
t .

(54)

where wi,k , i = 1, 2, 3, are independent Wiener processes with respect to QTk . A
straightforward generalization of (46) to the casewhere the factor processΨ 1

t satisfies
the following affine Hull–White model

dΨ 1
t = (a1(t) − b1Ψ 1

t )dt + σ1dwt

can be obtained as follows

EQ

{

exp

[

−
∫ T

t
δΨ 1

u du − KΨ 1
T

]

| Ft

}

= exp[α1(t,T) − β1(t,T)Ψ 1
t ], (55)

with ⎧
⎪⎨

⎪⎩

β1(t,T) = Ke−b1(T−t) − δ
b1

(
e−b1(T−t) − 1

)

α1(t,T) = (σ1)2

2

∫ T

t
(β1(u,T))2du −

∫ T

t
a1(u)β1(u,T)du.

(56)
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We apply this result to our situation where under QTk the process Ψ 1
t satisfies

the first SDE in (54) and thus corresponds to the above dynamics with a1(t) =
−(σ1)2B1(t,Tk). Furthermore, setting K = −(κ + 1)B1

k and δ = 0, we obtain for
the first expectation in the second line of (53)

ETk {exp((κ + 1)B1
kΨ

1
Tk−1

|Ft} = exp[Γ 1(t,Tk) − ρ1(t,Tk) Ψ 1
t ], (57)

with
⎧
⎨

⎩

ρ1(t,Tk) = −(κ + 1)B1
ke

−b1(Tk−t)

Γ 1(t,Tk) = (σ1)2

2

∫ Tk

t

(
ρ1(u,Tk)

)2
du + (σ1)2

∫ Tk

t
B1(u,Tk)ρ

1(u,Tk)du.
(58)

For the remaining two expectations in the second line of (53) we shall use the fol-
lowing:

Lemma 4.1 Let a generic process Ψt satisfy the dynamics

dΨt = b(t)Ψtdt + σ dwt (59)

with wt a Wiener process. Then, for all C ∈ R such that EQ
{
exp

[
C (ΨT )2

]}
< ∞,

we have
EQ

{
exp

[
C (ΨT )2

] | Ft
} = exp

[
Γ (t,T) − ρ(t,T) (Ψt)

2
]

(60)

with ρ(t,T) and Γ (t,T) satisfying

{
ρt(t,T) + 2b(t)ρ(t,T) − 2(σ)2 (ρ(t,T))2 = 0 ; ρ(T ,T) = −C
Γt(t,T) = (σ)2ρ(t,T).

(61)

Proof Anapplicationof Itô’s formula yields that the nonnegative processΦt := (Ψt)
2

satisfies the following SDE

dΦt = (
(σ)2 + 2b(t)Φt

)
dt + 2σ

√
Φt dwt .

We recall that a process Φt given in general form by

dΦt = (a + λ(t)Φt)dt + η
√

Φt dwt,

with a, η > 0 and λ(t) a deterministic function, is a CIR process. Thus, (Ψt)
2 is

equivalent in distribution to a CIR process with coefficients given by

λ(t) = 2b(t) , η = 2σ , a = (σ)2.
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From the theory of affine term structure models (see e.g. Lamberton and Lapeyre
[23], or Lemma 2.2 in Grbac and Runggaldier [18]) it now follows that

EQ
{
exp

[
C (ΨT )2

] | Ft
} = EQ {exp [C ΦT ] | Ft} = exp [Γ (t,T) − ρ(t,T)Φt]

= exp
[
Γ (t,T) − ρ(t,T) (Ψt)

2]

with ρ(t,T) and Γ (t,T) satisfying (61).

Corollary 4.1 When b(t) is constant with respect to time, i.e. b(t) ≡ b, so that also
λ(t) ≡ λ, then the equations for ρ(t,T) andΓ (t,T) in (61) admit an explicit solution
given by ⎧

⎨

⎩

ρ(t,T) = 4bhe2b(T−t)

4(σ)2he2b(T−t)−1 with h := C
4(σ)2C+4b

Γ (t,T) = −(σ)2
∫ T

t
ρ(u,T)du.

(62)

Coming now to the second expectation in the second line of (53) and using the second
equation in (54), we set

b(t) := − [
b2 + 2(σ2)2C22(t,Tk)

]
, σ := σ2, C = C22

k

and apply Lemma 4.1, provided that the parameters b2 and σ2 of the process Ψ 2 are
such that C = C22

k satisfies the assumption from the lemma. We thus obtain

ETk {exp(C22
k (Ψ 2

Tk−1
)2)|Ft} = exp[Γ 2(t,Tk) − ρ2(t,Tk)(Ψ

2
t )2], (63)

with ρ2(t,T), Γ 2(t,T) satisfying

⎧
⎪⎪⎨

⎪⎪⎩

ρ2t (t,T) − 2
[
b2 + 2(σ2)2C22(t,Tk)

]
ρ2(t,T) − 2(σ2)2(ρ2(t,T))2 = 0

ρ2(Tk,Tk) = −C22
k

Γ 2(t,T) = −(σ2)2
∫ T

t
ρ2(u,T)du.

(64)

Finally, for the third expectation in the second line of (53), we may take advantage
of the fact that the dynamics of Ψ 3

t do not change when passing from the measure Q
to the forward measure QTk . We can then apply Lemma 4.1, this time with (see the
third equation in (54))

b(t) := −b3, σ := σ3, C = C̄33
k

and ensuring that the parameters b3 and σ3 of the process Ψ 3 are such that C = C̄33
k

satisfies the assumption from the lemma. Since b(t) is constant with respect to time,
also Corollary 4.1 applies and we obtain

ETk {exp(C̄33
k (Ψ 3

Tk−1
)2)|Ft} = exp[Γ 3(t,Tk) − ρ3(t,Tk)(Ψ

3
t )2],
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where ⎧
⎪⎨

⎪⎩

ρ3(t,Tk) = −4b3h3k e
−2b3(Tk−t)

4(σ3)2h3k e
−2b3(Tk−t)−1

with h3k = C̄33
k

4(σ3)2C̄33
k −4b3

Γ 3(t,Tk) = −(σ3)2
∫ Tk

t
ρ3(u,Tk)du.

(65)

With the use of the explicit expressions for the expectations in (53), and taking
also into account the expression for p(t,T) in (29), it follows immediately that the
arbitrage-free swap price in (51) can be expressed according to the following

Proposition 4.2 The price of a payer interest rate swap at t ≤ T0 is given by

PSw(t;T0, Tn,R) = γ

n∑

k=1

p(t,Tk)E
Tk
{
L(Tk−1; Tk−1,Tk) − R|Ft

}

=
n∑

k=1

p(t, Tk)
(
Dt,ke

−ρ1(t,Tk )Ψ
1
t −ρ2(t,Tk )(Ψ

2
t )2−ρ3(t,Tk )(Ψ

3
t )2 − (Rγ + 1)

)

=
n∑

k=1

(
Dt,ke

−At,k e
−B̃1t,kΨ

1
t −C̃22

t,k (Ψ
2
t )2−C̃33

t,k (Ψ
3
t )2

− (Rγ + 1)e−At,k e
−B1t,kΨ

1
t −C22

t,k (Ψ
2
t )2

)
, (66)

where

At,k := A(t,Tk), B1
t,k := B1(t,Tk), C22

t,k := C22(t,Tk)
B̃1
t,k := B1

t,k + ρ1(t,Tk), C̃22
t,k := C22

t,k + ρ2(t,Tk), C̃33
t,k := ρ3(t,Tk)

Dt,k := eAkexp[Γ 1(t,Tk) + Γ 2(t,Tk) + Γ 3(t,Tk)],
(67)

with ρi(t,Tk), Γ i(t,Tk) (i = 1, 2, 3) determined according to (58), (64), and (65)
respectively and with Ak as in (52).

5 Nonlinear/optional Interest Rate Derivatives

In this section we consider the main nonlinear interest rate derivatives with the Libor
rate as underlying. They are also called optional derivatives since they have the form
of an option. In Sect. 5.1 we shall consider the case of caps and, symmetrically, that of
floors. In the subsequent Sect. 5.2 we shall then concentrate on swaptions as options
on a payer swap of the type discussed in Sect. 4.2.

5.1 Caps and Floors

Since floors can be treated in a completely symmetric way to the caps simply by
interchanging the roles of the fixed rate and the Libor rate, we shall concentrate
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here on caps. Furthermore, to keep the presentation simple, we consider here just
a single caplet for the time interval [T ,T + Δ] and for a fixed rate R (recall also
that we consider just one tenor Δ). The payoff of the caplet at time T + Δ is
thus Δ(L(T;T ,T + Δ) − R)+, assuming the notional N = 1, and its time-t price
PCpl(t;T + Δ,R) is given by the following risk-neutral pricing formula under the
forward measure QT+Δ

PCpl(t;T + Δ,R) = Δ p(t,T + Δ)ET+Δ
{
(L(T;T ,T + Δ) − R)+ | Ft

}
.

In view of deriving pricing formulas, recall from Sect. 3.3 that, under the (T + Δ)−
forward measure, at time T the factors Ψ i

T have independent Gaussian distributions
(see (34)) with mean and variance given, for i = 1, 2, 3, by

ET+Δ{Ψ i
t } = ᾱi

t = ᾱi
t(b

i,σi), VarT+Δ{Ψ i
t } = β̄i

t = β̄i
t (b

i,σi).

In the formulas below we shall consider the joint probability density function of
(Ψ 1

T , Ψ 2
T , Ψ 3

T ) under the T + Δ forward measure, namely, using the independence
of the processes Ψ i

t , (i = 1, 2, 3),

f(Ψ 1
T ,Ψ 2

T ,Ψ 3
T )(x1, x2, x3) =

3∏

i=1

fΨ i
T
(xi) =

3∏

i=1

N (xi, ᾱ
i
T , β̄i

T ), (68)

and use the shorthand notation fi(·) for fΨ i
T
(·) in the sequel. We shall also write

Ā,B1,C22, C̄33 for the corresponding functions evaluated at (T ,T + Δ) and given
in (28), (27) and (24) respectively.

Setting R̃ := 1 + ΔR, and recalling the first equality in (30), the time-0 price of
the caplet can be expressed as

PCpl(0; T + Δ,R) = Δ p(0,T + Δ)ET+Δ
{
(L(T ; T ,T + Δ) − R)+

}

= p(0,T + Δ)ET+Δ

{(
1

p̄(T ,T + Δ)
− R̃

)+}

= p(0,T + Δ)ET+Δ

{(
eĀ+(κ+1)B1Ψ 1

T +C22(Ψ 2
T )2+C̄33(Ψ 3

T )2 − R̃
)+}

= p(0,T + Δ)

∫

R3

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)+

· f(Ψ 1
T ,Ψ 2

T ,Ψ 3
T )(x, y, z)d(x, y, z). (69)

To proceed, we extend to the multi-curve context an idea suggested in Jamshidian
[19] (where it is applied to the pricing of coupon bonds) by considering the function

g(x, y, z) := exp[Ā + (κ + 1)B1x + C22y2 + C̄33z2]. (70)
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Noticing that C̄33(T ,T + Δ) > 0 (see (24) together with the fact that h3 > 0 and
2b3 + h3 > 0), for fixed x, y the function g(x, y, z) can be seen to be continuous and
increasing for z ≥ 0 and decreasing for z < 0 with limz→±∞ g(x, y, z) = +∞. It will
now be convenient to introduce some objects according to the following:

Definition 5.1 Let a setM ⊂ R2 be given by

M := {(x, y) ∈ R2 | g(x, y, 0) ≤ R̃} (71)

and let Mc be its complement. Furthermore, for (x, y) ∈ M let

z̄1 = z̄1(x, y) , z̄2 = z̄2(x, y)

be the solutions of g(x, y, z) = R̃. They satisfy z̄1 ≤ 0 ≤ z̄2.

Notice that, for z ≤ z̄1 ≤ 0 and z ≥ z̄2 ≥ 0, we have g(x, y, z) ≥ g(x, y, z̄k) = R̃,
and for z ∈ (z̄1, z̄2), we haveg(x, y, z) < R̃. InMcwehaveg(x, y, z) ≥ g(x, y, 0) > R̃
and thus no solution of the equation g(x, y, z) = R̃.

In view of the main result of this subsection, given in Proposition 5.1 below, we
prove as a preliminary the following:

Lemma 5.1 Assuming that the (nonnegative) coefficients b3,σ3 in the dynamics
(10) of the factor Ψ 3

t satisfy the condition

b3 ≥ σ3

√
2
, (72)

we have that 1 − 2β̄3
T C̄

33 > 0, where C̄33 = C̄33(T ,T + Δ) is given by (24) and

where β̄3
T = (σ3)2

2b3 (1 − e−2b3T ) according to (34).

Proof From the definitions of β̄3
T and C̄33 we may write

1 − 2β̄3
T C̄

33 = 1 −
(
1 − e−2b3T

) 2
(
eΔ h3 − 1

)

2 b3h3
(σ3)2

+ b3
(σ3)2

(2b3 + h3)
(
eΔ h3 − 1

) . (73)

Notice next that b3 > 0 implies that 1 − e−2b3T ∈ (0, 1) and that b3h3

(σ3)2
≥ 0. From (73)

it then follows that a sufficient condition for 1 − 2β̄3
T C̄

33 > 0 to hold is that

2 ≤ b3

(σ3)2
(2b3 + h3). (74)

Given that, see definition after (24), h3 = 2
√

(b3)2 + 2(σ3)2 ≥ 2b3, the condition
(74) is satisfied under our assumption (72). �
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Proposition 5.1 Under assumption (72) we have that the time-0 price of the caplet
for the time interval [T ,T + Δ] and with fixed rate R is given by

PCpl(0; T + Δ,R) = p(0,T + Δ)

[∫

M
eĀ+(κ+1)B1x+C22(y)2

·
[
γ(ᾱ3

T , β̄3
T , C̄33)

(
Φ(d1(x, y)) + Φ(−d2(x, y))

)

− eC̄
33(z̄1(x,y))2Φ(d3(x, y)) + eC̄

33(z̄2(x,y))2Φ(−d4(x, y))
]

× f1(x)f2(y)dxdy + γ(ᾱ3
T , β̄3

T , C̄33)

∫

Mc
eĀ+(κ+1)B1x+C22(y)2

× f1(x)f2(y)dxdy − R̃ QT+Δ
{
(Ψ 1

T , Ψ 2
T ) ∈ Mc

}]

, (75)

where Φ(·) is the cumulative standard Gaussian distribution function, M and Mc

are as in Definition 5.1,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1(x, y) :=
√

1−2β̄3
T C̄

33 z̄1(x,y)−(ᾱ3
T−θβ̄3

T )√
β̄3
T

d2(x, y) :=
√

1−2β̄3
T C̄

33 z̄2(x,y)−(ᾱ3
T−θβ̄3

T )√
β̄3
T

d3(x, y) := z̄1(x,y)−ᾱ3
T√

β̄3
T

d4(x, y) := z̄2(x,y)−ᾱ3
T√

β̄3
T

(76)

with θ := ᾱ3
T

(
1−1/

√
1−2β̄3

T C̄
33
)

β̄3
T

, which by Lemma 5.1 is well defined under the given

assumption (72), and with γ(ᾱ3
T , β̄3

T , C̄33) := e( 12 (θ)2 β̄3T−ᾱ3T θ)√
1−2β̄3

T C̄
33

.

Remark 5.1 Notice that, once the setM and its complementMc from Definition 5.1
are made explicit, the integrals, as well as the probability in (75), can be computed
explicitly.

Proof On the basis of the setsM and Mc we can continue (69) as

PCpl(0;T + Δ,R) = p(0,T + Δ)

∫

R3

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)+

· f(Ψ 1
T ,Ψ 2

T ,Ψ 3
T )(x, y, z)d(x, y, z)

= p(0,T + Δ)

∫

M×R

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)+

· f(Ψ 1
T ,Ψ 2

T ,Ψ 3
T )(x, y, z)d(x, y, z)
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+ p(0,T + Δ)

∫

Mc×R

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)+

· f(Ψ 1
T ,Ψ 2

T ,Ψ 3
T )(x, y, z)d(x, y, z)

=: P1(0;T + Δ) + P2(0;T + Δ). (77)

We shall next compute separately the two terms in the last equality in (77) distin-
guishing between two cases according to whether (x, y) ∈ M or (x, y) ∈ Mc.

Case (i): For (x, y) ∈ M we have from Definition 5.1 that there exist z̄1(x, y) ≤ 0
and z̄2(x, y) ≥ 0 so that for z ∈ [z̄1, z̄2] we have g(x, y, z) ≤ g(x, y, z̄k) = R̃. For
P1(0;T + Δ) we now obtain

P1(0;T + Δ) = p(0,T + Δ)

·
∫

M
eĀ+(κ+1)B1x+C22y2

(∫ z̄1(x,y)

−∞
(eC̄

33z2 − eC̄
33(z̄1)2)f3(z)dz

+
∫ +∞

z̄2(x,y)
(eC̄

33z2 − eC̄
33(z̄2)2)f3(z)dz

)

f2(y)f1(x)dydx. (78)

Next, using the results of Sect. 3.3 concerning the Gaussian distribution f3(·) =
fΨ 3

T
(·), we obtain the calculations in (79) below, where, recalling Lemma 5.1, we

make successively the following changes of variables: ζ :=
√
1 − 2β̄3

T C̄
33z, θ :=

ᾱ3
T (1−1/

√
1−2β̄3

T C̄
33)

β̄3
T

, s := ζ−(ᾱ3
T−θβ̄3

T )√
β̄3
T

and where di(x, y), i = 1, · · · , 4 are as defined

in (76)

∫ z̄1(x,y)

−∞
eC̄

33z2 f3(z)dz =
∫ z̄1(x,y)

−∞
eC̄

33z2 1
√
2πβ̄3

T

e
− 1

2

(z−ᾱ3T )2

β̄3T dz

=
∫ z̄1(x,y)

−∞
1

√
2πβ̄3

T

e
− 1

2

(

√
1−2β̄3T C̄33z−ᾱ3T )2

β̄3T e
− ᾱ3T (

√
1−2β̄3T C̄33−1)

β̄3T
z
dz

=
∫ √

1−2β̄3
T C̄

33 z̄1(x,y)

−∞
1

√
2πβ̄3

T

e
− 1

2

(ζ−ᾱ3T )2

β̄3T e
− ᾱ3T (1−1/

√
1−2β̄3T C̄33)

β̄3T
ζ 1
√
1 − 2β̄3

T C̄
33
dζ

= 1
√
1 − 2β̄3

T C̄
33

∫ √
1−2β̄3

T C̄
33 z̄1(x,y)

−∞
1

√
2πβ̄3

T

e
− 1

2

(ζ−ᾱ3T )2

β̄3T e−θζdζ

= e( 1
2 (θ)2β̄3

T−ᾱ3
T θ)

√
1 − 2β̄3

T C̄
33

∫ d1(x,y)

−∞
1√
2π

e− s2

2 ds= e( 1
2 (θ)2β̄3

T−ᾱ3
T θ)

√
1 − 2β̄3

T C̄
33

Φ(d1(x, y)). (79)
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On the other hand, always using the results of Sect. 3.3 concerning the Gaussian

distribution f3(·) = fΨ 3
T
(·) and making this time the change of variables ζ := (z−ᾱ3

T )√
β̄3
T

,

we obtain

∫ z̄1(x,y)

−∞
eC̄

33(z̄1)2 f3(z)dz = eC̄
33(z̄1)2

∫ z̄1(x,y)

−∞
1

√
2πβ̄3

T

e
− 1

2

(z−ᾱ3T )2

β̄3T dz

= eC̄
33(z̄1)2

∫ d3(x,y)

−∞
1√
2π

e− 1
2 ζ2dζ = eC̄

33(z̄1)2Φ(d3(x, y)). (80)

Similarly, we have

∫ +∞

z̄2(x,y)
eC̄

33z2 f3(z)dz = 1
√
1 − 2β̄3

T C̄
33
e( 1

2 (θ)2β̄3
T−ᾱ3

T θ)Φ(−d2(x, y))

∫ +∞

z̄2(x,y)
eC̄

33(z̄1)2 f3(z)dz = eC̄
33(z̄2)2Φ(−d4(x, y)).

(81)

Case (ii):We comenext to the case (x, y) ∈ Mc, forwhich g(x, y, z) ≥ g(x, y, 0) > R̃.
For P2(0;T + Δ) we obtain

P2(0; T + Δ) = p(0,T + Δ)

∫

Mc×R

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)

· f3(z)f2(y)f1(x)dzdydx
= p(0,T + Δ)

(
eĀ
∫

Mc
e(κ+1)B1x+C22y2 f1(x)f2(y)dxdy

∫

R

eC̄
33z2 f3(z)dz

− R̃QT+Δ[(Ψ 1
T , Ψ 2

T ) ∈ Mc]
)

= p(0,T + Δ)
(
eĀ
[∫

Mc
e(κ+1)B1x+C22y2 f1(x)f2(y)dxdy

] e(
1
2 (θ3)2β̄3T−ᾱ3

T θ3)

√
1 − 2β̄3

T C̄
33

− R̃QT+Δ[(Ψ 1
T , Ψ 2

T ) ∈ Mc]
)
, (82)

where we computed the integral over R analogously to (79).
Adding the two expressions derived for Cases (i) and (ii), we obtain the statement

of the proposition. �

5.2 Swaptions

We start by recalling some of themost relevant aspects of a (payer) swaption. Consid-
ering a swap (see Sect. 4.2) for a given collection of dates 0 ≤ T0 < T1 < · · · < Tn,
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a swaption is an option to enter the swap at a pre-specified initiation date T ≤ T0,
which is thus also the maturity of the swaption and that, for simplicity of notation, we
assume to coincide with T0, i.e. T = T0. The arbitrage-free swaption price at t ≤ T0
can be computed as

PSwn(t;T0,Tn,R) = p(t,T0)E
T0
{(
PSw(T0;Tn,R)

)+ |Ft

}
, (83)

where we have used the shorthand notation PSw(T0;Tn,R) = PSw(T0;T0,Tn,R).

We first state the next Lemma, that follows immediately from the expression for
ρ3(t,Tk) and the corresponding expression for h3k in (65).

Lemma 5.2 We have the equivalence

ρ3(t,Tk) > 0 ⇔ h3k ∈
(
0,

1

4(σ3)2e−2b3(Tk−t)

)
. (84)

This lemma prompts us to split the swaption pricing problem into two cases:

Case(1) : h3k < 0 or h3k > 1
4(σ3)2e−2b3(Tk−t)

Case(2) : 0 < h3k < 1
4(σ3)2e−2b3(Tk−t)

.
(85)

Note from the definition of ρ3(t,Tk) that h3k �= 1
4(σ3)2e−2b3(Tk−t)

and that h3k = 0 would

imply C̄33
k = 0 which corresponds to a trivial case in which the factor Ψ 3 is not

present in the dynamics of the spread s, hence the inequalities in Case (1) and Case
(2) above are indeed strict.

To proceed, we shall introduce some more notation. In particular, instead of only
one function g(x, y, z) as in (70), we shall consider also a function h(x, y), more
precisely, we shall define here the continuous functions

g(x, y, z) :=
n∑

k=1

D0,ke
−A0,k e−B̃1

0,kx−C̃22
0,ky

2−C̃33
0,kz

2
(86)

h(x, y) :=
n∑

k=1

(Rγ + 1)e−A0,k e−B1
0,kx−C22

0,ky
2
, (87)

with the coefficients given by (67) for t = T0. Note that by a slight abuse of notation
we write D0,k for DT0,k and similarly for other coefficients above, always meaning
t = T0 in (67). We distinguish the two cases specified in (85):
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For Case (1) we have (see (67) and Lemma 5.2) that C̃33
0,k = ρ3(T0,Tk) < 0 for all

k = 1, · · · , n, and so the function g(x, y, z) in (86) is, for given (x, y), monotonically
increasing for z ≥ 0 and decreasing for z < 0 with

lim
z→±∞ g(x, y, z) = +∞.

For Case (2) we have instead that C̃33
0,k = ρ3(T0,Tk) > 0 for all k = 1, · · · , n

and so the nonnegative function g(x, y, z) in (86) is, for given (x, y), monotonically
decreasing for z ≥ 0 and increasing for z < 0 with

lim
z→±∞ g(x, y, z) = 0.

Analogously to Definition 5.1 we next introduce the following objects:

Definition 5.2 Let a set M̄ ⊂ R2 be given by

M̄ := {(x, y) ∈ R2 | g(x, y, 0) ≤ h(x, y)}. (88)

Since g(x, y, z) and h(x, y) are continuous, M̄ is closed, measurable and connected.
Let M̄c be its complement. Furthermore, we define two functions z̄1(x, y) and z̄2(x, y)
distinguishing between the two Cases (1) and (2) as specified in (85).

Case (1) If (x, y) ∈ M̄, we have g(x, y, 0) ≤ h(x, y) and so there exist z̄1(x, y) ≤ 0
and z̄2(x, y) ≥ 0 for which, for i = 1, 2,

g(x, y, z̄i) =
n∑

k=1

D0,ke
−A0,k e−B̃1

0,kx−C̃22
0,ky

2−C̃33
0,k(z̄

i)2

=
n∑

k=1

(Rγ + 1)e−A0,k e−B1
0,kx−C22

0,ky
2 = h(x, y) (89)

and, for z /∈ [z̄1, z̄2], one has g(x, y, z) ≥ g(x, y, z̄i).
If (x, y) ∈ M̄c, we have g(x, y, 0) > h(x, y) so that g(x, y, z) ≥
g(x, y, 0) > h(x, y) for all z andwehave nopoints corresponding to z̄1(x, y)
and z̄2(x, y) above.

Case (2) If (x, y) ∈ M̄, we have, as for Case (1), g(x, y, 0) ≤ h(x, y) and so there
exist z̄1(x, y) ≤ 0 and z̄2(x, y) ≥ 0 forwhich, for i = 1, 2, (89) holds. How-
ever, this time it is for z ∈ [z̄1, z̄2] that one has g(x, y, z) ≥ g(x, y, z̄i).
If (x, y) ∈ Mc, then we are in the same situation as for Case (1).

Starting from (83) combined with (66) and taking into account the set M̄ accord-
ing to Definition 5.2, we can obtain the following expression for the swaption
price at t = 0. As for the caps, here too we consider the joint Gaussian distribu-
tion f(Ψ 1

T0
,Ψ 2

T0
,Ψ 3

T0
)(x, y, z) of the factors under the T0−forward measure QT0 and we

have
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PSwn(0;T0,Tn,R) = p(0,T0)E
T0
{(
PSw(T0;Tn,R)

)+ |F0

}

= p(0,T0)
∫

R3

[ n∑

k=1

D0,ke
−A0,kexp(−B̃1

0,kx − C̃22
0,ky

2 − C̃33
0,kz

2)

−
n∑

k=1

(Rγ + 1)e−A0,kexp(−B1
0,kx − C22

0,ky
2)
]+

f(Ψ 1
T0

,Ψ 2
T0

,Ψ 3
T0

)(x, y, z)dxdydz

= p(0,T0)
∫

M̄×R

[ n∑

k=1

D0,ke
−A0,kexp(−B̃1

0,kx − C̃22
0,ky

2 − C̃33
0,kz

2)

−
n∑

k=1

(Rγ + 1)e−A0,kexp(−B1
0,kx − C22

0,ky
2)
]+

f(Ψ 1
T0

,Ψ 2
T0

,Ψ 3
T0

)(x, y, z)dxdydz

+ p(0,T0)
∫

M̄c×R

[ n∑

k=1

D0,ke
−A0,kexp(−B̃1

0,kx − C̃22
0,ky

2 − C̃33
0,kz

2)

−
n∑

k=1

(Rγ + 1)e−A0,kexp(−B1
0,kx − C22

0,ky
2)
]+

f(Ψ 1
T0

,Ψ 2
T0

,Ψ 3
T0

)(x, y, z)dxdydz

=: P1(0;T0,Tn,R) + P2(0;T0,Tn,R). (90)

We can now state and prove the main result of this subsection consisting in a
pricing formula for swaptions for the Gaussian exponentially quadratic model of this
paper. We have

Proposition 5.2 Assume that the parameters in themodel are such that, if h3k belongs
to Case (1) in (85) and h3k > 0, then h3k > 1

4(σ3)2e−2b3Tk
. The arbitrage-free price

at t = 0 of the swaption with payment dates T1 < · · · < Tn such that γ = γk :=
Tk − Tk−1 (k = 1, · · · , n), with a given fixed rate R and a notional N = 1, can be
computed as follows where we distinguish between the Cases (1) and (2) specified
in Definition 5.2.

Case (1) We have

PSwn(0; T0,Tn,R) = p(0,T0)

{ n∑

k=1

e−A0,k

[∫

M̄
D0,kexp(−B̃1

0,kx − C̃22
0,ky

2)

·
(
e
( 12 (θk )

2β̄3
T0

−ᾱ3
T0

θk )

√
1 + 2β̄3

T0
C̃33
0,k

Φ(d1k (x, y)) − e−C̃33
0,k (z̄

1)2
Φ(d2k (x, y))

+ e
( 12 (θk )

2β̄3
T0

−ᾱ3
T0

θk )

√
1 + 2β̄3

T0
C̃33
0,k

Φ(−d3k (x, y)) − e−C̃33
0,k (z̄

2)2
Φ(−d4k (x, y))

)
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× f2(y)f1(x)dydx +
∫

M̄c

(
D0,ke

−B̃10,kx−C̃22
0,ky

2 e
( 12 (θk )

2β̄3
T0

−ᾱ3
T0

θk )

√
1 + 2β̄3

T0
C̃33
0,k

− (Rγ + 1)e−B10,kx−C22
0,ky

2
)
f2(y)f1(x)dydx

]}

. (91)

Case (2) We have

PSwn(0;T0,Tn,R) = p(0,T0)

{ n∑

k=1

e−A0,k

[∫

M̄
D0,kexp(−B̃1

0,kx − C̃22
0,ky

2)
(e( 1

2 (θk)
2β̄3

T0
−ᾱ3

T0
θk)

√
1 + 2β̄3

T0
C̃33
0,k

×
[
Φ(d3k (x, y)) − Φ(d1k (x, y))

]
− e−C̃33

0,k(z̄
1)2
[
Φ(d4k (x, y))

− Φ(d2k (x, y))
])

f2(y)f1(x)dydx

+
∫

M̄c

(
D0,ke

−B̃1
0,kx−C̃22

0,ky
2 e( 1

2 (θk)
2β̄3

T0
−ᾱ3

T0
θk)

√
1 + 2β̄3

T0
C̃33
0,k

− (Rγ + 1)e−B1
0,kx−C22

0,ky
2
)
f2(y)f1(x)dydx

]}

. (92)

The coefficients in these formulas are as specified in (67) for t = T0, f1(x), f2(x) are
the Gaussian densities corresponding to (68) for T = T0 and the functions dik(x, y),
for i = 1, . . . , 4 and k = 1, . . . , n, are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1k (x, y) :=
√
1+2β̄3

T0
C̃33
0,k z̄

1(x,y)−(ᾱ3
T0

−θk β̄
3
T0

)
√

β̄3
T0

d2k (x, y) := z̄1(x,y)−ᾱ3
T0√

β̄3
T0

d3k (x, y) :=
√
1+2β̄3

T0
C̃33
0,k z̄

2(x,y)−(ᾱ3
T0

−θk β̄
3
T0

)
√

β̄3
T0

d4k (x, y) := z̄2(x,y)−ᾱ3
T0√

β̄3
T0

(93)

with θk := ᾱ3
T0

(
1−1/

√
1+2β̄3

T0
C̃33
0,k

)

β̄3
T0

, for k = 1, . . . , n, and where z̄1 = z̄1(x, y), z̄2 =
z̄2(x, y) are solutions in z of the equation g(x, y, z) = h(x, y).

In addition, themean and variance values for theGaussian factors (Ψ 1
T0

, Ψ 2
T0

, Ψ 3
T0

)

are here given by
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ᾱ1
T0

= e−b1T0Ψ 1
0 − (σ1)2

2(b1)2 e
−b1T0(1 − e2b

1T0) − (σ1)2

(b1)2 (1 − eb
1T0)

]

β̄1
T0

= e−2b1T0(e2b
1T0 − 1) (σ1)2

2(b1)

ᾱ2
T0

= e−b2T0Ψ 2
0

β̄2
T0

= e−2b2T0

∫ T0

0
e2b

2u+4(σ2)2C̄22(u,T0)(σ2)2du

ᾱ3
T0

= e−b3T0Ψ 3
0

β̄3
T0

= e−2b3T0 (σ3)2

2b3 (e2b
3T0 − 1).

(94)

Remark 5.2 A remark analogous to Remark 5.1 applies here too concerning the sets
M̄ and M̄c.

Proof First of all notice that, when h3k < 0 or h3k > 1
4(σ3)2e−2b3Tk

in Case (1), this

implies 1 + 2β̄3
T0
C̃33
0,k ≥ 0 (in Case (2) we always have 1 + 2β̃3

T0
C̃33
0,k ≥ 0). Hence,

the square-root of the latter expression in the various formulas of the statement of the
proposition is well-defined. This can be checked, similarly as in the proof of Lemma
5.1, by direct computation taking into account the definitions of β̄3

T0
in (94) and of

C̃33
0,k in (67) and (65) for t = T0.
We come now to the statement for:

Case 1. We distinguish between whether (x, y) ∈ M̄ or (x, y) ∈ M̄c and compute
separately the two terms in the last equality in (90).

(i) For (x, y) ∈ M̄ we have from Definition 5.2 that there exist z̄1(x, y) ≤ 0 and
z̄2(x, y) ≥ 0 so that, for z /∈ [z̄1, z̄2], one has g(x, y, z) ≥ g(x, y, z̄i). Taking into
account that, under QT0 , the random variables Ψ 1

T0
, Ψ 2

T0
, Ψ 3

T0
are independent, so

that we shall write f(Ψ 1
T0

,Ψ 2
T0

,Ψ 3
T0

)(x, y, z) = f1(x)f2(y)f3(z) (see also (68) and the line
following it), we obtain

P1(0;T0,Tn,R) = p(0,T0)
[ n∑

k=1

D0,ke
−A0,k

∫

M
exp(−B̃1

0,kx − C̃22
0,ky

2)

·
(∫ z̄1(x,y)

−∞
exp(−C̃33

0,kz
2)f3(z)dz

−
∫ z̄1(x,y)

−∞
exp(−C̃33

0,k(z̄
1)2)f3(z)dz

+
∫ +∞

z̄2(x,y)
exp(−C̃33

0,kz
2)f3(z)dz

−
∫ +∞

z̄2(x,y)
exp(−C̃33

0,k(z̄
2)2)f3(z)dz

)
f2(y)f1(x)dydx

]
. (95)

By means of calculations that are completely analogous to those in the proof of
Proposition 5.1, we obtain, corresponding to (79)–(81) respectively and with the
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same meaning of the symbols, the following explicit expressions for the integrals in
the last four lines of (95), namely

∫ z̄1(x,y)

−∞
e−C̃33

0,k z
2
f3(z)dz = e( 1

2 (θk)
2β̄3

T0
−ᾱ3

T0
θk)

√
1 + 2β̄3

T0
C̃33
0,k

Φ(d1k (x, y)), (96)

∫ z̄1(x,y)

−∞
e−C̃33

0,k(z̄
1)2 f3(z)dz = e−C̃33

0,k(z̄
1)2Φ(d2k (x, y)), (97)

and, similarly,

∫ +∞

z̄2(x,y)
e−C̃33

0,k z
2
f3(z)dz = e( 1

2 (θk)
2β̄3

T0
−ᾱ3

T0
θk)

√
1 + 2β̄3

T0
C̃33
0,k

Φ(−d3k (x, y)),

∫ +∞

z̄2(x,y)
e−C̃33

0,k(z̄
2)2 f3(z)dz = e−C̃33

0,k(z̄
2)2Φ(−d4k (x, y)),

(98)

where the dik(x, y), for i = 1, . . . , 4 and k = 1, . . . , n, are as specified in (93).

(ii) If (x, y) ∈ M̄c then, according to Definition 5.2 we have g(x, y, z) ≥ g(x, y, 0) >

h(x, y) for all z. Noticing that, analogously to (96),

∫

R

e−C̃33
0,kζ

2
f3(ζ)dζ = e( 1

2 (θk)
2β̄3

T0
−ᾱ3

T0
θk)

√
1 + 2β̄3

T0
C̃33
0,k

we obtain the following expression

P2(0; T0,Tn,R) = p(0,T0)
n∑

k=1

e−A0,k
[∫

M̄c×R

(
D0,ke

−B̃10,kx−C̃22
0,ky

2−C̃33
0,k z

2

− (Rγ + 1)e−B10,kx−C22
0,ky

2
)
f3(z)f2(y)f1(x)dzdydx

]

= p(0,T0)
n∑

k=1

e−A0,k
[
D0,k

(∫

Mc
e−B̃10,kx−C̃22

0,ky
2
f2(y)f1(x)dydx

)

× e
( 12 (θk )

2β̄3
T0

−ᾱ3
T0

θk )

√
1 + 2β̄3

T0
C̃33
0,k

− (Rγ + 1)
(∫

M̄c
e−B10,kx−C22

0,ky
2
f2(y)f1(x)dydx

)]
.

(99)

Adding the two expressions in (i) and (ii) we obtain the statement for Case 1.

Case (2).Also for this casewedistinguish betweenwhether (x, y) ∈ M̄ or (x, y) ∈ M̄c

and, again, compute separately the two terms in the last equality in (90).
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(i) For (x, y) ∈ M̄ we have that there exist z̄1(x, y) ≤ 0 and z̄2(x, y) ≥ 0 so that,
contrary to Case 1), one has g(x, y, z) ≥ g(x, y, z̄i) when z ∈ [z̄1, z̄2]. It follows that

P1(0; T0,Tn,R) = p(0,T0)

[ n∑

k=1

D0,ke
−A0,k

∫

M̄
exp(−B̃1

0,kx − C̃22
0,ky

2)

·
(∫ z̄2(x,y)

z̄1(x,y)
exp(−C̃33

0,kz
2)f3(z)dz

−
∫ z̄2(x,y)

z̄1(x,y)
exp(−C̃33

0,k(z̄
1)2)f3(z)dz

)

f2(y)f1(x)dydx

]

= p(0,T0)

[ n∑

k=1

D0,ke
−A0,k

∫

M̄
exp(−B̃1

0,kx − C̃22
0,ky

2)

·
(
e
( 12 (θk )

2β̄3
T0

−ᾱ3
T0

θk )

√
1 + 2β̄3

T0
C̃33
0,k

(
Φ(d3k (x, y)) − Φ(d1k (x, y))

)

− e−C̃33
0,k (z̄

1)2
(
Φ(d4k (x, y)) − Φ(d2k (x, y))

))

f2(y)f1(x)dydx

]

,

(100)

where we have made use of (96) and (97), (98).

(ii) For (x, y) ∈ M̄c we can conclude exactly as we did it for Case (1) and, by adding
the two expressions in (i) and (ii), we obtain the statement also for Case (2).
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Multi-curve Construction

Definition, Calibration, Implementation
and Application of Rate Curves

Christian P. Fries

Abstract In this chapter we discuss the definition, construction, interpolation and
application of curves. We will discuss discount curves, a tool for the valuation of
deterministic cash-flows and forward curves, a tool for the valuation of linear cash-
flows of an index. A curve is mainly a tool to interpolate certain basic financial
products (zero coupon bonds, FRAs) with respect to maturity date and fixing date,
such that it can be used to value products, which can be represented as linear func-
tions of possibly interpolated values of a discount or forward curve. For this, the
chosen interpolation method and interpolation entity plays an important role. Distin-
guishing forward curves from discount curves (representing the collateralization of
the forward) motivates an alternative interpolation method, namely interpolation of
the forward value (the product of the forward and the discount factor). In addition,
treating forward curves as native curves (instead of representing them by pseudo-
discount curves) will avoid other problems, like that of overlapping instruments.
Besides the interpolation, we discuss the calibration of the curves for which we give
a generic object-oriented implementation in Fries (Curve calibration.Object-oriented
reference implementation, 2010–2015, [11]).We give some numerical results, which
have been obtained using this implementation and conclude with a remark on how to
define term-structure models (analog to a LIBORmarket model) based on the defini-
tion of the performance index of an accrual account associated with a discount curve.
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1 Introduction

Dynamic multi-curve term structure models, as the one discussed in this book, often
use given interest rate curves as initial data. The classical (single curve) example is
the HJM oder LMM model, where

df (t, T) = μ(t, T)dt + Σ(t, T)dW (t), f (t0, T) = f0(T).

While research on multi-curve interest rates models was and is very active, see,
e.g., [5, 6, 15, 20–22], references therein and the other chapters of in this book,
the construction of the initial interest rate curve, here f0(T), naturally does not get a
similar strong attention. However, a good curve construction is of high importance
for practitioners, since it has a strong impact on the delta-hedge (that is, the first-order
interest rate risk).

Themarket standard of (forward) curve construction is to calibrate an interpolated
curve to given market instruments, often via an iterative procedure (bootstrapping).
With respect to the interpolation of (interest rate) forward curves, a common approach
is to represent a forward curve in terms of (pseudo-)discount factors (aka. synthetic
discount factors) and apply an interpolation scheme on these discount factors. While
this approach is in general not backed by an economic concept, it also introduces
several (self-made) problems, e.g., the interpolation of (so-called) overlapping instru-
ments, see Sect. 5.3.

In this paper we focus on the curve construction, provide an open source imple-
mentation and suggest appealing alternative interpolation schemes motivated from
themulti-curve setup: direct interpolation of the forward curve or direct interpolation
of the forward value curve, where the forward value is the product of a forward and
the associated discount factor. While linear interpolation of the forward is a common
scheme,1 the interpolation of the forward value appears to be a new approach.

Nevertheless, the paper puts both methods on a solid foundation by deriving
the schemes from the multi-curve definition of forward curves. Both interpolation
schemes ease some of the complications associated with synthetic discount factors.

Once the curves and interpolations are defined, we are considering the problem
of calibrating a set of curves to given market quotes. The value of an instrument
is in general determined by a whole collection of curves, e.g., one or two discount
curves and zero or more forward curves. To simplify the implementation, we define
a generalized swap, which allows to represent most calibration instruments (FRAs,
swaps, tenor basis swaps, cross-currency swaps, etc.) by a single class.

1Some trading systems, like Murex, do offer it as an option.
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2 Foundations, Assumptions, Notation

Under well-known assumptions the valuation of a future cash flow can be written as
an expectation,2 that is the time t0-value V (t0) is

V (t0) = N(t0) · EQ
N

(
V (T)

N(T)
| Ft0

)
for t0 ≤ T , (1)

where V (T) is the time T cash-flow, N is the value process of a traded asset (or col-
lateral account) which can serve as a numéraire andQN is the equivalent martingale
measure associated with N . Equation (1) is the starting point for curve construction
in the following sense: If the above valuation formula holds, then the value of a linear
function of future cash-flows is the linear function of the values of the single cash
flows. In other words: we can represent the valuation of so-called linear products
by a basis consisting of the values of elementary products. This basis of elementary
products is the set of curves, where “the curve” is formed by the parameter T .

Note that here and in the following, we consider the valuation for a fixed t0. We
are not concerned with the description of a dynamic model (describing t �→ V (t) as
a stochastic process).

Definition 1 Let I denote an index, that is, I(T) is anFT -measurable random vari-
able and d > 0 is some payment offset, then we define the (time t0-)valuation curve
with respect to T as the map

T �→ C(T) := N(t0) · EQ
N

(
I(T)

N(T + d)
| Ft0

)
. (2)

For I ≡ 1 and d = 0 the curve in (2) represents the curve of (synthetical) zero-
coupon bond prices T �→ P(T; t0), also known as discount curve.3 For arbitrary
indices I (with fixed payment offset d4), the curve T �→ C(T)/P(T; t0) is known as
the forward curve. Obviously both curves depend on N and t0.

Note that the specific stochastic behavior of I and N does not play a role when
looking at t0 only in the sense that we are only interested in the time t0-expectation.
That is, we could define t �→ N(t) and t �→ I(t) to be Ft0 -measurable for all times
t and still generate any given discount curve and forward curve, respectively. There

2Since we are only considering the linearity of the valuation at a fixed time t0, we just require that
some fundamental theorem of asset pricing holds, for example, assuming that the price processes
are locally bounded semi-martingales and the no free lunch with vanishing risk condition holds, [7].
3We will use the notation P(T ; t) (instead of the more common P(t, T)) for a the time-t value
of zero-coupon bond maturing in T , since we consider t = t0 as fixed. Sometimes we even drop
the argument and just write P(T). Similar for forward curves. The curves considered here are
parametrized by T for a fixed time t.
4In practice the payment offset may depend on t0 and T due to business day adjustments. Our
implementation handles this, but to ease notation we drop the dependence here.
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is no arbitrage constraint with respect to t yet, since for different t the index I(t)
represents different assets (underlyings).

Thus, with respect to the processes 1/N and I/N we just require that they fulfill
regularity assumptions such that (2) exists.5

On the other hand, the interpretation of the curve as a curve of valuations in
the sense of (2) does play a role, when we consider the construction of the curve
via interpolation of observed market prices. Here, the linearity of the expectation
operator E allows to link market prices to different points of the curve.

Curves, like discount curves and forward curves solve, among others, two impor-
tant problems:

• Valuation of linear instruments. This is performed by decomposing instruments
into the value of single cash flows (zero coupon bonds and FRAs), which then
allows to synthesize the valuation of linear functions of the individual cash flows
(e.g., swaps).

• Valuation of a time T cash-flow as interpolation of valuations of cash flows at
discrete times {Ti}n

i=0 (where Ti ≥ t0 for all i), e.g., swaps referencing cash flows
on illiquid maturities.

Thus, curves are simply a methodology to interpolate on the cash flows with respect
to their payment time.6 Apart from this, the curves also represent the initial data
for advanced term structure models (like the LIBOR market model). Hence, care-
ful construction of curves is also key to (interest rate) derivatives valuation, when
interpolated curves are the initial values of a dynamic model.

For details on the evolution of multi-curve construction see the recent book by
Henrard, [18] (citing a preprint of the present paper). A very detailed description
of multi-curve bootstrapping, which also details market conventions and convexity
adjustments of the calibration instruments, can be found in [2]. For market conven-
tions also see [17]. Here, we do not consider a possible convexity adjustment due
to different market conventions (they should be part of the valuation formulas) and
rather focus on the curves and their interpolation schemes. Also, we do not need to
consider a bootstrapping, since we set up the calibration as a system of equations
passed to a multi-dimensional optimization algorithm.

Usually (and here), the curves are used to interpolate at the fixed time t0 only. If a
curve interpolation should also be used for times t > t0 within a dynamicmulti-curve
model, then this may impose additional constraints on the admissible interpolations
schemes. For example, (2) implies that linear interpolation of time-t zero-coupon
bond prices for t > t0 implies linear interpolation of the time-t zero-coupon bond
prices, which in turn implies a special interpolation of forward rates in a LIBORmar-
ket model, see Sect. 19.5 in [10]. In this case the linear interpolation of the discount
curve and forward value curve would not introduce an arbitrage violation, given that

5For example, let 1/N and I/N be Itô stochastic processes with integrable drift and bounded
quadratic variation.
6This also applies to forward curve, see below, although in these cases there is also an associated
fixing time of an index and it is maybe more consistent to parametrize the curve w.r.t. the fixing of
the index.
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the interpolation points are the same for all times. In practice term-structure models
are often constructed with their own curve interpolations, such that the interpolation
used for the initial data differs from the interpolation used for the simulated curves
(while the model is still calibrated and arbitrage-free given that the drift is specified
accordingly). In the following we focus on the interpolation of the initial data—that
is, the time-t0 curves, which is of greater importance for the deltas of interpolated
products, where only the linear part matters.

In the above valuation formula (1) it is assumed that V and N are expressed in the
same currency. If the two are in different currency, one of them has to be converted
by an exchange rate, which we will denote by FX. Let V be in currency U2 and the
numéraire N in currency U1, then the valuation formula is given by

V (t0) = FX
U2
U1 (t0) · N(t0) · EQ

N

(
V (T)

FX
U2
U1 (T) · N(T)

| Ft0

)

,

where FX
U2
U1 (t) denotes the time t exchange rate for one unit of currency U1 into one

unit of currency U2. Furthermore, FX
U1
U2 =

(
FX

U2
U1

)−1
.

As discussed in [12], the valuation of a collateralized claim can be written as
an expectation with respect to a specific numéraire, namely the collateral account
N = NC.7 We denote the currency of the collateral numéraire by [C]. Let U denote
the currency of the cash flow V (T). Assume that the cash flow V (T) is collateralized
by units of NC. In this case the Eq. (1) holds with the numéraire N = NC, U2 = U,
U1 = [C] (given that V (t) is the collateral amount in the account NC).

Remark 1 From the above we see that collateralization in a different currency can
be interpreted twofold:

1. We may consider a payment converted to collateral currency and valued with
respect to the collateral numéraire NC, or, alternatively,

2. we may consider a payment in the currency U collateralized with respect to the
collateral account NU,C := FX

U
[C] · NC.

We will adopt the latter interpretation, which will also make the valuation look more
consistent8

V (t0) = NU,C(t0) · EQ
U,NC

(
V (T)

NU,C(T)
| Ft0

)
. (3)

Note that this interpretation will then give rise to a new discount curve: the discount
curve associated with NU,C, being the discount curve of a foreign currency (U) cash
flow collateralized by a C.

7See also [8, 14].
8As has been noted in [12], the measures agree, i.e., QU,NC = Q

NC
.
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Remark 2 For an uncollateralized product the role of the collateral account is taken
by the funding account and the corresponding numéraire is the funding account.
Since the valuation formulas are identical to the case of a “special” collateral account
(agreeing with the funding account), we will consider an uncollateralized product as
a product with a different collateralization.

In the following we use the notation U for the currency unit of a cash flow, i.e.,
we may consider U = 1e or U = 1$. We will need this notation only when we
consider cross-currency basis swaps. The symbols V and N (as well as P defined
below) will denote value processes including the corresponding currency unit, e.g.,
V (t0) = 0.25e. The symbol V refers to the value of the product under consideration,
while N denotes the numéraire, e.g., the OIS accrued collateral account. The symbol
X denotes a real number while I denotes a real valued stochastic process, both can
be considered as rates, i.e., unit-less indices, e.g., X = 2.5%. For example X will
denote the fix rate in a swap, I will denote the floating rate index in a swap,U denotes
the currency unit of the two legs, N will be used to define the discount factor and the
value of the swap. The value of the swap is then denoted by V .

3 Discount Curves

Consider a fixed constant cash flow X, paid in currency U in time T , collateralized
by an account C. Since X is a constant and the expectation operator is linear, we can
express the time-t0 value V (t0) of this cash flow as

V (t0) = X · PU,C(T; t0), (4)

where

PU,C(T; t0) := NU,C(t0) · EQ
NU,C

(
1 · U

NU,C(T)
| Ft0

)
(5)

defines the value of a theoretical zero coupon bond. Note that Eq. (4) can be used in
two ways. First, for given market prices we may determine PU,C(T; t0)—that is we
calibrate the curve T �→ PU,C(T; t0). Second, for given PU,C(T; t0) we may value a
constant cash flow.

This defines the discount curve:

Definition 2 Let PU,C(T; t0) denote the time t0 value expressed in currency unit U
of a unit cash-flow of 1 unit of the currency U in T , collateralized by a collateral
account C. In this case we call T �→ PU,C(T; t0) given by (5) the discount curve for
cash flows in currency U collateralized by the account C.

Remark 3 By assumption (of a frictionless no-arbitrage market, (1)) the value of a
fixed constant future cash-flow X is a linear function of its amount. Hence, we have
that the time t0 value of a cash flow X in T and currency U, collateralized with an
account C is



Multi-curve Construction 233

X · PU,C(T; t0).

In other words, the discount curve allows us to valuate all fixed (deterministic) cash
flows in a given currency, collateralized by a given account.

The discount factor PU,C(T; t0) represents the price of an (idealized) zero-coupon
bond. Although a zero-coupon bond is usually not a market-traded asset, we may
representmarket-traded coupon bonds as a linear combination of zero-coupon bonds,
and vice versa. If C denotes some cash-collateral account, there is no such thing as
a collateralized bond, but in that case PU,C(T; t0) has the natural interpretation of
representing the time-t value of a collateralized unit currency time-T cash flow. In
any case, PU,C(T; t0) can be considered a linear function of traded asset (within its
collateralization scheme).

4 Forward Curves

The same approach can now be applied to a payoff of a cash flow X · I(T1), paid in
currency U in time T2 (T1 ≤ T2), collateralized by account C, where X is a constant
and I is an adapted process representing index.9 Its value is

V (t0) = NU,C(t0) · EQ
NU,C

(
X · I(T1) · U

NU,C(T2)
| Ft0

)
.

We can express the value as V (t0) = X · FU,C
I (T1, T2; t0) · PU,C(T2; t0), where

FU,C
I (T1, T2; t0) = NU,C(t0) · EQ

NU,C
(

I(T1) · U

NU,C(T2)
| Ft0

) /
PU,C(T2; t0). (6)

This definition allows us to derive FU,C
I (T1, T2; t0) from given market prices.

Conversely, given PU,C(T2; t0) and FU,C
I (T1, T2; t0) we may value all linear payoff

functions of I(T1) paid in T2.
In (6) the forward depends on thefixing timeT1 and the payment timeT2.However,

the offset of the payment time from the fixing time d = T2 − T1 can be viewed
as a property of the index (a constant) and hence, the forward represents a curve
T �→ FU,C

I (T , T + d; t0).

Definition 3 Let t �→ I(t) denote an index, that is I is an adapted stochastic real
valued process. Let

V U,C
I (T , T + d; t0) := NU,C(t0) · EQ

NU,C
(

I(T) · U

NU,C(T + d)
| Ft0

)

9Examples for I are LIBOR rates or the performance of an EONIA accrual account.
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denote the time t0-value of a payment of I(T) paid in T + d in currency U, collat-
eralized by an account C (where d ≥ 0). We assume that I and N is such that the
expectation exists for all T . Then we define the forward of a payment of I(T) paid
in T + d in currency U, collateralized by an account C as

FU,C
I (T; t0) := V U,C

I (T , T + d; t0)

PU,C(T + d; t0)
.

Remark 4 The forward curve allows us to value a future payment of the index I by

V U,C
I (T , T + d; t0) = FU,C

I (T; t0) · PU,C(T + d; t0)

and by assumption (of a frictionless no-arbitrage market, (1)), the forward curve
allows us to evaluate all linear cash flows X · I (in currency U, collateralized by an
account C) by X · FU,C

I (T; t0) · PU,C(T + d; t0).
Note thatFU,C

I is not a classical single curve forward rate, related to some discount
curve. Due to our definition of the forward curve, the curve includes all valuation
effects related to the index, in particular a possible convexity adjustment. For exam-
ple: if we would consider an in-arrears index and an in-advance index we would
obtain two different forward curves which differ by the in-arrears convexity adjust-
ment!

4.1 Performance Index of a Discount Curve
(or “Self-Discounting”)

The OIS swap pays the performance of an account, accruing with the overnight rate,
that is:

Definition 4 (Overnight Index Swap) Let NC(t) denote the account accruing at the
overnight rate r(t), NC(t0) = 1U, i.e. on a given time discretization (accrual periods)
{ti}n

i=0

NC(tk) :=
k∏

i=0

(1 + r(ti)Δti) ≈ exp

(∫ tk

t0

r(s)ds

)
.

The overnight index swap pays a fix coupon and receives the performance ICi of the
accrual account, that is

ICi (Ti, Ti+1) := NC(Ti+1)

NC(Ti)
− 1.

in Ti+1 with a quarterly tenor T0, T1, . . ..
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The time-t0 linear forward of the index above is PU,C(Ti;t0)−PU,C(Ti+1;t0)
PU,C(Ti+1;t0) (and dividing

by Ti+1 − Ti this gives the linear forward rate). Hence, this is the same situation as
for single curve interest rate theory swaps.

The OIS swap is collateralized with respect to the account NC. Due to this, it is
sometimes called “self-discounted”. However, we may give an appealing alternative
view, defining the forward curve from the discount curve (and not the other way
around):

Let us consider a discount factor curve PU,C(T; t) as seen in time t. The curve
allows the definition of a special index, namely the performance rate of the collateral
account C in currency U over a period of period length d:
Let IC(Ti) := 1−PU,C(Ti+d;Ti)

PU,C(Ti+d;Ti)
, where PU,C(Ti + d; Ti) is the discount factor for the

maturity Ti + d as seen in time Ti. The index IC(Ti) is the payment we have to receive
in Ti + d collateralized with respect to the collateral accountC, such that 1 + IC(Ti)

in Ti+1 has the same value as 1 in Ti. This index has a special property, namely that
its forward can be expressed in terms of the discount factor curve PU,C too: The time
t0 forward of IC(Ti) is FU,C(Ti; t0) where

FU,C(Ti; t0) · PU,C(Ti + d; t0) = NU,C(t0) · EQ
NU,C

(
IC(Ti) · U

NU,C(Ti + d)
| Ft0

)

= PU,C(Ti; t0) − PU,C(Ti + d; t0).

Consequently this index has the special property that its forward can be expressed
by the associated discount factors evaluated at different maturities.

Definition 5 (Forward associated with a Discount Curve) Let PU,C(Ti + d; t0)
denote a discount curve. For a given period length d we define the forward
Fd,U,C(Ti; t0) as

Fd,U,C(Ti; t0) := PU,C(Ti; t0) − PU,C(Ti + d; t0)

PU,C(Ti + d; t0) · d
. (7)

Fd,U,C(Ti; t0) is the forward associated with the performance index of PU,C over a
period of length d.

Remark 5 The above definition relates a forward curve and discount factor curve.
Note however, that we define a forward from a discount factor curve and that this
definition is backed by a clear interpretation of the underlying index. Conversely,
we may define a discount curve from a forward curve “implicitly” such that the
relation (7) holds. Note however, that a generalization of this relation should be
considered with care, since the associated product may not exist.

The definition above is an idealization in the sense that we assume that interval
points over which the performance is measured correspond to the payment dates.
In practice (EONIA is an example) there might be some small deviations from this
assumption (e.g. payment offsets of a few days). In this case (7) does not hold (but
may be still considered an approximation).
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Products like the OIS swaps are sometimes called “self-discounting” since the
discounting is performed on a curve corresponding to the index they fix. From the
above, we find an alternative (and maybe more natural) interpretation, namely that
the swap pays the performance index of its collateral account, i.e., it pays the index
associated with the discount curve.

5 Interpolation of Curves

In this section we consider a discount curve PU,C and an associated forward curve
FU,C. To simplify notation we set D(T) := PU,C(T; t0) and F(T) := FU,C(T; t0).

Forwards and discount factors are linked together by Definition 3, which says
that the time-t0 value of a forward contract V (t0, T) with fixing in T is the product
of the forward F(T) and the associated discount factor D(T + d), i.e., V (t0, T) =
F(T) · D(T + d). Note that T �→ V (t0, T) and T �→ D(T) are value curves, i.e., for
a fixed T the quantities V (t0, T) and D(T) are values of financial products. However,
F(T) is a derived quantity, the forward.

Since V and D represent values of financial products, there is a natural interpre-
tation for a linear interpolation of different values V (Ti) and of different values of
D(Ti), since this would correspond to a portfolio of such products. Note that defining
an interpolationmethod for V andD implies a (possible more complex) interpolation
method of F.

On the other hand, it is common practice to define an interpolation method for a
rate curve (both forward curve and discount factor curve) via zero rates, sometimes
even regardless of the nature of the curve, which then implies the interpolation of the
value curvesD andV . Someof these interpolationswill result in natural interpolations
on the value process V , others not. Other examples for interpolations of F and D are:

• log-linear interpolation of the forward, log-linear interpolation of the discount
factor: the case is equivalent to log-linear interpolation of the value.

• linear interpolation of the forward, log-linear interpolation of the discount factor:
the case is equivalent with a linear interpolation of the value, with an interpolation
weight being a function of the discount factor ratio.

In [16] interpolations on the discount factors, on the logarithm of discount factors,
on the yield and directly on the forwards were discussed. Highlighting some disad-
vantages of cubic splines, they introduced two new interpolation methods (monotone
convex spline andminimal cubic spline) which overcomemost of the shortfalls of the
other interpolations. In [19] some issues of these methods were pointed out, favoring
a harmonic spline interpolation. In [1] a modified Bessel spline on the logarithm of
the discount factors was proposed.

Based on the formal setup presented in the present paper, the stability of cumulated
error of a dynamic hedge was considered as a criterion for the interpolation methods
and compared for a large collection of methods in [13].
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At this point, we would like to stress the importance of the interpolation entity,
that is, whether we interpolate on a forward or on a synthetic discount factor (in
the sense of Definition 5). While the interpolation method (e.g., linear compared to
spline) is often in the focus (discussing locality versus smoothness, [16]), the choice
of the interpolation entity has a strong impact on the delta hedge, see Table1.

Depending on the application, it is popular to represent a curve by a paramet-
ric curve. This is done especially for discount curves. Examples are the Nelson–
Siegel (NS) and the Nelson–Siegel–Svensson (NSS) parametrization. Our bench-
mark implementation in [11] allows to use NS or NSS in the calibration.10

5.1 Implementing the Interpolation of a Curve: Interpolation
Method and Interpolation Entities

In this paper we focus on interpolation schemes based on given interpolation points.
Implementing the interpolation of a curve that way, it is convenient to distinguish the
interpolation method, e.g., linear interpolation of interpolation points {(Ti, xi)}, and
the interpolation entity, that is, a (bijective) transformation from (T , x) to the actual
curve. For example, for discount curves one might consider a linear interpolation
of the zero rate. In this case the interpolation method is linear interpolation and
the interpolation entity is (T , x(T)) = (T ,

log(D(T))

T ) for T > 0, where D denotes
the discount curve. Given 0 < Ti ≤ T ≤ Ti+1 and discount factors D(Tj), a linear
interpolation of the zero rates would then imply the interpolation

D(T) := exp

((
T − Ti

Ti+1 − Ti

log(D(Ti+1))

Ti+1
+ Ti+1 − T

Ti+1 − Ti

log(D(Ti))

Ti

)
· T

)
.

In our benchmark implementation [11], this functionality is provided for a large
number of interpolation methods (constant, linear, Akima, spline, etc.) and interpo-
lation entities (value, log-value, log-value-per-time) by the class net.finmath.
marketdata.model.curves.Curve.11 For forward curves we provide two
additional interpolation entities: forward and synthetic discount factor (see below).

5.2 Interpolation Time

For both, parametric curves (like NSS) and non-parametric interpolation schemes, it
is important to specify the convention used to transform product maturities (dates)
to real numbers (time T ). For example, we might use a daycount convention (like

10Seehttp://finmath.net/finmath-lib/apidocs/net/finmath/marketdata/model/curves/DiscountCurve
NelsonSiegelSvensson.html.
11See http://finmath.net/finmath-lib/apidocs/net/finmath/marketdata/model/curves/Curve.html.

http://finmath.net/finmath-lib/apidocs/net/finmath/marketdata/model/curves/DiscountCurveNelsonSiegelSvensson.html
http://finmath.net/finmath-lib/apidocs/net/finmath/marketdata/model/curves/DiscountCurveNelsonSiegelSvensson.html
http://finmath.net/finmath-lib/apidocs/net/finmath/marketdata/model/curves/Curve.html
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ACT/365) and measure T as a daycount fraction between evaluation date and matu-
rity date, that is T := dcf(evaluation date,maturity date). Clearly, a change in the
time parametrization will change the interpretation of the curve parameters (for a
parametric curve). Also, some daycount convention actually introduces non-linear
time transformations.

5.3 Interpolation of Forward Curves

5.3.1 The Classical Approach

For forward curves, a common approach is to consider an interpolation of the forward
as an independent entity (like for the discount curve). For interest rate forwards, a
popular interpolation scheme (coming from the single curve interpretation of interest
rates forwards) is to represent the forward in terms of synthetic discount factors.
That is, if d denotes a period length associated with the forward and if F(Ti) is
given forTi = i · d, then onemight consider interpolation of (pseudo-)discount factor
DF(Ti) := ∏i−1

k=0(1 + F(Tk) · d)−1, possibly considering another transformation on
DF(T) to define the actual interpolation entity. See [3] for a corresponding multi-
curves bootstrap algorithm.

It is obvious that this definition of the interpolation entity for forward curve is
complex, results in problems for non-equidistant interpolation points and is—without
further assumptions—not backed by a meaningful interpretation. First, in a multi-
curve setup this approach lacks an economic justification. Second, it may introduce
problems:

• The common approach of a linear interpolation of the logarithm of the synthetic
discount factor representing the forward curve results in an almost piecewise con-
stant interpolation of the forward, see [13]. This may result into “jumps” when
products are aging.

• The use of synthetic discount factors defines a forward with fixing time T in terms
of (interpolated) discount factors at times T and T + d (where d is the period
length). The method is a common practice (also considered in [1]). However,
considering forwards for overlapping periods, this may introduce oscillations and
result in implausible delta-hedges (see Table1).

5.3.2 Alternative Interpolation Schemes for Forward Curves

The definition of the forward curve in the multi-curve setup suggests an appealing
alternative for the creation of an interpolated forward: Like a discount factor curve,
the curve V (T) = F(T) · D(T + d) represents the value of a financial product.
Hence, we may consider the interpolation of V like we did for the curve D. For
example, if we consider linear interpolation of the value curve V , we interpolate
the forward curve F by considering the interpolation entity F(T) · D(T + d) with a
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given discount curve D, i.e., we have

F(T) := 1

D(T + d)

(
T − Ti

Ti+1 − Ti
F(Ti+1)D(Ti+1 + d) + Ti+1 − T

Ti+1 − Ti
F(Ti)D(Ti + d)

)

for Ti ≤ T ≤ Ti+1 and given points F(Tj).
Given that log-linear interpolation is a popular interpolation scheme for discount

curves one may consider log-linear interpolation of V . This interpolation scheme has
the restriction that the forward is required to be positive. Since negative interest rates
are possible, this interpolation scheme is not appropriate for interest rate curves.

5.4 Assessment of the Interpolation Method

The assessment of the quality of performance of an interpolation method is difficult.
Some basic criteria (like continuity, locality, etc.) have been reviewed in [16]. Local-
ity, i.e., how does a local change in input data affect the curve, is a desired property
from a hedging perspective. In [13] a long-term dynamic hedging is used to asses the
performance of an interpolation scheme. The results in [13] suggest that among the
local methods, linear interpolation of the forward curve and log-linear interpolation
of the discount curve were the best performing schemes when using the cumulated
dynamic hedge error as a primary criterion.

6 Implementation of the Calibration of Curves

A curve (discount curve or forward curve) is used to encode values of market instru-
ments. A forward curve together with its associated discount curve, allows to value
all linear products (linear payoffs) in the corresponding currency under the corre-
sponding collateralization.

The standard way to calibrate a curve is, hence, to obtain given market values of
(linear) instruments (e.g., swaps). For each market value a single “point” in a single
curve is calibrated. Hence the total number of calibrated curve interpolation points
(aggregated across all curves) equals the number of market instruments.

By “sorting” and combining the calibration instruments, the corresponding equa-
tions can be brought into the form of a system of equations with a triangular structure,
i.e., the value of the nth calibration instrument only depends on the first n curve points.
This allows for an iterative construction of the curve.

However, here (and in the associated reference implementation [11]) we pro-
pose the calibration of the curves using a multi-variate optimization algorithm,
like the Levenberg–Marquardt algorithm or a Differential Evolution algorithm. This
approach brings several advantages, e.g., the freedom to specify the calibration instru-
ments and the ability to extend the approach to over-determined systems of equations.
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In addition, we can handle the case of curve-interdependence, for example to cali-
brate certain discount curves from cross-currency swaps. This comes at the cost of
slower performance in terms of required calculation time.

What remains is to specify the valuation equations for the calibration instruments.
To simplify implementation,wemaygeneralize the definition of a “swap” comprising
plain swaps, tenor basis swaps and cross-currency swaps.

6.1 Generalized Definition of a Swap

Many of the following calibration instruments (from OIS swaps to cross-currency
basis-swaps) fit under a generalized definition of a swap. The swap consists of two
legs. Each leg consists of several periods [Ti, Ti+1]. To ease notation, we do not
distinguish between period start time, period end time, fixing time of the index
and payment time. We assume that for the period [Ti, Ti+1] index fixing is in Ti

and payment is in Ti+1. This is done purely to ease notation, the generalization to
distinguished times is straightforward.

Definition 6 (Swap Leg) A swap leg pays a multiple α of the index I fixed in Ti

plus some fixed payment X, both in currency unit U collateralized by the collateral
account C and paid in time Ti+1. Here α and X are constants (possibly zero). The
value of the swap leg can be expressed in terms of forwards and discount factors as

V U,C
SwapLeg(αI, X, {Ti}n

i=0) =
n−1∑

i=0

(
αFU,C(Ti) + X

) · PU,C(Ti+1),

whereFU,C denotes the forward curve of the index I paid in currencyU collateralized
with respect to C and PU,C denotes the corresponding discount curve.

A swap leg with notional exchange has the payments as in Definition 6 together
with an additional payment of −1 in Ti and +1 in Ti+1. The value of the swap leg
with notional exchange can be expressed in terms of forwards and discount factors
as

V U,C
SwapLeg(αI, X, {Ti}n

i=0) =
n−1∑

i=0

((
αFU,C(Ti) + X

) · PU,C(Ti+1)

+PU,C(Ti+1) − PU,C(Ti)
)
,

whereFU,C denotes the forward curve of the index I paid in currencyU collateralized
with respect to C and PU,C denotes the corresponding discount curve.

Definition 7 (Swap) A swap exchanges the payments of two swap legs, the receiver
leg and the payer leg. We allow that the legs have different indices, different fixed
payments, different payment times, different currency units, but are collateralized
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with respect to the same account C. The swaps receive a swap leg with value
V U1,C

SwapLeg(α1I1, X1, {T 1
i }n1

i=0) and pay a leg with value V U2,C
SwapLeg(α2I2, X2, {T 2

i }). Since
the currency unit of the two legs may be different, the value of the swap in currency
U1 is

VSwap = V U1,C
SwapLeg(α1I1, X1, {T 1

i }n1
i=0) − V U2,C

SwapLeg(α2I2, X2, {T 2
i }n2

i=0) · FX
U1
U2

Many instruments can be represented (and hence valued) in this form. We will
now list a few of them.

6.2 Calibration of Discount Curve to Swap Paying
the Collateral Rate (aka. Self-Discounted Swaps)

Discount curves can be calibrated to swaps paying the performance index of their
collateral account. For example, a swap as in Definition 7 where both legs pay in the
same currency U = U1 = U2. In a receiver swap the receiver leg pays a fixed rate
C, and the payer leg pays an index I . Thus the value of the swap can be expressed in
terms of the discount factors PU,C(Ti+1; t) only, which allows to calibrate this curve
using these swaps. Overnight index swaps are an example.

For the swap paying the performance of the collateral account we have

X1 = C = const. = given, X2 = 0,

FU1,C
1 (T 1

i ; t0) = 0, FU2,C
2 (T 2

i ; t0) = PU,C(T 2
i ; t0) − PU,C(T 2

i+1; t0)

PU,C(T 2
i+1; t0)(T 2

i+1 − T 2
i )

,

PU1,C
1 = PU,C = calibrated, PU2,C

2 = PU,C = calibrated.

In a situation where the number of interpolation points matches the number of swaps
(e.g., a bootstrapping), we calibrate the time T discount factor PU,C(T; t0) with
T = max(T 1

n , T 2
n ) being the last payment time from a given swap.

6.3 Calibration of Forward Curves

Given a calibrated discount curvePU,C weconsider a swapwith payments in currency
U collateralized with respect to the account C, paying some index I and receiving
some fixed cash flow C. An example is swaps paying the 3M LIBOR rate. For such
a swap we have
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X1 = C = const. = given, X2 = 0,
FU1,C
1 (T 1

i ) = 0, FU2,C
2 (T 2

i ) = FU,C(T 2
i ) = calibrated,

PU1,C
1 = PU,C = given, PU2,C

2 = PU,C = given.

From one such swap we calibrate the time T forward FU,C(T) of I(T)with T = T 2
n−1

(the last fixing time).
Given a calibrated discount curvePU,C and a calibrate forward curveFU,C

1 belong-
ing to the index I1, both in currency U and collateralized with respect to the account
C, we consider a swap collateralized with respect to the account C, paying some
index I2 = I in currency U, receiving the index I1 in currency U. An example is
tenor basis swaps paying the 6M LIBOR rate, receiving the 3M LIBOR rate. For
such a swap we have

X1 = C1 = const. = given, X2 = C2 = const. = given,
FU1,C
1 (T 1

i ) = FU,C
1 (T 1

i ) = given, FU2,C
2 (T 2

i ) = FU,C
2 (T 2

i ) = calibrated,
PU1,C
1 = PU,C = given, PU2,C

2 = PU,C = given.

From one such swap we calibrate the time T forward FU,C
2 (T) of I(T)with T = T 2

n−1
(the last fixing time of index I2).

6.4 Calibration of Discount Curves When Payment
and Collateral Currency Differ

6.4.1 Fixed Payment in Other Currency

Given a calibrated discount curve PU1,C we consider a swap collateralized with
respect to the account C, paying some index I1 in currency U1, and receiving some
fixed cash flow C2 in currency U2. An example for such a swap is a cross-currency
swappayingfloating index I in collateral currency and receivingfixedC2 in a different
currency.12 For such a swap we have

X1 = C1 = const. = given, X2 = C2 = const. = given,
FU1,C
1 (T 1

i ) = FU1,C
1 (T 1

i ) = given, FU2,C
2 (T 2

i ) = 0,
PU1,C
1 = PU1,C = given, PU2,C

2 = PU2,C = calibrated.

We calibrate the discount factor PU2,C(T; t0) with T = T 2
n (last payment time in

currency U2).

12Usually cross-currency swaps exchange two floating indices, we will consider this case below.
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6.4.2 Float Payment in Other Currency

If instead of a fixed payment we have that an index I2 is paid in an other currency
U2 we may encounter the problem that the swap has two unknowns, namely the
discount curve PU2,C for payments in currency U2 collateralized with respect to C
and the forward curve FU2,C

2 of the index I2 paid in currency U2 collateralized with
respect to C. The two curves can be obtained jointly from two different swaps: first
a fix-versus-float swaps in currency U2 collateralized by C, and second, a cross-
currency swap exchanging the index I2 with an index I1 in currency U1 for which
the forward FU1,C

1 is known. For the first instrument we denote the fixed payment by
C1, C2. For the second instrument we denote the fixed payment by s1, s2 (usually a
spread). For the first instrument we have

X1 = C1 = const. = given, X2 = C2 = const. = given,
FU1,C
1 (T 1

i ) = 0, FU2,C
2 (T 2

i ) = FU2,C
2 (T 2

i ) = calibrated,
PU1,C
1 = PU2,C

2 = calibrated, PU2,C
2 = calibrated.

For the second swap we have

X1 = s1 = const. = given, X2 = s2 = const. = given,
FU1,C
1 (T 1

i ) = FU1,C
1 (T 1

i ) = given, FU2,C
2 (T 2

i ) = FU2,C
2 (T 2

i ) = calibrated,
PU1,C
1 = given, PU2,C

2 = calibrated.

We calibrate the discount factor PU2,C(T; t0) with T = T 2
n and the forward FU2,C

2 (T)
with T = T 2

n−1.

Often market data are not available to calibrate the forward FU2,C
2 , but the forward

FU2,C2
2 collateralized with respect to a different account C2 is available. The two

forwards differ by a possible convexity adjustment. One possible approximation
(which would follow from the assumption that forwards are independent of their
collateralization) is to use FU2,C

2 ≈ FU2,C2
2 .

The joint calibration of the two curves can be decomposed into two independent
calibration steps, which would then allow to re-use a traditional bootstrap algorithm,
see, e.g., [4].

Calibration of Discount Curves as Spread Curves

We consider a swap leg with notional exchange and tenor {Ti}n
i=0, paying an index

I plus some constant X = s(Tn) = const. Here s(Tn) has the interpretation of a
maturity-dependent spread. If this leg is in currency U and with respect to a col-
lateral account (here funding account) D, then its value is

V U,D
SwapLeg(αI, X, {Ti}n

i=0) =
n−1∑

i=0

((
αFU,D(Ti) + X

) · PU,D(Ti+1)

+PU,D(Ti+1) − PU,D(Ti)
)
.
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An example of such an instrument is an (uncollateralized) floating rate bond, paying
a 3M rate plus some spread. If we assume that the forward FU,D(Ti) is known, this
instrument can be used to calibrate the discount curve PU,D. In fact I + X represents
the performance of the funding account associated with PU,D.

If the forward FU,D(Ti) is not known, we encounter the same problem as for
cross-currency swaps, namely that the forward curveFU,D(Ti) and the discount curve
PU,D need to be calibrated jointly to two instruments. The first one is a swap which
is collateralized with respect to the funding account D, i.e., it is an uncollateralized
swap. The second is the funding floater.

For the first instrument, the uncollateralized swap, we have

X1 = C1 = const. = given, X2 = C2 = const. = given,
FU,D
1 (T 1

i ) = 0 = given, FU,D
2 (T 2

i ) = FU,D(T 2
i ) = calibrated,

PU,D
1 = PU,D = calibrated, PU,D

2 = PU,D.

For the second instrument, the funding floating rate bond (uncollateralized swap leg
with notional exchange) we have

X1 = S = const. = given,

FU,D
1 (T 1

i ) = FU,D(T 1
i ) = calibrated,

PU,D
1 = PU,D = calibrated.

Remark 6 The calibration of the funding curve PU,D is analog to the calibration of
the cross-currency discount curve PU2,C.

In the above, we consider the funding floater as a floating rate bond. Note however,
that bonds (in contrast to swaps) do not permit negative coupons, hence they have
an implicit floor. There are ways to solve this problem: either one has to incorporate
an option premium in the calibration procedure (which does require a model for the
volatility) or one considers only market data of fixed bonds together with uncollat-
eralized swaps (which likely requires some assumption since usually this calibration
instrument is not observed). See the following section.

6.5 Lack of Calibration Instruments (for Difference
in Collateralization)

The calibration of cross-currency curves (forward curve and discount curves for
currency U2 with collateralization in currency U1, see Sect. 6.4) and the calibration
of un-collateralized curves (forward curves and discount curves for uncollateral-
ized products, see section “Calibration of Discount Curves as Spread Curves”) may
require market data which are not available, e.g., the forward of an index I paid in
currencyU2 collateralized in a different currency or by a different account. This issue
has been pointed out by [14].
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In this case the curve can be obtained by adding additional assumptions. Two
simple examples are:

• the market rates are assumed to be independent of the type of collateralization, or
• the forward rates are assumed to be independent of the type of collateralization.

The two assumptions lead to different results, since they imply different correlations
which will lead to different (convexity) adjustments. For details on the example
see [11], where a sample calculation with assuming identical market rates for 3M
swaps collateralized in USD-OIS or EUR-OIS results in a difference of around 1 or
2 basis points (0.01%) for the forward curves.

6.6 Implementation

The definition of the various calibration instruments indicated that an iterative boot-
strapping algorithm (there the curve is built in a step-by-step process solving only
one dimensional problems in one variable) is no longer straightforward. This is due
to the interdependence of discount and forward curves. While this problem may be
solved in some cases via a pre-processing (see [4]), we suggest a different route: we
propose to solve the calibration problem via a single optimization run on the full
multi-dimensional problem. This also allows to calibrate curve in the sense of a best
fit in cases where we use more calibration instruments than curve points, resulting
in an overdetermined system.

We provide an object-oriented implementation at [11] implementing the Java
classes forCurves,DiscountCurves,ForwardCurves,Solver,SwapLeg
and Swap.

A detailed discussion of the implementation can be found in the associated
JavaDocs and is left out here to shorten the presentation.

7 Redefining Forward Rate Market Models

Having discussed the setup of curves, we would like to conclude with a remark on
how the curves are integrated into term-structure models, specifically, how the multi-
curve setup harmonizes with a classical single curve standard LIBORmarket model,
which can then be extended to a fully multi-curve model.

If NC denotes an accrual account, i.e., NC is a process with NC(t0) = 1U (e.g., a
collateral account), thenNC defines a discount curve, namely the discount curveT �→
PU,C(T; t0) =: PC(T; t0) of fixed payments made in T , valued in t and collateralized
by units of NC.

Now let {Ti} denote a given tenor discretization. As shown in Sect. 4.1 the
period-[Ti, Ti+1] performance index IC(Ti, Ti+1) of the an accrual account, i.e.,

IC(Ti, Ti+1; Ti) := NC(Ti+1)

NC(Ti)
− 1 has the property that its time t forward (of a payment
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of IC(Ti, Ti+1) made in Ti+1, collateralized in units of NC) (following the definition

of a forward from Definition 3) is given as FU,C(Ti, Ti+1; t) := PC(Ti;t)−PC(Ti+1;t)
PC(Ti+1;t0) .

This relation allows us to create a term-structure model for the curve PC which
has the same structural properties as a standard single curve (LIBOR) market model.

This model is given by a joint modeling of the processes Li(t) := FU,C(Ti,Ti+1;t)
Ti+1−Ti

, e.g.,

as log-normal processes under the measure QNC
and the additional assumption that

the process PC(Ti; t) is deterministic on its short period t ∈ (Ti−1, Ti].
From these two assumptions it follows that the processes Li have the structure of

a standard LIBOR market model and QNC
corresponds to the spot measure. Indeed

we have
∏i−1

j=0 1 + Lj(Tj) · (Tj+1 − Tj) = NC(Ti).
What we have described is how to use the standard LIBORmarket model as a term

structuremodel for the collateral accountNC (e.g., the OIS curve). Now,modeling all
other rates (including LIBOR) can be performed by modeling (possibly stochastic)
spreads over this curve. This is analog to a defaultable market model.

An alternative is to start with a stochastic model for the forward rates, where now
the forward curve defines the initial value of the model SDEs, and then define the
discount curve (numéraire) via deterministic or stochastic spreads. This approach
has a practical advantage, since for LIBOR rates implied volatilities are more liquid
than for OIS rates. See, e.g., [20] and references therein. An implementation of the
standard LMMwith a deterministic adjustment for the discount curve is provided by
the author at [9].

8 Some Numerical Results

8.1 Impact of the Interpolation Entity of a Forward Curve
on the Delta Hedge

Using our reference implementation [11], we investigate the interpolation of forward
curves using different interpolationmethods and interpolation entities.While interpo-
lation of (synthetic) discount factors is—motivated from its single curve origin—a
very popular interpolation method, it may result in very implausible deltas, if the
curve is constructed from overlapping instruments. Table1 shows the delta of an
8x11 FRA calculated on a curve constructed from 0x3, 1x4, 2x5, 3x6, 4x7, 5x8, 6x9,
7x10, 9x12 FRA (note that the 8x11 is missing in the curve construction). The plausi-
ble hedge would be to use the adjacent 7x10 and 9x12 FRAs. Using the interpolation
entity DISCOUNTFACTORwe find non-zero deltas for instruments prior to the 7x10
FRA, summing up to zero. This effect stems from the error propagation inherent in
the definition of the interpolation entity. The interpolation entity FORWARD does not
show this effect.
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Table 1 The delta of an 7Mx10M FRAwith respect to different calibration instruments, where the
7Mx10M FRA is not part of the calibration instruments, hence interpolates

Risk Factor Delta of an 7Mx10M FRA using the interpolation entity

DISCOUNTFACTOR (%) FORWARD (%)

0Dx3M 44.5 0.0

1Mx4M −95.9 0.0

2Mx5M 52.4 0.0

3Mx6M 44.0 0.0

4Mx7M −97.0 0.0

5Mx8M 52.4 0.0

6Mx9M 47.6 48.4

7Mx10M 0.0 0.0

8Mx11M 51.9 51.6

9Mx12M 0.0 0.0

Different interpolation entities result in very different delta hedges. The popular interpolation entity
of a synthetic discount factor results in counterintuitive hedges. The interpolationmethod isLINEAR
in both cases. It is the choice of the interpolation entity which introduces the effect

8.2 Impact of the Lack of Calibration Instruments
for the Case of a Foreign Swap Collateralized
in Domestic Currency

Based on the curve framework and the calibration instruments defined in this paper
and implemented at [11] we have investigated the impact of the assumptions, which
had to be made due to the lack of calibration instruments for foreign currency swaps.
Since a foreign currency swap collateralized in domestic currency is (currently) not a
liquid instrument, the foreign forward with respect to domestic collateralization can-
not be calibrated. Hence, a model assumption is required. Two possible assumptions
are: (1) the forward rate is independent from its collateralization—that is, use the
foreign forward curve derived from instruments collateralized in foreign currency,
or, (2) the market (swap) rates are independent from its collateralization—that is,
use the foreign market (par-)swap rates form foreign currency swaps collateralized
in foreign currency together with a domestic currency discount curve to calibrate a
foreign currency forward rate curve with respect to domestic collateralization. Both
approaches result in different forward curves. The impact can be assessed using
the spreadsheet available at [11]. For 2012 market data the difference for an USD
forward curve collateralized in EUR can be found to be around two basis points.
While the first assumption (re-using the forward curve) is likely the more natural
one, and maybe a market standard, the calculation shows that the assumption has a
considerable impact on the resulting curve, see Fig. 1.
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Fig. 1 Forward curve (USD-3M) calibrated from swaps with different collateralization (USD-OIS
and EUR-OIS) assuming independence of the market rates of from the type of collateralization

8.3 Impact of the Interpolation Scheme
on the Hedge Efficiency

Also based on the framework presented here, the impact of the different interpolation
schemes has been investigated in [13], where indication was found that among the
local interpolation schemes, it is indeed better to use a different interpolation scheme
for forward curves than for discount curves. For details we refer to [13].

9 Conclusion

We have presented the re-definition of discount curves and forward curves, which
clearly distinguishes the two as different objects (with some relation for the special
case ofOIScurves). This re-definition results in curves, representingvalueswithwell-
defined economic interpretations. We then discussed some interpolation schemes
for these curves, where our re-definition suggests to apply different interpolation
schemes for discount and forward curves. This stands in contrast to the classical
approach where a forward curve had been represented via synthetic discount factors,
using the same interpolation schemes for both types of curves.

We have presented the calibration, defining the calibration instruments. Based on
this, we provide an open source, object-oriented implementation at [11].13

Based on this benchmark implementation it was possible to assess the impact of
assumptions, which had to be made due to the lack of calibration instruments, e.g.,
for the case of cross-currency swaps, and the impact of the different interpolation
schemes. Indication was found that it is better to use a different interpolation scheme
for forward curves than for discount curves. With respect to delta hedges one should

13A complete description of the implementation is given at http://www.finmath.net/finmath-lib,
including source code and numerical examples. They are left out in this paper.

http://www.finmath.net/finmath-lib
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favor forward interpolation over synthetic discount factor interpolation. Among for-
ward interpolation, linear interpolation performed well with respect to the hedge
performance.
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Impact of Multiple-Curve Dynamics
in Credit Valuation Adjustments

Giacomo Bormetti, Damiano Brigo, Marco Francischello
and Andrea Pallavicini

Abstract We present a detailed analysis of interest rate derivatives valuation under
credit risk and collateral modeling. We show how the credit and collateral extended
valuation framework in Pallavicini et al. (2011) can be helpful in defining the key
market rates underlying the multiple interest rate curves that characterize current
interest rate markets. We introduce the collateralized valuation measures and for-
mulate a consistent realistic dynamics for the rates emerging from our analysis. We
point out limitations of multiple curve models with deterministic basis considering
valuation of particularly sensitive products such as basis swaps.

Keywords Multiple curves · Evaluation adjustments · Basis swaps · Collateral ·
HJM model

1 Introduction

After the onset of the crisis in 2007, all market instruments are quoted by taking
into account, more or less implicitly, credit- and collateral-related adjustments. As
a consequence, when approaching modeling problems one has to carefully check
standard theoretical assumptions which often ignore credit and liquidity issues. One
has to go back to market processes and fundamental instruments by limiting oneself
to use models based on products and quantities that are available on the market.
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Referring to market observables and processes is the only means we have to validate
our theoretical assumptions, so as to drop them if in contrast with observations. This
general recipe is what is guiding us in this paper, where we try to adapt interest rate
models for valuation to the current landscape.

A detailed analysis of the updated valuation problem one faces when including
credit risk and collateral modeling (and further funding costs) has been presented
elsewhere in this volume, see for example [6, 7]. We refer to those papers and
references therein for a detailed discussion. Here we focus our updated valuation
framework to consider the following key points: (i) focus on interest rate derivatives;
(ii) understand how the updated valuation framework can be helpful in defining the
key market rates underlying the multiple interest rate curves that characterize current
interest rate markets; (iii) define collateralized valuation measures; (iv) formulate a
consistent realistic dynamics for the rates emerging from the above analysis; (v) show
how the framework can be applied to valuation of particularly sensitive products
such as basis swaps under credit risk and collateral posting;(vi) point out limitations
in some current market practices such as explaining the multiple curves through
deterministic fudge factors or shiftswhere the option embedded in the credit valuation
adjustment (CVA) calculationwould be pricedwithout any volatility. For an extended
version of this paper we remand to [3]. This paper is an extended and refined version
of ideas originally appeared in [24].

2 Valuation Equation with Credit and Collateral

Classical interest-rate models were formulated to satisfy no-arbitrage relationships
by construction, which allowed one to price and hedge forward-rate agreements in
terms of risk-free zero-coupon bonds. Starting from summer 2007,with the spreading
of the credit crunch, market quotes of forward rates and zero-coupon bonds began
to violate usual no-arbitrage relationships. The main driver of such behavior was the
liquidity crisis reducing the credit lines along with the fear of an imminent systemic
break-down. As a result the impact of counterparty risk on market prices could not
be considered negligible any more.

This is the first of many examples of relationships that broke down with the cri-
sis. Assumptions and approximations stemming from valuation theory should be
replaced by strategies implemented with market instruments. For instance, inclu-
sion of CVA for interest-rate instruments, such as those analyzed in [8], breaks the
relationship between risk-free zero-coupon bonds and LIBOR forward rates. Also,
funding in domestic currency on different time horizons must include counterparty
risk adjustments and liquidity issues, see [15], breaking again this relationship. We
thus have, against the earlier standard theory,

L(T0,T1) �= 1

T1 − T0

(
1

PT0(T1)
− 1

)
, Ft(T0,T1) �= 1

T1 − T0

(
Pt(T0)

Pt(T1)
− 1

)
,

(1)
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where Pt(T) is a zero-coupon bond price at time t for maturity T , L is the LIBOR rate
and F is the related LIBOR forward rate. A direct consequence is the impossibility
to describe all LIBOR rates in terms of a unique zero-coupon yield curve. Indeed,
since 2009 and even earlier, we had evidence that the money market for the Euro
area was moving to a multi-curve setting. See [1, 19, 20, 27].

2.1 Valuation Framework

In order to value a financial product (for example a derivative contract), we have to
discount all the cash flows occurring after the trading position is entered. We follow
the approach of [25, 26] and we specialize it to the case of interest-rate derivatives,
where collateralization usually happens on a daily basis, and where gap risk is not
large. Hence we prefer to present such results when cash flows are modeled as
happening in a continuous time-grid, since this simplifies notation and calculations.
We refer to the two names involved in the financial contract and subject to default
risk as investor (also called name “I”) and counterparty (also called name “C”). We
denote by τI , and τC , respectively, the default times of the investor and counterparty.
We fix the portfolio time horizon T > 0, and fix the risk-neutral valuation model
(Ω,G ,Q), with a filtration (Gt)t∈[0,T ] such that τC , τI are (Gt)t∈[0,T ]-stopping times.
We denote by Et [ · ] the conditional expectation under Q given Gt , and by Eτi [ · ]
the conditional expectation under Q given the stopped filtration Gτi . We exclude the
possibility of simultaneous defaults, and define the first default event between the
two parties as the stopping time τ := τC ∧ τI .

We will also consider the market sub-filtration (Ft)t≥0 that one obtains implicitly
by assuming a separable structure for the completemarket filtration (Gt)t≥0.Gt is then
generated by the pure default-free market filtrationFt and by the filtration generated
by all the relevant default times monitored up to t (see for example [2]).

We introduce a risk-free rate r associated with the risk-neutral measure. We there-
fore need to define the related stochastic discount factorD(t, u, r) that in general will
denote the risk-neutral default-free discount factor, given by the ratio

D(t, u, r) = Bt/Bu , dBt = rtBtdt,

where B is the bank account numeraire, driven by the risk-free instantaneous interest
rate rt and associated to the risk-neutral measure Q. This rate rt is assumed to be
(Ft)t∈[0,T ] adapted and is the key variable in all pre-crisis term structure modeling.

We now want to price a collateralized derivative contract, and in particular we
assume that collateral re-hypothecation is allowed, as done in practice (see [4] for a
discussion on re-hypothecation). We thus write directly the adjustment payout terms
as carry costs cash flows, each accruing at the relevant rate, namely the price Vt of a
derivative contract, inclusive of collateralized credit and debit risk, margining costs,
can be derived by following [25, 26], and is given by:
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Vt = E

[ ∫ T

t
D(t, u; r) (

1{u<τ }dπu + 1{τ∈du}θu + (ru − cu)Cudu
) |Gt

]
(2)

where

• πu is the coupon process of the product, without credit or debit risk and without
collateral cash flows;

• Cu is the collateral process, and we use the convention that Cu > 0 while I is the
collateral receiver and Cu < 0 when I is the collateral poster. (ru − cu)Cu are the
collateral margining costs and the collateral rate is defined as ct := c+

t 1{Ct>0} +
c−
t 1{Ct<0} with c± defined in the CSA contract. In general we may assume the
processes c+, c− to be adapted to the default-free filtration Ft .

• θu = θu(C, ε) is the on-default cash flow process that depends on the collateral
process Cu and the close-out value εu.1 It is primarily this term that originates the
credit and debit valuation adjustments (CVA/DVA) terms, that may also embed
collateral and gap risk due to the jump at default of the value of the considered
deal (e.g. in a credit derivative), see for example [5].

Notice that the above valuation equation (2) is not suited for explicit numerical
evaluations, since the right-hand side is still depending on the derivative price via the
indicators within the collateral rates and possibly via the close-out term, leading to
recursive/nonlinear features. We could resort to numerical solutions, as in [11], but,
since our goal is valuing interest-rate derivatives, we prefer to further specialize the
valuation equation for such deals.

2.2 The Master Equation Under Change of Filtration

In this first work we develop our analysis without considering a dependence between
the default times if not through their spreads, or more precisely by assuming that
the default times are F -conditionally independent. Moreover, we assume that the
collateral account and the close-out processes areF -adapted. Thus, we can simplify
the valuation equation given by (2) by switching to the default-free market filtration.
By following the filtration switching formula in [2], we introduce for any Gt-adapted
process Xt a unique Ft-adapted process X̃t , defined such that 1{τ>t}Xt = 1{τ>t}X̃t .
Hence, we can write the pre-default price process as given by 1{τ>t}Ṽt = Vt where
the right-hand side is given in Eq. (2) and where Ṽt is Ft-adapted. Before changing
filtration, we have to specify the form of the close-out payoff:

θτ = ετ (τ,T) − 1{τC<τI }LGDC(ετ (τ,T) − Cτ )+ − 1{τI<τC}LGDI (ετ (τ,T) − Cτ )−

1The closeout value is the residual value of the contract at default time and the CSA specifies the
way it should be computed.
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where LGD ≤ 1 is the loss given default, (x)+ indicates the positive part of x and
(x)− = −(−x)+. For an extended discussion of the term θτ we refer to [3].Moreover,
to derive an explicit valuation formula we assume that gap risk is not present, namely
Ṽτ− = Ṽτ , and we consider a particular form for collateral and close-out prices,
namely we model the close-out value as

εs(t,T) = E

[ ∫ T

t
D(t, u, r)dπu |Gs

]
, Ct

.= αtεt(t,T)

with 0 ≤ αt ≤ 1 and where αt is Ft-adapted. This means that the close-out is the
risk-free mark to market at first default time and the collateral is a fraction αt of the
close-out value. An alternative approximation that does not impose a proportionality
between the account value processes can be found in [9]. We obtain, by switching to
the default-free market filtration F the following.2

Proposition 1 (Master equation underF -conditionally independent default times,
no gap risk and Ft measurable payout πt) Under the above assumption, Valuation
Equation (2) is further specified as Vt = 1{τ>t}Ṽt

Ṽt =εt(t,T) + E

[ ∫ T

t
D(t, u; r + λ)(ru − cu)αuεu(u,T)du |Ft

]

− E

[ ∫ T

t
D(t, u; r + λ)λC

u (1 − αu)LGDC(εu(u,T))+du |Ft

]

− E

[ ∫ T

t
D(t, u; r + λ)λI

u(1 − αu)LGDI(εu(u,T))−du |Ft

]

where we introduced the pre-default intensity λI
t of the investor and the pre-default

intensity λC
t of the counterparty as

1{τI>t}λIt dt := Q { τI ∈ dt | τI > t,Ft } , 1{τC>t}λCt dt := Q { τC ∈ dt | τC > t,Ft }

along with their sum λt and the discount factor for any rate xu, namely D(t,T , x) :=
exp{− ∫ T

t xudu}.

3 Valuing Collateralized Interest-Rate Derivatives

As we mentioned in the introduction, we will base our analysis on real market
processes. All liquid market quotes on the moneymarket (MM) correspond to instru-
ments with daily collateralization at overnight rate (et), both for the investor and the
counterparty, namely ct

.= et .

2We refer to [3] and [6] for a precise derivation of the proposition.
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Notice that the collateral accrual rate is symmetric, so that we no longer have a
dependency of the accrual rates on the collateral price, as opposed to the general
master equation case. Moreover, we further assume rt

.= et .
This makes sense because et being an overnight rate, it embeds a low counterparty

risk and can be considered a good proxy for the risk-free rate rt . We will describe
some of these MM instruments, such as OIS and Interest Rate Swaps (IRS), along
with their underlying market rates, in the following sections. For the remaining of
this section we adopt the perfect collateralization approximation of Eq. (1) to derive
the valuation equations for OIS and IRS products, hence assuming no gap-risk,
while in the numeric experiments of Sect. 4 we will consider also uncollateralized
deals. Furthermore, we assume that daily collateralization can be considered as a
continuous-dividend perfect collateralization. See [4] for a discussion on the impact
of discrete-time collateralization on interest-rate derivatives.

3.1 Overnight Rates and OIS

Among other instruments, the MM usually quotes the prices of overnight indexed
swaps (OIS). Such contracts exchange a fix-payment leg with a floating leg pay-
ing a discretely compounded rate based on the same overnight rate used for their
collateralization. Since we are going to price OIS under the assumption of perfect
collateralization, namely we are assuming that daily collateralization may be viewed
as done on a continuous basis, we approximate also daily compounding in OIS float-
ing leg with continuous compounding, which is reasonable when there is no gap
risk. Hence the discounted payoff of a one-period OIS with tenor x and maturity T
is given by

D(t,T , e)

(
1 + xK − exp

{∫ T

T−x
eudu

})

where K is the fixed rate payed by the OIS. Furthermore, we can introduce the (par)
fix rates K = Et(T , x; e) that make the one-period OIS contract fair, namely priced
0 at time t. They are implicitly defined via

ṼOIS
t (K) := E

[(
1 + xK − exp

{∫ T

T−x
eudu

})
D(t,T; e) |Ft

]

with ṼOIS
t (Et(T , x; e)) = 0 leading to

Et(T , x; e) := 1

x

(
Pt(T − x; e)
Pt(T; e) − 1

)
(3)
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where we define collateralized zero-coupon bonds3 as

Pt(T; e) := E [D(t,T; e) |Ft] . (4)

One-periodOIS ratesEt(T , x; e), alongwithmulti-period ones, are actively traded
on the market. Notice that we can bootstrap collateralized zero-coupon bond prices
from OIS quotes.

3.2 LIBOR Rates, IRS and Basis Swaps

LIBOR rates (Lt(T)) used to be linked to the term structure of default-free interlink
interest rates in a fundamental way. In the classical term structure theory, LIBOR
rates would satisfy fundamental no-arbitrage conditions with respect to zero-coupon
bonds that we no longer consider to hold, as we pointed out earlier in (1). We
now deal with a new definition of forward LIBOR rates that may take into account
collateralization. LIBOR rates are still the indices used as reference rate for many
collateralized interest-rate derivatives (IRS, basis swaps, …). IRS contracts swap a
fix-payment leg with a floating leg paying simply compounded LIBOR rates. IRS
contracts are collateralized at overnight rate et . Thus, a discounted one-period IRS
payoff with maturity T and tenor x is given by

D(t,T , e)x(K − LT−x(T))

where K is the fix rate payed by the IRS. Furthermore, we can introduce the (par) fix
rates K = Ft(T , x; e) that render the one-period IRS contract fair, i.e. priced at zero.
They are implicitly defined via

Ṽ IRS
t (K) := E

[
(xK − xLT−x(T))D(t,T; e) |Ft

]

with Ṽ IRS
t (Ft(T , x; e)) = 0, leading to the followingdefinition of forwardLIBORrate

Ft(T , x; e) := E
[
LT−x(T)D(t,T; e) |Ft

]

E [D(t,T; e) |Ft]
= E

[
LT−x(T)D(t,T; e) |Ft

]

Pt(T; e)
The above definition may be simplified by a suitable choice of the measure

under which we take the expectation. In particular, we can consider the following
Radon–Nikodym derivative, defining the collateralized T -forward measure QT ;e,

3Notice that we are only defining a price process for hypothetical collateralized zero-coupon bond.
We are not assuming that collateralized bonds are assets traded on the market.
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Zt(T; e) := dQT ;e

dQ

∣∣∣∣
Ft

:= E [D(0,T; e) |Ft]

P0(T; e) = D(0, t; e)Pt(T; e)
P0(T; e)

which is a positive Q-martingale, normalized so that Z0(T; e) = 1.
Thus, for any payoff φT , perfectly collateralized at overnight rate et , we can

express prices as expectations under the collateralized T -forward measure and in
particular, we can write LIBOR forward rates as

Ft(T , x; e) := E
[
LT−x(T)D(t,T; e) |Ft

]

E [D(t,T; e) |Ft]
= ET ;e [

LT−x(T) |Ft
]
. (5)

One-period forward rates Ft(T , x; e), along with multi-period ones (swap rates),
are actively traded on themarket. Once collateralized zero-coupon bonds are derived,
we can bootstrap forward rate curves from such quotes. See, for instance, [1] or [27]
for a discussion on bootstrapping algorithms.

Basis swaps are an interesting product that became more popular after the market
switched to a multi-curve structure. In fact, in a basis swap there are two floating
legs, one pays a LIBOR rate with a certain tenor and the other pays the LIBOR rate
with a shorter tenor plus a spread that makes the contract fair at inception. More
precisely, the payoff of a basis swap whose legs pay respectively a LIBOR rate with
tenors x < y with maturity T = nx = my is given by

n∑

i=1

D(t,T − (n − i)x, e)x(LT−(n−i−1)x(T − (n − i)x) + K)

−
m∑

j=1

D(t,T − (m − j)y, e)yLT−(m−j−1)y(T − (m − j)y).

It is clear that apart from being traded per se, this instrument is naturally present in
the banks portfolios as result of the netting of opposite swap positions with different
tenors.

3.3 Modeling Constraints

Our aim is to set up a multiple-curve dynamical model starting from collateralized
zero-coupon bonds Pt(T; e), and LIBOR forward rates Ft(T , x; e). As we have seen
we can bootstrap the initial curves for such quantities from directly observed quotes
in the market. Now, we wish to propose a dynamics that preserves the martingale
properties satisfied by such quantities. Thus, without loss of generality, we can define
collateralized zero-coupon bonds under the Q measure as

dPt(T; e) = Pt(T; e) (
et dt − σ P

t (T; e)∗ dWe
t

)
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and LIBOR forward rates under the QT ;e measure as

dFt(T , x; e) = σ F
t (T , x; e)∗ dZT ;e

t

whereWe and ZT ;e are correlated standard (column) vector4 Brownian motions with
correlation matrix ρ, and the volatility vector processes σ P and σ F may depend on
bonds and forward LIBOR rates themselves.

The following definition of ft(T , e) is not strictly necessary, and we could keep
working with bonds Pt(T; e), using their dynamics. However, as it is customary
in interest rate theory to model rates rather than bonds, we may try to formulate
quantities that are closer to the standard HJM framework. In this sense we can define
instantaneous forward rates ft(T; e), by starting from (collateralized) zero-coupon
bonds, as given by

ft(T; e) := −∂T logPt(T; e)

We can derive instantaneous forward-rate dynamics by Itô lemma, and we obtain the
following dynamics under the QT ;e measure

dft(T; e) = σt(T; e) dWT ;e
t , σt(T; e) := ∂T σ P

t (T; e)

where the WT ;es are Brownian motions and partial differentiation is meant to be
applied component-wise.

Hence, we can summarize our modeling assumptions in the following way. Since
linear products (OIS, IRS, basis swaps…) can be expressed in terms of simpler quan-
tities, namely collateralized zero-coupon bonds Pt(T; e) and LIBOR forward rates
Ft(T , x; e), we focus on their modeling. The initial term structures for collateralized
products may be bootstrapped frommarket data, and for volatility and dynamics, we
can write rates dynamics by enforcing suitable no-arbitrage martingale properties,
namely

dft(T; e) = σt(T; e) · dWT ;e
t , dFt(T , x; e) = σ F

t (T , x; e) · dZT ;e
t . (6)

As we explained in the introduction, this is where the multiple curve picture
finally shows up: we have a curve with LIBOR-based forward rates Ft(T , x; e),
that are collateral adjusted expectation of LIBOR market rates LT−x(T) we take as
primitive rates from themarket, and we have instantaneous forward rates ft(T; e) that
are OIS-based rates. OIS rates ft(T; e) are driven by collateral fees, whereas LIBOR
forward rates Ft(T , x; e) are driven both by collateral rates and by the primitive
LIBOR market rates.

4In the following we will consider N-dimensional vectors as N × 1 matrices. Moreover, given a
matrix A, we will indicate A∗ its transpose, and if B is another conformable matrix we indicate AB
the usual matrix product.
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4 Interest-Rate Modeling

We can now specialize our modeling assumptions to define a model for interest-rate
derivatives which is on one hand flexible enough to calibrate the quotes of the MM,
and on the other hand robust. Our aim is to use an HJM framework using a single
family ofMarkov processes to describe all the term structures and interest rate curves
we are interested in.

In the literature many authors proposed generalizations of the HJM framework to
include multiple yield curves. In particular, we cite the works of [12–14, 16, 20–23].
A survey of the literature can be found in [17].

In suchworks the problem is faced in a pragmaticwayby considering each forward
rate as a single asset without investigating the microscopical dynamics implied by
liquidity and credit risks.However, the hypothesis of introducing different underlying
assets may lead to over-parametrization issues that affect the calibration procedure.
Indeed, the presence of swap and basis-swap quotes on many different yield curves
is not sufficient, as the market quotes swaption premia only on few yield curves.
For instance, even if the Euro market quotes one-, three-, six- and twelve-month
swap contracts, liquidly traded swaptions are only those indexed to the three-month
(maturity one-year) and the six-month (maturities from two to thirty years) Euribor
rates. Swaptions referring to other Euribor tenors or to overnight rates are not actively
quoted.

In order to solve such problem [23] introduces a parsimonious model to describe
a multi-curve setting by starting from a limited number of (Markov) processes, so
as to extend the logic of the HJM framework to describe with a unique family of
Markov processes all the curves we are interested in.

4.1 Multiple-Curve Collateralized HJM Framework

We follow [22, 23] by reformulating their theory under theQT ;e measure. We model
only observed rates as inmarketmodel approaches andwe consider a common family
of processes for all the yield curves of a given currency, so that we are able to build
parsimonious yet flexible models. Hence let us summarize the basic requirements
the model must fulfill:

(i) existence of OIS rates, which we can describe in terms of instantaneous forward
rates ft(T; e);

(ii) existence of LIBOR rates assigned by the market, typical underlyings of traded
derivatives, with associated forwards Ft(T , x; e);

(iii) no arbitrage dynamics of the ft(T; e) and the Ft(T , x; e) (both being (T , e)-
forward measure martingales);

(iv) possibility of writing both ft(T; e) and Ft(T , x; e) as functions of a common
family of Markov processes, so that we are able to build parsimonious yet
flexible models.
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While the first two points are related to the set of financial quantities we are about to
model, the last two are conditions we impose on their dynamics, and will be granted
by the right choice of model volatilities. Hence, we choose under QT ;e measure, the
following dynamics:

dft(T; e) = σt(T)∗dWT ;e
t (7)

dFt(T , x; e) = (k(T , x) + Ft(T , x; e)) Σt(T , x)∗dWT ;e
t

where we introduce the families of (stochastic N-dimensional) volatility processes
σt(T) and Σt(T , x), the vector of N independent QT ;e-Brownian motions WT ;e

t ,

and the set of deterministic shifts k(T , x), such that limx→0 xk(T , x) = 1. This limit
condition ensures that the model approaches a standard default- and liquidity-free
HJM model when the tenor goes to zero. We bootstrap f0(T; e) and F0(T , x; e) from
market quotes.

In order to get a model with a reduced number of common driving factors in the
spirit of HJM approaches, it is sufficient to conveniently tie together the volatility
processes σt(T) and Σt(T , x) through a third volatility process σt(u,T , x).

σt(T) := σt(T;T , 0) , Σt(T , x) :=
∫ T

T−x
σt(u;T , x) du. (8)

Under this parametrization the OIS curve dynamics is the very same as the risk-
free curve in an ordinary HJM framework. Indeed, we have for linearly compounding
forward rates

dEt(T , x; e) = (1/x + Et(T , x; e))
∫ T

T−x
σt(u)

∗du dWT ;e
t .

In the generalized version of the HJM framework proposed by [23] we have an
explicit expression for both the collateralized zero-coupon bonds Pt(T; e) and the
LIBOR forward rates Ft(T , x; e). The first result is a direct consequence of modeling
the OIS curve as the risk-free curve in a standard HJM framework, while the second
result can be achieved only if a particular formof the volatilities is selected.We obtain
this if we generalize the approach of [28] by introducing the following separability
constraint

σt(u,T , x) := h(t)q(u,T , x)g(t, u),

g(t, u) := exp

{
−

∫ u

t
a(s)ds

}
, q(u; u, 0) := Id,

(9)

where ht is an N × N matrix process, q(u,T , x) is a deterministic N × N diagonal
matrix function, and a(s) is a deterministic N-dimensional vector function. The
condition on q(u;T , x) being the identity matrix, when T = u ensures that a standard
HJM framework holds for collateralized zero-coupon bonds.
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We can work out an explicit expression for the LIBOR forward rates, by plugging
the expression of the volatilities into Eq. (7). We obtain

log

(
k(T , x) + Ft(T , x; e)
k(T , x) + F0(T , x; e)

)

= G(t,T − x,T;T , x)∗
(
Xt + Yt

(
G0(t, t,T) − 1

2
G(t,T − x,T;T , x)

))
,

(10)

where the stochastic vector process Xt and the auxiliary matrix process Yt are defined
under the Q measure as in the ordinary HJM framework

Xi
t =

N∑

k=1

∫ t

0
gi(s, t)

(
hik,sdWk,s + (h∗

s hs)ik

∫ t

s
dygk(s, y) ds

)
, i = 1 . . .N

Yik
t =

∫ t

0
gi(s, t)(h

∗
s hs)ikgk(s, t)ds i, k = 1 . . .N

and

G0(t,T0,T1) =
∫ T1

T0

g(t, s)ds, G(t,T0,T1,T , x) =
∫ T1

T0

q(s,T , x)g(t, s)ds.

It is worth noting that the integral representation of forward LIBOR volatilities
given by Eq. (8), together with the common separability constraint given in Eq. (9)
are sufficient conditions to ensure the existence of a reconstruction formula for all
OIS and LIBOR forward rates based on the very same family of Markov processes
(see [3]).

We are interested in some specification of this model, in particular a variant of the
Hull and White model (HW), a variant of the Cheyette model (Ch) and the Moreni
and Pallavicini model (MP). The HWmodel [18] is the simplest one, and is obtained
choosing

h(t)
.= R , q(u,T , x)

.= Id , a(s)
.= a , κ(T , x)

.= 1

x
(11)

where a is a constant vector, and R is the Cholesky decomposition of the correlation
matrix that we want our Xt vector to have. In this case we obtain σt(u;T , x) =
R · e−a(u−t), where the exponential is intended to be component-wise. Then we note
that Xt is a mean reverting Gaussian process while the Yt process is deterministic.

In order to model implied volatility smiles, we can add a stochastic volatility
process to our model, as shown in [22]. In particular we can obtain a variant of the
Ch model ([10]), considering a common square-root process for all the entries of h,
as in [29]. More precisely we replace h(t) in (11) with h(t)

.= √
vtR. With a and R

as before and vt being a process with the following dynamic:
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dvt = η (1 − vt) dt + ν0
(
1 + (ν1 − 1)e−ν2t

) √
vt dZt , v0 = v̄ (12)

where Zt is a Brownian motion correlated to Wt . Obtaining as a volatility process
σt(u;T , x) = √

vtR · e−a(u−t).
As the last specification of the framework we consider the MP model which uses

a different shift k(T , x), and introduces a dependence on the tenor in the volatility
process.

h(t)
.= √

vtR , q(u,T , x)i,i
.= exη

i
, a(s)

.= a , κ(T , x)
.= e−γ x

x
(13)

With a and R as before and vt being defined by (12). Here we have for the volatility
σt(u;T , x) = √

vtR · eηx−a(u−t).
To better appreciate the difference between the Ch model and the MP model one

could compute the quantity

βt(x1, x2; e) := 1

x2
log

( 1
x2

+ Et(t + x2, x2; e)
1
x2

+ Ft(t + x2, x2; e)

)

− 1

x1
log

( 1
x1

+ Et(t + x1, x1; e)
1
x1

+ Ft(t + x1, x1; e)

)

which represents the time-normalized difference between two forward rates with
different tenors and thus can be used as a proxy for the value of a basis swap. We
have that in the HW and in the Ch models βt(x1, x2; e) is deterministic while in the
MP model is a stochastic quantity. This suggests that the MP model should be able
to better capture the dynamics of the basis between two rates with different tenors.
We refer the reader to [3] for a more detailed analysis of the issue, and to [23] for
calibration and valuation examples for the swaptions and cap/floor market.

4.2 Numerical Results

Weapply our framework to simple but relevant products: an IRS and a basis swap.We
analyze the impact of the choice of an interest rate model on the portfolio valuation,
in particular we measure the dependency of the price on the correlations between
interest-rates and credit spreads, the so-called wrong-way risk. We model the market
risks by simulating the following processes in a multiple-curve HJM model under
the pricing measure Q. The overnight rate et and the LIBOR forward rates Ft(T; e)
are simulated according to the dynamics given in Sect. 4.1. Maintaining the same
notation of the aforementioned section, we choose N = 2, and for our numerical
experiments we use a HW model, a Ch model and an MP model, all calibrated to
swaption at-the-money volatilities listed on the European market.

As we have already noted, the Ch model introduces a stochastic volatility and
hence has an increased number of parameters with respect to the HW model. The
MPmodel aims at bettermodeling the basis between rateswith different tenors, while
keeping the model parsimonious in terms of extra parameters with respect to the Ch
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model. In particular the HW model is able to reproduce the ATM quotes but is not
able to correctly reproduce the volatility smile. On the other hand, the introduction of
a stochastic volatility process helps in recovering the market data smile and thus the
Ch and the MP models have similar results in properly fitting the smile. The detailed
results of the calibration are available in [3].

For what concerns the credit part, the default intensities of the investor and the
counterparty are given by two CIR++ processes λi

t = yit + ψ i(t) under theQT ;e mea-
sure, i.e. they follow

dyit = γ i(μi − yit) dt + ζ i
√
yit dZ

i
t , i ∈ {I,C}

where the two Zis are Brownian motions correlated with the WT ;es, and they are
calibrated to the market data shown in [4]. In particular, two different market settings
are used in the numerical examples: the medium risk and the high risk settings. The
correlations among the risky factors are induced by correlating the Brownianmotions
as in [8].

We now analyze the impact of wrong-way risk on the bilateral adjustment, namely
CVAplusDVA, of IRS and basis swapswhen collateralization is switched off, namely
we want to evaluate Eq. (1) when αt

.= 0. For an extended analysis see [3]. Wrong-
way risk is expressed with respect to the correlation between the default intensities
and a proxy of market risk, namely the short rate et .

In Fig. 1 we show the variation of the bilateral adjustment for a ten years IRS
receiving a fix rate yearly and paying 6m Libor twice a year and for a ten years
basis swap receiving 3m Libor plus spread and paying 6m Libor. It is clear that for a
product like the IRS, not subject to the basis dynamic, we have that the big difference
among the models is the presence of a stochastic volatility. In fact we can see that
the Ch model and the MP model are almost indistinguishable while the results of
the HW model are different from the stochastic volatility ones. Moreover we can
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Fig. 1 Wrong-way risk for different models. On the horizontal axis correlation among credit and
market risks; on the vertical axis the bilateral adjustment, namely CVA+DVA, in basis points. Left
panel a 10y IRS receiving a fix rate and paying 6m Libor. Right panel a 10y basis swap receiving
3m Libor plus spread and paying 6m Libor. Montecarlo error is displayed where significant
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observe that all the models have the same trend, i.e. the bilateral adjustment grows as
correlation increase. In fact this can be explained by the fact that a higher correlation
means that the deal will be more profitable when it will be more risky (since we are
receiving the fixed rate and paying the floating one), hence the bilateral adjustment
will be bigger.

In the case of a basis swap instead, we see that, as said before, the HWmodel and
the Ch model do not have a basis dynamic and hence the curve represented is almost
flat. On the other hand the MPmodel is able to capture the dynamics of the basis and
hence we can see that the more the overnight rate is correlated with the credit risk
the smaller the bilateral adjustment becomes.

We conclude by pointing out that our analysis will be extended to partially col-
lateralized deals in future work. In such a context funding costs enter the picture in a
more comprehensive way. Some initial suggestions in this respect were given in [24].
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A Generalized Intensity-Based Framework
for Single-Name Credit Risk

Frank Gehmlich and Thorsten Schmidt

Abstract The intensity of a default time is obtainedby assuming that the default indi-
cator process has an absolutely continuous compensator. Here we drop the assump-
tion of absolute continuity with respect to the Lebesgue measure and only assume
that the compensator is absolutely continuous with respect to a general σ-finite mea-
sure. This allows for example to incorporate the Merton-model in the generalized
intensity-based framework. We propose a class of generalized Merton models and
study absence of arbitrage by a suitable modification of the forward rate approach of
Heath–Jarrow–Morton (1992). Finally, we study affine term structure models which
fit in this class. They exhibit stochastic discontinuities in contrast to the affinemodels
previously studied in the literature.

Keywords Credit risk · HJM · Forward-rate · Structural approach · Reduced-form
approach · Stochastic discontinuities

1 Introduction

The two most common approaches to credit risk modeling are the structural
approach, pioneered in the seminal work of Merton [23], and the reduced-form
approach which can be traced back to early works of Jarrow, Lando, and Turnbull
[18, 22] and to [1].

Default of a company happens when the company is not able to meet its oblig-
ations. In many cases the debt structure of a company is known to the public, such
that default happens with positive probability at times which are known a priori.
This, however, is excluded in the intensity-based framework and it is the purpose of
this article to put forward a generalization which allows to incorporate such effects.
Examples in the literature are, e.g., structural models like [13, 14, 23]. The recently
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missed coupon payment by Argentina is an example for such a credit event as well
as the default of Greece on the 1st of July 2015.1

It is a remarkable observation of [2] that it is possible to extend the reduced-form
approach beyond the class of intensity-based models. The authors study a class of
first-passage timemodels under a filtration generated by aBrownianmotion and show
its use for pricing and modeling credit risky bonds. Our goal is to start with even
weaker assumptions on the default time and to allow for jumps in the compensator
of the default time at deterministic times. From this general viewpoint it turns out,
surprisingly, that previously used HJM approaches lead to arbitrage: the whole term
structure is absolutely continuous and cannot compensate for points in time bearing a
positive default probability. We propose a suitable extension with an additional term
allowing for discontinuities in the term structure at certain random times and derive
precise drift conditions for an appropriate no-arbitrage condition. The related article
[12] only allows for the special case of finitely many risky times, an assumption
which is dropped in this article.

The structure of this article is as follows: in Sect. 2, we introduce the general
setting and study drift conditions in an extended HJM-framework which guarantee
absence of arbitrage in the bond market. In Sect. 3 we study a class of affine models
which are stochastically discontinuous. Section4 concludes.

2 A General Account on Credit Risky Bond Markets

Consider a filtered probability space (Ω,A ,G, P)with a filtrationG = (Gt )t≥0 (the
general filtration) satisfying the usual conditions, i.e. it is right-continuous and G0

contains the P-null sets N0 ofA . Throughout, the probability measure P denotes the
objective measure. As we use tools from stochastic analysis, all appearing filtrations
shall satisfy the usual conditions. We follow the notation from [17] and refer to this
work for details on stochastic processes which are not laid out here.

The filtration G contains all available information in the market. The default of a
company is public information and we therefore assume that the default time τ is a
G-stopping time. We denote the default indicator process H by

Ht = 1{t≥τ }, t ≥ 0,

such that Ht = 1�τ ,∞�(t) is a right-continuous, increasing process. We will also
make use of the survival process 1 − H = 1�0,τ�. The following remark recalls the
essentials of the well-known intensity-based approach.

1Argentina’smissed couponpayment on$29billion debtwas voted a credit event by the International
Swaps and Derivatives Association, see the announcements in [16, 24]. Regarding the failure of
1.5 Billion EUR of Greece on a scheduled debt repayment to the International Monetary fund, see
e.g. [9].
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Remark 1 (The intensity-based approach) The intensity-based approach consists
of two steps: first, denote by H = (Ht )t≥0 the filtration generated by the default
indicator,Ht = σ(Hs : 0 ≤ s ≤ t) ∨ N0, and assume that there exists a sub-filtration
F of G, i.e. Ft ⊂ Gt holds for all t ≥ 0 such that

Gt = Ft ∨ Ht , t ≥ 0. (1)

Viewed from this perspective, G is obtained from the default information H by a
progressive enlargement2 with the filtration F. This assumption opens the area for
the largely developed field of enlargements of filtration with a lot of powerful and
quite general results.

Second, the following key assumption specifies the default intensity: assume that
there is an F-progressive process λ, such that

P(τ > t |Ft ) = exp
(

−
∫ t

0
λsds

)
, t ≥ 0. (2)

It is immediate that the inclusionFt ⊂ Gt is strict under existenceof an intensity, i.e. τ
is not an F-stopping time. Arbitrage-free pricing can be achieved via the following
result: Let Y be a non-negative random variable. Then, for all t ≥ 0,

E[1{τ>t}Y |Gt ] = 1{τ>t}e
∫ t
0 λs ds E[1{τ>t}Y |Ft ].

Of course, this result holds also when a pricing measure Q is used instead of P . For
further literature and details we refer for example to [11], Chap. 12, and to [3].

2.1 The Generalized Intensity-Based Framework

The default indicator process H is a bounded, cádlág, and increasing process, hence
a submartingale of class (D), that is, the family (XT ) over all stopping times T is
uniformly integrable. By the Doob–Meyer decomposition,3 the process

Mt = Ht − Λt , t ≥ 0 (3)

is a true martingale where Λ denotes the dual F-predictable projection, also called
compensator, of H . As 1 is an absorbing state, Λt = Λt∧τ . To keep the arising
technical difficulties at a minimum, we assume that there is an increasing process A
such that

2Note that hereG is right-continuous and P-complete by assumptionwhich is a priori not guaranteed
by (1). One can, however, use the right-continuous extension and we refer to [15] for a precise
treatment and for a guide to the related literature.
3See [20], Theorem 1.4.10.
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Λt =
∫ t∧τ

0
λsd A(s), t ≥ 0, (4)

with a non-negative and predictable process λ. The process λ is called generalized
intensity and we refer to Chap.VIII.4 of [5] for a more detailed treatment of general-
ized intensities (or, equivalently, dual predictable projections) in the context of point
processes.

Note thatwithΔM ≤ 1wehave thatΔΛ = λsΔA(s) ≤ 1.WheneverλsΔA(s) >

0, there is a positive probability that the company defaults at time s. We call such
times risky times, i.e. predictable times having a positive probability of a default
occurring right at that time. Note that under our assumption (4), all risky times are
deterministic. The relationship between ΔΛ(s) and the default probability at time s
will be clarified in Example 3.

2.2 An Extension of the HJM Approach

A credit risky bond with maturity T is a contingent claim promising to pay one unit
of currency at T . The price of the bond with maturity T at time t ≤ T is denoted
by P(t, T ). If no default occurred prior to or at T we have that P(T, T ) = 1. We
will consider zero recovery, i.e. the bond loses its total value at default, such that
P(t, T ) = 0 on {t ≥ τ }. The family of stochastic processes {(P(t, T )0≤t≤T ), T ≥ 0}
describes the evolution of the term structure T �→ P(., T ) over time.

Besides the bonds there is a numéraire X0, which is a strictly positive, adapted
process. We make the weak assumption that log X0 is absolutely continuous,
i.e. X0

t = exp(
∫ t
0 rsds) with a progressively measurable process r , called the short

rate. For practical applications one would use the overnight index swap (OIS) rate
for constructing such a numéraire.

The aim of the following is to extend the HJM approach in an appropriate way
to the generalized intensity-based framework in order to obtain arbitrage-free bond
prices. First approaches in this direction were [7, 25] and a rich source of literature
is again [3]. Absence of arbitrage in such an infinite dimensional market can be
described in terms of no asymptotic free lunch (NAFL) or the more economically
meaningful no asymptotic free lunch with vanishing risk, see [6, 21].

Consider a pricing measure Q∗ ∼ P . Our intention is to find conditions which
render Q∗ an equivalent local martingale measure. In the following, only occasion-
ally the measure P will be used, such that from now on, all appearing terms (like
martingales, almost sure properties, etc.) are to be considered with respect to Q∗.

To ensure that the subsequent analysis is meaningful, we make the following
technical assumption.

Assumption 2.1 The generalized default intensity λ is non-negative, predictable,
and A-integrable on [0, T ∗]:
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∫ T ∗

0
λsd A(s) < ∞, Q∗-a.s.

Moreover, A has vanishing singular part, i.e.

A(t) = t +
∑

0<s≤t

ΔA(s). (5)

The representation (5) of A is without loss of generality: indeed, if the continuous
part Ac is absolutely continuous, i.e. Ac(t) = ∫ t

0 a(s)ds, replacingλs byλsa(s) gives
the compensator of H with respect to Ã whose continuous part is t .

Next, we aim at building an arbitrage-free framework for bond prices. In the
generalized intensity-based framework, the (HJM) approach does allow for arbitrage
opportunities at risky times. We therefore consider the following generalization:
consider a σ-finite (deterministic) measure ν. We could be general on ν, allowing
for an absolutely continuous, a singular continuous, and a pure-jump part. However,
for simplicity, we leave the singular continuous part aside and assume that

ν = νac + νd

where νac(ds) = ds and νd distributes mass only to points, i.e. νd(A) = ∑
i≥1 wi

δui (A), for 0 < u1 < u2 < · · · and positive weights wi > 0, i ≥ 1; here δu denotes
the Dirac measure at u. Moreover, we assume that defaultable bond prices are given
by

P(t, T ) = 1{τ>t} exp
(

−
∫ T

t
f (t, u)ν(du)

)

= 1{τ>t} exp
(

−
∫ T

t
f (t, u)du −

∑

i≥1

1{ui ∈(t,T ]}wi f (t, ui )

)
, 0 ≤ t ≤ T ≤ T ∗.

(6)

The sum in the last line gives the extension over the (HJM) approach which allows
us to deal with risky times in an arbitrage-free way.

The family of processes ( f (t, T ))0≤t≤T for T ∈ [0, T ∗] are assumed to be Itô
processes satisfying

f (t, T ) = f (0, T ) +
∫ t

0
a(s, T )ds +

∫ t

0
b(s, T ) · dWs (7)

with an n-dimensional Q∗-Brownian motion W .
Denote byB the Borel σ-field over R.
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Assumption 2.2 We require the following technical assumptions:

(i) the initial forward curve is measurable, and integrable on [0, T ∗]:
∫ T ∗

0
| f (0, u)| < ∞, Q∗-a.s.,

(ii) the drift parameter a(ω, s, t) is R-valued O ⊗ B-measurable and integrable
on [0, T ∗]: ∫ T ∗

0

∫ T ∗

0
|a(s, u)|ds ν(du) < ∞, Q∗-a.s.,

(iii) the volatility parameter b(ω, s, t) is Rn-valued, O ⊗ B-measurable, and

sup
s,t≤T ∗

‖ b(s, t) ‖< ∞, Q∗-a.s.

(iv) it holds that
0 ≤ λ(ui )ΔA(ui ) < wi , i ≥ 1.

Set

ā(t, T ) =
∫ T

t
a(t, u)ν(du),

b̄(t, T ) =
∫ T

t
b(t, u)ν(du),

H ′(t) =
∫ t

0
λsds −

∑

ui ≤t

log
(wi − λui ΔA(ui )

wi

)
.

(8)

The following proposition gives the desired drift condition in the generalizedMerton
models.

Theorem 1 Assume that Assumptions 2.1 and 2.2 hold. Then Q∗ is an ELMM if and
only if the following conditions hold: {s : ΔA(s) �= 0} ⊂ {u1, u2, . . . }, and

∫ t

0
f (s, s)ν(ds) =

∫ t

0
rsds + H ′(t), (9)

ā(t, T ) = 1

2
‖ b̄(t, T ) ‖2, (10)

for 0 ≤ t ≤ T ≤ T ∗ d Q∗ ⊗ dt-almost surely on {t < τ }.
The first condition, (9), can be split in the continuous and pure-jump part, such

that (9) is equivalent to
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f (t, t) = rs + λs

f (t, ui ) = log
wi

wi − λ(ui )ΔA(ui )
≥ 0.

The second relation states explicitly the connection of the forward rate at a risky time
ui to the probability Q∗(τ = ui |Fui −), given that τ ≥ ui , of course. It simplifies
moreover, if ΔA(ui ) = wi to

f (t, ui ) = − log(1 − λ(ui )). (11)

For the proof we first provide the canonical decomposition of

J (t, T ) :=
∫ T

t
f (t, u)ν(du), 0 ≤ t ≤ T .

Lemma 1 Assume that Assumption 2.2 holds. Then, for each T ∈ [0, T ∗] the process
(J (t, T ))0≤t≤T is a special semimartingale and

J (t, T ) =
∫ T

0
f (0, u)ν(du) +

∫ t

0
ā(u, T )du +

∫ t

0
b̄(u, T )dWu −

∫ t

0
f (u, u)ν(du).

Proof Using the stochastic Fubini Theorem (as in [26]), we obtain

J (t, T ) =
∫ T

t

(
f (0, u) +

∫ t

0
a(s, u)ds +

∫ t

0
b(s, u)dWs

)
ν(du)

=
∫ T

0
f (0, u)ν(du) +

∫ t

0

∫ T

s
a(s, u)ν(du)ds +

∫ t

0

∫ T

s
b(s, u)ν(du)dWs

−
∫ t

0
f (0, u)ν(du) −

∫ t

0

∫ t

s
a(s, u)ν(du)ds −

∫ t

0

∫ t

s
b(s, u)ν(du)dWs

=
∫ T

0
f (0, u)ν(du) +

∫ t

0
ā(s, T )ds +

∫ t

0
b̄(s, T )dWs

−
∫ t

0

(
f (0, u) −

∫ u

0
a(s, u)ds −

∫ u

0
b(s, u)dWs

)
ν(du),

and the claim follows.

Proof (Proof of Theorem 1) Set, E(t) = 1{τ>t}, and F(t, T ) = exp
(
− ∫ T

t f (t, u)

ν(du)
)
, such that P(t, T ) = E(t)F(t, T ). Integration by parts yields that

d P(t, T ) = F(t−, T )d E(t) + E(t−)d F(t, T ) + d[E, F(., T )]t =: (1′) + (2′) + (3′).
(12)
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In view of (1′), we obtain from (4), that

E(t) +
∫ t∧τ

0
λsd A(s) =: M1

t (13)

is a martingale. Regarding (2′), note that from Lemma 1 we obtain by Itô’s formula
that

d F(t, T )

F(t−, T )
=

(
f (t, t) − ā(t, T ) + 1

2
‖ b̄(t, T ) ‖2

)
dt

+
∑

i≥0

(
e f (t,t) − 1

)
wiδui (dt) + d M2

t , (14)

with a local martingale M2. For the remaining term (3′), note that

∑

0<s≤t

ΔE(s)ΔF(s, T ) =
∫ t

0
F(s−, T )(e f (s,s) − 1)ν({s})d E(s)

=
∫ t

0
F(s−, T )(e f (s,s) − 1)ν({s})d M1

s

−
∫ t∧τ

0
F(s−, T )(e f (s,s) − 1)ν({s})λsd A(s). (15)

Inserting (14) and (15) into (12) we obtain

d P(t, T )

P(t−, T )
= −λt d A(t)

+
(

f (t, t) − ā(t, T ) + 1

2
‖ b̄(t, T ) ‖2

)
dt

+
∑

i≥0

(
e f (t,t) − 1

)
wiδui (dt)

−
∫

R

ν({t})(e f (t,t) − 1)λt d A(t) + d M3
t

with a local martingale M3. We obtain a Q∗-local martingale if and only if the drift
vanishes. Next, we can separate between absolutely continuous and discrete part.
The absolutely continuous part yields (10) and f (t, t) = rt + λt d Q∗ ⊗ dt-almost
surely. It remains to compute the discontinuous part, which is given by

∑

i :ui ≤t

P(ui−, T )(e f (ui ,ui ) − 1)wi −
∑

0<s≤t

P(s−, T )e f (s,s)λsΔA(s),
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for 0 ≤ t ≤ T ≤ T ∗. This yields {s : ΔA(s) �= 0} ⊂ {u1, u2, . . . }. The discontinu-
ous part vanishes if and only if

1{ui ≤T ∗∧τ }e− f (ui ,ui )wi =1{ui ≤T ∗∧τ }
(

wi − λui ΔA(ui )
)
, i ≥ 1,

which is equivalent to

1{ui ≤T ∗∧τ } f (ui , ui ) = − 1{ui ≤T ∗∧τ } log
wi − λui ΔA(ui )

wi
, i ≥ 1.

We obtain (9) and the claim follows.

Example 1 (The Merton model) The paper [23] considers a simple capital structure
of a firm, consisting only of equity and a zero-coupon bond with maturity U > 0.
The firm defaults at U if the total market value of its assets is not sufficient to cover
the liabilities.

We are interested in setting up an arbitrage-free market for credit derivatives and
consider a market of defaultable bonds P(t, T ), 0 ≤ t ≤ T ≤ T ∗ with 0 < U ≤ T ∗
as basis for more complex derivatives. In a stylized form the Merton model can be
represented by aBrownianmotion W denoting the normalized logarithm of the firm’s
assets, a constant K > 0 and the default time

τ =
{

U if WU ≤ K

∞ otherwise.

Assume for simplicity a constant interest rate r and let F be the filtration generated
by W . Then P(t, T ) = e−r(T −t) whenever T < U because these bonds do not carry
default risk. On the other hand, for t < U ≤ T ,

P(t, T ) = e−r(T −t)E∗[1{τ>T }|Ft ] = e−r(T −t)E∗[1{τ=∞}|Ft ] = e−r(T −t)Φ

(
Wt − K√

U − t

)
,

where Φ denotes the cumulative distribution function of a standard normal random
variable and E∗ denotes the expectation with respect to Q∗. For t → U we recover
P(U, U ) = 1{τ=∞}. The derivation of representation (6)withν(du) := du + δU (du)

is straightforward. A simple calculation with

P(t, T ) = 1{τ>t} exp
(

−
∫ T

t
f (t, u)du − f (t, U )1{t<U≤T }

)
(16)

yields f (t, T ) = r for T �= U and

f (t, U ) = − logΦ

(
Wt − K√

U − t

)
.
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By Itô’s formula we obtain

b(t, U ) = −
ϕ

(
Wt −K√

U−t

)

Φ

(
Wt −K√

U−t

) (U − t)−1/2,

and indeed, a(t, U ) = 1
2b2(t, U ). Note that the conditions for Proposition1 hold

and, the market consisting of the bonds P(t, T ) satisfies NAFL, as expected. More
flexible models of arbitrage-free bond prices can be obtained if the market filtration
F is allowed to be more general, as we show in Sect. 3 on affine generalized Merton
models.

Example 2 (An extension of the Black–Cox model) The model suggested in [4] uses
a first-passage time approach to model credit risk. Default happens at the first time,
when the firm value falls below a pre-specified boundary, the default boundary. We
consider a stylized version of this approach and continue the Example1. Extending
the original approach,we include a zero-coupon bondwithmaturityU . The reduction
of the firm value atU is equivalent to considering a default boundary with an upward
jump at that time.Hence,we consider aBrownianmotionW and the default boundary

D(t) = D(0) + K1{U≥t}, t ≥ 0,

with D(0) < 0, and let default be the first time when W hits D, i.e.

τ = inf{t ≥ 0 : Wt ≤ D(t)}
with the usual convention that inf ∅ = ∞. The following lemmacomputes the default
probability in this setting and the forward rates are directly obtained from this result
together with (16). The filtration G = F is given by the natural filtration of the
Brownian motion W after completion. Denote the random sets

Δ1 :=
{
(x, y) ∈ R2 : x

√
T − U ≤ D(U ) −

(
y
√

U − t + Wt

)
, y

√
U − t + Wt > D(0)

}

Δ2 :=
{
(x, y) ∈ R2 : x

√
T − U ≤ D(U ) −

(
y
√

U − t + 2D(0) − Wt

)
,

y
√

U − t + D(0) − Wt > 0
}

.

Lemma 2 Let D(0) < 0, U > 0 and D(U ) ≥ D(0). For 0 ≤ t < U, it holds on
{τ > t}, that

P(τ > T |Ft ) = 1 − 2Φ

(
D(0) − Wt√

T − t

)
− 1{T ≥U }2(Φ2(Δ1) − Φ2(Δ2)), (17)

where Φ2 is the distribution of a two-dimensional standard normal distribution and
the sets Δt = Δt (D), t ≥ U are given by
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Δt =
{
(x, y) ∈ R2 : x

√
T − U + y

√
U ≤ −D(U ),

}
.

For t ≥ U it holds on {τ > t}, that

P(τ > T |Ft ) = 1 − 2Φ

(
D(U ) − Wt√

T − t

)
.

Proof The first part of (17) where T < U follows directly from the reflection prin-
ciple and the property that W has independent and stationary increments. Next,
consider 0 ≤ t < U ≤ T . Then, on {WU > D(U )},

P( inf[U,T ] W > D(U )|FU ) = 1 − 2Φ

(
D(U ) − WU√

T − U

)
. (18)

Moreover, on {Wt > D(0)} it holds for x > D(0) that

P( inf[0,U ] W > D(0), WU > x |Ft ) = P(WU > x |Ft ) − P(WU < x, inf[0,U ] W ≤ D(0)|Ft )

= Φ

(
Wt − x√

U − t

)
− Φ

(
2D(0) − x − Wt√

U − t

)
.

Hence, E[g(WU )1{inf [0,U ] W>D(0)}|Ft ] = 1{inf [0,t] W>D(0)}
∫ ∞

D(0) g(x) ft (x)dx with den-
sity

ft (x) = 1{x>D(0)}
1√

U − t

[
φ

(
Wt − x√

U − t

)
− φ

(
2D(0) − x − Wt√

U − t

)]
.

Together with (18) this yields on {inf [0,t] W > D(0)}

P( inf[0,T ](W − D) > 0|Ft ) =
∫ ∞

D(0)

[
1 − 2Φ

(
D(U ) − x√

T − U

)]
ft (x)dx

= P( inf[t,T ] W > D(0)|Ft ) − 2
∫ ∞

D(0)
Φ

(
D(U ) − x√

T − U

)
ft (x)dx .

It remains to compute the integral. Regarding the first part, letting ξ and η be inde-
pendent and standard normal, we obtain that

∫ ∞

D(0)
Φ

(
D(U ) − x√

T − U

)
1√

U − t
φ
( x − Wt√

U − t

)
dx

= Pt

(√
T − Uξ ≤ D(U ) − (

√
U − tη + Wt ),

√
U − tη + Wt > D(0)

)

= Φ2(Δ1),
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where we abbreviate Pt (·) = P(·|Ft ). In a similar way,

∫ ∞
D(0)

Φ

(
D(U ) − x√

T − U

)
1√

U − t
φ
( x − (2D(0) − Wt )√

U − t

)
dx

= Pt

(√
T − Uξ ≤ D(U ) − (

√
U − tη + 2D(0) − Wt ),

√
U − tη + D(0) − Wt > 0

)

= Φ2(Δ2)

and we conclude.

3 Affine Models in the Generalized
Intensity-Based Framework

Affine processes are a well-known tool in the financial literature and one reason for
this is their analytical tractability. In this section we closely follow [12] and shortly
state the appropriate affine models which fit the generalized intensity framework.
For proofs, we refer the reader to this paper.

The main point is that affine processes in the literature are assumed to be sto-
chastically continuous (see [8, 10]). Due to the discontinuities introduced in the
generalized intensity-based framework, we propose to consider piecewise continu-
ous affine processes.

Example 3 Consider a non-negative integrable function λ, a constant λ′ ≥ 0 and a
deterministic time u > 0. Set

K (t) =
∫ t

0
λ(s)ds + 1{t≥u}κ, t ≥ 0.

Let the default time τ be given by τ = inf{t ≥ 0 : Kt ≥ ζ} with a standard
exponential-random variable ζ. Then P(τ = u) = 1 − e−κ =: λ′. Considering
ν(ds) = ds + δu(ds) with u1 = u and w1 = 1, we are in the setup of the previous
section. The drift condition (9) holds, if

f (u, u) = − log(1 − λ′) = κ.

Note, however, that K is not the compensator of H . Indeed, the compensator of H
equals Λt = ∫ t∧τ

0 λ(s)ds + 1{t≥u}λ′, see [19] for general results in this direction.

The purpose of this section is to give a suitable extension of the above example
involving affine processes. Recall that we consider a σ-finite measure

ν(du) = du +
∑

i≥1

wiδui (du),
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as well as A(u) = u + ∑
i≥1 1{u≥ui }. The idea is to consider an affine process X and

study arbitrage-free doubly stochastic term structure models where the compensator
Λ of the default indicator process H = 1{·≤τ } is given by

Λt =
∫ t

0

(
φ0(s) + ψ0(s)

� · Xs

)
ds +

∑

i≥1

1{t≥ui }
(
1 − e−φi −ψ�

i ·Xui

)
. (19)

Note that by continuity of X , Λt (ω) < ∞ for almost all ω. To ensure that Λ is non-
decreasing we will require that φ0(s) + ψ0(s)� · Xs ≥ 0 for all s ≥ 0 and φi + ψ�

i ·
Xui ≥ 0 for all i ≥ 1.

Consider a state space in canonical form X = Rm
≥0 × Rn for integers m, n ≥ 0

with m + n = d and a d-dimensional Brownian motion W . Let μ and σ be defined
onX by

μ(x) = μ0 +
d∑

i=1

xiμi , (20)

1

2
σ(x)�σ(x) = σ0 +

d∑

i=1

xiσi , (21)

where μ0,μi ∈ Rd , σ0,σi ∈ Rd×d , for all i ∈ {1, . . . , d}. We assume that the para-
meters μi , σi , i = 0, . . . , d are admissible in the sense of Theorem 10.2 in [11].
Then the continuous, unique strong solution of the stochastic differential equation

d Xt = μ(Xt )dt + σ(Xt )dWt , X0 = x, (22)

is an affine process X on the state space X , see Chap.10 in [11] for a detailed
exposition.

We call a bond-price model affine if there exist functions A : R≥0 × R≥0 → R,
B : R≥0 × R≥0 → Rd such that

P(t, T ) = 1{τ>t}e−A(t,T )−B(t,T )�·Xt , (23)

for 0 ≤ t ≤ T ≤ T ∗.We assume that A(., T ) and B(., T ) are right-continuous.More-
over, we assume that t �→ A(t, .) and t �→ B(t, .) are differentiable from the right
and denote by ∂+

t the right derivative. For the convenience of the reader we state
the following proposition giving sufficient conditions for absence of arbitrage in an
affine generalized intensity-based setting. It extends [12] where only finitely many
risky times were treated.

Proposition 1 Assume thatφ0 : R≥0 → R,ψ0 : R≥0 → Rd are continuous,ψ0(s) +
ψ0(s)� · x ≥ 0 for all s ≥ 0 and x ∈ X and the constants φi ∈ R and ψi ∈ Rd , i ≥ 1
satisfy φi + ψ�

i · x ≥ 0 for all 1 ≤ i ≤ n and x ∈ X as well as
∑

i≥1 |wi |(|φi | +
|ψi,1| + · · · + |ψi,d |) < ∞. Moreover, let the functions A : R≥0 × R≥0 → R and
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B : R≥0 × R≥0 → Rd be the unique solutions of

A(T, T ) = 0

A(ui , T ) = A(ui−, T ) − φi wi

−∂+
t A(t, T ) = φ0(t) + μ�

0 · B(t, T ) − B(t, T )� · σ0 · B(t, T ),

(24)

and

B(T, T ) = 0

Bk(ui , T ) = Bk(ui−, T ) − ψi,kwi

−∂+
t Bk(t, T ) = ψ0,k(t) + μ�

k · B(t, T ) − B(t, T )� · σk · B(t, T ),

(25)

for 0 ≤ t ≤ T . Then, the doubly-stochastic affine model given by (19) and (23)
satisfies NAFL.

Proof By construction,

A(t, T ) =
∫ T

t
a′(t, u)du +

∑

i :ui ∈(t,T ]
φi wi

B(t, T ) =
∫ T

t
b′(t, u)du +

∑

i :ui ∈(t,T ]
ψi wi

with suitable functions a′ and b′ and a′(t, t) = φ0(t) as well as b′(t, t) = ψ0(t). A
comparison of (23) with (6) yields the following: on the one hand, for T = ui ∈ U ,
we obtain f (t, ui ) = φi + ψ�

i · Xt . Hence, the coefficients a(t, T ) and b(t, T ) in (7)
for T = ui ∈ U compute to a(t, ui ) = ψ�

i · μ(Xt ) and b(t, ui ) = ψ�
i · σ(Xt).

On the other hand, for T /∈ U we obtain that f (t, T ) = a′(t, T ) + b′(t, T )� · Xt .
Then, the coefficients a(t, T ) and b(t, T ) can be computed as follows: applying Itô’s
formula to f (t, T ) and comparing with (7) yields that

a(t, T ) = ∂t a
′(t, T ) + ∂t b

′(t, T )� · Xt + b′(t, T )� · μ(Xt )

b(t, T ) = b′(t, T )� · σ(Xt ).
(26)

Set ā′(t, T ) = ∫ T
t a′(t, u)du and b̄′(t, T ) = ∫ T

t b′(t, u)du and note that,

∫ T

t
∂t a

′(t, u)du = ∂t ā
′(t, T ) + a′(t, t).

As ∂+
t A(t, T ) = ∂t ā′(t, T ), and ∂+

t B(t, T ) = ∂t b̄′(t, T ), we obtain from (26) that
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ā(t, T ) =
∫ T

t
a(t, u)ν(du) =

∫ T

t
a(t, u)du +

∑

ui ∈(t,T ]
wiψ

�
i · μ(Xt )

= ∂+
t A(t, T ) + a′(t, t) + (

∂+
t B(t, T ) + b′(t, t)

)� · Xt + B(t, T )� · μ(Xt ),

b̄(t, T ) =
∫ T

t
b(t, u)ν(du) =

∫ T

t
b(t, u)du +

∑

ui ∈(t,T ]
wiψ

�
i · σ(Xt )

= B(t, T )� · σ(Xt )

for 0 ≤ t ≤ T ≤ T ∗. We now show that under our assumptions, the drift conditions
(9) and (10) hold: Observe that, by Eqs. (24), (25), and the affine specification (20),
and (21), the drift condition (10) holds. Moreover, from (11),

ΔH ′(ui ) = φi + ψ�
i · Xui

and λs = φ0(s) + ψ0(s)� · Xs by (19). We recover ΔΛui = 1 − exp(−φi − ψ�
i ·

Xui ) taking values in [0, 1) by assumption. Hence, (9) holds and the claim follows.

Example 4 In the one-dimensional case we consider X , given as solution of

d Xt = (μ0 + μ1Xt )dt + σ
√

Xt dWt , t ≥ 0.

Consider only one risky time u1 = 1 and let φ0 = φ1 = 0, ψ0 = 1, such that

Λ =
∫ t

0
Xsds + 1{u≥1}(1 − e−ψ1X1).

Hence the probability of having no default at time 1 just prior to 1 is given by e−ψ1X1 ,
compare Example 3.

An arbitrage-free model can be obtained by choosing A and B according to
Proposition 1 which can be immediately achieved using Lemma 10.12 from [11] (see

in particular Sect. 10.3.2.2 on the CIR short-rate model): denote θ =
√

μ2
1 + 2σ2 and

L1(t) = 2(eθt − 1),

L2(t) = θ(eθt + 1) + μ1(e
θt − 1),

L3(t) = θ(eθt + 1) − μ1(e
θt − 1),

L4(t) = σ2(eθt − 1).

Then

A0(s) = 2μ0

σ2
log

(
2θe

(σ−μ1)t
2

L3(t)

)

, B0(s) = − L1(t)

L3(t)
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are the unique solutions of the Riccati equations B ′
0 = σ2B2

0 − μ1B0 with boundary
condition B0(0) = 0 and A′

0 = −μ0B0 with boundary condition A0(0) = 0.Note that
with A(t, T ) = A0(T − t) and B(t, T ) = B0(T − t) for 0 ≤ t ≤ T < 1, the condi-
tions of Proposition 1 hold. Similarly, for 1 ≤ t ≤ T , choosing A(t, T ) = A0(T − t)
and B(t, T ) = B0(T − t) implies again the validity of (24) and (25). On the other
hand, for 0 ≤ t < 1 and T ≥ 1 we set u(T ) = B(1, T ) + ψ1 = B0(T − 1) + ψ1,
according to (25), and let

A(t, T ) = 2μ0

σ2
log

(
2θe

(σ−μ1)(1−t)
2

L3(1 − t) − L4(1 − t)u(T )

)

B(t, T ) = − L1(1 − t) − L2(1 − t)u(T )

L3(1 − t) − L4(1 − t)u(T )
.

It is easy to see that (24) and (25) are also satisfied in this case, in particular
ΔA(1, T ) = −φ1 = 0 and ΔB(1, T ) = −ψ1. Note that, while X is continuous, the
bond prices are not even stochastically continuous because they jump almost surely
at u1 = 1. We conclude by Proposition 1 that this affine model is arbitrage-free. �

4 Conclusion

In this article we studied a new class of dynamic term structure models with credit
risk where the compensator of the default time may jump at predictable times. This
framework was called generalized intensity-based framework. It extends existing
theory and allows to include Merton’s model, in a reduced-form model for pricing
credit derivatives. Finally, we studied a class of highly tractable affine models which
are only piecewise stochastically continuous.
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Option Pricing and Sensitivity Analysis
in the Lévy Forward Process Model

Ernst Eberlein, M’hamed Eddahbi and Sidi Mohamed Lalaoui Ben Cherif

Abstract The purpose of this article is to give a closed Fourier-based valuation for-
mula for a caplet in the framework of the Lévy forward process model which was
introduced in Eberlein and Özkan, Financ. Stochast. 9:327-348, 2005, [5]. After-
wards, we compute Greeks by two approaches which come from totally different
mathematical fields. The first is based on the integration-by-parts formula, which
lies at the core of the application of the Malliavin calculus to finance. The second
consists in using Fourier-based methods for pricing derivatives as exposed in Eber-
lein, Quantitative Energy Finance, 2014, [3]. We illustrate the results in the case
where the jump part of the underlying model is driven by a time-inhomogeneous
Gamma process and alternatively by a Variance Gamma process.

Keywords Option valuation · Lévy forward process model · Fourier transform ·
Time-inhomogeneous Lévy processes · Malliavin calculus · Greeks and sensitivity
analysis
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1 Introduction

To compute expectations which arise as prices of derivative products is a key issue
in quantitative finance. The effort which is necessary to get these values depends to
a high degree on the sophistication of the model approach which is used. Simple
models such as the classical geometric Brownian motion lead to easy-to-evaluate
formulas for expectations but entail at the same time a high model risk. As has
been shown in numerous studies, the empirical return distributions which one can
observe are far from normality. This is true for all categories of financial markets:
equity, fixed income, foreign exchange as well as credit markets (see e.g. Eberlein
and Keller (1995) [4] for the analysis of stock price data and Eberlein and Kluge
(2007) [7] for data from fixed income markets). A first step to reduce model risk
and to improve the performance of the model consists in introducing volatility as a
stochastic quantity. Some of the stochastic volatility models became quite popular.
Nevertheless one must be aware that the distributions which diffusion processes with
non-deterministic coefficients generate on a given time horizon are not known. They
can only be determined approximately on the basis of simulations of process paths. In
order to get more realistic distributions, an excellent choice is to replace the driving
Brownian motion in classical models by a suitably chosen Lévy process. This can
also be interpreted in the sense that instead of making volatility stochastic one can go
over to a stochastic clock. The reason is that many Lévy processes can be obtained as
time-changed Brownian motions. For example, the Variance Gamma process results
when one replaces linear time by a Gamma process as subordinator. Of course, one
can also consider both: a more powerful driver and stochastic volatility.

Lévy processes are in a one-to-one correspondence to the rich class of infinitely
divisible distributions and at the same time analytically well tractable. Due to the
higher number of available parameters, this class of distributions is flexible enough to
allow a much better fit to empirical return distributions. The systematic error which
results from the assumption of normality is avoided. The generating distribution of a
Lévy process shows up as the distribution of increments of length one. Consequently,
any distribution which one gets by fitting a parametrized subclass to empirical return
data can be implemented not only approximately but exactly into Lévy-driven mod-
els. Suitably parametrized model classes which have been used successfully so far
are driven by generalized hyperbolic, normal inverse Gaussian (NIG), or Variance
Gamma (VG) processes, just to mention a few.

As noted above, advancedmodels with superior statistical properties require more
demanding numerical methods. Efficient and accurate algorithms are crucial in this
context, in particular for calibration purposes. For pricing of derivatives the historical
distribution, which can be derived from price data of the underlying and which is
used for risk management, is of less interest. Calibration usually means to estimate
the risk-neutral distribution parameters. In other words, one exploits price data of
derivatives. In most cases this is given in terms of volatilities. Whereas years ago
calibration was usually done overnight, many trading desks recalibrate nowadays
on an intraday basis. During a calibration procedure in each iteration step a large
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number of model prices have to be computed and compared to market prices. A
method which almost always works to get the corresponding expectations is Monte
Carlo simulation. Its disadvantage is that it is computationally intensive and therefore
too slow for many purposes. Another classical approach is to represent prices as
solutions of partial differential equations (PDEs) which in the case of Lévy processes
with jumps become partial integro–differential equations (PIDEs). This approach,
which is based on the Feynman–Kac formula, applies to a wide range of valuation
problems, in particular it allows to compute prices of American options as well.
Nevertheless, the numerical solution of PIDEs rests on sophisticated discretization
methods and corresponding programs. In this paper we concentrate on the third,
namely the Fourier-based approach.

To manage portfolios of derivatives, traders have to understand how sensitive
prices of derivative products are with respect to changes in the underlying parame-
ters. For this purpose they need to know the Greeks which are given by the partial
derivatives of the pricing functional with respect to those parameters. Usually Greeks
are estimated by means of a finite difference approximation. Two kinds of errors are
produced this way: the first one comes from the approximation of the derivative by
a finite difference and the second one results from the numerical computation of
the expectation. To eliminate one of the sources of error, Fournié et al. (1999) [9]
adopted a new approach which consists in shifting the differential operator from the
pricing functional to the diffusion kernel. This procedure results in an expectation
operator applied to the payoff multiplied by a random weight function.

In the following we focus on a discrete tenor interest rate model which has been
introduced in Eberlein and Özkan (2005) [5]. This so-called Lévy forward process
model is driven by a time-inhomogeneous Lévy process and is developed on the basis
of a backward induction that is necessary to get the LIBOR rates in a convenient
homogeneous form. A major advantage of the forward process approach is that it
is invariant under the measure change in the sense that the driving process remains
a time-inhomogeneous Lévy process. Moreover, the measure changes do not only
have the invariance property but in addition they are analytically and consequently
also numerically much simpler compared to the corresponding measure changes in
the so-called LIBOR model. The reason is that in each induction step the forward
process itself represents up to a norming constant the density process on which the
measure change is based. As a consequence, any approximation such as the ‘frozen
drift’ approximation ormore sophisticated versions of it are completely avoided. This
means that the approximation error with which one has to struggle in the LIBOR
approach does not show up in the forward process approach.

Another important aspect is that in the latter model the increments of the driving
process translate directly into increments of the LIBOR rates. This is not the case
for the LIBOR model where the increments of the LIBOR rates are proportional to
the corresponding increments of the driving process scaled with the current value of
the LIBOR rate. Expressed in terms of the terminology which will be developed in
Sects. 2 and 3 this means that in the Lévy LIBOR model
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L(t + Δt, Tk) − L(t, Tk) ∼ L(t, Tk)
(
LTk+1
t+Δt − LTk+1

t

)
, (1)

whereas in the Lévy forward process model

L(t + Δt, Tk) − L(t, Tk) ∼ δ−1
k

(
LTk+1
t+Δt − LTk+1

t

)
. (2)

The fact that the increments of the LIBOR rate process do not depend on current
LIBOR values, translates into increased flexibility and a superior model performance
of the forward process approach.

In addition to the differences in mathematical properties there is a fundamental
economic difference. The forward process approach allows for negative interest rates
as well as for negative starting values. This is of crucial importance in particular in
the current economic environment where negative rates are common. Models where
by construction interest rates stay strictly positive are not able to produce realistic
valuations for a large collection of interest rate derivatives in a deflationary or near-
deflationary environment.

As far as the calculation of Greeks in this setting is concerned, we refer to Glasser-
man andZhao (1999) [12],Glasserman (2004) [11], andFries (2007) [10]where some
treatment of this issue is given. The classical diffusion-based LIBOR market model
offers a high degree of analytical tractability. However, this model cannot reproduce
the phenomenon of changing volatility smiles along the maturity axis. In order to
gain more flexibility in a first step one can replace the driving Brownian motion by
a (time-homogeneous) Lévy process. However, one observes that the shape of the
volatility surface produced by cap and floor prices is too sophisticated in order to be
matched with sufficient accuracy by amodel which is driven by a time-homogeneous
process. To achieve a more accurate calibration of the model across different strikes
and maturities one has to use the more flexible class of time-inhomogeneous Lévy
processes (see e.g. Eberlein and Özkan (2005) [5] and Eberlein and Kluge (2006)
[6]). Graphs in the latter paper show in particular that interest rate models driven
by time-inhomogeneous Lévy processes are able to reproduce implied volatility
curves (smiles) observed in the market across all maturities with high accuracy. If
one restricts the approach to (time-homogeneous) Lévy processes as drivers, the
smiles flatten out too fast at longer maturities. Consequently, we have analytical—
the invariance under measure changes—as well as statistical reasons to choose time-
inhomogeneous Lévy processes as drivers. In implementations of the model already
a rather mild form of time-inhomogeneity turns out to be sufficient. Typically one
has to glue together three pieces of (time-homogeneous) Lévy processes in order to
cover the full range of maturities with sufficient accuracy. In terms of parameters
this means that instead of three or four one uses nine or twelve parameters.

The first goal of this paper is to give a closed Fourier-based valuation formula for
a caplet in the framework of the Lévy forward process model. The second aim is to
study sensitivities. We discuss two approaches for this purpose. The first is based
on the integration-by-parts formula, which lies at the core of the application of the
Malliavin calculus to finance as developed in Fournié et al. (1999) [9], León et al.
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(2002) [14], Petrou (2008) [17], Yablonski (2008) [19]. This approach is appropriate
if the driving process has a diffusion component. The second approach which covers
purely discontinuous drivers as well relies on Fourier-based methods for pricing
derivatives. For a survey of Fourier-based methods see Eberlein (2014) [3]. We
illustrate the result by applying the formula to the pricing of a caplet where the jump-
part of the underlying model is driven by a time-inhomogeneous Gamma process
and alternatively by a Variance Gamma process.

2 The Lévy Forward Process Model

Let 0 = T0 < T1 < · · · < Tn−1 < Tn = T ∗ denote a discrete tenor structure and set
δk = Tk+1 − Tk for all k ∈ {0, . . . , n − 1}. Because we proceed by backward induc-
tion, let us use the notation T ∗

i := Tn−i and δ∗
i = δn−i for i ∈ {1, . . . , n}. For zero-

coupon bond prices B(t, T ∗
i ) and B(t, T ∗

i−1), the forward process is defined by

F(t, T ∗
i , T ∗

i−1) = B(t, T ∗
i )

B(t, T ∗
i−1)

. (3)

Hence, modeling forward processes means specifying the dynamics of ratios of
successive bond prices. Let (Ω;F=FT ∗ ;F;PT ∗) be a complete stochastic basis
where PT ∗ should be regarded as the forward martingale measure for the settlement
date T ∗ > 0 and the filtration F= (Ft )t∈[0,T ∗] satisfies the usual conditions. Consider
a time-inhomogeneous Lévy process LT ∗

defined on (Ω;F =FT ∗ ;F;PT ∗) starting
at 0 with local characteristics (bT

∗
, c, FT ∗

) such that the drift term bT
∗

s ∈ R, the
volatility coefficient cs and the Lévy measure FT ∗

s satisfy the following conditions

∃ σ > 0, ∀ s ∈ [0, T ∗] : cs > σ, FT ∗
s ({0}) = 0 (4)

and

∫ T ∗

0

(
|bT ∗

s | + |cs | +
∫

R

(|x |2 ∧ 1
)
FT ∗
s (dx)

)
ds < ∞. (5)

We impose as usual a further integrability condition.Note that the processeswhichwe
will define later, are by construction martingales and therefore every single random
variable has to be integrable.

Assumption 2.1 (EM) There exists a constant M > 1 such that

∫ T ∗

0

∫

{|x |>1}
exp(ux)FT ∗

s (dx)ds < ∞, ∀ u ∈ [−M, M]. (6)
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Under (EM) the random variable LT ∗
t has a finite expectation and its law is given by

the characteristic function

E

[
eiuL

T∗
t

]
= exp

(∫ t

0

(
iubT

∗
s − 1

2
u2cs +

∫

R

(
eiux − 1 − iux

)
FT ∗
s (dx)

)
ds

)
. (7)

Furthermore, the process LT ∗
is a special semimartingale, and thus its canonical

representation has the simple form

LT ∗
t =

∫ t

0
bT

∗
s ds +

∫ t

0

√
csdW

T ∗
s +

∫ t

0

∫

R

xμ̃LT∗
(ds, dx), (8)

where (WT ∗
t )t≥0 is aPT ∗ -standardBrownianmotion and μ̃LT ∗ := μLT∗− νT ∗

is thePT ∗ -

compensated random measure of jumps of LT ∗
. As usual, μLT∗

denotes the random
measure of jumps of LT ∗

and νT ∗
(ds, dx) := FT ∗

s (dx)ds the PT ∗ -compensator of

μLT∗
. We denote by θs the cumulant function associated with the process LT ∗

as given
in (8) with local characteristics (bT

∗
, c, FT ∗

), that is, for appropriate z ∈ C

θs(z) = zbT
∗

s + z2

2
cs +

∫

R

(
ezx − 1 − zx

)
FT ∗
s (dx), (9)

where c and FT ∗
are free parameters, whereas the drift characteristic bT

∗
will later

be chosen to guarantee that the forward process is a martingale. The following ingre-
dients are needed.

Assumption 2.2 (LR.1) For anymaturity T ∗
i there is a bounded, deterministic func-

tion λ(·, T ∗
i ) : [0, T ∗] �−→ R which represents the volatility of the forward process

F(·, T ∗
i , T ∗

i−1). These functions satisfy

λ(s, T ∗
i ) > 0, ∀ s ∈ [0, T ∗

i ] and λ(s, T ∗
i ) = 0 for s > T ∗

i for any maturity T ∗
i ,∑n−1

i=1 λ(s, T ∗
i ) ≤ M, ∀ s ∈ [0, T ∗] where M is the constant from Assumption

(EM).

Assumption 2.3 (LR.2) The initial term structure of zero-coupon bond prices
B(0, T ∗

i ) is strictly positive for all i ∈ {1, . . . , n}.
We begin to construct the forward process with the most distant maturity and postu-
late

F(t, T ∗
1 , T ∗) = F(0, T ∗

1 , T ∗) exp
(∫ t

0
λ(s, T ∗

1 )dLT ∗
s

)
. (10)

One forces this process to become a PT ∗ -martingale by choosing bT
∗
such that
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∫ t

0
λ(s, T ∗

1 )bT
∗

s ds = −1

2

∫ t

0
csλ

2(s, T ∗
1 )ds

−
∫ t

0

∫

R

(
exλ(s,T ∗

1 ) − 1 − xλ(s, T ∗
1 )

)
νT ∗

(ds, dx). (11)

Then the forward process F(·, T ∗
1 , T ∗) can be given as a stochastic exponential

F(t, T ∗
1 , T ∗) = F(0, T ∗

1 , T ∗)Et
(
Z(·, T ∗

1 )
)

(12)

with

Z(t, T ∗
1 ) =

∫ t

0

√
csλ(s, T ∗

1 )dWT ∗
s +

∫ t

0

∫

R

(exλ(s,T ∗
1 ) − 1)μ̃LT∗

(ds, dx). (13)

Since the forward process F(·, T ∗
1 , T ∗) is aPT ∗ -martingale, we can use it as a density

process and define the forward martingale measure PT ∗
1
by setting

dPT ∗
1

dPT ∗
= F(T ∗

1 , T ∗
1 , T ∗)

F(0, T ∗
1 , T ∗)

= ET ∗
1

(
Z(·, T ∗

1 )
)
. (14)

By the semimartingale version ofGirsanov’s theorem (see Jacod and Shiryaev (1987)
[13])

W
T ∗
1

t := WT ∗
t −

∫ t

0

√
csλ(s, T ∗

1 )ds (15)

is a PT ∗
1
-standard Brownian motion and

νT ∗
1 (dt, dx) := exλ(s,T ∗

1 )νT ∗
(dt, dx) = exλ(s,T ∗

1 )FT ∗
s (dx)ds (16)

is the PT ∗
1
-compensator of μLT∗

.
Continuing this way one gets the forward processes F(·, T ∗

i , T ∗
i−1) such that for

all i ∈ {1, . . . , n}

F(t, T ∗
i , T ∗

i−1) = F(0, T ∗
i , T ∗

i−1) exp

(∫ t

0
λ(s, T ∗

i )dL
T ∗
i−1

s

)
. (17)

The drift term bT
∗
i−1 is chosen in such a way that the forward process F(·, T ∗

i , T ∗
i−1)

becomes a martingale under the forward measure PT ∗
i−1
, that is

∫ t

0
λ(s, T ∗

i )b
T ∗
i−1

s ds = −1

2

∫ t

0
csλ

2(s, T ∗
i )ds

−
∫ t

0

∫

R

(
exλ(s,T ∗

i ) − 1 − xλ(s, T ∗
i )

)
νT ∗

i−1(ds, dx). (18)
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We propose the following choice for the functions bT
∗
i−1 for all i ∈ {1, . . . , n}

⎧
⎪⎨

⎪⎩

b
T ∗
i−1

s = −cs
2

λ(s, T ∗
i ) −

∫

R

(
exλ(s,T ∗

i ) − 1

λ(s, T ∗
i )

− x

)
F

T ∗
i−1

s (dx), 0 ≤ s < T ∗
i

b
T ∗
i−1

s = 0, s ≥ T ∗
i .

(19)

The driving process LT ∗
i−1 becomes therefore

L
T ∗
i−1

t = −
∫ t

0

(
cs
2

λ(s, T ∗
i ) +

∫

R

(
exλ(s,T ∗

i ) − 1

λ(s, T ∗
i )

− x

)
F

T ∗
i−1

s (dx)

)
ds

+
∫ t

0

√
csdW

T ∗
i−1

s +
∫ t

0

∫

R

x(μT ∗ − νT ∗
i−1)(ds, dx) (20)

under the successive forward measures PT ∗
i
which are given by the recursive relation

⎧
⎪⎪⎨

⎪⎪⎩

dPT ∗
i

dPT ∗
i−1

= F(T ∗
i , T ∗

i , T ∗
i−1)

F(0, T ∗
i , T ∗

i−1)
= ET ∗

i

(
Z(·, T ∗

i )
)
, i ∈ {1, . . . , n}

PT ∗
0

= PT ∗

(21)

with

Z(t, T ∗
i ) =

∫ t

0

√
csλ(s, T ∗

i )dW
T ∗
i−1

s +
∫ t

0

∫

R

(exλ(s,T ∗
i ) − 1)μ̃LT∗

i−1
(ds, dx), (22)

where (W
T ∗
i−1

t )t≥0 is a PT ∗
i−1
-standard Brownian motion such that

⎧
⎪⎪⎨

⎪⎪⎩

W
T ∗
i

t = W
T ∗
i−1

t −
∫ t

0

√
csλ(s, T ∗

i )ds, i ∈ {1, . . . , n}

W
T ∗
0

t = WT ∗
t .

(23)

μ̃LT∗
i−1 := μLT∗ − νT ∗

i−1 is the PT ∗
i−1
-compensated randommeasure of jumps of LT ∗

and

νT ∗
i−1(ds, dx) = F

T ∗
i−1

s (dx)ds is the PT ∗
i−1
-compensator of μLT∗

such that

⎧
⎪⎨

⎪⎩

F
T ∗
i

s (dx) = exλ(s,T ∗
i )F

T ∗
i−1

s (dx), i ∈ {1, . . . , n}

F
T ∗
0

s (dx) = FT ∗
s (dx).

(24)
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Setting Λi (s) := ∑i
j=1 λ(s, T ∗

j ), we conclude that for all i ∈ {1, . . . , n}

W
T ∗
i

t = WT ∗
t −

∫ t

0

√
csΛ

i (s)ds (25)

and

F
T ∗
i

s (dx) = exp
(
xΛi (s)

)
FT ∗
s (dx). (26)

Note that the coefficients
√
csΛi (s) and exp(xΛi (s)), which appear in this measure

change, are deterministic functions and therefore the measure change is structure
preserving, i.e. the driving process is still a time-inhomogeneous Lévy process after
the measure change.

Since the forward process F(·, T ∗
i , T ∗

i−1) is by construction a PT ∗
i−1
-martingale,

the process
F(·,T ∗

i ,T ∗
i−1)

F(0,T ∗
i ,T ∗

i−1)
, which is the density process

dPT ∗
i

dPT ∗
i−1

∣∣∣
∣∣
Ft

= F(t, T ∗
i , T ∗

i−1)

F(0, T ∗
i , T ∗

i−1)
(27)

is a PT ∗
i−1
-martingale as well. By iterating the relation (21) we get on FT ∗

i−1

dPT ∗
i−1

dPT ∗
= B(0, T ∗)

B(0, T ∗
i−1)

i−1∏

j=1

F(T ∗
i−1, T

∗
j , T

∗
j−1)

= exp

⎛

⎝
i−1∑

j=1

∫ T ∗
i−1

0
λ(s, T ∗

j )dL
T ∗
j−1

s

⎞

⎠ . (28)

Applying Proposition III.3.8 of Jacod and Shiryaev (1987) [13], we see that its
restriction toFt for t ∈ [0, T ∗

i ]

dPT ∗
i

dPT ∗

∣∣
∣∣
Ft

= B(0, T ∗)
B(0, T ∗

i )

i∏

j=1

F(t, T ∗
j , T

∗
j−1) (29)

is a PT ∗ -martingale.

3 Fourier-Based Methods for Option Pricing

We will derive an explicit valuation formula for standard interest rate derivatives
such as caps and floors in the Lévy forward process model. Since floor prices can
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be derived from the corresponding put-call-parity relation we concentrate on caps.
Recall that a cap is a sequence of call options on subsequent LIBOR rates. Each
single option is called a caplet. The payoff of a caplet with strike rate K and maturity
T ∗
i is

δ∗
i

(
L(T ∗

i , T ∗
i ) − K

)+
, (30)

where the payment is made at time point T ∗
i−1. The forward LIBOR rates L(T ∗

i , T ∗
i )

are the discretely compounded, annualized interest rates which can be earned from
investment during a future interval starting at T ∗

i and ending at T ∗
i−1 considered at

the time point T ∗
i . These rates can be expressed in terms of the forward prices as

follows

L(T ∗
i , T ∗

i ) = 1

δ∗
i

(
F(T ∗

i , T ∗
i , T ∗

i−1) − 1
)
. (31)

Its time-0-price, denoted by Cplt0(T
∗
i , K ), is given by

Cplt0(T
∗
i , K ) = B(0, T ∗

i−1)δ
∗
i EPT∗

i−1

[(
L(T ∗

i , T ∗
i ) − K

)+]
. (32)

Instead of basing the pricing on the Lévy LIBORmodel one can use the Lévy forward
process approach (see Eberlein andÖzkan (2005) [5]). It is thenmore natural to write
the pricing formula (32) in the form

Cplt0(T
∗
i , K ) = B(0, T ∗

i−1)EPT∗
i−1

[(
F(T ∗

i , T ∗
i , T ∗

i−1) − K̃i
)+]

, (33)

where K̃i := 1 + δ∗
i K . From (17), the forward process F(·, T ∗

i , T ∗
i−1) is given by

F(T ∗
i , T ∗

i , T ∗
i−1) = F(0, T ∗

i , T ∗
i−1) exp

(∫ T ∗
i

0
b
T ∗
i−1

s λ(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0

√
csλ(s, T ∗

i )dW
T ∗
i−1

s

)

× exp

(∫ T ∗
i

0

∫

R

xλ(s, T ∗
i )μ̃LT∗

i−1(ds, dx)

)
. (34)

Using the relations (25) and (26) we obtain for t ∈ [0, T ∗
i ]

F(t, T ∗
i , T ∗

i−1) = F(0, T ∗
i , T ∗

i−1) exp

(∫ t

0
λ(s, T ∗

i )dLT
∗

s + d(t, T ∗
i )

)
, (35)
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where

d(t, T ∗
i ) =

∫ t

0
λ(s, T ∗

i )
[
b
T ∗
i−1

s − bT
∗

s − Λi−1(s)cs
]
ds

−
∫ t

0
λ(s, T ∗

i )

∫

R

x
(
exΛ

i−1(s) − 1
)
FT ∗
s (dx)ds. (36)

Remember that on FT ∗
i−1

dPT ∗
i−1

dPT ∗
= exp

⎛

⎝
i−1∑

j=1

∫ T ∗
i−1

0
λ(s, T ∗

j )dL
T ∗
s +

i−1∑

j=1

d(T ∗
i−1, T

∗
j )

⎞

⎠ . (37)

Keeping in mind Assumption 2.2 (LR.1), we find

exp

⎛

⎝−
i−1∑

j=1

d(T ∗
i−1, T

∗
j )

⎞

⎠ = EPT∗

[
exp

(∫ T ∗
i−1

0
Λi−1(s)dLT ∗

s

)]
. (38)

Using Proposition 8 in Eberlein and Kluge (2006) [6], we find

exp

⎛

⎝−
i−1∑

j=1

d(T ∗
i−1, T

∗
j )

⎞

⎠ = exp

(∫ T ∗
i−1

0
θs

(
Λi−1(s)

)
ds

)
. (39)

Consequently,

dPT ∗
i−1

dPT ∗
= exp

(∫ T ∗
i−1

0
Λi−1(s)dLT ∗

s −
∫ T ∗

i−1

0
θs

(
Λi−1(s)

)
ds

)
. (40)

Knowing that the process
(

F(·,T ∗
i ,T ∗

i−1)

F(0,T ∗
i ,T ∗

i−1)

)
is a PT ∗

i−1
-martingale, we reach

exp(−d(T ∗
i , T ∗

i )) = EPT∗
i−1

[
exp

(∫ T ∗
i

0
λ(s, T ∗

i )dLT ∗
s

)]
. (41)

Hence,

exp(−d(T ∗
i , T ∗

i ))

= exp

(
−

∫ T ∗
i

0
θs

(
Λi−1(s)

)
ds

)
EPT∗

[
exp

(∫ T ∗
i

0
Λi (s)dLT ∗

s

)]

= exp

(∫ T ∗
i

0

[
θs

(
Λi (s)

) − θs
(
Λi−1(s)

)]
ds

)
. (42)
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Thus,

d(T ∗
i , T ∗

i ) =
∫ T ∗

i

0

[−θs
(
Λi (s)

) + θs
(
Λi−1(s)

)]
ds. (43)

Define the random variable XT ∗
i
as the logarithm of F(T ∗

i , T ∗
i , T ∗

i−1). Therefore,

XT ∗
i

= ln
(
F(0, T ∗

i , T ∗
i−1)

) +
∫ T ∗

i

0
λ(s, T ∗

i )dLT ∗
s + d(T ∗

i , T ∗
i ). (44)

Proposition 3.1 Suppose there is a real number R ∈ (1, 1 + ε) such that the
moment-generating function of XT ∗

i
with respect to PT ∗

i−1
is finite at R, i.e. MXT∗

i
(R)

< ∞, then

Cplt0(T
∗
i , K ) = K̃i B(0, T ∗

i−1)

2π

∫

R

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu

× exp

(∫ T ∗
i

0

∫

R

exΛ
i−1(s)

[(
e(R+iu)xλ(s,T ∗

i ) − 1
)

− (R + iu)
(
exλ(s,T ∗

i ) − 1
)]

FT ∗
s (dx)ds

)

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)}
du

(R + iu)(R + iu − 1)
. (45)

Proof The time-0-price of the caplet with strike rate K andmaturity T ∗
i has the form

Cplt0(T
∗
i , K ) = B(0, T ∗

i−1)EPT∗
i−1

[(
eXT∗

i − K̃i

)+]

= B(0, T ∗
i−1)EPT∗

i−1

[
f
(
XT ∗

i

)]
, (46)

where the function f : R → R+ is defined by f (x) = (ex − K̃i )
+.

Applying Theorem 2.2 in Eberlein et al. (2010) [8] (by the definition of XT ∗
i
we

have s = 0 here), we get

Cplt0(T
∗
i , K ) = B(0, T ∗

i−1)

2π

∫

R

MXT∗
i
(R + iu) f̂ (−u + iR)du, (47)

where the Fourier transform f̂ is given by

f̂ (−u + iR) = K̃ 1−R−iu
i

(R + iu)(R + iu − 1)
(48)
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and the moment-generating function MXT∗
i
is given by

MXT∗
i
(R + iu) = EPT∗

i−1

[
exp

(
(R + iu)XT ∗

i

)]

= (
F(0, T ∗

i , T ∗
i−1)

)R+iu
exp

(
(R + iu)d(T ∗

i , T ∗
i )

)

×EPT∗
i−1

[
exp

(∫ T ∗
i

0
(R + iu)λ(s, T ∗

i )dLT ∗
s

)]
. (49)

Making a change of measure, we find

MXT∗
i
(R + iu) = (

F(0, T ∗
i , T ∗

i−1)
)R+iu

exp
(
(R + iu)d(T ∗

i , T ∗
i )

)

×
EPT∗

[
exp

(∫ T ∗
i

0

(
(R + iu)λ(s, T ∗

i ) + Λi−1(s)
)
dLT ∗

s

)]

EPT∗

[
exp

(∫ T ∗
i

0 Λi−1(s)dLT ∗
s

)] . (50)

Using Proposition 8 in Eberlein and Kluge (2006) [6], we can prove easily that

MXT∗
i

(R + iu) = (
F(0, T ∗

i , T ∗
i−1)

)R+iu

× exp

(

(R + iu)

∫ T ∗
i

0

[
−θs

(
Λi (s)

)
+ θs

(
Λi−1(s)

)]
ds

)

×
exp

(∫ T ∗
i

0 θs

(
(R + iu)λ(s, T ∗

i ) + Λi−1(s)
)
ds

)

exp

(∫ T ∗
i

0 θs
(
Λi−1(s)

)
ds

)

= (
F(0, T ∗

i , T ∗
i−1)

)R+iu exp

(∫ T ∗
i

0
θs

(
(R + iu)λ(s, T ∗

i ) + Λi−1(s)
)
ds

)

× exp

(∫ T ∗
i

0

[
(−R − iu)θs

(
Λi (s)

)
− (1 − R − iu)θs

(
Λi−1(s)

)]
ds

)

. (51)

Taking into account the choice of the drift coefficient in (19), the cumulant function
θs (see (9)) and the moment-generating function MXT∗

i
, respectively, become

θs(R + iu) = (R + iu)

∫

R

(
ex(R+iu) − 1

R + iu
− (exλ(s,T ∗

1 ) − 1)

λ(s, T ∗
1 )

)
FT ∗
s (dx)

+cs
2

(R + iu)
(
R + iu − λ(s, T ∗

1 )
)

(52)

and

MXT∗
i

(R + iu) = (
F(0, T ∗

i , T ∗
i−1)

)R+iu exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)
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× exp

(∫ T ∗
i

0

∫

R

exΛ
i−1(s)

(
e(R+iu)xλ(s,T ∗

i ) − 1
)
FT ∗
s (dx)ds

)

× exp

(

−(R + iu)

∫ T ∗
i

0

∫

R

exΛ
i−1(s)

(
exλ(s,T ∗

i ) − 1
)
FT ∗
s (dx)ds

)

. (53)

Finally, from (48) and (53) we conclude that

Cplt0(T
∗
i , K ) = K̃i B(0, T ∗

i−1)

2π

∫

R

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu

× exp

(∫ T ∗
i

0

∫

R

exΛ
i−1(s)

[(
e(R+iu)xλ(s,T ∗

i ) − 1
)

− (R + iu)
(
exλ(s,T ∗

i ) − 1
)]

FT ∗
s (dx)ds

)

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)}
du

(R + iu)(R + iu − 1)
. (54)

4 Sensitivity Analysis

4.1 Greeks Computed by the Malliavin Approach

In this section we present an application of theMalliavin calculus to the computation
of Greeks within the Lévy forward process model. We refer to the literature, for
example Di Nunno et al. (2008) [2] as well as Nualart (2006) [15] for details on the
theoretical aspects of Malliavin calculus. Another important reference is Yablonski
(2008) [19]. See also the Appendix for a short presentation of definitions and results
used in the sequel. The forward process F(t, T ∗

i , T ∗
i−1) under the forward measures

PT ∗
i−1

can be written as stochastic exponential

F(t, T ∗
i , T ∗

i−1) = F(0, T ∗
i , T ∗

i−1)Et
(
Z(·, T ∗

i )
)

(55)

with

Z(t, T ∗
i ) =

∫ t

0

√
csλ(s, T ∗

i )dW
T ∗
i−1

s +
∫ t

0

∫

R

(exλ(s,T ∗
i ) − 1)μ̃LT∗

i−1
(ds, dx). (56)

Expressed in a differential form we get the PT ∗
i−1
-dynamics

dF(t, T ∗
i , T ∗

i−1)

F(t−, T ∗
i , T ∗

i−1)
= √

ctλ(t, T ∗
i )dW

T ∗
i−1

t +
∫

R

(exλ(t,T ∗
i ) − 1)μ̃LT∗

i−1
(dt, dx), (57)

where F(t−, T ∗
i , T ∗

i−1) is the pathwise left limit of F(·, T ∗
i , T ∗

i−1) at the point t .
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As in the classical Malliavin calculus we are able to associate the solution of
(57) with the process Y (t, T ∗

i , T ∗
i−1) := ∂F(t,T ∗

i ,T ∗
i−1)

∂F(0,T ∗
i ,T ∗

i−1)
; called the first variation process

of F(t, T ∗
i , T ∗

i−1). The following proposition provides a simpler expression for
the Malliavin derivative operator Dr,0 when applied to the forward process rates
F(t, T ∗

i , T ∗
i−1) (see Di Nunno et al. (2008) [2], Theorem 17.4 and Yablonski (2008)

[19], Definition 17. for details). We will denote the domain of the operator Dr,0

in L2(Ω) by D1,2, meaning that D1,2 is the closure of the class of smooth random
variables S (see (100) in the Appendix).

Proposition 4.1 Let F(t, T ∗
i , T ∗

i−1)t∈[0,T ∗] be the solution of (57). Then F(t, T ∗
i ,

T ∗
i−1) ∈ D1,2 and the Malliavin derivative is given by

Dr,0F(t, T ∗
i , T ∗

i−1)

= Y (t, T ∗
i , T ∗

i−1)Y (r−, T ∗
i , T ∗

i−1)
−1F(r−, T ∗

i , T ∗
i−1)λ(r, T ∗

i )
√
cr1{r≤t}. (58)

4.1.1 Variation in the Initial Forward Price

In this section, we provide an expression for the Delta, the partial derivative of the
expectation Cplt0(T

∗
i , K ) with respect to the initial condition F(0, T ∗

i , T ∗
i−1) which

is given by

Δ(F(0, T ∗
i , T ∗

i−1)) = ∂Cplt0(T
∗
i , K )

∂F(0, T ∗
i , T ∗

i−1)
. (59)

The derivative with respect to the initial LIBOR rate is then an easy consequence.

Δ(L(0, T ∗
i )) = ∂Cplt0(T

∗
i , K )

∂L(0, T ∗
i )

= Δ(F(0, T ∗
i , T ∗

i−1))
∂F(0, T ∗

i , T ∗
i−1)

∂L(0, T ∗
i )

= δ∗
i Δ(F(0, T ∗

i , T ∗
i−1)), (60)

since

L(0, T ∗
i ) = 1

δ∗
i

(
F(0, T ∗

i , T ∗
i−1) − 1

)
. (61)

Let us define the set

T̃i =
{
hi ∈ L2([0, T ∗

i ]) :
∫ T ∗

i

0
hi (u)du = 1

}
. (62)
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Proposition 4.2 For all functions hi ∈ T̃i , we have

Δ(F(0, T ∗
i , T ∗

i−1)) = B(0, T ∗
i−1)

F(0, T ∗
i , T ∗

i−1)
EPT∗

[ (
F(T ∗

i , T ∗
i , T ∗

i−1) − K̃i
)+

× exp

(∫ T ∗
i

0
Λi−1(s)dLT ∗

s −
∫ T ∗

i

0
θs

(
Λi−1(s)

)
ds

)

×
(∫ T ∗

i

0

hi (u)dWT ∗
u

λ(u, T ∗
i )

√
cu

−
∫ T ∗

i

0

hi (u)Λi−1(u)du

λ(u, T ∗
i )

)]
. (63)

Proof We consider a more general payoff of the form H(F(T ∗
i , T ∗

i , T ∗
i−1)) such that

H : R −→ R is a locally integrable function satisfying

EPT∗
i−1

[
H(F(T ∗

i , T ∗
i , T ∗

i−1))
2
]

< ∞· (64)

First, assume that H is a continuously differentiable function with compact support.
Then we can differentiate inside the expectation and get

ΔH (F(0, T ∗
i , T ∗

i−1)) :=
∂EPT∗

i−1

[
H(F(T ∗

i , T ∗
i , T ∗

i−1))
]

∂F(0, T ∗
i , T ∗

i−1)

= EPT∗
i−1

[
H ′(F(T ∗

i , T ∗
i , T ∗

i−1))
∂F(T ∗

i , T ∗
i , T ∗

i−1)

∂F(0, T ∗
i , T ∗

i−1)

]

= EPT∗
i−1

[
H ′(F(T ∗

i , T ∗
i , T ∗

i−1))Y (T ∗
i , T ∗

i , T ∗
i−1)

]
. (65)

Using Proposition 4.1 we find for any hi ∈ T̃i

Y (T ∗
i , T ∗

i , T ∗
i−1) =

∫ T ∗
i

0
Du,0F(T ∗

i , T ∗
i , T ∗

i−1)
hi (u)Y (u−, T ∗

i , T ∗
i−1)du

F(u−, T ∗
i , T ∗

i−1)λ(u, T ∗
i )

√
cu

. (66)

From the chain rule (see Yablonski (2008) [19], Proposition 4.8) we find

ΔH (F(0, T ∗
i , T ∗

i−1)) = EPT∗
i−1

[∫ T ∗
i

0
H ′(F(T ∗

i , T ∗
i , T ∗

i−1))Du,0F(T ∗
i , T ∗

i , T ∗
i−1)

× hi (u)Y (u−, T ∗
i , T ∗

i−1)du

F(u−, T ∗
i , T ∗

i−1)λ(u, T ∗
i )

√
cu

]

= EPT∗
i−1

[∫ T ∗
i

0
Du,0H(F(T ∗

i , T ∗
i , T ∗

i−1))

× hi (u)Y (u−, T ∗
i , T ∗

i−1)du

F(u−, T ∗
i , T ∗

i−1)λ(u, T ∗
i )

√
cu

]
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= EPT∗
i−1

[∫ T ∗
i

0

∫

R

Du,x H(F(T ∗
i , T ∗

i , T ∗
i−1))

× hi (u)Y (u−, T ∗
i , T ∗

i−1)duδ0(dx)

F(u−, T ∗
i , T ∗

i−1)λ(u, T ∗
i )

√
cu

]
, (67)

where δ0(dx) is the Dirac measure at 0.
By the definition of the Skorohod integral δ(·) (seeYablonski (2008) [19], Sect. 5),

we reach

ΔH (F(0, T ∗
i , T ∗

i−1))

= EPT∗
i−1

[
H(F(T ∗

i , T ∗
i , T ∗

i−1))δ

(
hi (·)Y (·−, T ∗

i , T ∗
i−1)δ0(·)

F(·−, T ∗
i , T ∗

i−1)λ(·, T ∗
i )

√
c·

)]
. (68)

However, the stochastic process

(
hi (u)Y (u−, T ∗

i , T ∗
i−1)

F(u−, T ∗
i , T ∗

i−1)λ(u, T ∗
i )

√
cu

)

0≤u≤T ∗
i

(69)

is a predictable process, thus the Skorohod integral coincides with the Itô stochastic
integral and we get

ΔH (F(0, T ∗
i , T ∗

i−1))

= EPT∗
i−1

[

H(F(T ∗
i , T ∗

i , T ∗
i−1))

∫ T ∗
i

0

hi (u)Y (u−, T ∗
i , T ∗

i−1)dW
T ∗
i−1

u

F(u−, T ∗
i , T ∗

i−1)λ(u, T ∗
i )

√
cu

]

. (70)

By Lemma 12.28. p. 208 in Di Nunno et al. (2008) [2] the result (70) holds for any
locally integrable function H such that

EPT∗
i−1

[
H(F(T ∗

i , T ∗
i , T ∗

i−1))
2
]

< ∞. (71)

In particular, if one takes

H(F(T ∗
i , T ∗

i , T ∗
i−1)) = B(0, T ∗

i−1)
(
F(T ∗

i , T ∗
i , T ∗

i−1) − K̃i
)+

, (72)

we can express the derivatives of the expectation Cplt0(T
∗
i , K , δ∗

i ) with respect to
the initial condition F(0, T ∗

i , T ∗
i−1) in the form of a weighted expectation as follows

Δ(F(0, T ∗
i , T ∗

i−1)) = B(0, T ∗
i−1)EPT∗

i−1

[ (
F(T ∗

i , T ∗
i , T ∗

i−1) − K̃i
)+

×
∫ T ∗

i

0

hi (u)Y (u−, T ∗
i , T ∗

i−1)dW
T ∗
i−1

u

λ(u, T ∗
i )

√
cu F(u−, T ∗

i , T ∗
i−1)

]
.

(73)
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We show easily that

Y (u−, T ∗
i , T ∗

i−1) = F(u−, T ∗
i , T ∗

i−1)

F(0, T ∗
i , T ∗

i−1)
, (74)

hence

Δ(F(0, T ∗
i , T ∗

i−1))

= B(0, T ∗
i−1)

F(0, T ∗
i , T ∗

i−1)
EPT∗

i−1

[
(
F(T ∗

i , T ∗
i , T ∗

i−1) − K̃i
)+

∫ T ∗
i

0

hi (u)dW
T ∗
i−1

u

λ(u, T ∗
i )

√
cu

]

. (75)

In accordance with (25) we can write

W
T ∗
i−1

t = WT ∗
t −

∫ t

0
Λi−1(s)

√
csds. (76)

By making a measure change using the fact (see (40)) that

dPT ∗
i−1

dPT ∗

∣∣∣∣
FT∗

i

= exp

(∫ T ∗
i

0
Λi−1(s)dLT ∗

s −
∫ T ∗

i

0
θs

(
Λi−1(s)

)
ds

)
, (77)

we end up with

Δ(F(0, T ∗
i , T ∗

i−1)) = B(0, T ∗
i−1)

F(0, T ∗
i , T ∗

i−1)
EPT∗

[ (
F(T ∗

i , T ∗
i , T ∗

i−1) − K̃i
)+

× exp

(∫ T ∗
i

0
Λi−1(s)dLT ∗

s −
∫ T ∗

i

0
θs

(
Λi−1(s)

)
ds

)

×
(∫ T ∗

i

0

hi (u)dWT ∗
u

λ(u, T ∗
i )

√
cu

−
∫ T ∗

i

0

hi (u)Λi−1(u)

λ(u, T ∗
i )

du

)]
. (78)

4.2 Greeks Computed by the Fourier-Based
Valuation Method

Thanks to the Fourier-based valuation formula obtained in (45) and the structure
of the forward process model as an exponential semimartingale, we can calculate
readily the Greeks. We focus on the variation to the initial condition, i.e. Delta.

Proposition 4.3 Suppose there is a real number R ∈ (1, 1 + ε) such that the
moment-generating function of XT ∗

i
with respect toPT ∗

i−1
is finite at R, i.e. MXT∗

i
(R) <

∞, then



Option Pricing and Sensitivity Analysis … 303

Δ(F(0, T ∗
i , T ∗

i−1)) = B(0, T ∗
i−1)

2π

∫

R

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu−1

× exp

(∫ T ∗
i

0

∫

R

exΛ
i−1(s)

(
e(R+iu)xλ(s,T ∗

i ) − 1
)
FT ∗
s (dx)ds

)

× exp

(

−
∫ T ∗

i

0

∫

R

exΛ
i−1(s)(R + iu)

(
exλ(s,T ∗

i ) − 1
)
FT ∗
s (dx)ds

)

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)}
du

R + iu − 1
. (79)

Proof Based on the Sect. 4 in Eberlein et al. (2010) [8], this proposition can be shown
easily.

4.3 Examples

4.3.1 Variance Gamma Process (VG)

We suppose that the jump component of the driving process LT ∗
(see (8)) is described

by a Variance Gamma process with the Lévy density ν given by

ν(dx) = FVG(x)dx (80)

such that

FVG(x) := 1

η|x | exp
⎛

⎝ θ

σ 2
x − 1

σ

√
2

η
+ θ2

σ 2
|x |

⎞

⎠ , (81)

where (θ, σ, η) are the parameters such that θ ∈ R, σ > 0 and η > 0.

Let us put B = θ
σ 2 and C = 1

σ

√
2
η

+ θ2

σ 2 and get

FVG(x) = exp (Bx − C |x |)
η|x | . (82)

In this case, the moment-generating function MXT∗
i
is given by

MXT∗
i
(z) = (

F(0, T ∗
i , T ∗

i−1)
)z exp

(∫ T ∗
i

0

(cs z
2

(z − 1)λ2(s, T ∗
i ) + I VG(s, z)

)
ds

)

, (83)

where the generalized integral I VG(s, z) is given by
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I VG(s, z) :=
∫

R

(
ex(zλ(s,T ∗

i )+Λi−1(s)) − exΛ
i−1(s)

)
FVG(x)dx

−
∫

R

z
(
exΛ

i (s) − exΛ
i−1(s)

)
FVG(x)dx . (84)

Now substituting FVG(x) by its explicit expression we get

I VG(s, z) =
∫

R

(
ex(zλ(s,T ∗

i )+Λi−1(s)) − exΛ
i−1(s)

)
exp (Bx − C |x |) dx

η|x |
−

∫

R

z
(
exΛ

i (s) − exΛ
i−1(s)

)
exp (Bx − C |x |) dx

η|x |
=

∫ +∞

0

(
ex(zλ(s,T ∗

i )+Λi−1(s)) − exΛ
i−1(s)

)
exp (Bx − Cx)

dx

ηx

−
∫ +∞

0
z
(
exΛ

i (s) − exΛ
i−1(s)

)
exp (Bx − Cx)

dx

ηx

−
∫ 0

−∞

(
ex(zλ(s,T ∗

i )+Λi−1(s)) − exΛ
i−1(s)

)
exp (Bx + Cx)

dx

ηx

+
∫ 0

−∞
z
(
exΛ

i (s) − exΛ
i−1(s)

)
exp (Bx + Cx)

dx

ηx
,

or

I VG(s, z) =
∫ +∞

0

[
e(zλ(s,T ∗

i )+Λi−1(s)+B−C)x − e(Λ
i−1(s)+B−C)x

ηx

]

dx

−
∫ +∞

0

[

z
e(Λ

i (s)+B−C)x − e(Λ
i−1(s)+B−C)x

ηx

]

dx

−
∫ 0

−∞

[
e(zλ(s,T ∗

i )+Λi−1(s)+B+C)x − e(Λ
i−1(s)+B+C)x

ηx

]

dx

+
∫ 0

−∞

[

z
e(Λ

i (s)+B+C)x − e(Λ
i−1(s)+B+C)x

ηx

]

dx

=
∫ +∞

0

[
e(zλ(s,T ∗

i )+Λi−1(s)+B−C)x − e(Λ
i−1(s)+B−C)x

ηx

]

dx

−
∫ +∞

0

[

z
e(Λ

i (s)+B−C)x − e(Λ
i−1(s)+B−C)x

ηx

]

dx

+
∫ +∞

0

[
e−(zλ(s,T ∗

i )+Λi−1(s)+B+C)x − e−(Λi−1(s)+B+C)x

ηx

]

dx

−
∫ +∞

0

[

z
e−(Λi (s)+B+C)x − e−(Λi−1(s)+B+C)x

ηx

]

dx .
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Using the notations

αi (s, z) = − (
zλ(s, T ∗

i ) + Λi−1(s) + B − C
)
, (85)

βi (s) = − (
Λi−1(s) + B − C

)
, (86)

γi (s) = − (
Λi (s) + B − C

)
, (87)

we end up with

I VG (s, z) =
∫ +∞
0

[
e−αi (s,z)x − e−βi (s)x

x
− z

e−γi (s)x − e−βi (s)x

x

]

dx

+
∫ +∞
0

[
e−(2C−αi (s,z))x − e−(2C−βi (s))x

x
− z

e−(2C−γi (s))x − e−(2C−βi (s))x

x

]

dx .

Using Frullani’s integral (see for details Ostrowski (1949) [16]), we can show that,
if α ∈ C and β ∈ C such thatRe(α) > 0,Re(β) > 0 and β

α
∈ C \ R− whereR− =

] − ∞; 0],

I(α,β) :=
∫ +∞

0

e−αx − e−βx

x
dx = Log

(
β

α

)
, (88)

where Log is the principal value of the logarithm. Consequently

I VG(s, z) = Log

(
βi (s)

αi (s, z)

)
− zLog

(
βi (s)

γi (s)

)

+Log

(
2C − βi (s)

2C − αi (s, z)

)
− zLog

(
2C − βi (s)

2C − γi (s)

)

= Log

(
βi (s)

αi (s, z)

)
+ Log

(
2C − βi (s)

2C − αi (s, z)

)

−z

(
Log

(
βi (s)

γi (s)

)
+ Log

(
2C − βi (s)

2C − γi (s)

))

= Log

(
βi (s) (2C − βi (s))

αi (s, z) (2C − αi (s, z))

)
− zLog

(
βi (s) (2C − βi (s))

γi (s) (2C − γi (s))

)
.

The moment-generating function MXT∗
i
becomes

MXT∗
i
(z) = (

F(0, T ∗
i , T ∗

i−1)
)z
exp

(∫ T ∗
i

0

csz

2
(z − 1)λ2(s, T ∗

i )ds

)

× exp

(∫ T ∗
i

0
Log

(
βi (s) (2C − βi (s))

αi (s, z) (2C − αi (s, z))

)
ds

)

× exp

(
−

∫ T ∗
i

0
zLog

(
βi (s) (2C − βi (s))

γi (s) (2C − γi (s))

)
ds

)
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or

MXT∗
i
(R + iu) = (

F(0, T ∗
i , T ∗

i−1)
)R+iu

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0
Log

(
βi (s) (2C − βi (s))

αi (s, R + iu) (2C − αi (s, R + iu))

)
ds

)

× exp

(
−

∫ T ∗
i

0
(R + iu)Log

(
βi (s) (2C − βi (s))

γi (s) (2C − γi (s))

)
ds

)
.

The valuation formula becomes

Cplt0(T
∗
i , K ) = B(0, T ∗

i−1)

2π

∫

R

K̃ 1−R−iu
i MXT∗

i
(R + iu)

(R + iu)(R + iu − 1)
du

= K̃i B(0, T ∗
i−1)

2π

∫

R

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0
Log

(
βi (s) (2C − βi (s))

αi (s, R + iu) (2C − αi (s, R + iu))

)
ds

)

× exp

(

−
∫ T ∗

i

0
(R + iu)Log

(
βi (s) (2C − βi (s))

γi (s) (2C − γi (s))

)
ds

)}
du

(R + iu)(R + iu − 1)
. (89)

The Delta is given by

Δ(F(0, T ∗
i , T ∗

i−1)) = B(0, T ∗
i−1)

2π

∫

R

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu−1

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0
Log

(
βi (s) (2C − βi (s))

αi (s, R + iu) (2C − αi (s, R + iu))

)
ds

)

× exp

(

−
∫ T ∗

i

0
(R + iu)Log

(
βi (s) (2C − βi (s))

γi (s) (2C − γi (s))

)
ds

)}
du

R + iu − 1
. (90)

4.3.2 Inhomogeneous Gamma Process (IGP)

We suppose that the jump component of the driving process LT ∗
, is described by

an inhomogeneous Gamma process (IGP), which has been introduced by Berman
(1981) [1] as follows
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Definition 4.4 Let A(t) be a nondecreasing function from R+ −→ R+ and B > 0.
A Gamma process with shape function A and scale parameter B is a stochastic
process (Lt )t≥0 on R+ such that:

1. L0 = 0;
2. Independent increments: for every increasing sequence of time points t0, . . . , tn ,

the random variables Lt0 , Lt1 − Lt0 , . . . , Ltn − Ltn−1 are independent;
3. for 0 ≤ s < t , the distribution of the random variable Lt − Ls is given by the

Gamma distribution Γ (A(t) − A(s); B).

We suppose that the shape function A is differentiable, hence we can write

A(t) = A(0) +
∫ t

0
Ȧ(s)ds (91)

for all t ∈ R+ where Ȧ denotes the derivative of A. In this case, the Lévy density of
the Gamma process L is given by

FG
s (x) = Ȧ(s)

e−Bx

x
1{x>0}. (92)

The moment-generating function (53) has the form

MXT∗
i
(z) = (

F(0, T ∗
i , T ∗

i−1)
)z exp

(∫ T ∗
i

0

cs z

2
(z − 1)λ2(s, T ∗

i )ds

)

× exp

(∫ T ∗
i

0

∫

R

exΛ
i−1(s)

[(
ezxλ(s,T ∗

i ) − 1
)

− z
(
exλ(s,T ∗

i ) − 1
)]

FG
s (x)dxds

)

= (
F(0, T ∗

i , T ∗
i−1)

)z exp

(∫ T ∗
i

0

cs z

2
(z − 1)λ2(s, T ∗

i )ds

)

× exp

(∫ T ∗
i

0
Ȧ(s)

∫

R

exΛ
i−1(s)

(
ezxλ(s,T ∗

i ) − 1
) e−Bx

x
1{x>0}dxds

)

× exp

(

−z
∫ T ∗

i

0
Ȧ(s)

∫

R

exΛ
i−1(s)

(
exλ(s,T ∗

i ) − 1
) e−Bx

x
1{x>0}dxds

)

= (
F(0, T ∗

i , T ∗
i−1)

)z exp

(∫ T ∗
i

0

( cs z
2

(z − 1)λ2(s, T ∗
i ) + Ȧ(s)I G(s, z)

)
ds

)

,

where

I G(s, z) =
∫ +∞

0

e(zλ(s,T ∗
i )+Λi−1(s)−B)x − e(Λ

i−1(s)−B)x

x
dx

−
∫ +∞

0
z
e(Λ

i (s)−B)x − e(Λ
i−1(s)−B)x

x
dx .
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Setting

αi (s, z) = − (
zλ(s, T ∗

i ) + Λi−1(s) − B
)
, (93)

βi (s) = − (
Λi−1(s) − B

)
, (94)

γi (s) = − (
Λi (s) − B

)
(95)

and using Frullani’s integral, we find that

I G(s, z) =
∫ +∞

0

[
e−αi (s,z)x − e−βi (s)x

x
− z

e−γi (s)x − e−βi (s)x

x

]
dx

= Log

(
βi (s)

αi (s, z)

)
− zLog

(
βi (s)

γi (s)

)

= Log

(
Λi−1(s) − B

zλ(s, T ∗
i ) + Λi−1(s) − B

)
− zLog

(
Λi−1(s) − B

Λi (s) − B

)
.

Therefore, we get the form

MXT∗
i
(z) = (

F(0, T ∗
i , T ∗

i−1)
)z
exp

(∫ T ∗
i

0

csz

2
(z − 1)λ2(s, T ∗

i )ds

)

× exp

(∫ T ∗
i

0
Ȧ(s)Log

(
Λi−1(s) − B

zλ(s, T ∗
i ) + Λi−1(s) − B

)
ds

)

× exp

(
−z

∫ T ∗
i

0
Ȧ(s)Log

(
Λi−1(s) − B

Λi (s) − B

)
ds

)

or

MXT∗
i
(R + iu) = (

F(0, T ∗
i , T ∗

i−1)
)R+iu

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0
Ȧ(s)Log

(
Λi−1(s) − B

(R + iu)λ(s, T ∗
i ) + Λi−1(s) − B

)
ds

)

× exp

(
−(R + iu)

∫ T ∗
i

0
Ȧ(s)Log

(
Λi−1(s) − B

Λi (s) − B

)
ds

)
.

The valuation formula becomes

Cplt0(T
∗
i , K ) = B(0, T ∗

i−1)

2π

∫

R

K̃ 1−R−iu
i MXT∗

i
(R + iu)

(R + iu)(R + iu − 1)
du

= K̃i B(0, T ∗
i−1)

2π

∫

R

du

(R + iu)(R + iu − 1)

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu
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× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0
Ȧ(s)Log

(
Λi−1(s) − B

(R + iu)λ(s, T ∗
i ) + Λi−1(s) − B

)
ds

)

× exp

(
−

∫ T ∗
i

0
(R + iu) Ȧ(s)Log

(
Λi−1(s) − B

Λi (s) − B

)
ds

)}
. (96)

The Greek Delta is given by

Δ(F(0, T ∗
i , T ∗

i−1)) = B(0, T ∗
i−1)

2π

∫

R

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu−1

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0
Ȧ(s)Log

(
Λi−1(s) − B

(R + iu)λ(s, T ∗
i ) + Λi−1(s) − B

)
ds

)

× exp

(

−
∫ T ∗

i

0
(R + iu) Ȧ(s)Log

(
Λi−1(s) − B

Λi (s) − B

)
ds

)}
du

R + iu − 1
.

(97)
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A Appendix

A.1 Isonormal Lévy Process (ILP)

Let μ and ν be σ -finite measures without atoms on the measurable spaces (T,A )

and (T × X0,B), respectively. Define a new measure

π(dt, dz) := μ(dt)δΘ(dz) + ν(dt, dz) (98)

on a measurable space (T × X,G ), where X = X0 ∪ {Θ}, G = σ(A × {Θ},B)

and δΘ(dz) is the measure which gives mass one to the point Θ . We assume that the
Hilbert space H := L2(T × X,G , π) is separable.

Definition A.1 We say that a stochastic process L = {L(h), h ∈ H} defined on a
complete probability space (Ω,F , P) is an isonormal Lévy process (or Lévy process
on H ) if the following conditions are satisfied:

1. The mapping h −→ L(h) is linear;
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2. E[eixL(h)] = exp(Ψ (x, h)), where Ψ (x, h) is equal to

∫

T×X

(
(eixh(t,z) − 1 − ixh(t, z))1X0(z) − 1

2
x2h2(t, z)1Θ(z)

)
π(dt, dz). (99)

A.2 The Derivative Operator

Let S denote the class of smooth random variables, that is the class of random
variables ξ of the form

ξ = f (L(h1), . . . , L(hn)), (100)

where f belongs to C∞
b (Rn), h1, . . . , hn are in H , and n ≥ 1. The setS is dense in

L p(Ω) for any p ≥ 1.

Definition A.2 The stochastic derivative of a smooth random variable of the form
(100) is the H -valued random variable Dξ = {Dt,xξ, (t, x) ∈ T × X} given by

Dt,xξ =
n∑

k=1

∂ f

∂yk
(L(h1), . . . , L(hn))hk(t, x)1Θ(x)

+ ( f (L(h1) + h1(t, x), . . . , L(hn) + hn(t, x))

− f (L(h1), . . . , L(hn))) 1X0(x). (101)

Wewill consider Dξ as an element of L2(T × X × Ω) ∼= L2(Ω; H); namely Dξ

is a random process indexed by the parameter space T × X .

1. If the measure ν is zero or hk(t, x) = 0, k = 1, . . . , n when x �= Θ then Dξ

coincides with the Malliavin derivative (see, e.g. Nualart (2006) [15] Definition
1.2.1 p.38).

2. If the measure μ is zero or hk(t, x) = 0, k = 1, . . . , n when x = Θ then Dξ

coincides with the difference operator (see, e.g. Picard (1996) [18]).

A.3 Integration by Parts Formula

Theorem A.3 Suppose that ξ and η are smooth random variables and h ∈ H. Then

1.

E[ξL(h)] = E[〈Dξ ; h〉H ]; (102)
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2.

E[ξηL(h)] = E[η 〈Dξ ; h〉H ] + E[ξ 〈Dη; h〉H ] + E[〈Dη; h1X0Dξ
〉
H ]. (103)

As a consequence of the above theorem we obtain the following result:

The expressionof the derivative Dξ given in (101) does not dependon the particular
representation of ξ in (100).
The operator D is closable as an operator from L2(Ω) to L2(Ω; H).

We will denote the closure of D again by D and its domain in L2(Ω) by D1,2.

A.4 The Chain Rule

Proposition A.4 (see Yablonski (2008), Proposition 4.8) Suppose F = (F1, F2,
. . . , Fn) is a random vector whose components belong to the space D1,2. Let φ ∈
C 1(Rn) be a function with bounded partial derivatives such that φ(F) ∈ L2(Ω).
Then φ(F) ∈ D1,2 and

Dt,xφ(F) =
⎧
⎨

⎩

n∑

i=1

∂φ

∂xi
(F)Dt,Θ Fi ; x = Θ

φ(F1 + Dt,x F1, . . . , Fn + Dt,x Fn) − φ(F1, . . . , Fn); x �= Θ.

(104)

A.5 Regularity of Solutions of SDEs Driven
by Time-Inhomogeneous Lévy Processes

We focus on a class of models in which the price of the underlying asset is given
by the following stochastic differential equation (see Di Nunno et al. [2] and Petrou
[17] for details)

dSt = b(t, St−)dt + σ(t, St−)dWt

+
∫

R0

ϕ(t, St−, z)Ñ (dt, dz), (105)

S0 = x,

where R0 := Rd \ {0Rd }, x ∈ Rd , {Wt , 0 ≤ t ≤ T } is an m-dimensional standard
Brownian motion, Ñ is a compensated Poisson random measure on [0, T ] ×
R0 with compensator νt (dz)dt . The coefficients b : R+ × Rd −→ Rd , σ : R+ ×
Rd −→ Rd × Rm and ϕ : R+ × Rd × R −→ Rd × R, are continuously differen-
tiablewith boundedderivatives and the family of positivemeasures (νt )t∈[0,T ] satisfies∫ T
0 (

∫
R0

(‖z‖2 ∧ 1)νt (dz))dt < ∞ and νt ({0}) = 0. The coefficients are assumed to
satisfy the following linear growth condition
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‖b(t, x)‖2 + ‖σ(t, x)‖2 +
∫

R0

‖ϕ(t, x, z)‖2νt (dz) ≤ C(1 + ‖x‖2), (106)

for all t ∈ [0, T ], x ∈ Rd , where C is a positive constant. Furthermore, we suppose
that there exists a function ρ : R −→ R with

sup
0≤t≤T

∫

R0

|ρ(z)|2νt (dz) < ∞, (107)

and a positive constant K such that

‖ϕ(t, x, z) − ϕ(t, y, z)‖ ≤ K |ρ(z)|‖x − y‖, (108)

for all t ∈ [0, T ], x, y ∈ Rd and z ∈ R0.
In the sequel we provide a theorem which proves that under specific conditions

the solution of a stochastic differential equation belongs to the domain D1,2.

Theorem A.5 Let (St )t∈[0,T ] be the solution of (105). Then St ∈ D1,2 for all t ∈
[0, T ] and the derivative Dr,0St satisfies the following linear equation

Dr,0St =
∫ t

r

∂b

∂x
(u, Su−)Dr,0Su−du + σ(r, Sr−)

+
∫ t

r

∂σ

∂x
(u, Su−)Dr,0Su−dWu

+
∫ t

r

∫

R0

∂ϕ

∂x
(u, Su−, y)Dr,0Su− Ñ (du, dy) (109)

for 0 ≤ r ≤ t a.e. and Dr,0St = 0 a.e. otherwise.

As in the classical Malliavin calculus we are able to associate the solution of (105) to
the first variation processYt := ∇x St . Then,wewill also provide a specific expression
for Dr,0St , the Wiener directional derivative of the St .

Proposition A.6 Let (St )t∈[0,T ] be the solution of (105). Then the derivative satisfies
the following equation

Dr,0St = YtY
−1
r− σ(r, Sr−)1{r≤t} a.e. (110)

where (Yt )t∈[0,T ] is the first variation process of (St )t∈[0,T ].
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Inside the EMs Risky Spreads
and CDS-Sovereign Bonds Basis

Vilimir Yordanov

Abstract The paper considers a no-arbitrage setting for pricing and relative value
analysis of risky sovereign bonds. The typical case of an emerging market country
(EM) that has bonds outstanding both in foreign hard currency (Eurobonds) and local
soft currency (treasuries) is inspected. The resulting two yield curves give rise to a
credit and currency spread that need further elaboration.We discuss their propermea-
surement and also derive and analyze the necessary no-arbitrage conditions that must
hold. Then we turn attention to the CDS-Bond basis in this multi-curve environment.
For EM countries the concept shows certain specifics both in theoretical background
and empirical performance. The paper further focuses on analyzing these peculiari-
ties. If the proper measurement of the basis in the standard case of only hard currency
debt being issued is still problematic, the situation is much more complicated in a
multi-curve setting when a further contingent claim on the sovereign risk in the face
of local currency debt curve appears. We investigate the issue and provide relevant
theoretical and empirical input.

Keywords HJM · Foreign debt · Domestic debt · Z-Spread · CDS-Bond basis

1 Introduction

Local currency debt of EM sovereigns became a hot topic both for practitioners and
academics in the recent years.Major investment banks and asset managers consider it
a separate asset class and publish regularly special local currency investment reports.
A joint working group of IMF, WB, EBRD, and OECD demonstrated recently an
official interest in a thorough investigation of this market segment and support for
its development, thus forming a strict policy agenda. It was recognized that not only
do the local bonds complete the market and thus bring market efficiency, but also
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they could act as a shock absorber to the volatile capital inflows. Furthermore, they
provide flexibility to the governments in financing their budget deficit. However,
these instruments are not well understood from a no-arbitrage point of view and a
formal setting is lacking. Such a setting would provide not only a better picture for
their inherent risk-return characteristics, but would also be an indispensable tool for
market research and strategy. The aim of this paper is exactly to focus attention on
the large set of open questions the local currency debt gives rise to and lay the ground
for a formal relative value analysis with a special emphasis on the CDS-Bond basis.

The paper begins with our general modeling no-arbitrage approach under an HJM
reduced credit risk setting. It serves as a basis and gives a financial engineering intu-
ition about the nature of the problem. The default of the sovereign is represented as
the first jump of a counting process. For the dynamics of the interest rates and the
exchange rate we use jump diffusions controlling the jumps and correlations in a
suitable way, so that we have high precision in capturing the structural macrofinan-
cial effects. We derive the no-arbitrage conditions that must hold in that multi-curve
environment and then analyze their informational content. Then we turn to an appli-
cation related to correctly extracting the credit and currency spreads and measuring
the CDS-Bond basis on a broader scope. This provides basic building blocks for
relative value trades under presence of the local currency yield curve which could
serve as an additional pillar.

The literature on integrating the foreign and domestic debt of a risky sovereign
in a consistent way is at a nascent stage both from an academic and practitioners’
point of view. Related technically but different in essence is the work of Ehlers and
Schönbucher [9] who give a reduced formmodel for CDS of an obligor denominated
in different currencies which accounts for dependence between the exchange rate
and the credit spread. Eberlain and Koval [8] give a high generalization of the cross-
currency term structure models, but similarly they deal only with hard currencies.
Regarding the CDS-Bond basis, Berd et al. [2] provide a thorough analysis of the
shortcomings of the Z-spread as a risky spread metric.1 Alizalde et al. [10] further
discuss the issue and provide extensive simulations. Interesting new measures for
the basis are given in Bernhard and Mai [3] which need further elaboration and
development. However, all these references deal with the single-curve case with an
extension to the multi-curve case pending.

2 Local Currency Bonds No-Arbitrage HJM Setting

In this section we first lay the foundations in brief for pricing of risky debt in a
general reduced form setting. Then we add the local currency debt into the picture
and discuss the risky spreads. We conclude by derivation and analysis of the no-
arbitrage conditions.

1The Z-spread represents a simple shift of the discounting risk-free curve so that the price of the
risky bond is attained.
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2.1 Risky Bonds Under Marked Point Process

The first task is to model default in a suitable way. We start with the most general
formulation and then modify it appropriately. We consider a filtered probability
space (Ω, (Gt )t≥0 , P) which supports an n-dimensional Brownian motion WP =
(W1,W2, . . . ,Wn) under the objective probability measure P and a marked point
processμ : (

Ω, B(R+), ε
) → R+ withmarkers (τi , Xi ) representing the jump times

and their sizes in a measurable space (E, ε), where E = [0, 1] and by ε we denote
the Borel subsets of E . We assume that μ(ω; dt, dx) has a separable compensator
of the form:

υ : (
Ω, B(R+), ε

) → R+ and υ (ω; dt, dx) = h(ω; t)Ft (ω; dx)dt ,

where h(ω; t) = ∫
R+ υ (ω; t, dx) is a Gt measurable intensity and the marks have

a conditional distribution of the jumps of Ft (ω; dx). Thus, we have the identity∫
E Ft (ω; dx) = 1. Furthermore, we can define the total loss function L(ω; t) =∫ t
0

∫
E l(ω; s, x)μ(ω; ds, dx) and the recovery R(ω; t) = 1 − ∫ t

0

∫
E l(ω; s, x)μ

(ω; ds, dx). The function l(ω; t, x) scales the marks in a suitable way, and hav-
ing control over it, we can define it such that our model is tractable enough. We
define also the sum of the jumps by S(ω; t) = ∫ t

0

∫
E xμ(ω; ds, dx) and their number

by N (ω; t) = ∫ t
0

∫
E μ(ω; ds, dx).

Effectively, the marked point process as a sequence of random jumps (τi ,Xi ) is
characterized by the probability measure μ(ω; dt, dx), which gives the number of
jumps with size dx in a small time interval of dt. The compensator υ (ω; t, dx)
provides a full probability characterization of the process. It incorporates in itself
two effects. On one hand, we have the intensity h(ω; t)dt , which gives the condi-
tional probability of jump of the process in a small time interval of dt incorporating
the whole market information up to t . On the other hand, we have the conditional
distribution Ft (ω; dx) of the markers X in case of a jump realization.

We can look at the jumps of the marked point process as sequential defaults of
an obligor at random times τi that lead to losses Xi at each of them. They can also
be considered a set of restructuring events leading to losses for the creditors. Under
this general setting, the prices of the riskless and risky bonds are given by:

• Riskless bond:

P(t, T ) = EQ

(
exp

(
−

∫ T

t
r(s)ds

)
|Gt

)
= exp

(
−

∫ T

t
f (t, s)ds

)
(1)
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• Risky bond:

P∗(t, T ) = EQ

(
exp

(
−

∫ T

t
r(s)ds

)
R(ω; T )|Gt

)

= R(t) exp

(
−

∫ T

t
f ∗(t, s)ds

)
, (2)

where r(t), f (t, T ), and f ∗(t, T ) are the riskless spot, riskless forward, and risky
forward rates respectively.

Depending on how we specify the convention of recovery, we can get further
simplification of the formulas. However, this should be well motivated and come
either from the legal definitions of the debt contracts or their economic grounding.

Under a recovery of market value (RMV) setting, default is a percentage mark
down, q, from the previous recovery. So we have R(ω; τi ) = (1 − q(ω; τi , Xi ))

R(ω; τi−) and l(ω; τi ) has the form l(ω; τi ) = −q(ω; τi , Xi ) × R(ω; τi−). This
definition allows us to write:

μ(ω, dt, dx) =
∑

s>0

1{ΔN (ω,s)�=0}δ(s,ΔN (ω,s))(dt, dx)

dR(ω; t) = −R(ω; t)
∫

E
q (ω; t, x) μ(ω; dt, dx); R(ω; 0) = 1

and if we assume no jumps of the intensity and the risk-free rate at default times
(contagion effects), we have no change for the risk-free bond pricing formula and
for the risky one and as in [13] we get:

P∗RMV (t, T ) = EQ

(

exp

(

−
∫ T

t
r(s)ds

)

R(ω; T )|Gt

)

= R(t)EQ

(

exp

(

−
∫ T

t
(r(s) + h(s)

∫

E
q (ω; s, x) Fs(dx))ds

)

|Gt

)

= R(t) exp

(

−
∫ T

t
f ∗RMV (t, s)ds

)

(3)

Note that within this setting there is no “last default”. The intensity is defined for
the whole marked point process and not just for a concrete single default time, so it
does not go to zero after default realizations. This combinedwith the fact that intensity
is continuous makes the market filtration Gt behave like a background filtration in
the pricing formulas. So we can avoid using the generalized Duffie, Schroder, and
Skiadas [7] formula. Furthermore, we can denote qe(t) = ∫

E q (ω; t, x) Ft (dx) to be
the expected loss. Sowe have that the pricing formula is dependent on the generalized
intensity h(t)qe(t). Due to the multiplicative nature of the last expression, only
frommarket information, as discussed in Schönbucher (2003), we cannot distinguish
between the pure intensity effect h(t) and the recovery induced one qe(t).
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Under a recovery of par (RP) setting, in case of default, the recovery is a separate
fixed or random quantity independent of the default indicator and the risk-free rate.
So we have E = {0, 1 − R (ω)} and υ (ω; dt, dx) = h(ω; t)(1 − Re)dt with Re =
EQ(R (ω) | Gt ). Since we have just one jump, we can write:

μ(ω, dt, dx) = 1{ΔN (ω,t)�=0}δ(t,ΔN (ω,t))(dt, dx)

The bond price is:

P∗RP(t, T ) = EQ

(
exp

(
−

∫ T

t
r(s)ds

)
(
R (ω) 1{τ≤T } + 1{τ>T }

) |Gt

)

= 1{τ>t} exp
(

−
∫ T

t
f ∗RP(t, s)ds

)
(4)

In contrast to RMV, here, as discussed in Schönbucher (2003), he can distinguish
between the pure intensity and recovery induced effects.

2.2 Model Formulation

In this section we develop our HJM model for pricing of local and foreign currency
bonds of a risky country. However, before this being done formally, it is essential
to elaborate on the nature of the problem. Although we do not put here explicitly
macrofinancial structure, but just proxy it by jumps and correlations, it, by all means,
stays in the background and must be conceptually considered.

2.2.1 General Notes

A risky emerging market country can have bonds denominated both in local and
foreign currency that give rise to two risky yield curves and risky spreads—credit
and currency. Generally, the latter arise due to the possibility of the respective credit
events to occur and their severity. To investigate them, formal assumptions are needed
both on their characteristics and interdependence.

We will consider that the two types of debt have different priorities. The country
is first engaged to meeting the foreign debt obligation from its limited international
reserves. The impossibility of this being done leads to default or restructuring. In
both cases, we have a credit event according to the ISDA classification. The foreign
debt has a senior status. The spread that arises reflects the credit risk of the country.
It is a function of: (1) the probability of the credit event to occur; (2) the expected
loss given default; (3) the risk aversion of the market participants to the credit event.
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The domestic debt economically stands differently. It reflects the priority of the
payments in hard currency and it incurs instantly the losses in case of default of
the country. So this debt is the first to be affected by a default and is subordinated.
Technically, the credit event can be avoided under a flexible exchange rate regime
because the country can always make a debt monetization and pay the amounts due
in local currency taking advantage of the fact that there is no resource constraint on
it. However, the price for this is inflation pick-up and exchange rate depreciation.
This leads to real devaluation of the domestic debt. It is exactly the seigniorage and
the dilution effect that cause the loss in the value.2 This resembles the case of a firm
issuingmore equity to avoid default. The spread of the domestic debt over the foreign
one forms the currency spread. Its nature is very broad, and it is not only due to the
currency mismatch. Namely, it is a function of: (1) the probability of the credit event
to occur and the need for monetization; (2) the negative side effect of the credit event
on the exchange rate by a sudden depreciation of the latter; (3) the volatility of the
exchange rate; (4) the expected depreciation of the exchange rate without taking into
consideration the monetization; (5) the risk aversion of market participants to the
credit event and the need for monetization, the sudden exchange rate depreciation
and its size; (6) the risk aversion of the market participants to the volatility of the
exchange rate. All these effects are captured by our model.

2.2.2 Multi-currency Risky Bonds Model

We use the setting of Sect. 2.1 modified to a multi-currency debt. Firstly, we consider
the case of no monetization and then analyze the case with monetization. Secondly,
to avoid using an additional marked point process, and thus a second intensity, the
default on the foreign debt is modeled indirectly. Namely, we assume that default on
domestic debt leads to default on foreign debt, but due to the different priority of the
two, we have just different losses incurred, respectively recoveries. This means that
by controlling recoveries we control default and the inherent subordination without
imposing too much structure. If the default on the domestic debt is so strong that
it leads to a default on the foreign debt as well, we incur zero recovery on the
domestic debt and some positive one on the foreign debt. If the insolvency is mild,
we have a loss only on the domestic debt, so we incur some positive recovery on
the domestic debt and a full recovery on the foreign debt. Thirdly, for notational
purposes, we take as a benchmark Germany and EUR as the base hard currency.
Lastly, we employ the recovery of market value assumption. The reason for this is
twofold. On one hand, in that way, we are consistent with the HJM methodology of
Schönbucher [12] for a single risky curve under RMV and produce parsimonious
no-arbitrage conditions for the extension to a multi-curve environment. On the other

2This pattern can be observed historically for almost all EM countries resorting to a galloping
inflation to avoid a nominal domestic debt default. The Russian default of 1998 somehow seems to
be a partial notable exception where there was along with the inflation surge an actual default on
certain ruble (RU R) bonds—GKOs and OFZs.
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Fig. 1 Risky spreads

hand, as pointed out in Bonnaud et al. [5], for bonds denominated in a different
currency than the numerator employed in discounting, the RMV assumption should
be the working engine. Their argument is exactly as ours above, in case of default,
the sovereign would rather dilute by depreciating the exchange rate and thus the
remaining cash flows of the bond produce in essence the RMV structure. Moreover,
rather than using EUR denominated bonds, we could take advantage of the CDS
quotes and produce synthetic bonds having an RMV recovery structure. Using them
is actually preferable for empirical work since major academic studies argue that it is
the CDSmarket that first captures the market information about the credit risk stance
of the risky sovereign. Furthermore, with a few exceptions, if the EM sovereigns have
in most cases both well developed local currency treasury markets and are subject to
CDS quotation, they do have only few Eurobonds outstanding. Figure1 represents
the typical situation the risky sovereign faces.

Mathematical formulation We continue with the model setup. Firstly, we give the
suitable notation and assumptions. Thenwemove to the derivation of the no-arbitrage
conditions and the pricing.

• Notation
fEU R(t, T )—nominal forward rate, EUR, Ger.
f ∗
EU R(t, T )—nominal forward rate, EUR, EM
f ∗
LC(t, T )—nominal forward rate in LC, EM

rEU R(t)—nominal short rate, EUR, Ger.
r∗
EU R(t)—nominal short rate, EUR, EM
r∗
LC(t)—nominal short rate in LC, EM
h∗
EU R(t, T ) = f ∗

EU R(t, T ) − fEU R(t, T )—credit spr., EM



322 V. Yordanov

h∗
LC,EU R(t, T ) = f ∗

LC(t, T ) − f ∗
EU R(t, T )—currency spr., EM

h∗
LC(t, T ) = f ∗

LC(t, T ) − fEU R(t, T )—general currency spr., EM

PEUR(t, T ) = exp(− ∫ T
t fEU R(t, s)ds)—bond, EUR, Ger.

P∗
f,EU R(t, T ) = R f,EU R(t) exp(− ∫ T

t f ∗
EU R(t, s)ds)—for. bond price., EUR, EM

P∗
d,LC (t, T ) = Rd,LC (t) exp(− ∫ T

t f ∗
LC(t, s)ds)—dom. bond price., LC, EM

BEUR(t) = exp(
∫ t
0 rEU R(s)ds)—bank account, EUR, Ger.

B∗
f,EU R(t) = R f,EU R(t) exp(

∫ t
0 r

∗
EU R(s)ds)—for. bank account, EUR, EM

B∗
d,LC(t) = Rd,LC(t) exp(

∫ t
0 r

∗
LC(s)ds)—dom. bank account, LC, EM

X (t)—exchange rate, EUR for 1 LC, X̃(t)—exchange rate, LC for 1 EUR
R f,EU R(t)—bond recovery, EUR, EM, Rd,LC(t)—bond recovery, LC, EM

We use the asterisk to denote risk, the first letter (d or f ) to denote domestic or
foreign debt, and finally the currency of denomination is shown as EU R or LC.3

• Currency denominations
P∗
d,EU R(t, T ) = X (t)P∗

d,LC(t, T )—dom. bond, EUR
P∗
f,LC(t, T ) = X̃(t)P∗

f,EU R(t, T )—for. bond, LC
B∗
d,EU R(t) = X (t)B∗

d,LC(t)—dom. bank account, EUR
B∗

f,LC(t) = X̃(t)B∗
f,EU R(t)—for. bank account, LC

• Intensities

Foreign debt, EUR:
Intensity: hEUR(t) = h(t)
Compensator: hEUR(t)qe,EU R(t) = h(t)

∫
E q f,EU R (ω; t, x) Ft (dx)

Domestic debt, LC:
Intensity: hLC(t) = h(t)
Compensator: hLC(t)qe,LC(t) = h(t)

∫
E qd,LC (ω; t, x) Ft (dx)

The compensator (generalized intensity) characterizes default. Controlling in a
suitable way the recovery, we can control the compensator and thus the default
event. We turn attention now to the dynamics of the instruments under considera-
tion.

• Forward rates
d fEU R(t, T ) = αEU R(t, T )dt + ∑n

i=1 σEU R,i (t, T )dW P
i (t)

d f ∗
EU R(t, T ) = α∗

EU R(t, T )dt + ∑n
i=1 σ∗

EU R,i (t, T )dW P
i (t)

+∫
Eδ∗

EU R(x, t, T )μ(dx, dt)

3It must be further noted that we actually used standard definitions for the risky forward rates as
in Schönbucher [12]. Namely, f ∗

EU R/LC (t, T ) = − ∂
∂T log P∗

f,EU R/d,LC (t, T ) with terminal condi-
tions P∗

f,EU R/d,LC (T, T ) = R f,EU R/d,LC (T ). The risky bank accounts economically just represent
a unit of currency invested at the respective short rates and continuously rolled over accounting for
any default losses. However, since the forward rates, resp. the bonds, are our basic modeling object,
it would be more precise to consider the bank accounts derived quantities from them similar to
Björk et al. [4] without going here deeper into the modified technical details.
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d f ∗
LC (t, T ) = α∗

LC(t, T )dt + ∑n
i=1 σ∗

LC,i (t, T )dW P
i (t)

+∫
Eδ∗

LC(x, t, T )μ(dx, dt)
We assume that in case of default there is a market turmoil leading to a jump in
both curves. At maturity T , the EU R curve jumps by a size of

∫
Eδ∗

EU R(x, t, T )μ
(dx, dt), and that of the local currency by

∫
Eδ∗

LC(x, t, T )μ(dx, dt). The terms
δ∗
EU R(x, t, T ) and δ∗

LC(x, t, T ) show the jump sizes of the respective curves for
every maturity. As indicated at the beginning of the section, everywhere we will
work under the market filtration Gt so both the Brownian motions and the point
process are adapted to it.

• Recoveries
dR f,EU R(t)
R f,EU R(t) = − ∫

E q f,EU R(x, t)μ(dx, dt)

dRd,LC (t)
Rd,LC (t) = − ∫

E qd,LC(x, t)μ(dx, dt)

After each default we have a devaluation of the respective bond by an expected
value of

∫
Eq f/d(x, t)μ(dx, dt). The stochasticity of the loss is captured by the

random jump size q(., .) as elaborated in Sect. 2.1.

• Bank accounts
dBEUR(t)
BEUR(t) = rEU R(t)dt

dB∗
f,EU R(t)

B∗
f,EU R(t) = r∗

EU R(t)dt − ∫
E q f,EU R(x, t)μ(dx, dt)

dB∗
d,LC (t)

B∗
d,LC (t) = r∗

LC(t)dt − ∫
E qd,LC(x, t)μ(dx, dt)

• Exchange rate
dX (t)
X (t) = αX (t)dt + ∑n

i=1 σX,i (t)dW P
i (t) − ∫

EδX (x, t)μ(dx, dt)
We assume that in case of default the market turmoil causes an exchange rate
devaluation by

∫
EδX (x, t)μ(dx, dt).

• Bond prices

PEUR(t, T ) = exp(− ∫ T
t fEU R(t, s)ds) = EQ f

(exp(− ∫ T
t rEU R(s)ds)|Gt )

P∗
f,EU R(t, T ) = R f,EU R(t) exp(− ∫ T

t f ∗
EU R(t, s)ds)

= EQ f
(exp(− ∫ T

t rEU R(s)ds)R f,EU R(T )|Gt )

P∗
d,EU R(t, T ) = P∗

d,LC (t, T )X (t) = Rd,LC(t)X (t) exp(− ∫ T
t f ∗

LC(t, s)ds)

= EQ f
(exp(− ∫ T

t rEU R(s)ds)Rd,LC (T )X (T )|Gt )

It must be emphasized that the effects of exchange rate, recovery, and the expected
devaluation sizes are incorporated in the respective forward rates of the bonds.
Furthermore, the expectations are taken under Q f , the foreign risk-neutral mea-
sure.



324 V. Yordanov

• Arbitrage

Under standard regularity conditions, for the system to be free of arbitrage, all
traded assets denominated in euro must have a rate of return rEU R under Q f . This
means that the processes:

PEUR(t, T )

BEUR(t)
,
B∗

f,EU R(t)

BEUR(t)
,
P∗
f,EU R(t, T )

BEUR(t)
,
B∗
d,LC(t)X (t)

BEUR(t)
,
P∗
d,LC (t, T )X (t)

BEUR(t)

must be local martingales under Q f . For our purposes being martingales would
be enough.
Taking the stochastic differentials of the upper expressions, omitting the techni-
calities to the appendix, we can get the respective no-arbitrage conditions.

• Spreads:

r∗
EU R(t) − rEU R(t) = h(t)ϕq f,EU R (t) (5.1)

r∗
LC(t) − r∗

EU R(t) = −αX (t) − φ(t)σX (t)
+h(t)(ϕδX (t) − ϕqd,LC ,δX (t) + ϕqd,LC (t) − ϕq f,EU R (t))

(5.2)

• Drifts:

αEU R(t, T ) = σEU R(t, T )
∫ T
t σEU R(t, v)dv − σEU R(t, T )φ(t)

α∗
EU R(t, T ) = σ∗

EU R(t, T )
∫ T
t σ∗

EU R(t, v)dv − σ∗
EU R(t, T )φ(t)

+hEUR(t)ϕ
q f,EU R ,δX
θ∗
EU R

(t)

α∗
LC(t, T ) = σ∗

LC(t, T )
∫ T
t σ∗

LC(t, v)dv − σ∗
LC(t, T )φ(t) − σ∗

LC(t, T )σX (t, T )

+hLC(t)ϕqd,LC ,δX
θ∗
LC

(t),

where we have used the notation:

θ∗
EU R = exp(− ∫ T

t δ∗
EU R(x, t, s)ds) , θ∗

LC = exp(− ∫ T
t δ∗

LC(x, t, s)ds)

ϕ
x,y,...
a.b,... (t) = ∫

E (ab . . .)((1 − x)(1 − y) . . .)Φ(t, x)Ft (dx)

and used vector notation and scalar products where necessary for simplicity.

ByΦ(t, x) andφ(t)we denoted the Girsanov’s kernels of the counting process and
the Brownian motion respectively when changing the probability measure from P
to Q f . The term ϕ(t) represents the scaled expected jump sizes of the counting
process. We can give the interpretation that φ(t) is the market price of diffusion
risk and ϕ(t) is the market price of jump risk. Parametrizing the volatilities and
the market prices of risk, as well as imposing suitable dynamics for h(t), we give a
full characterization of our system. Furthermore, the intensity could be a function
of the underlying processes of the rates, so we could get correlation between the
intensity, the interest rates, and the exchange rate.
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Spreads diagnostics from a reduced form point of view It is important to give a deeper
interpretation of the no-arbitrage conditions and see which factors drive the credit
and currency spreads. Despite the heavy notation, the analysis actually goes fluently.
The drift equations give the modified HJM drift restrictions. The slight change from
the classical riskless case is due to the jumps that arise. Equation (5.1) shows that the
credit risk is proportional to the intensity of default and the scaled expected LGD by
the coefficient controlling the risk aversion. The higher they are, the higher the spread
is. Equation (5.2) gives the currency spread. It arises due to twomain reasons. Firstly,
the intensity of default and the difference between the two LGDs in local currency
and euro, scaled by the coefficient for the risk aversion, act as in the previous case.
They also make explicit the subordination. Secondly, the expected local currency
depreciation, its volatility, and the risk aversion to diffusion risk act similarly to
the standard uncovered interest parity (UIP) relationship. The higher they are, the
higher the spread is. It is both important and interesting to note that inflation does not
appear directly and it influences the spreads, as the next section shows, only through
a secondary channel.

Monetization The analysis so far considered a loss of 1 − Rd,LC(T ) on default of
the domestic debt. However, if a full monetization is applied, then we would have
Rd,LC(T ) = 1 and thus ϕqd,LC (t) = 0 and ϕqd,LC ,δX (t) = 0. If such a monetary injec-
tion is neutral to nominal values, it is certainly not to real ones. Devaluation arises
due to the negative market sentiment following the default and the higher amount of
money in circulation. Its effect can be measured differently based on what we take
as a base—the price index or the exchange rate. Most naturally, we can expect both
of them to depreciate due to the structural macrolinks that exist between these vari-
ables. For quantifying the amount we would need a macromodel which is beyond the
scope of the reduced form model presented. The latter only shows what characteris-
tics the market prices in general without imposing concrete macrolinks among them.
Depending on what the base is, we would have a direct estimation of certain type of
indicators and an indirect one of the rest up to their structural influence on the former.
If the inflation is taken as a base, then we would have the comparison of inflation
indexed bonds to the non-indexed ones. The spread between them would give an
estimate for the expected inflation. Unfortunately, such an analysis is unrealistic due
to the fact that such bonds are issued very rarely by emerging market countries. If
the exchange rate is taken as a base, then we would have the comparison of domestic
debt bonds to foreign debt bonds. The spread between them would give an estimate
for the currency risk and the devaluation effect. The estimate for the inflation would
be indirect and based on hypothetical structural links.

Whether the country would monetize or declare a formal default is based on
strategic considerations. It is a matter of structural analysis which option it would
take. By all means, its decision is priced. In case of default, the pricing formula is
Eq. (5.2). In case of monetization, we would have a jump in the exchange rate. Let
us denote its size by δ̂X . It will be different from the no-monetization one, δX , due
to the different regimes that are followed, and we would thus get:
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r∗
LC(t) − r∗

EU R(t) = h(t)(ϕδ̂X
(t) − ϕq f,EU R (t)) − αX (t) − φ(t)σX (t) (6)

There is no a priori no-arbitrage argument that ϕδ̂X
(t) = ϕδX (t) − ϕqd,LC ,δX (t) +

ϕqd,LC (t) must hold so that the two scenarios are equivalent.4 The only information
we get from the market is an estimate for the generalized intensity being h(t)ϕδ̂X

(t)
or h(t)(ϕδX (t) − ϕqd,LC ,δX (t) + ϕqd,LC (t)) but not knowing which possible scenario
will be realized.

3 CDS-Bond Basis

3.1 General Notes

The setting we built gives us an alternative for evaluating the CDS-Bond basis. This
is represented in Fig. 1. There the LC zero-coupon yield curve is built by employing
local currency treasuries and an appropriate smoothing method. The EUR zero-
coupon yield curve is built by employing CDS quotes with the maths represented in
the sequel. Along with the curves, there are few Eurobonds represented in light blue
colored dots. Both credit and currency spreads can be computed for them employing
a standard Z-spread methodology. Despite its various shortcomings, as discussed in
Berd et al. [2] and Elizalde et al. [10], it allows us to have a certain measure for the
spreads and it is widely accepted by practitioners. Subtracting from the yield curves’
implied credit and currency spreads the bond implied spreads, we get two alternative
specifications for the CDS-Bonds basis. Several things need a comment.

Firstly, the two basis measures are not equal by default. The one representing
the credit spread is subject to Z-spread measurement based on a parallel shift of the
benchmark curve. So it depends on the whole benchmark curve and has nothing to do
with the LC one. Vice versa, the basis implied by the LC curve is subject to Z-spread
measurement based on a parallel shift of the LC curve. So it depends on the whole
LC curve, but has nothing to do with the benchmark one. This provides intuition
how the introduction of the LC curve brings additional information in the picture and
provides more market completeness that must be utilized in relative value trades.

Secondly, as mentioned above, the EUR curve is built by utilizing CDS quotes. As
shown below, in the procedure employed, an assumption is needed for the recovery
scheme. What it should be depends on our purposes. On one hand, if we would like
to just extract the credit and currency spreads from the yield curves and calibrate a
reduced form model,5 it would be convenient to employ the setting from Sect. 2. So

4This is a delicate issue. As indicated, a further structural analysis is needed for a complete answer.
The crucial point is that the two scenarios affect in a different way the monetary base. It will have
a neutral effect on the macro variables in general and the risky spreads in particular only in case
the economy is at the macro potential. Exactly when that is not the case, we can expect that the
two scenarios will not be equivalent. A further elaboration on these issues from a structural point
of view could be found in Yordanov [15, 16].
5We postpone the factors to build realization of the model from Sect. 2 so that it becomes operative
for calibration and consequent further analysis to the forthcoming follow-up paper of Yordanov
[17].
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an RMV assumption for the EUR curve is the most appropriate one since the same
assumption is imposed also for the LC curve and when subtracting the corresponding
zero yields, we subtract apples from apples. On the other hand, if we like to extract the
basis, we must be careful since the Eurobonds are priced under a firmly established
RP assumption. So for a standard calculation via a Z-spread based on the benchmark
curve we need an RP built EUR curve to be consistent. With the many problems of
the Z-spread, it would be definitely bad to add further ones coming from a recovery
assumption inconsistency which would only further contribute to an imprecise basis
measurement. For a calculation via a Z-spread based on the LC curve, we should not
use the RMV LC curve but a modified one. From the RMV LC curve we need to
build an RP one and then compute the Z-spread and the basis to be consistent.

3.2 Technical Notes

Here we provide the technical notes regarding the above discussion.

• EUR curve
Using OIS differential discounting as in Doctor and Goulden [6], we could mod-
ify6 the standard CDS bootstrap procedure of ISDA and extract at time t the
T−maturity default probabilities pR

EU R(t, T ) under a recovery assumption of R.
Then we would get in a straightforward way the EU R zero coupon yields (ytm)
and credit spreads (spr ) under RMV and RP:

– RMV:

sprRMV,R
EU R (t, T ) = − (1−R) log(1−pR

EU R(t,T ))

T−t

ytmRMV,R
EU R (t, T ) = sprRMV,R

EU R (t, T ) + exp(−yEU R(t, T )(T − t))

– RP:

sprRP,R
EU R (t, T ) = − log(RpR

EU R(t,T )+1−pR
EU R(t,T ))

T−t

ytmRP,R
EU R (t, T ) = sprRP,R

EU R (t, T ) + exp(−yEU R(t, T )(T − t)),

where yEU R(t, T ) is the T−maturity zero yield of the riskless benchmark curve
(e.g. German bunds).

• LC curve

– RMV:

ytmRMV,R
LC (t, T )–observed from the market

6The OIS discounting should be given a special comment since there is still no consensus on how to
bootstrap OIS swaps to form the discount factors for the CDS swap bootstrap. The problem comes
from the presence of gaps for certain maturities. A possible specification is given in West [14].
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sprRMV,R
LC,EU R(t, T ) = ytmRMV,R

LC (t, T )−ytmRMV,R
EU R (t, T )

pR
LC(t, T ) = 1 − exp(− sprRMV,R

LC,EU R(t,T )

1−R (T − t))

– RP:

sprRP,R
LC,EU R(t, T ) = − log(RpR

LC (t,T )+1−pR
LC (t,T ))

T−t

ytmRP,R
LC (t, T ) = sprRP,R

LC,EU R(t, T )+ytmRP,R
EU R (t, T )

Note that similarly to the EUR curve procedure, the LC curve one relies on the
premise that both the RMV and RP cases must share the same pR

LC(t, T ), which
stands for the probability of default on the LC debt. However, according to the
analysis we had in Sect. 2 on the no-arbitrage conditions, due to the monetization,
such probability actually does not formally exist. Here it is only a derived quantity
since althoughwe assume the same point process as a driver of default on both the LC
and EUR debt, we can control the compensator by changing the recoveries. However,
we could just take the formulas above for the RP spread as definitions. Taking the
limit case of zero EUR debt, they would be entirely consistent to the RP in case of
EUR debt, thus providing a justification for our method.

3.3 CDS-Bond Basis Empirics

For illustration we provide visualization of the Z-spread measured basis according
to the two alternative ways for a set of European EM countries. They are chosen
so that they have both Eurobonds outstanding in EUR and a liquid LC curve. The
data sources are: Bloomberg, Datastream, and CBonds. We build the LC curves by
employing the Bloomberg BFV curves. Since they are par curves, see Lee [11],
we transform them to zero-coupon yield ones. For spreads extraction we use both
EUR and USD denominated CDS. We give preference to the former, but in case of
missing quotes we use USD quotes instead by making a quanto adjustment using
cross currency basis swaps. The countries under focus are: Bulgaria (BGN), Czech
Rep. (CZK), Hungary (HUF), Lithuania (LTL), Poland (PLN), Romania (RON), and
Slovakia (SKK).

Since there are plenty of bonds outstanding, aggregate measures are presented
based on duration weighting. The events: 1—GM turmoil of May 09, 2005, 2—
Liquidity crisis of August 09, 2007, 3—Bear Sterns default of March 14, 2008,
4—Lehman default of September 15, 2008, 5—Greek turmoil of April 23, 2010,
6—August 5, 2011—the US rating downgrade, 7—06 May, 2012—ECB refi-rate
woes are marked by the vertical dashed lines.
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Fig. 2 CDS-Bond basis across countries

The short conclusion from the patterns in Fig. 2 is that the bonds provide impor-
tant input for extracting the credit and currency spreads. The two alternative basis
formulations preserve general shape similarity, but still give different results that
should not be underestimated. This is not surprising since the outcome is driven by
the difference in shapes between the benchmark and the LC curves.Market strategists
and arbitrage traders have a large scope for interpretations and trades design.

4 Conclusion

The paper considers the credit and currency spreads of a risky EM country. The
necessary no-arbitrage conditions are derived and their informational content is ana-
lyzed. An application of the setting is made to proper building of the foreign and local
currency yield curves of a sovereign as well as to providing ideas for relative value
diagnostics in a multi-currency framework. In that direction, an alternative measure
for the CDS-Bond basis is discussed when the local currency curve is employed as a
pillar. The aim of the paper is both to point out the rich opportunities the setting gives
for market-related research that could be of use to strategists and policy officers and
to make the first several steps toward investigating such opportunities.
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Appendix

Here we briefly elaborate on the derivation of Eqs. (5.1) and (5.2). Applying the
Girsanov’s theorem and the Ito’s Lemma for jump diffusions to Eq. (2), we get the
dynamics:

dP∗
f,EU R(t, T )

P∗
f,EU R(t, T )

=
(

−
∫ T

t
α∗
EU R(t, s)ds + r∗

EU R(t) + 1

2
||

∫ T

t
σ∗
EU R(t, s)ds||2

)
dt

−
(∫ T

t
σ∗
EU R(t, s)ds

)
dW P (t)

+
∫

E
(1 − q f,EU R(x, t))

(
exp

(
−

∫ T

t
δ∗
EU R(x, t, s)ds

)
− 1

)
μ(dx, dt)

−
∫

E
q f,EU R(x, t)μ(dx, dt)

dP∗
d,LC (t, T )

P∗
d,LC (t, T )

=
(

−
∫ T

t
α∗
LC (t, s)ds + r∗

LC (t) + 1

2
||

∫ T

t
σ∗
LC (t, s)ds||2

)

dt

−
(∫ T

t
σ∗
LC (t, s)ds

)

dW P (t)

+
∫

E
(1 − qd,LC (x, t))

(

exp

(

−
∫ T

t
δ∗
LC (x, t, s)ds

)

− 1

)

μ(dx, dt)

−
∫

E
qd,LC (x, t)μ(dx, dt)

Furthermore, we have the dynamics of the exchange rate:

dX (t)

X (t)
= αX (t)dt +

∑n

i=1
σX,i (t)dW

P
i (t) −

∫

E
δX (x, t)μ(dx, dt)

So using the no-arbitrage conditions and equating the expected local drifts to the
risk-free rate, we get the results shown.
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