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Nonlinearity Valuation Adjustment

Nonlinear Valuation Under Collateralization,
Credit Risk, and Funding Costs

Damiano Brigo, Qing D. Liu, Andrea Pallavicini and David Sloth

Abstract We develop a consistent, arbitrage-free framework for valuing derivative
trades with collateral, counterparty credit risk, and funding costs. Credit, debit, liq-
uidity, and funding valuation adjustments (CVA, DVA, LVA, and FVA) are simply
introduced as modifications to the payout cash flows of the trade position. The frame-
work is flexible enough to accommodate actual trading complexities such as asym-
metric collateral and funding rates, replacement close-out, and re-hypothecation of
posted collateral—all aspects which are often neglected. The generalized valuation
equation takes the form of a forward–backward SDE or semi-linear PDE. Neverthe-
less, it may be recast as a set of iterative equations which can be efficiently solved
by our proposed least-squares Monte Carlo algorithm. We implement numerically
the case of an equity option and show how its valuation changes when including
the above effects. In the paper we also discuss the financial impact of the proposed
valuation framework and of nonlinearity more generally. This is fourfold: First, the
valuation equation is only based on observable market rates, leaving the value of a
derivatives transaction invariant to any theoretical risk-free rate. Secondly, the pres-
ence of funding costs makes the valuation problem a highly recursive and nonlinear
one. Thus, credit and funding risks are non-separable in general, and despite com-
mon practice in banks, CVA, DVA, and FVA cannot be treated as purely additive
adjustments without running the risk of double counting. To quantify the valua-
tion error that can be attributed to double counting, we introduce a “nonlinearity
valuation adjustment” (NVA) and show that its magnitude can be significant under
asymmetric funding rates and replacement close-out at default. Thirdly, as trading
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parties cannot observe each others’ liquidity policies nor their respective funding
costs, the bilateral nature of a derivative price breaks down. The value of a trade to a
counterparty will not be just the opposite of the value seen by the bank. Finally, val-
uation becomes aggregation-dependent and portfolio values cannot simply be added
up. This has operational consequences for banks, calling for a holistic, consistent
approach across trading desks and asset classes.

Keywords Nonlinear valuation ·Nonlinear valuation adjustmentNVA ·Credit risk ·
Credit valuation adjustment CVA · Funding costs · Funding valuation adjustment
FVA · Consistent valuation · Collateral

1 Introduction

Recent years have seen an unprecedented interest among banks in understanding
the risks and associated costs of running a derivatives business. The financial crisis
in 2007–2008 made banks painfully aware that derivative transactions involve a
number of risks, e.g., credit or liquidity risks that they had previously overlooked
or simply ignored. The industry practice for dealing with these issues comes in the
form of a series of price adjustments to the classic, risk-neutral price definition of a
contingent claim, often coined under mysteriously sounding acronyms such as CVA,
DVA, or FVA.1 The credit valuation adjustment (CVA) corrects the price for the
expected costs to the dealer due to the possibility that the counterparty may default,
while the so-called debit valuation adjustment (DVA) is a correction for the expected
benefits to the dealer due to his own default risk. Dealers also make adjustments due
to the costs of funding the trade. This practice is known as a liquidity and funding
valuation adjustment (LVA,FVA).Recent headlines such as J.P.Morgan taking ahit of
$1.5 billion in its 2013 fourth-quarter earnings due to funding valuation adjustments
underscores the sheer importance of accounting for FVA.

In this paper we develop an arbitrage-free valuation approach of collateralized as
well as uncollateralized trades that consistently accounts for credit risk, collateral,
and funding costs. We derive a general valuation equation where CVA, DVA, collat-
eral, and funding costs are introduced simply as modifications of payout cash flows.
This approach can also be tailored to address trading through a central clearing house
(CCP) with initial and variation margins as investigated in Brigo and Pallavicini [6].
In addition, our valuation approach does not put any restrictions on the banks’ liq-
uidity policies and hedging strategies, while accommodating asymmetric collateral
and funding rates, collateral rehypothecation, and risk-free/replacement close-out
conventions. We present an invariance theorem showing that our valuation equa-

1Recently, a new adjustment, the so-called KVA or capital valuation adjustment, has been proposed
to account for the capital cost of a derivatives transaction (see e.g. Green et al. [26]). Following the
financial crisis, banks are faced by more severe capital requirements and leverage constraints put
forth by the Basel Committee and local authorities. Despite being a key issue for the industry, we
will not consider costs of capital in this paper.
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tions do not depend on some unobservable risk-free rates; valuation is purely based
on observable market rates. The invariance theorem has appeared first implicitly in
Pallavicini et al. [33], and is studied in detail in Brigo et al. [15], a version of which
is in this same volume.

Several studies have analyzed the various valuation adjustments separately, but
few have tried to build a valuation approach that consistently takes collateralization,
counterparty credit risk, and funding costs into account. Under unilateral default risk,
i.e., when only one party is defaultable, Brigo and Masetti [4] consider valuation of
derivatives with CVA, while particular applications of their approach are given in
Brigo and Pallavicini [5], Brigo and Chourdakis [3], and Brigo et al. [8]; see Brigo et
al. [11] for a summary. Bilateral default risk appears in Bielecki and Rutkowski [1],
Brigo and Capponi [2], Brigo et al. [9] and Gregory [27] who price both the CVA and
DVA of a derivatives deal. The impact of collateralization on default risk has been
investigated in Cherubini [20] and more recently in Brigo et al. [7, 12]. Assuming no
default risk, Piterbarg [36] provides an initial analysis of collateralization and funding
risk in a stylized Black–Scholes economy. Morini and Prampolini [31], Fries [25]
and Castagna [19] consider basic implications of funding in presence of default
risk. However, the most comprehensive attempts to develop a consistent valuation
framework are those of Burgard and Kjaer [16, 17], Crépey [21–23], Crépey et al.
[24], Pallavicini et al. [33, 34], and Brigo et al. [13, 14].

We follow the works of Pallavicini et al. [34], Brigo et al. [13, 14], and Sloth [37]
and consider a general valuation framework that fully and consistently accounts for
collateralization, counterparty credit risk, and funding riskwhen pricing a derivatives
trade.Wefind that the precise patterns of funding-adjusted values dependon a number
of factors, including the asymmetry between borrowing and lending rates. Moreover,
the introduction of funding risk creates a highly recursive and nonlinear valuation
problem. The inherent nonlinearity manifests itself in the valuation equations by
taking the form of semi-linear PDEs or BSDEs.

Thus, valuation under funding risk poses a computationally challenging problem;
funding and credit costs do not split up in a purely additiveway.A consequence of this
is that valuation becomes aggregation-dependent. Portfolio values do not simply add
up,making it difficult for banks to create CVAandFVAdeskswith separate and clear-
cut responsibilities. Nevertheless, banks often make such simplifying assumptions
when accounting for the various price adjustments. This can be done, however, only
at the expense of tolerating some degree of double counting in the different valuation
adjustments.

We introduce the concept of nonlinearity valuation adjustment (NVA) to quantify
the valuation error that one makes when treating CVA, DVA, and FVA as separate,
additive terms. In particular, we examine the financial error of neglecting nonlinear-
ities such as asymmetric borrowing and lending funding rates and by substituting
replacement close-out at default by the more stylized risk-free close-out assumption.
We analyze the large scale implications of nonlinearity of the valuation equations:
non-separability of risks, aggregation dependence in valuation, and local valuation
measures as opposed to universal ones. Finally, our numerical results confirm that
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NVA and asymmetric funding rates can have a non-trivial impact on the valuation of
financial derivatives.

To summarize, the financial implications of our valuation framework are fourfold:

• Valuation is invariant to any theoretical risk-free rate and only based on observable
market rates.

• Valuation is a nonlinear problemunder asymmetric funding and replacement close-
out at default, making funding and credit risks non-separable.

• Valuation is no longer bilateral because counterparties cannot observe each others’
liquidity policies nor their respective funding costs.

• Valuation is aggregation-dependent and portfolio values can no longer simply be
added up.

The above points stress the fact that we are dealing with values rather than prices.
By this, we mean to distinguish between the unique price of an asset in a complete
marketwith a traded risk-free bank account and the value a bank ormarket participant
attributes to the particular asset. Nevertheless, in the following, we will use the terms
price and value interchangeably to mean the latter. The paper is organized as follows.
Section2 describes the general valuation framework with collateralized credit, debit,
liquidity, and funding valuation adjustments. Section3 derives an iterative solution of
the pricing equation aswell as a continuous-time approximation. Section4 introduces
the nonlinearity valuation adjustment and provides numerical results for specific
valuation examples. Finally, Sect. 5 concludes the paper.

2 Trading Under Collateralization, Close-Out Netting,
and Funding Risk

In this section we develop a general risk-neutral valuation framework for OTC deriv-
ative deals. The section clarifies how the traditional pre-crisis derivative price is
consistently adjusted to reflect the new market realities of collateralization, counter-
party credit risk, and funding risk. We refer to the two parties of a credit-risky deal
as the investor or dealer (“I”) on one side and the counterparty or client (“C”) on the
other.

We now introduce the mathematical framework we will use. We point out that
the focus here is not on mathematics but on building the valuation framework. Full
mathematical subtleties are left for other papers and may motivate slightly different
versions of the cash flows, see for example Brigo et al. [15]. More details on the
origins of the cash flows used here are in Pallavicini et al. [33, 34].

Fixing the time horizon T ∈ R+ of the deal, we define our risk-neutral valuation
model on the probability space (Ω,G , (Gt )t∈[0,T ], Q). Q is the risk-neutral proba-
bility measure ideally associated with the locally risk-free bank account numeraire
growing at the risk-free rate r . The filtration (Gt )t∈[0,T ] models the flow of informa-
tion of the whole market, including credit, such that the default times of the investor
τI and the counterparty τC are G -stopping times. We adopt the notational convention
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that Et is the risk-neutral expectation conditional on the information Gt . Moreover,
we exclude the possibility of simultaneous defaults for simplicity and define the time
of the first default event among the two parties as the stopping time

τ � (τI ∧ τC).

In the sequel we adopt the view of the investor and consider the cash flows and
consequences of the deal from her perspective. In other words, when we price the
deal we obtain the value of the position to the investor. As we will see, with funding
risk this price will not be the value of the deal to the counterparty with opposite sign,
in general.

The gist of the valuation framework is conceptually simple and rests neatly on
the classical finance disciplines of risk-neutral valuation and discounting cash flows.
When a dealer enters into a derivatives deal with a client, a number of cash flows are
exchanged, and just like valuation of any other financial claim, discounting these cash
in- or outflows gives us a price of the deal. Post-crisis market practice includes four
(or more) different types of cash flow streams occurring once a trading position has
been entered: (i) Cash flows coming directly from the derivatives contract, such as
payoffs, coupons, dividends, etc.Wedenote byπ(t, T ) the sumof the discounted cash
flows happening over the time period (t, T ] without including any credit, collateral,
and funding effects. This is where classical derivatives valuation would usually stop
and the price of a derivative contract with maturity T would be given by

Vt = Et [π(t, T )] .

This price assumes no credit risk of the parties involved and no funding risk of
the trade. However, present-day market practice requires the price to be adjusted
by taking further cash-flow transactions into account: (ii) Cash flows required by
collateral margining. If the deal is collateralized, cash flows happen in order to
maintain a collateral account that in the case of default will be used to cover any
losses. γ (t, T ;C) is the sum of the discounted margining costs over the period
(t, T ] with C denoting the collateral account. (iii) Cash flows exchanged once a
default event has occurred. We let θτ (C, ε) denote the on-default cash-flow with ε
being the residual value of the claim traded at default. Lastly, (iv) cash flows required
for funding the deal. We denote the sum of the discounted funding costs over the
period (t, T ] by ϕ(t, T ; F) with F being the cash account needed for funding the
deal. Collecting the terms we obtain a consistent price V̄ of a derivative deal taking
into account counterparty credit risk, margining costs, and funding costs

V̄t (C, F) = Et
[
π(t, T ∧ τ) + γ (t, T ∧ τ ;C) + ϕ(t, T ∧ τ ; F) (1)

+1{t<τ<T }D(t, τ )θτ (C, ε)
]
,

where D(t, τ ) = exp(− ∫ τ

t rsds) is the risk-free discount factor.
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By using a risk-neutral valuation approach, we see that only the payout needs to
be adjusted under counterparty credit and funding risk. In the following paragraphs
we expand the terms of (1) and carefully discuss how to compute them.

2.1 Collateralization

The ISDA master agreement is the most commonly used framework for full and
flexible documentation of OTC derivative transactions and is published by the Inter-
national Swaps and Derivatives Association (ISDA [29]). Once agreed between two
parties, the master agreement sets out standard terms that apply to all deals entered
into between those parties. The ISDA master agreement lists two tools to mitigate
counterparty credit risk: collateralization and close-out netting. Collateralization of
a deal means that the party which is out-of-the-money is required to post collateral—
usually cash, government securities, or highly rated bonds—corresponding to the
amount payable by that party in the case of a default event. The credit support annex
(CSA) to the ISDA master agreement defines the rules under which the collateral
is posted or transferred between counterparties. Close-out netting means that in the
case of default, all transactions with the counterparty under the ISDA master agree-
ment are consolidated into a single net obligation which then forms the basis for any
recovery settlements.

Collateralization of a deal usually happens according to a margining procedure.
Such a procedure involves that both parties post collateral amounts to or withdraw
amounts from the collateral account C according to their current exposure on pre-
fixed dates {t1, . . . , tn = T } during the life of the deal, typically daily. Let αi be
the year fraction between ti and ti+1. The terms of the margining procedure may,
furthermore, include independent amounts, minimum transfer amounts, thresholds,
etc., as described in Brigo et al. [7]. However, here we adopt a general description
of the margining procedure that does not rely on the particular terms chosen by the
parties.

We consider a collateral account C held by the investor. Moreover, we assume
that the investor is the collateral taker when Ct > 0 and the collateral provider when
Ct < 0. The CSA ensures that the collateral taker remunerates the account C at an
accrual rate. If the investor is the collateral taker, he remunerates the collateral account
by the accrual rate c+

t (T ), while if he is the collateral provider, the counterparty
remunerates the account at the rate c−

t (T ).2 The effective accrual collateral rate
c̃t (T ) is defined as

c̃t (T ) � c−
t (T )1{Ct<0} + c+

t (T )1{Ct>0}. (2)

2We stress the slight abuse of notation here: A plus and minus sign does not indicate that the rates
are positive or negative parts of some other rate, but instead it tells which rate is used to accrue
interest on the collateral according to the sign of the collateral account.
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More generally, to understand the cash flows originating from collateralization of
the deal, let us consider the consequences of the margining procedure to the investor.
At the first margin date, say t1, the investor opens the account and posts collateral
if he is out-of-the-money, i.e. if Ct1 < 0, which means that the counterparty is the
collateral taker. On each of the followingmargin dates tk , the investor posts collateral
according to his exposure as long asCtk < 0.As collateral taker, the counterparty pays
interest on the collateral at the accrual rate c−

tk (tk+1) between the following margin
dates tk and tk+1. We assume that interest accrued on the collateral is saved into the
account and thereby directly included in the margining procedure and the close-out.
Finally, ifCtn < 0 on the last margin date tn , the investor closes the collateral account,
given no default event has occurred in between. Similarly, for positive values of the
collateral account, the investor is instead the collateral taker and the counterparty
faces corresponding cash flows at each margin date. If we sum up all the discounted
margining cash flows of the investor and the counterparty, we obtain

γ (t, T ∧ τ ;C) �
n−1∑

k=1

1{t�tk<(T∧τ)}D(t, tk)Ctk

(

1 − Ptk (tk+1)

Pc̃
tk (tk+1)

)

, (3)

with the zero-coupon bond Pc̃
t (T ) � [1 + (T − t)c̃t (T )]−1, and the risk-free zero

coupon bond, related to the risk-free rate r , given by Pt (T ). If we adopt a first order
expansion (for small c and r ), we can approximate

γ (t, T ∧ τ ;C) ≈
n−1∑

k=1

1{t�tk<(T∧τ)}D(t, tk)Ctkαk
(
rtk (tk+1) − c̃tk (tk+1)

)
, (4)

where with a slight abuse of notation we call c̃t (T ) and rt (T ) the continuously (as
opposed to simple) compounded interest rates associated with the bonds Pc̃ and P .
This last expression clearly shows a cost of carry structure for collateral costs. If C
is positive to “I”, then “I” is holding collateral and will have to pay (hence the minus
sign) an interest c+, while receiving the natural growth r for cash, since we are in a
risk-neutral world. In the opposite case, if “I” posts collateral, C is negative to “I”
and “I” receives interest c− while paying the risk-free rate, as should happen when
one shorts cash in a risk-neutral world.

A crucial role in collateral procedures is played by rehypothecation. We discuss
rehypothecation and its inherent liquidity risk in the following.

Rehypothecation

Often the CSA grants the collateral taker relatively unrestricted use of the collateral
for his liquidity and trading needs until it is returned to the collateral provider.
Effectively, the practice of rehypothecation lowers the costs of remuneration of the
provided collateral. However, while without rehypothecation the collateral provider
can expect to get any excess collateral returned after honoring the amount payable on
the deal, if rehypothecation is allowed the collateral provider runs the risk of losing a
fraction or all of the excess collateral in case of default on the collateral taker’s part.
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We denote the recovery fraction on the rehypothecated collateral by R′
I when

the investor is the collateral taker and by R′
C when the counterparty is the collateral

taker. The general recovery fraction on the market value of the deal that the investor
receives in the case of default of the counterparty is denoted by RC , while RI is the
recovery fraction received by the counterparty if the investor defaults. The collateral
provider typically has precedence over other creditors of the defaulting party in
getting back any excess capital, which means RI � R′

I � 1 and RC � R′
C � 1. If

no rehypothecation is allowed and the collateral is kept safe in a segregated account,
we have that R′

I = R′
C = 1.

2.2 Close-Out Netting

In case of default, all terminated transactions under the ISDAmaster agreementwith a
given counterparty are netted and consolidated into a single claim. This also includes
any posted collateral to back the transactions. In this context the close-out amount
plays a central role in calculating the on-default cash flows. The close-out amount is
the costs or losses that the surviving party incurs when replacing the terminated deal
with an economic equivalent. Clearly, the size of these costs will depend on which
party survives so we define the close-out amount as

ετ � 1{τ=τC<τI }εI,τ + 1{τ=τI<τC }εC,τ , (5)

where εI,τ is the close-out amount on the counterparty’s default priced at time τ by
the investor and εC,τ is the close-out amount if the investor defaults. Recall that we
always consider the deal from the investor’s viewpoint in terms of the sign of the
cash flows involved. This means that if the close-out amount εI,τ as measured by the
investor is positive, the investor is a creditor of the counterpaty, while if it is negative,
the investor is a debtor of the counterparty. Analogously, if the close-out amount εC,τ

to the counterparty but viewed from the investor is positive, the investor is a creditor
of the counterparty, and if it is negative, the investor is a debtor to the counterparty.

We note that the ISDA documentation is, in fact, not very specific in terms of
how to actually calculate the close-out amount. Since 2009, ISDA has allowed for
the possibility to switch from a risk-free close-out rule to a replacement rule that
includes the DVA of the surviving party in the recoverable amount. Parker and Mc-
Garry[35] and Weeber and Robson [40] show how a wide range of values of the
close-out amount can be produced within the terms of ISDA. We refer to Brigo et al.
[7] and the references therein for further discussions on these issues. Here, we adopt
the approach of Brigo et al. [7] listing the cash flows of all the various scenarios that
can occur if default happens. We will net the exposure against the pre-default value
of the collateral Cτ− and treat any remaining collateral as an unsecured claim.

If we aggregate all these cash flows and the pre-default value of collateral account,
we reach the following expression for the on-default cash-flow
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θτ (C, ε) � 1{τ=τC<τI }
(
εI,τ − LGDC(ε+

I,τ − C+
τ−)+ − LGD′

C(ε−
I,τ − C−

τ−)+
)

(6)

+ 1{τ=τI<τC }
(
εC,τ − LGDI (ε

−
C,τ − C−

τ−)− − LGD′
I (ε

+
C,τ − C+

τ−)−
)
.

We use the short-hand notation X + := max(X , 0) and X − := min(X , 0), and
define the loss-given-default as LGDC � 1 − RC , and the collateral loss-given-
default as LGD′

C � 1 − R′
C . If both parties agree on the exposure, namely εI,τ =

εC,τ = ετ , when we take the risk-neutral expectation in (1), we see that the price of
the discounted on-default cash-flow,

Et [1{t<τ<T }D(t, τ )θτ (C, ε)] =Et [1{t<τ<T }D(t, τ ) ετ ]
− CVA(t, T ;C) + DVA(t, T ;C), (7)

is the present value of the close-out amount reduced by the positive collateralized
CVA and DVA terms

Π CVAcoll(s) = (
LGDC(ε+

I,s − C+
s−)+ + LGD′

C(ε−
I,s − C−

s−)+
) ≥ 0,

Π DVAcoll(s) = − (
LGDI (ε

−
C,s − C−

s−)− + LGD′
I (ε

+
C,s − C+

s−)−
) ≥ 0,

and

CVA(t, T ;C) � Et
[
1{τ=τC<T }D(t, τ )Π CVAcoll(τ )

]
,

DVA(t, T ;C) � Et
[
1{τ=τI<T }D(t, τ )Π DVAcoll(τ )

]
. (8)

Also, observe that if rehypothecation of the collateral is not allowed, the terms mul-
tiplied by LGD′

C and LGD′
I drop out of the CVA and DVA calculations.

2.3 Funding Risk

The hedging strategy that perfectly replicates the no-arbitrage price of a derivative
is formed by a position in cash and a position in a portfolio of hedging instruments.
Whenwe talk about a derivative deal’s funding, we essentiallymean the cash position
that is required as part of the hedging strategy, and with funding costs we refer to the
costs of maintaining this cash position. If we denote the cash account by F and the
risky asset account by H , we get

V̄t = Ft + Ht .

In the classical Black–Scholes–Merton theory, the risky part H of the hedge would
be a delta position in the underlying stock, whereas the locally risk-free (cash) part
F would be a position in the risk-free bank account. If the deal is collateralized,
the margining procedure is included in the deal definition insuring that funding of
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the collateral is automatically taken into account. Moreover, if rehypothecation is
allowed for the collateralized deal, the collateral taker can use the posted collateral
as a funding source and thereby reduce or maybe even eliminate the costs of funding
the deal. Thus, we have the following two definitions of the funding account:
If rehypothecation of the posted collateral is allowed,

Ft � V̄t − Ct − Ht , (9)

and if such rehypothecation is forbidden, we have

Ft � V̄t − Ht . (10)

By implication of (9) and (10) it is obvious that if the funding account Ft > 0,
the dealer needs to borrow cash to establish the hedging strategy at time t . Corre-
spondingly, if the funding account Ft < 0, the hedging strategy requires the dealer to
invest surplus cash. Specifically, we assume the dealer enters a funding position on a
discrete time-grid {t1, . . . , tm} during the life of the deal. Given two adjacent funding
times t j and t j+1, for 1 ≤ j ≤ m − 1, the dealer enters a position in cash equal to
Ft j at time t j . At time t j+1 the dealer redeems the position again and either returns
the cash to the funder if it was a long cash position and pays funding costs on the
borrowed cash, or he gets the cash back if it was a short cash position and receives
funding benefits as interest on the invested cash. We assume that these funding costs
and benefits are determined at the start date of each funding period and charged at
the end of the period.

Let P f̃
t (T ) represent the price of a borrowing (or lending) contract measurable

at t where the dealer pays (or receives) one unit of cash at maturity T > t . We
introduce the effective funding rate f̃t as a function: f̃t = f (t, F, H,C), assuming
that it depends on the cash account Ft , hedging account Ht , and collateral account
Ct . Moreover, the zero-coupon bond corresponding to the effective funding rate is
defined as

P f̃
t (T ) � [1 + (T − t) f̃t (T )]−1,

If we assume that the dealer hedges the derivatives position by trading in the spot
market of the underlying asset(s), and the hedging strategy is implemented on the
same time-grid as the funding procedure of the deal, the sum of discounted cash
flows from funding the hedging strategy during the life of the deal is equal to

ϕ(t, T ∧ τ ; F, H)

=
m−1∑

j=1

1{t�t j<(T∧τ)}D(t, t j )

⎛

⎝Ft j − (Ft j + Htj )
Pt j (t j+1)

P f̃
t j (t j+1)

+ Htj

Pt j (t j+1)

P f̃
t j (t j+1)

⎞

⎠

=
m−1∑

j=1

1{t�t j<(T∧τ)}D(t, t j )Ft j

⎛

⎝1 − Pt j (t j+1)

P f̃
t j (t j+1)

⎞

⎠ . (11)
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This is, strictly speaking, a discounted payout and the funding cost or benefit at time
t is obtained by taking the risk-neutral expectation of the above cash flows. For a
trading example giving more details on how the above formula for ϕ originates, see
Brigo et al. [15].

As we can see from Eq. (11), the dependence of hedging account dropped off
from the funding procedure. For modeling convenience, we can define the effective
funding rate f̃t faced by the dealer as

f̃t (T ) � f −
t (T )1{Ft<0} + f +

t (T )1{Ft>0}. (12)

A related framework would be to consider the hedging account H as being perfectly
collateralized and use the collateral to fund hedging, so that there is no funding cost
associated with the hedging account.

As with collateral costs mentioned earlier, we may rewrite the cash flows for
funding as a first order approximation in continuously compounded rates f̃ and r
associated to the relevant bonds. We obtain

ϕ(t, T ∧ τ ; F) ≈
m−1∑

j=1

1{t�t j<(T∧τ)}D(t, t j )Ft j α j

(
rt j (t j+1) − f̃t j (t j+1)

)
, (13)

We should also mention that, occasionally, we may include the effects of repo
markets or stock lending in our framework. In general, we may borrow/lend the cash
needed to establish H from/to our treasury, and we may then use the risky asset
in H for repo or stock lending/borrowing in the market. This means that we could
include the funding costs and benefits coming from this use of the risky asset. Here,
we assume that the bank’s treasury automatically recognizes this benefit or cost at
the same rate f̃ as used for cash, but for a more general analysis involving repo rate
h̃ please refer to, for example, Pallavicini et al. [34], Brigo et al. [15].

The particular positions entered by the dealer to either borrow or invest cash
according to the sign and size of the funding account depend on the bank’s liquidity
policy. In the following we discuss two possible cases: One where the dealer can
fund at rates set by the bank’s treasury department, and another where the dealer
goes to the market directly and funds his trades at the prevailing market rates. As a
result, the funding rates and therefore the funding effect on the price of a derivative
deal depends intimately on the chosen liquidity policy.

Treasury Funding

If the dealer funds the hedge through the bank’s treasury department, the treasury
determines the funding rates f ± faced by the dealer, often assuming average funding
costs and benefits across all deals. This leads to two curves as functions of maturity;
one for borrowing funds f + and one for lending funds f −. After entering a funding
position Ft j at time t j , the dealer faces the following discounted cash-flow

Φ j (t j , t j+1; F) � −Ntj D(t j , t j+1),
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with

Ntj �
F−
t j

P f −
t j (t j+1)

+ F+
t j

P f +
t j (t j+1)

.

Under this liquidity policy, the treasury—and not the dealer himself—is in charge of
debt valuation adjustments due to funding-related positions. Also, being entities of
the same institution, both the dealer and the treasury disappear in case of default of
the institution without any further cash flows being exchanged and we can neglect
the effects of funding in this case. So, when default risk is considered, this leads to
following definition of the funding cash flows

Φ̄ j (t j , t j+1; F) � 1{τ>t j }Φ j (t j , t j+1; F).

Thus, the risk-neutral price of the cash flows due to the funding positions entered at
time t j is

Et j

[
Φ̄ j (t j , t j+1; F)

] = −1{τ>t j }

(

F−
t j

Pt j (t j+1)

P f −
t j (t j+1)

+ F+
t j

Pt j (t j+1)

P f +
t j (t j+1)

)

.

If we consider a sequence of such funding operations at each time t j during the life
of the deal, we can define the sum of cash flows coming from all the borrowing and
lending positions opened by the dealer to hedge the trade up to the first-default event

ϕ(t, T ∧ τ ; F) �
m−1∑

j=1

1{t�t j<(T∧τ)}D(t, t j )
(
Ft j + Et j

[
Φ̄ j (t j , t j+1; F)

])
(14)

=
m−1∑

j=1

1{t�t j<(T∧τ)}D(t, t j )

⎛

⎝Ft j − F−
t j

Pt j (t j+1)

P f −
t j (t j+1)

− F+
t j

Pt j (t j+1)

P f +
t j (t j+1)

⎞

⎠ .

In terms of the effective funding rate, this expression collapses to (11).

Market Funding

If the dealer funds the hedging strategy in the market—and not through the bank’s
treasury—the funding rates are determined by prevailing market conditions and are
often deal-specific. This means that the rate f + the dealer can borrow funds at
may be different from the rate f − at which funds can be invested. Moreover, these
rates may differ across deals depending on the deals’ notional, maturity structures,
dealer-client relationship, and so forth. Similar to the liquidity policy of treasury
funding,we assume a deal’s funding operations are closed down in the case of default.
Furthermore, as the dealer now operates directly on the market, he needs to include
a DVA due to his funding positions when he marks-to-market his trading books. For
simplicity, we assume that the funder in the market is default-free so no funding CVA
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needs to be accounted for. The discounted cash-flow from the borrowing or lending
position between two adjacent funding times t j and t j+1 is given by

Φ̄ j (t j , t j+1; F) � 1{τ>t j }1{τI>t j+1}Φ j (t j , t j+1; F)

− 1{τ>t j }1{τI<t j+1}(LGDI ε
−
F,τI

− εF,τI )D(t j , τI ),

where εF,t is the close-out amount calculated by the funder on the dealer’s default

εF,τI � −Ntj PτI (t j+1).

To price this funding cash-flow, we take the risk-neutral expectation

Et j

[
Φ̄ j (t j , t j+1; F)

] = −1{τ>t j }

(

F−
t j

Pt j (t j+1)

P f −
t j (t j+1)

+ F+
t j

Pt j (t j+1)

P̄ f +
t j (t j+1)

)

.

Here, the zero-coupon funding bond P̄ f +
t (T ) for borrowing cash is adjusted for the

dealer’s credit risk

P̄ f +
t (T ) � P f +

t (T )

E
T
t

[
LGDI1{τI>T } + RI

] ,

where the expectation on the right-hand side is taken under the T -forward measure.
Naturally, since the seniority could be different, one might assume a different recov-
ery rate on the funding position than on the derivatives deal itself (see Crépey [21]).
Extensions to this case are straightforward.

Next, summing the discounted cash flows from the sequence of funding operations
through the life of the deal, we get a new expression for ϕ that is identical to (14)
where the P f +

t (T ) in the denominator is replaced by P̄ f +
t (T ). To avoid cumbersome

notation, we will not explicitly write P̄ f +
in the sequel, but just keep in mind that

when the dealer funds directly in themarket then P f +
needs to be adjusted for funding

DVA. Thus, in terms of the effective funding rate, we obtain (11).

3 Generalized Derivatives Valuation

In the previous section we analyzed the discounted cash flows of a derivatives trade
and we developed a framework for consistent valuation of such deals under collater-
alized counterparty credit and funding risk. The arbitrage-free valuation framework
is captured in the following theorem.

Theorem 1 (Generalized Valuation Equation)
The consistent arbitrage-free price V̄t (C, F) of a contingent claim under counter-
party credit risk and funding costs takes the form
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V̄t (C, F) = Et
[
π(t, T ∧ τ) + γ (t, T ∧ τ ;C) + ϕ(t, T ∧ τ ; F) (15)

+1{t<τ<T }D(t, τ )θτ (C, ε)
]
,

where

1. π(t, T ∧ τ) is the discounted cash flows from the contract’s payoff structure up to
the first-default event.

2. γ (t, T ∧ τ ;C) is the discounted cash flows from the collateral margining proce-
dure up to the first-default event and is defined in (3).

3. ϕ(t, T ∧ τ ; F) is the discounted cash flows from funding the hedging strategy
up to the first-default event and is defined in (11).

4. θτ (C, ε) is the on-default cash-flow with close-out amount ε and is defined in (6).

Note that in general a nonlinear funding ratemay lead to arbitrages since the choice
of themartingalemeasure depends on the funding/hedging strategy (seeRemark4.2).
One has to be careful in order to guarantee that the relevant valuation equation admits
solutions. Existence and uniqueness of solutions in the framework of this paper are
discussed from a fully mathematical point of view in Brigo et al. [15], a version of
which, from the same authors, appears in this volume.

In general, while the valuation equation is conceptually clear—we simply take
the expectation of the sum of all discounted cash flows of the trade under the risk-
neutral measure—solving the equation poses a recursive, nonlinear problem. The
future paths of the effective funding rate f̃ depend on the future signs of the funding
account F , i.e. whether we need to borrow or lend cash on each future funding
date. At the same time, through the relations (9) and (10), the future sign and size
of the funding account F depend on the adjusted price V̄ of the deal which is the
quantity we are trying to compute in the first place. One crucial implication of this
nonlinear structure of the valuation problem is the fact that FVA is generally not just
an additive adjustment term, as often assumed. More importantly, we see that the
celebrated conjecture identifying theDVAof a dealwith its funding benefit is not fully
general. Only in the unrealistic setting where the dealer can fund an uncollateralized
trade at equal borrowing and lending rates, i.e. f + = f −, do we achieve the additive
structure often assumed by practitioners. If the trade is collateralized, we need to
impose even further restrictions as to how the collateral is linked to the price of the
trade V̄ . It should be noted here that funding DVA (as referred to in the previous
section) is similar to the DVA2 in Hull and White [28] and the concept of “windfall
funding benefit at own default” in Crépey [22, 23]. In practice, however, funds
transfer pricing and similar operations conducted by banks’ treasuries clearlyweaken
the link between FVA and this source of DVA. The DVA of the funding instruments
does not regard the bank’s funding positions, but the derivatives position, and in
general it does not match the FVAmainly due to the presence of funding netting sets.

Remark 1 (The Law of One Price.)
On the theoretical side, the generalized valuation equation shakes the foundation of
the celebrated Law of One Price prevailing in classical derivatives pricing. Clearly,
if we assume no funding costs, the dealer and counterparty agree on the price of



Nonlinearity Valuation Adjustment 17

the deal as both parties can—at least theoretically—observe the credit risk of each
other through CDS contracts traded in the market and the relevant market risks, thus
agreeing on CVA andDVA. In contrast, introducing funding costs, theywill not agree
on the FVA for the deal due to asymmetric information. The parties cannot observe
each others’ liquidity policies nor their respective funding costs associated with a
particular deal. As a result, the value of a deal position will not generally be the same
to the counterparty as to the dealer just with opposite sign.

Finally, as we adopt a risk-neutral valuation framework, we implicitly assume
the existence of a risk-free interest rate. Indeed, since the valuation adjustments are
included as additional cash flows and not as ad-hoc spreads, all the cash flows in (15)
are discounted by the risk-free discount factor D(t, T ). Nevertheless, the risk-free
rate is merely an instrumental variable of the general valuation equation. We clearly
distinguishmarket rates from the theoretical risk-free rate avoiding the dubious claim
that the over-night rates are risk free. In fact, as we will show in continuous time, if
the dealer funds the hedging strategy of the trade through cash accounts available to
him—whether as rehypothecated collateral or funds from the treasury, repo market,
etc.—the risk-free rate vanishes from the valuation equation.

3.1 Discrete-Time Solution

Our purpose here is to turn the generalized valuation equation (15) into a set of
iterative equations that can be solved by least-squares Monte Carlo methods. These
methods are already standard in CVA and DVA calculations (Brigo and Pallavicini
[5]). To this end, we introduce the auxiliary function

π̄(t j , t j+1;C) � π(t j , t j+1 ∧ τ) + γ (t j , t j+1 ∧ τ ;C)

+ 1{t j<τ<t j+1}D(t j , τ )θτ (C, ε) (16)

which defines the cash flows of the deal occurring between time t j and t j+1 adjusted
for collateral margining costs and default risks. We stress the fact that the close-
out amount used for calculating the on-default cash flow still refers to a deal with
maturity T . If we then solve valuation equation (15) at each funding date t j in the
time-grid {t1, . . . , tn = T }, we obtain the deal price V̄ at time t j as a function of the
deal price on the next consecutive funding date t j+1

V̄t j = Et j

[
V̄t j+1D(t j , t j+1) + π̄(t j , t j+1;C)

]

+ 1{τ>t j }

(

Ft j − F−
t j

Pt j (t j+1)

P f −
t j (t j+1)

− F+
t j

Pt j (t j+1)

P f +
t j (t j+1)

)

,

where, by definition, V̄tn � 0 on the final date tn . Recall the definitions of the funding
account in (9) if no rehypothecation of collateral is allowed and in (10) if rehypothe-



18 D. Brigo et al.

cation is permitted, we can then solve the above for the positive and negative parts of
the funding account. The outcome of this exercise is a discrete-time iterative solution
of the recursive valuation equation, provided in the following theorem.

Theorem 2 (Discrete-time Solution of the Generalized Valuation Equation)
Wemay solve the full recursive valuation equation in Theorem 1 as a set of backward-
iterative equations on the time-grid {t1, . . . , tn = T } with V̄tn � 0. For τ < t j , we
have

V̄t j = 0,

while for τ > t j , we have

(i) if rehypothecation is forbidden:

(
V̄t j − Htj

)± = P f̃
t j (t j+1)

(
E
t j+1
t j

[
V̄t j+1 + π̄(t j , t j+1;C) − Htj

D(t j , t j+1)

])±
,

(ii) if rehypothecation is allowed:

(V̄t j − Ctj −Htj )
±

= P f̃
t j (t j+1)

(
E
t j+1
t j

[
V̄t j+1 + π̄(t j , t j+1;C) − Ctj − Htj

D(t j , t j+1)

])±
,

where the expectations are taken under the Q
t j+1 -forward measure.

The ± sign in the theorem is supposed to stress the fact that the sign of the funding
account, which determines the effective funding rate, depends on the sign of the
conditional expectation. Further intuition may be gained by going to continuous
time, which is the case we will now turn to.

3.2 Continuous-Time Solution

Let us consider a continuous-time approximation of the general valuation equation.
This implies that collateral margining, funding, and hedging strategies are executed
in continuous time.Moreover, we assume that rehypothecation is allowed, but similar
results hold if this is not the case. By taking the time limit, we have the following
expressions for the discounted cash flow streams of the deal

π(t, T ∧ τ) =
∫ T∧τ

t
π(s, s + ds)D(t, s),

γ (t, T ∧ τ ;C) =
∫ T∧τ

t
(rs − c̃s)CsD(t, s)ds,
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ϕ(t, T ∧ τ ; F) =
∫ T∧τ

t
(rs − f̃s)FsD(t, s)ds,

where asmentioned earlierπ(t, t + dt) is the pay-off couponprocess of the derivative
contract and rt is the risk-free rate. These equations can also be immediately derived
by looking at the approximations given in Eqs. (4) and (13).

Then, putting all the above terms together with the on-default cash flow as in
Theorem 1, the recursive valuation equation yields

V̄t =
∫ T

t
Et

[ (
1{s<τ }π(s, s + ds) + 1{τ∈ds}θs(C, ε)

)
D(t, s)

]

+
∫ T

t
Et

[
1{s<τ }(rs − c̃s)CsD(t, s)

]
ds (17)

+
∫ T

t
Et

[
1{s<τ }(rs − f̃s)Fs

]
D(t, s)ds.

By recalling Eq. (7), we can write the following

Proposition 1 The value V̄t of the claim under credit gap risk, collateral, and fund-
ing costs can be written as

V̄t = Vt − CVAt + DVAt + LVAt + FVAt (18)

where Vt is the price of the dealwhen there is no credit risk, no collateral, and no fund-
ing costs; LVA is a liquidity valuation adjustment accounting for the costs/benefits
of collateral margining; FVA is the funding cost/benefit of the deal hedging strategy,
and CVA and DVA are the familiar credit and debit valuation adjustments after col-
lateralization. These different adjustments can be obtained by rewriting (17). One
gets

Vt =
∫ T

t
Et

{
D(t, s)1{τ>s}

[
π(s, s + ds) + 1{τ∈ds}εs

]}
(19)

and the valuation adjustments

CVAt = −
∫ T

t
E

{
D(t, s)1{τ>s}

[ − 1{s=τC<τI }Π CVAcoll(s)
]
}
du

DVAt =
∫ T

t
E

{
D(t, s)1{τ>s}

[
1{s=τI<τC }Π DVAcoll(s)

]
}
du

LVAt =
∫ T

t
Et

{
D(t, s)1{τ>s}(rs − c̃s)Cs

}
ds

FVAt =
∫ T

t
E

{
D(t, s)1{τ>s}

[
(rs − f̃s)Fs

]
}
ds
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As usual, CVA and DVA are both positive, while LVA and FVA can be either positive
or negative. Notice that if c̃ equals the risk-free rate, LVA vanishes. Similarly, FVA
vanishes if the funding rate f̃ is equal to the risk-free rate.

We note that there is no general consensus on our definition of LVA and other
authors may define it differently. For instance, Crépey [21–23] refers to LVA as the
liquidity component (i.e., net of credit) of the funding valuation adjustment.

We now take a number of heuristic steps. A more formal analysis in terms of
FBSDEs or PDEs is, for example, provided in Brigo et al. [15]. For simplicity, we
first switch to the default-free market filtration (Ft )t≥0. This step implicitly assumes
a separable structure of our complete filtration (Gt )t≥0. We are also assuming that
the basic portfolio cash flows π(0, t) areFt -measurable and that default times of all
parties are conditionally independent, given filtrationF .

Assuming the relevant technical conditions are satisfied, the Feynman–Kac the-
orem now allows us to write down the corresponding pre-default partial differential
equation (PDE) of the valuation problem (further details may be found in Brigo et
al. [13, 14], and Sloth [37]). This PDE could be solved directly as in Crépey [22].
However, if we apply the Feynman–Kac theorem again—this time going from the
pre-default PDE to the valuation expectation—and integrate by parts, we arrive at
the following result

Theorem 3 (Continuous-time Solution of the Generalized Valuation Equation)
If we assume collateral rehypothecation and delta-hedging, we can solve the iterative
equations of Theorem 2 in continuous time. We obtain

V̄t =
∫ T

t
E

f̃ {D(t, u; f̃ + λ)[πu + λuθu + ( f̃u − c̃u)Cu]|Ft }du (20)

where λt is the first-to-default intensity, πt dt is shorthand for π(t, t + dt), and the
discount factor is defined as D(t, s; ξ) � e− ∫ s

t ξudu . The expectations are taken under
the pricing measureQ

f̃ for which the underlying risk factors grow at the rate f̃ when
the underlying pays no dividend.

Theorem 3 decomposes the deal price V̄ into three intuitive terms. The first term
is the value of the deal cash flows, discounted at the funding rate plus credit. The
second term is the price of the on-default cash-flow in excess of the collateral, which
includes the CVA and DVA of the deal after collateralization. The last term collects
the cost of collateralization. At this point it is very important to appreciate once again
that f̃ depends on F , and hence on V .

Remark 2 (Deal-dependent Valuation Measure, Local Risk-neutral Measures).
Since the pricing measure depends on f̃ which in turn depends on the very value V̄
we are trying to compute, we have that the valuationmeasure becomes deal/portfolio-
dependent. Claims sharing a common set of hedging instruments can be priced under
a common measure.
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Finally, we stress once again a very important invariance result that first appeared in
Pallavicini et al. [34] and studied in detail in a more mathematical setting in Brigo
et al. [15]. The proof is immediate by inspection.

Theorem 4 (Invariance of the Valuation Equation wrt. the Short Rate rt ).
Equation (20) for valuation under credit, collateral, and funding costs is completely
governed by market rates; there is no dependence on a risk-free rate rt . Whichever
initial process is postulated for r , the final price is invariant to it.

4 Nonlinear Valuation: A Numerical Analysis

This section provides a numerical case study of the valuation framework outlined
in the previous sections. We investigate the impact of funding risk on the price of a
derivatives trade under default risk and collateralization. Also, we analyze the valua-
tion error of ignoring nonlinearties of the general valuation problem. Specifically, to
quantify this error, we introduce the concept of a nonlinearity valuation adjustment
(NVA). A generalized least-squares Monte Carlo algorithm is proposed inspired by
the simulation methods of Carriere [18], Longstaff and Schwartz [30], Tilley [38],
and Tsitsiklis and Van Roy [39] for pricing American-style options. As the purpose
is to understand the fundamental implications of funding risk and other nonlinear-
ities, we focus on trading positions in relatively simple derivatives. However, the
Monte Carlo method we propose below can be applied to more complex derivative
contracts, including derivatives with bilateral payments.

4.1 Monte Carlo Pricing

Recall the recursive structure of the general valuation: The deal price depends on
the funding decisions, while the funding strategy depends on the future price itself.
The intimate relationship among the key quantities makes the valuation problem
computationally challenging.

We consider K default scenarios during the life of the deal—either obtained by
simulation, bootstrapped from empirical data, or assumed in advance. For each first-
to-default time τ corresponding to a default scenario, we compute the price of the
deal V̄ under collateralization, close-out netting, and funding costs. The first step of
our simulation method entails simulating a large number of sample paths N of the
underlying risk factors X . We simulate these paths on the time-grid {t1, . . . , tm =
T ∗} with step size Δt = t j+1 − t j from the assumed dynamics of the risk factors.
T ∗ is equal to the final maturity T of the deal or the consecutive time-grid point
following the first-default time τ , whichever occurs first. For simplicity, we assume
the time periods for funding decisions and collateral margin payments coincide with
the simulation time grid.
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Given the set of simulated paths, we solve the funding strategy recursively in a
dynamic programming fashion. Starting one period before T ∗, we compute for each
simulated path the funding decision F and the deal price V̄ according to the set of
backward-inductive equations of Theorem2.Note thatwhile the reduced formulation
of Theorem 3may look simpler at first sight, avoiding the implicit recursive structure
of Theorem 2, it would instead give us a forward–backward SDE problem to solve
since the underlying asset now accrues at the funding rate which itself depends on V̄ .
The algorithm then proceeds recursively until time zero. Ultimately, the total price
of the deal is computed as the probability-weighted average of the individual prices
obtained in each of the K default scenarios.

The conditional expectations in the backward-inductive funding equations are
approximated by across-path regressions based on least squares estimation similar
to Longstaff and Schwartz [30]. We regress the present value of the deal price at time
t j+1, the adjusted payout cash flow between t j and t j+1, the collateral account and
funding account at time t j on basis functions ψ of realizations of the underlying risk
factors at time t j across the simulated paths. To keep notation simple, let us assume
that we are exposed to only one underlying risk factor, e.g. a stock price. Specifically,
the conditional expectations in the iterative equations of Theorem 2, taken under the
risk-neutral measure, are equal to

Et j

[
Ξt j (V̄t j+1)

] = θ ′
t j ψ(Xt j ), (21)

where we have defined Ξt j (V̄t j+1) � D(t j , t j+1)V̄t j+1 + π̄(t j , t j+1;C) − Ctj − Htj .
Note theCtj term drops out if rehypothecation is not allowed. The usual least-squares
estimator of θ is then given by

θ̂t j �
[
ψ(Xt j )ψ(Xt j )

′]−1
ψ(Xt j )Ξt j (V̄t j+1). (22)

Orthogonal polynomials such as Chebyshev, Hermite, Laguerre, and Legendre may
all be used as basis functions for evaluating the conditional expectations. We find,
however, that simple power series are quite effective and that the order of the poly-
nomials can be kept relatively small. In fact, linear or quadratic polynomials, i.e.
ψ(Xt j ) = (1, Xt j , X

2
t j )

′, are often enough.
Further complexities are added, as the dealermay—realistically—decide to hedge

the full deal price V̄ . Now, the hedge H itself depends on the funding strategy
through V̄ , while the funding decision depends on the hedging strategy. This added
recursion requires that we solve the funding and hedging strategies simultaneously.
For example, if the dealer applies a delta-hedging strategywe canwrite, heuristically,

Htj = ∂ V̄

∂X

∣
∣∣
t j
Xt j ≈ V̄t j+1 − (1 + Δt j f̃t j )V̄t j

Xt j+1 − (1 + Δt j f̃t j )Xt j

Xt j , (23)

and we obtain, in the case of rehypothecation, the following system of nonlinear
equations
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ft j − P f̃
t j

(t j+1)

Pt j (t j+1)
Et j

[
Ξt j (V̄t j+1)

] = 0,

Htj − V̄t j+1−(1+Δt j f̃t j )V̄t j

Xt j+1−(1+Δt j f̃t j )Xt j

Xt j = 0,

V̄t j = Ft j + Ctj + Htj ,

(24)

where all matrix operations are on an element-by-element basis. An analogous result
holds when rehypothecation of the posted collateral is forbidden.

Each period and for each simulated path, we find the funding and hedging deci-
sions by solving this system of equations, given the funding and hedging strategies
for all future periods until the end of the deal. We apply a simple Newton–Raphson
method to solve the system of nonlinear equations numerically, but instead of using
the exact Jacobian, we approximate it by finite differences. As initial guess, we use
the Black–Scholes delta position

H 0
t j = ΔBS

t j Xt j .

The convergence is quite fast and only a small number of iterations are needed
in practice. Finally, if the dealer decides to hedge only the risk-free price of the
deal, i.e. the classic derivative price V , the valuation problem collapses to a much
simpler one. The hedge H no longer depends on the funding decision and can be
computed separately, and the numerical solution of the nonlinear equation system
can be avoided altogether.

In the following we apply our valuation framework to the case of a stock or
equity index option. Nevertheless, the methodology extends fully to any other deriv-
atives transaction. For instance, applications to interest rate swaps can be found in
Pallavicini and Brigo [32] and Brigo and Pallavicini [6].

4.2 Case Outline

Let St denote the price of some stock or equity index and assume it evolves according
to a geometric Brownian motion dSt = r Stdt + σ StdWt where W is a standard
Brownian motion under the risk-neutral measure. The risk-free interest rate r is 100
bps, the volatility σ is 25%, and the current price of the underlying is S0 = 100.
The European call option is in-the-money and has strike K = 80. The maturity T
of the deal is 3 years and, in the full case, we assume that the investor delta-hedges
the deal according to (23). The usual default-free funding-free and collateral-free
Black–Scholes price V0 of the call option deal is given by

Vt = StΦ(d1(t)) − Ke−r(T−t)Φ(d2(t)), d1,2 = ln(St/K ) + (r ± σ 2/2)(T − t)

σ
√
T − t

,
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and for t = 0 we get
V0 = 28.9

with our choice of inputs. As usual, Φ is the cumulative distribution function of the
standard normal random variable. In the usual setting, the hedge would not be (23)
but a classical delta-hedging strategy based on Φ(d1(t)).

We consider two simple discrete probability distributions of default. Both parties
of the deal are considered default risky but can only default at year 1 or at year 2.
The localized joint default probabilities are provided in the matrices below. The rows
denote the default time of the investor, while the columns denote the default times
of the counterparty. For example, in matrix Dlow the event (τI = 2yr, τC = 1yr) has
a 3% probability and the first-to-default time is 1 year. Simultaneous defaults are
introduced as an extension of our previous assumptions, and we determine the close-
out amount by a random draw from a uniform distribution. If the random number is
above 0.5, we compute the close-out as if the counterparty defaulted first, and vice
versa.

For the first default distribution, we have a low dependence between the default
risk of the counterparty and the default risk of the investor

Dlow =
⎛

⎝

1yr 2yr n.d.

1yr 0.01 0.01 0.03
2yr 0.03 0.01 0.05
n.d. 0.07 0.09 0.70

⎞

⎠, τK (Dlow) = 0.21 (25)

where n.d. means no default and τK denotes the rank correlation as measured by
Kendall’s tau. In the second case,we have a high dependence between the two parties’
default risk

Dhigh =
⎛

⎝

1yr 2yr n.d.

1yr 0.09 0.01 0.01
2yr 0.03 0.11 0.01
n.d. 0.01 0.03 0.70

⎞

⎠, τK (Dhigh) = 0.83 (26)

Note also that the distributions are skewed in the sense that the counterparty has a
higher default probability than the investor. The loss, given default, is 50% for both
the investor and the counterparty and the loss on any posted collateral is considered
the same. The collateral rates are chosen to be equal to the risk-free rate. We assume
that the collateral account is equal to the risk-free price of the deal at each margin
date, i.e. Ct = Vt . This is reasonable as the dealer and client will be able to agree
on this price, in contrast to V̄t due to asymmetric information. Also, choosing the
collateral this way has the added advantage that the collateral account C works as a
control variate, reducing the variance of the least-squares Monte Carlo estimator of
the deal price.
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4.3 Preliminary Valuation Under Symmetric Funding
and Without Credit Risk

To provide some ball-park figures on the effect of funding risk, we first look at the
case without default risk and without collateralization of the deal. We compare our
Monte Carlo approach to the following two alternative (simplified) approaches:

(a) The Black–Scholes price where both discounting and the growth of the under-
lying happens at the symmetric funding rate

V (a)
t =

(
StΦ(g1(t)) − Ke− f̂ (T−t)Φ(g2(t))

)
,

g1,2 = ln(St/K ) + ( f̂ ± σ 2/2)(T − t)

σ
√
T − t

.

(b) Weuse the above FVA formula in Proposition 1with some approximations. Since
in a standard Black–Scholes setting Ft = −Ke−r(T−t)Φ(d2(t)), we compute

FVA(b) =(r − f̂ )
∫ T

0
E0

{
e−rs[Fs]

}
ds

=( f̂ − r)Ke−rT
∫ T

0
E0 {Φ(d2(s))} ds

We illustrate the two approaches for a long position in an equity call option.
Moreover, let the funding valuation adjustment in each case be defined by FVA(a,b) =
V (a,b) − V . Figure1 plots the resulting funding valuation adjustment with credit and
collateral switched off under both simplified approaches and under the full valuation
approach. Recall that if the funding rate is equal to the risk-free rate, the value of the
call option collapses to theBlack–Scholes price and the funding valuation adjustment
is zero.

Remark 3 (Current Market Practice for FVA).
Looking at Fig. 1, it is important to realize that at the time of writing this paper,
most market players would adopt a methodology like (a) or (b) for a simple call
option. Even if borrowing or lending rates were different, most market players would
average them and apply a common rate to borrowing and lending, in order to avoid
nonlinearities. We notice that method (b) produces the same results as the quicker
method (a) which simply replaces the risk-free rate by the funding rate. In the simple
case without credit and collateral, and with symmetric borrowing and lending rates,
we can show that this method is sound since it stems directly from (20). We also
see that both methods (a) and (b) are quite close to the full numerical method we
adopt. Overall both simplified methods (a) and (b) work well here, and there would
be no need to implement the full machinery under these simplifying assumptions.
However, once collateral, credit, and funding risks are in the picture, we have to
abandon approximations like (a) or (b) and implement the full methodology instead.
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Fig. 1 Funding valuation adjustment of a long call position as a function of symmetric funding
spreads s f := f̂ − r with f̂ := f + = f −. The adjustments are computed under the assumption of
no default risk nor collateralization

4.4 Complete Valuation Under Credit Risk, Collateral,
and Asymmetric Funding

Let us now switch on credit risk and consider the impact of asymmetric funding rates.
Due the presence of collateral as a control variate, the accuracy is quite good in our
example even for relatively small numbers of sample paths. Based on the simulation
of 1,000 paths, Tables1 and 2 report the results of a ceteris paribus analysis of funding
risk under counterparty credit risk and collateralization. Specifically, we investigate
how the value of a deal changes for different values of the borrowing (lending) rate
f + ( f −) while keeping the lending (borrowing) rate fixed to 100 bps. When both
funding rates are equal to 100 bps, the deal is funded at the risk-free rate and we are
in the classical derivatives valuation setting.

Remark 4 (Potential Arbitrage).
Note that if f + < f − arbitrage opportunities might be present, unless certain con-
straints are imposed on the funding policy of the treasury. Such constraints may look
unrealistic and may be debated themselves from the point of view of arbitrageability,
but since our point here is strictly to explore the impact of asymmetries in the funding
equations, we will still apply our framework to a few examples where f + < f −.

Table1 reports the impact of changing funding rates for a call position when the
posted collateral may not be used for funding the deal, i.e. rehypothecation is not
allowed. First, we note that increasing the lending rate for a long position has a much
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Table 1 Price impact of funding with default risk and collateralization

Fundinga (bps) Default risk, lowb Default risk, highc

Long Short Long Short

Borrowing rate f +

100 28.70 (0.15) −28.72 (0.15) 29.06 (0.21) −29.07 (0.21)

125 28.53 (0.17) −29.37 (0.18) 28.91 (0.21) −29.70 (0.20)

150 28.37 (0.18) −30.02 (0.22) 28.75 (0.22) −30.34 (0.20)

175 28.21 (0.20) −30.69 (0.27) 28.60 (0.22) −30.99 (0.21)

200 28.05 (0.21) −31.37 (0.31) 28.45 (0.22) −31.66 (0.25)

Lending rate f −

100 28.70 (0.15) −28.72 (0.15) 29.06 (0.21) −29.07 (0.21)

125 29.35 (0.18) −28.56 (0.17) 29.69 (0.20) −28.92 (0.21)

150 30.01 (0.22) −28.40 (0.18) 30.34 (0.20) −28.76 (0.22)

175 30.68 (0.27) −28.23 (0.20) 31.00 (0.21) −28.61 (0.22)

200 31.37 (0.32) −28.07 (0.39) 31.67 (0.25) −28.46 (0.22)

Standard errors of the price estimates are given in parentheses
aCeteris paribus changes in one funding rate while keeping the other fixed to 100 bps
bBased on the joint default distribution Dlow with low dependence
cBased on the joint default distribution Dhigh with high dependence

Table 2 Price impact of funding with default risk, collateralization, and rehypothecation

Fundinga (bps) Default risk, lowb Default risk, highc

Long Short Long Short

Borrowing rate f +

100 28.70 (0.15) −28.73 (0.15) 29.07 (0.22) −29.08 (0.22)

125 28.55 (0.17) −29.56 (0.19) 28.92 (0.22) −29.89 (0.20)

150 28.39 (0.18) −30.40 (0.24) 28.77 (0.22) −30.72 (0.20)

175 28.23 (0.20) −31.26 (0.30) 28.63 (0.22) −31.56 (0.23)

200 28.07 (0.22) −32.14 (0.36) 28.48 (0.22) −32.43 (0.29)

Lending rate f −

100 28.70 (0.15) −28.73 (0.15) 29.07 (0.22) −29.08 (0.22)

125 29.53 (0.19) −28.57 (0.17) 29.07 (0.22) −28.93 (0.22)

150 30.38 (0.24) −28.42 (0.18) 32.44 (0.29) −28.78 (0.22)

175 31.25 (0.30) −28.26 (0.20) 36.19 (0.61) −28.64 (0.22)

200 32.14 (0.37) −28.10 (0.22) 32.44 (0.29) −28.49 (0.22)

Standard errors of the price estimates are given in parentheses
aCeteris paribus changes in one funding rate while keeping the other fixed to 100 bps
bBased on the joint default distribution Dlow with low dependence
cBased on the joint default distribution Dhigh with high dependence
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larger impact than increasing the borrowing rate. This is due to the fact that a call
option is just a one-sided contract. Recall that F is defined as the cash account needed
as part of the derivative replication strategy or, analogously, the cash account required
to fund the hedged derivative position. To hedge a long call, the investor goes short
in a delta position of the underlying asset and invests excess cash in the treasury at
f −. Correspondingly, to hedge the short position, the investor enters a long delta
position in the stock and finances it by borrowing cash from the treasury at f +, so
changing the lending rate only has a small effect on the deal value. Finally, due to the
presence of collateral, we observe an almost similar price impact of funding under
the two different default distributions Dlow and Dhigh.

Finally, assuming cash collateral, we consider the case of rehypothecation and
allow the investor and counterparty to use any posted collateral as a funding source.
If the collateral is posted to the investor, this means it effectively reduces his costs of
funding the delta-hedging strategy. As the payoff of the call is one-sided, the investor
only receives collateral when he holds a long position in the call option. But as he
hedges this position by short-selling the underlying stock and lending the excess cash
proceeds, the collateral adds to his cash lending position and increases the funding
benefit of the deal. Analogously, if the investor has a short position, he posts collateral
to the counterparty and a higher borrowing rate would increase his costs of funding
the collateral he has to post as well as his delta-hedge position. Table2 reports the
results for the short and long positions in the call option when rehypothecation is
allowed. Figures2 and 3 plot the values of collateralized long and short positions
in the call option as a function of asymmetric funding spreads. In addition, Fig. 4
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Fig. 2 The value of a long call position for asymmetric funding spreads s−
f = f − − r , i.e. fixing

f + = r = 0.01 and varying f − ∈ (0.01, 0.0125, 0.015, 0.0175, 0.02)
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Fig. 3 The value of a short call position for asymmetric funding spreads s+
f = f + − r , i.e. fixing
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Fig. 4 Funding valuation adjustment as a function of asymmetric funding spreads. The adjustments
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reports the FVAwith respect to the magnitude of the funding spreads, where the FVA
is defined as the difference between the full funding-inclusive deal price and the full
deal price, but symmetric funding rates equal to the risk-free rate. Recall that the
collateral rates are equal to the risk-free rate, so the LVA collapses to zero in these
examples.

This shows that funding asymmetrymatters even under full collateralizationwhen
there is no repo market for the underlying stock. In practice, however, the dealer
cannot hedge a long call by shorting a stock he does not own. Instead, he would first
borrow the stock in a repo transaction and then sell it in the spot market. Similarly,
to enter the long delta position needed to hedge a short call, the dealer could finance
the purchase by lending the stock in a reverse repo transaction. Effectively, the delta
position in the underlying stock would be funded at the prevailing repo rate. Thus,
once the delta hedge has to be executed through the repo market, there is no funding
valuation adjustment (meaning anydependence on the funding rate f̃ drops out) given
the deal is fully collateralized, but the underlying asset still grows at the repo rate. If
there is no credit risk, this would leave uswith the result of Piterbarg [36]. However, if
the deal is not fully collateralized or the collateral cannot be rehypothecated, funding
costs enter the picture even when there is a repo market for the underlying stock.

4.5 Nonlinearity Valuation Adjustment

In this last section we introduce a nonlinearity valuation adjustment, and to stay
within the usual jargon of the business, we abbreviate it NVA. The NVA is defined
by the difference between the true price V̄ and a version of V̄ where nonlinearities
have been approximated away through blunt symmetrization of rates and possibly
a change in the close-out convention from replacement close-out to risk-free close-
out. This entails a degree of double counting (both positive and negative interest). In
some situations the positive and negative double counting will offset each other, but
in other cases this may not happen. Moreover, as pointed out by Brigo et al. [10],
a further source of double counting might be neglecting the first-to-default time in
bilateral CVA/DVA valuation. This is done in a number of industry approximations.

Let V̂ be the resulting price when we replace both f + and f − by f̂ := ( f + +
f −)/2 and adopt a risk-free close-out at default in our valuation framework. A further
simplification in V̂ could be to neglect the first-to-default check in the close-out. We
have the following definition

Definition 1 (Nonlinearity Valuation Adjustment, NVA)
NVA is defined as

NVAt � V̄t − V̂t

where V̄ denotes the full nonlinear deal value while V̂ denotes an approximate
linearized price of the deal.
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Fig. 5 Nonlinearity valuation adjustment (in percentage of V̂ ) for different funding spreads s+
f =

f + − f − ∈ (0, 0.005, 0.01, 0.015, 0.02) and fixed f̂ = ( f + + f −)/2 = 0.01

As an illustration, we revisit the above example of an equity call option and
analyze the NVA in a number of cases. The results are reported in Figs. 5 and 6.

In both figures, we compare NVAunder risk-free close-out and under replacement
close-out. We can see that, depending on the direction of the symmetrization, NVA
may be either positive or negative. As the funding spread increases, NVA grows in
absolute value. In addition, adopting the replacement close-out amplifies the presence
of double counting. The NVA accounts for up to 15% of the full deal price V̄
depending on the funding spread—a relevant figure in a valuation context.

Table3 reports (a) %N̂VA denoting the fraction of the approximated deal price V̂
explained by NVA, and (b) %NVA denoting the fraction of the full deal price V̄ (with
symmetric funding rates equal to the risk-free rate r ) explained by NVA. Notice that
for those cases where we adopt a risk-free close-out at default, the results primarily
highlight the double-counting error due to symmetrization of borrowing and lending
rates. We should point out that close-out nonlinearities play a limited role here, due
to absence of wrong way risk. An analysis of close-out nonlinearity under wrong
way risk is under development.

Finally, it should be noted that linearization may in fact be done in arbitrarily
many ways by playing with the discount factor, hence taking the average of two
funding rates as in our definition of NVA is not necessarily the best one. However,
we postpone further investigations into this interesting topic for future research.
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Fig. 6 Nonlinearity valuation adjustment (in percentage of V̂ ) for different funding spreads s−
f =

f − − f + ∈ (0, 0.005, 0.01, 0.015, 0.02) and fixed f̂ = ( f + + f −)/2 = 0.01

Table 3 %NVA with default risk, collateralization and rehypothecation

Funding rates Risk free Replacement

%̂NVA %NVA %̂NVA %NVA

sbf (bps) f̂ (bps)

0 100 0% 0% 0% 0%

25 112.5 1.65% 1.67% 1.79% 1.81%

50 125 3.31% 3.39% 3.58% 3.68%

75 137.5 5.02% 5.19% 5.39% 5.61%

100 150 6.70% 7.01% 7.24% 7.62%
aFunding spread s f = f − − f +
bThe prices of the call option are based on the joint default distribution Dhigh with high dependence

5 Conclusions and Financial Implications

We have developed a consistent framework for valuation of derivative trades under
collateralization, counterparty credit risk, and funding costs. Based on no arbitrage,
we derived a generalized pricing equation where CVA, DVA, LVA, and FVA are
introduced by simply modifying the payout cash flows of the trade. The framework
is flexible enough to accommodate actual trading complexities such as asymmetric
collateral and funding rates, replacement close-out, and rehypothecation of posted
collateral. Moreover, we presented an invariance theorem showing that the valuation
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framework does not depend on any theoretical risk-free rate, but is purely based on
observable market rates.

The generalized valuation equation under credit, collateral, and funding takes the
form of a forward–backward SDE or semi-linear PDE. Nevertheless, it can be recast
as a set of iterative equations which can be efficiently solved by a proposed least-
squares Monte Carlo algorithm. Our numerical results confirm that funding risk as
well as asymmetries in borrowing and lending rates have a significant impact on the
ultimate value of a derivatives transaction.

Introducing funding costs into the pricing equation makes the valuation problem
recursive and nonlinear. The price of the deal depends on the trader’s funding strategy,
while to determine the funding strategy we need to know the deal price itself. Credit
and funding risks are in general non-separable; this means that FVA is not an additive
adjustment, let alone a discounting spread. Thus, despite being common practice
among market participants, treating it as such comes at the cost of double counting.
We introduce the “nonlinearity valuation adjustment” (NVA) to quantify the effect of
double counting and we show that its magnitude can be significant under asymmetric
funding rates and replacement close-out at default.

Furthermore, valuation under funding costs is no longer bilateral as the particular
funding policy chosen by the dealer is not known to the client, and vice versa. As a
result, the value of the trade will generally be different to the two counterparties.

Finally, valuation depends on the level of aggregation; asset portfolios cannot
simply be priced separately and added up. Theoretically, valuation is conducted
under deal or portfolio-dependent risk-neutral measures. This has clear operational
consequences for financial institutions; it is difficult for banks to establish CVA and
FVA desks with separate, clear-cut responsibilities. In theory, they should adopt a
consistent valuation approach across all trading desks and asset classes. A trade
should be priced on an appropriate aggregation-level to quantify the value it actually
adds to the business. This, of course, prompts to the old distinction between price
and value: Should funding costs be charged to the client or just included internally
to determine the profitability of a particular trade? The relevance of this question is
reinforced by the fact that the client has no direct control on the funding policy of
the bank and therefore cannot influence any potential inefficiencies for which he or
she would have to pay.

While holistic trading applications may be unrealistic with current technology,
our valuation framework offers a unique understanding of the nature and presence
of nonlinearities and paves the way for developing more suitable and practical lin-
earizations. The latter topic we will leave for future research.
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Analysis of Nonlinear Valuation Equations
Under Credit and Funding Effects

Damiano Brigo, Marco Francischello and Andrea Pallavicini

Abstract We study conditions for existence, uniqueness, and invariance of the
comprehensive nonlinear valuation equations first introduced in Pallavicini et al.
(Funding valuation adjustment: a consistent framework including CVA, DVA, col-
lateral, netting rules and re-hypothecation, 2011, [11]). These equations take the
form of semi-linear PDEs and Forward–Backward Stochastic Differential Equations
(FBSDEs). After summarizing the cash flows definitions allowing us to extend valu-
ation to credit risk and default closeout, including collateral margining with possible
re-hypothecation, and treasury funding costs, we show how such cash flows, when
present-valued in an arbitrage-free setting, lead to semi-linear PDEs or more gener-
ally toFBSDEs.Weprovide conditions for existence anduniqueness of such solutions
in a classical sense, discussing the role of the hedging strategy. We show an invari-
ance theorem stating that even thoughwe start from a risk-neutral valuation approach
based on a locally risk-free bank account growing at a risk-free rate, our final valua-
tion equations do not depend on the risk-free rate. Indeed, our final semi-linear PDE
or FBSDEs and their classical solutions depend only on contractual, market or trea-
sury rates and we do not need to proxy the risk-free rate with a real market rate, since
it acts as an instrumental variable. The equations’ derivations, their numerical solu-
tions, the related XVA valuation adjustments with their overlap, and the invariance
result had been analyzed numerically and extended to central clearing and multi-
ple discount curves in a number of previous works, including Brigo and Pallavicini
(J. Financ. Eng. 1(1):1–60 (2014), [3]), Pallavicini andBrigo (Interest-ratemodelling
in collateralizedmarkets: multiple curves, credit-liquidity effects, CCPs, 2011, [10]),
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funding valuation adjustments, 2012, [12]), and Brigo et al. (Nonlinear valuation
under collateral, credit risk and funding costs: a numerical case study extending
Black–Scholes, [5]).
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Derivatives valuation · Semi-linear PDE · FBSDE · BSDE · Existence and unique-
ness of solutions

1 Introduction

This is a technical paperwherewe analyze in detail invariance, existence, and unique-
ness of solutions for nonlinear valuation equations inclusive of credit risk, collateral
margining with possible re-hypothecation, and funding costs. In particular, we study
conditions for existence, uniqueness, and invariance of the comprehensive nonlinear
valuation equations first introduced in Pallavicini et al. (2011) [11]. After briefly
summarizing the cash flows definitions allowing us to extend valuation to default
closeout, collateral margining with possible re-hypothecation and treasury funding
costs, we show how such cash flows, when present-valued in an arbitrage-free set-
ting, lead straightforwardly to semi-linear PDEs or more generally to FBSDEs. We
study conditions for existence and uniqueness of such solutions.

We formalize an invariance theorem showing that even though we start from a
risk-neutral valuation approach based on a locally risk-free bank account growing
at a risk-free rate, our final valuation equations do not depend on the risk-free rate
at all. In other words, we do not need to proxy the risk-free rate with any actual
market rate, since it acts as an instrumental variable that does not manifest itself in
our final valuation equations. Indeed, our final semi-linear PDEs or FBSDEs and
their classical solutions depend only on contractual, market or treasury rates and
contractual closeout specifications once we use a hedging strategy that is defined as
a straightforward generalization of the natural delta hedging in the classical setting.

The equations’ derivations, their numerical solutions, and the invariance result had
been analyzed numerically and extended to central clearing and multiple discount
curves in a number of previous works, including [3, 5, 10–12], and the monograph
[6], which further summarizes earlier credit and debit valuation adjustment (CVA
and DVA) results. We refer to such works and references therein for a general intro-
duction to comprehensive nonlinear valuation and to the related issues with valuation
adjustments related to credit (CVA), collateral (LVA), and funding costs (FVA). In
this paper, given the technical nature of our investigation and the emphasis on non-
linear valuation, we refrain from decomposing the nonlinear value into valuation
adjustments or XVAs. Moreover, in practice such separation is possible only under
very specific assumptions, while in general all terms depend on all risks due to nonlin-
earity. Forcing separation may lead to double counting, as initially analyzed through
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the Nonlinearity Valuation Adjustment (NVA) in [5]. Separation is discussed in the
CCP setting in [3].

The paper is structured as follows.
Section2 introduces the probabilistic setting, the cash flows analysis, and derives

a first valuation equation based on conditional expectations. Section3 derives an
FBSDE under the default-free filtration from the initial valuation equation under
assumptions of conditional independence of default times and of default-free initial
portfolio cash flows. Section4 specifies the FBSDE obtained earlier to a Markovian
setting and studies conditions for existence and uniqueness of solutions for the non-
linear valuation FBSDE and classical solutions to the associated PDE. Finally, we
present the invariance theorem: when adopting delta-hedging, the solution does not
depend on the risk-free rate.

2 Cash Flows Analysis and First Valuation Equation

We fix a filtered probability space (Ω,A ,Q), with a filtration (Gu)u≥0 representing
the evolution of all the available information on themarket.With an abuse of notation,
wewill refer to (Gu)u≥0 byG . Theobject of our investigation is a portfolio of contracts,
or “contract" for brevity, typically a netting set, with final maturity T , between two
financial entities, the investor I and the counterparty C. Both I and C are supposed
to be subject to default risk. In particular we model their default times with two
G -stopping times τI , τC . We assume that the stopping times are generated by Cox
processes of positive, stochastic intensities λI and λC . Furthermore, we describe the
default-free information by means of a filtration (Fu)u≥0 generated by the price of
the underlying St of our contract. This process has the following dynamic under the
measure Q:

dSt = rtStdt + σ(t, St)dWt

where rt is an F -adapted process, called the risk-free rate. We then suppose the
existence of a risk-free account Bt following the dynamics

dBt = rtBtdt.

We denote D(s, t, x) = e− ∫ t
s xudu, the discount factor associated to the rate xu. In the

case of the risk-free rate, we define D(s, t) := D(s, t, r).
We further assume that for all t we have Gt = Ft ∨ H I

t ∨ H C
t where

H I
t = σ(1{τI≤s}, s ≤ t),

H C
t = σ(1{τC≤s}, s ≤ t).

Again we indicate (Fu)u≥0 by F and we will write EG
t [·] := E[·|Gt] and similarly

forF . As in the classic framework of Duffie and Huang [8], we postulate the default
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times to be conditionally independent with respect to F , i.e. for any t > 0 and
t1, t2 ∈ [0, t], we assume Q{τI > t1, τC > t2|Ft} = Q{τI > t1|Ft}Q{τC > t2|Ft}.
Moreover, we indicate τ = τI ∧ τC and with these assumptions we have that τ has
intensity λu = λI

u + λC
u . For convenience of notation we use the symbol τ̄ to indicate

the minimum between τ and T .

Remark 1 We suppose that themeasureQ is the so-called risk-neutralmeasure, i.e. a
measure under which the prices of the traded non-dividend-paying assets discounted
at the risk-free rate are martingales or, in equivalent terms, the measure associated
with the numeraire Bt .

2.1 The Cash Flows

To price this portfolio we take the conditional expectation of all the cash flows of the
portfolio and discount them at the risk-free rate. An alternative to the explicit cash
flows approach adopted here is discussed in [4].

To begin with, we consider a collateralized hedged contract, so the cash flows
generated by the contract are:

• The payments due to the contract itself: modeled by anF -predictable process πt

and a final cash flow Φ(ST ) payed at maturity modeled by a Lipschitz function Φ.
At time t the cumulated discounted flows due to these components amount to

1{τ>T}D(0,T)Φ(ST ) +
∫ τ̄

t
D(t, u)πudu.

• The payments due to default: in particular we suppose that at time τ we have a
cash flow due to the default event (if it happened) modeled by a Gτ -measurable
random variable θτ . So the flows due to this component are

1{t<τ<T}D(t, τ )θτ = 1{t<τ<T}
∫ T

t
D(t, u)θud1{τ≤u}.

• The payments due to the collateral account: more precisely we model this account
by an F -predictable process Ct . We postulate that Ct > 0 if the investor is the
collateral taker, and Ct < 0 if the investor is the collateral provider. Moreover, we
assume that the collateral taker remunerates the account at a certain interest rate
(written on the CSA); in particular we may have different rates depending on who
the collateral taker is, so we introduce the rate

ct = 1{Ct>0}c+
t + 1{Ct≤0}c−

t , (1)

where c+
t , c−

t are twoF -predictable processes. We also suppose that the collateral
can be re-hypothecated, i.e. the collateral taker can use the collateral for funding
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purposes. Since the collateral taker has to remunerate the account at the rate ct ,
the discounted flows due to the collateral can be expressed as a cost of carry and
sum up to ∫ τ̄

t
D(t, u)(ru − cu)Cudu.

• We suppose that the deal we are considering is to be hedged by a position in cash
and risky assets, represented respectively by the G -adapted processes Ft and Ht ,
with the convention that Ft > 0 means that the investor is borrowing money (from
the bank’s treasury for example), while F < 0 means that I is investing money.
Also in this case to take into account different rates in the borrowing or lending
case we introduce the rate

ft = 1{Vt−Ct>0}f +
t + 1{Vt−Ct≤0}f −

t . (2)

The flows due to the funding part are

∫ τ̄

t
D(t, u)(ru − fu)Fudu.

For the flows related to the risky assets account Ht we assume that we are hedging
by means of repo contracts. We have that Ht > 0 means that we need some risky
asset, so we borrow it, while if H < 0 we lend. So, for example, if we need to
borrow the risky asset we need cash from the treasury, hence we borrow cash at a
rate ft and as soon as we have the asset we can repo lend it at a rate ht . In general
ht is defined as

ht = 1{Ht>0}h+
t + 1{Ht≤0}h−

t . (3)

Thus we have that the total discounted cash flows for the risky part of the hedge
are equal to ∫ τ̄

t
D(t, u)(hu − fu)Hudu.

The last expression could also be seen as resulting from (r − f ) − (r − h), in line
with the previous definitions. If we add all the cash flows mentioned above we obtain
that the value of the contract Vt must satisfy

Vt =EG
t

[∫ τ̄

t
D(t, u)(πu + (ru − cu)Cu + (ru − fu)Fu − (fu − hu)Hu)du

]

+ EG
t

[

1{τ>T}D(t,T)Φ(ST ) + D(t, τ )1{t<τ<T}θτ

]

.

(4)

If we further suppose that we are able to replicate the value of our contract using
the funding, the collateral (assuming re-hypothecation, otherwise C is to be omitted
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from the following equation) and the risky asset accounts, i.e.

Vu = Fu + Hu + Cu, (5)

we have, substituting for Fu:

Vt =EG
t

[∫ τ̄

t
D(t, u)(πu + (fu − cu)Cu + (ru − fu)Vu − (ru − hu)Hu)du

]

+ EG
t

[

1{τ>T}D(t,T)Φ(ST ) + D(t, τ )1{t<τ<T}θτ

]

.

(6)

Remark 2 In the classic no-arbitrage theory and in a completemarket setting,without
credit risk, the hedging process H would correspond to a delta hedging strategy
account. Here we do not enforce this interpretation yet. However, we will see that
a delta-hedging interpretation emerges from the combined effect of working under
the default-free filtrationF (valuation under partial information) and of identifying
part of the solution of the resulting BSDE, under reasonable regularity assumptions,
as a sensitivity of the value to the underlying asset price S.

2.2 Adjusted Cash Flows Under a Simple Trading Model

We now show how the adjusted cash flows originate assuming we buy a call option
on an equity asset ST with strike K . We analyze the operations a trader would enact
with the treasury and the repo market in order to fund the trade, and we map these
operations to the related cash flows. We go through the following steps in each small
interval [t, t + dt], seen from the point of view of the trader/investor buying the
option. This is written in first person for clarity and is based on conversations with
traders working with their bank treasuries.

Time t:

1. I wish to buy a call option with maturity T whose current price is Vt = V (t, St).
I need Vt cash to do that. So I borrow Vt cash from my bank treasury and buy
the call.

2. I receive the collateral amount Ct for the call, that I give to the treasury.
3. Now I wish to hedge the call option I bought. To do this, I plan to repo-borrow

Δt stock on the repo-market.
4. To do this, I borrow Ht = ΔtSt cash at time t from the treasury.
5. I repo-borrow an amount Δt of stock, posting cash Ht as a guarantee.
6. I sell the stock I just obtained from the repo to the market, getting back the price

Ht in cash.
7. I give Ht back to treasury.
8. My outstanding debt to the treasury is Vt − Ct .
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Time t + dt:

9. I need to close the repo. To do that I need to give back Δt stock. I need to buy
this stock from the market. To do that I need ΔtSt+dt cash.

10. I thus borrow ΔtSt+dt cash from the bank treasury.
11. I buy Δt stock and I give it back to close the repo and I get back the cash Ht

deposited at time t plus interest htHt .
12. I give back to the treasury the cash Ht I just obtained, so that the net value of the

repo operation has been

Ht(1 + ht dt) − ΔtSt+dt = −Δt dSt + htHt dt

Notice that this−ΔtdSt is the right amount I needed to hedge V in a classic delta
hedging setting.

13. I close the derivative position, the call option, and get Vt+dt cash.
14. I have to pay back the collateral plus interest, so I ask the treasury the amount

Ct(1 + ct dt) that I give back to the counterparty.
15. My outstanding debt plus interest (at rate f ) to the treasury is

Vt − Ct + Ct(1 + ct dt) + (Vt − Ct)ft dt = Vt(1 + ft dt) + Ct(ct − ft dt).
I then give to the treasury the cash Vt+dt I just obtained, the net effect being

Vt+dt − Vt(1 + ft dt) − Ct(ct − ft) dt = dVt − ftVt dt − Ct(ct − ft) dt

16. I now have that the total amount of flows is:

−Δt dSt + htHt dt + dVt − ftVt dt − Ct(ct − ft) dt

17. Now I present-value the above flows in t in a risk-neutral setting.

Et[−Δt dSt + htHt dt + dVt − ftVt dt − Ct(ct − ft) dt]
= −Δt(rt − ht)St dt + (rt − ft)Vt dt − Ct(ct − ft) dt − dϕ(t)

= −Ht(rt − ht) dt + (rt − ft)(Ht + Ft + Ct) dt − Ct(ct − ft) dt − dϕ(t)

= (ht − ft)Ht dt + (rt − ft)Ft dt + (rt − ct)Ct dt − dϕ(t)

This derivation holds assuming that Et[dSt] = rtSt dt and Et[dVt] = rtVt dt −
dϕ(t), where dϕ is a dividend of V in [t, t + dt) expressing the funding costs.
Setting the above expression to zero we obtain

dϕ(t) = (ht − ft)Ht dt + (rt − ft)Ft dt + (rt − ct)Ct dt

which coincides with the definition given earlier in (6).
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3 An FBSDE UnderF

We aim to switch to the default free filtrationF = (Ft)t≥0, and the following lemma
(taken from Bielecki and Rutkowski [1] Sect. 5.1) is the key in understanding how
the information expressed by G relates to the one expressed by F .

Lemma 1 For any A -measurable random variable X and any t ∈ R+, we have:

EG
t [1{t<τ≤s}X] = 1{τ>t}

EF
t [1{t<τ≤s}X]
EF
t [1{τ>t}] . (7)

In particular we have that for any Gt -measurable random variable Y there exists an
Ft -measurable random variable Z such that

1{τ>t}Y = 1{τ>t}Z.

What follows is an application of the previous lemma exploiting the fact that
we have to deal with a stochastic process structure and not only a simple random
variable. Similar results are illustrated in [2].

Lemma 2 Suppose that φu is a G -adapted process. We consider a default time τ

with intensity λu. If we denote τ̄ = τ ∧ T we have:

EG
t

[∫ τ̄

t
φudu

]

= 1{τ>t}EF
t

[∫ T

t
D(t, u, λ)φ̃udu

]

where φ̃u is an Fu measurable variable such that 1{τ>u}φ̃u = 1{τ>u}φu.

Proof

EG
t

[∫ τ̄

t
φudu

]

= EG
t

[∫ T

t
1{τ>t}1{τ>u}φudu

]

=
∫ T

t
EG
t

[
1{τ>t}1{τ>u}φu

]
du

then by using Lemma1 we have

=
∫ T

t
1{τ>t}

EF
t

[
1{τ>t}1{τ>u}φu

]

Q[τ > t |Ft] du = 1{τ>t}
∫ T

t
EF
t

[
1{τ>u}φu

]
D(0, t, λ)−1du

now we choose anFu measurable variable such that 1{τ>u}φ̃u = 1{τ>u}φu and obtain

= 1{τ>t}
∫ T

t
EFt

[
EFu

[
1{τ>u}

]
φ̃u

]
D(0, t, λ)−1du

= 1{τ>t}
∫ T

t
EFt

[
D(0, u, λ)φ̃u

]
D(0, t, λ)−1du = 1{τ>t}EFt

[∫ T

t
D(t, u, λ)φ̃udu

]
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where the penultimate equality comes from the fact that the default times are condi-
tionally independent and if we defineΛX(u) = ∫ u

0 λX
s dswith X ∈ {I,C}we have that

τX = Λ−1
X (ξX)with ξX mutually independent exponential random variables indepen-

dent from λX .1 A similar result will enable us to deal with the default cash flow term.
In fact we have the following (Lemma3.8.1 in [2])

Lemma 3 Suppose that φu is anF -predictable process. We consider two condition-
ally independent default times τI , τC generated by Cox processes with F -intensity
rates λI

t , λ
C
t . If we denote τ = τC ∧ τI we have:

EG
t

[
1{t<τ<T}1{τI<τC}φτ

] = 1{τ>t}EF
t

[∫ T

t
D(t, u, λI + λC)λI

uφudu

]

.

Now we postulate a particular form for the default cash flow, more precisely if
we indicate Ṽt theF -adapted process such that

1{τ>t}Ṽt = 1{τ>t}Vt

then we define

θt = εt − 1{τC<τI }LGDC(εt − Ct)
+ + 1{τI<τC}LGDI(εt − Ct)

−.

Where LGD indicates the loss given default, typically defined as 1 − REC, where
REC is the corresponding recovery rate and (x)+ indicates the positive part of x and
(x)− = −(−x)+. The meaning of these flows is the following, consider θτ :

• at first to default time τ we compute the close-out value ετ ;
• if the counterparty defaults and we are net debtor, i.e. ετ − Cτ ≤ 0 then we have
to pay the whole close-out value ετ to the counterparty;

• if the counterparty defaults and we are net creditor, i.e. ετ − Cτ > 0 then we
are able to recover just a fraction of our credits, namely Cτ + RECC(ετ −
Cτ ) = RECCετ + LGDCCτ = ετ − LGDC(ετ − Cτ ) where LGDC indicates the
loss given default and is equal to one minus the recovery rate RECC .

A similar reasoning applies to the case when the Investor defaults.
If we now change filtration, we obtain the following expression for Vt (where we

omitted the tilde sign over the rates, see Remark3):

1See for example Sect. 8.2.1 and Lemma 9.1.1 of [1].
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Vt =1{τ>t}EFt

[∫ T

t
D(t, u, r + λ)((fu − cu)Cu + (ru − fu)Ṽu − (ru − hu)H̃u)du

]

+ 1{τ>t}EFt

[

D(t, T , r + λ)Φ(ST ) +
∫ T

t
D(t, u, r + λ)πudu

]

+ 1{τ>t}EFt

[∫ T

t
D(t, u, r + λ)θ̃udu

]

,

(8)

where, if we suppose εt to be F -predictable, we have (using Lemma3):

θ̃u = εuλu − LGDC(εu − Cu)
+λC

u + LGDI(εu − Cu)
−λI

u. (9)

Remark 3 From now on we will omit the tilde sign over the rates fu, hu. Moreover,
we note that if a rate is of the form

xt = x+1{g(Vt ,Ht ,Ct)>0} + x−1{g(Vt ,Ht ,Ct)≤0}

then on the set {τ > t} it coincides with the rate

x̃t = x̃+1{g(Ṽt ,H̃t ,Ct)>0} + x̃−1{g(Ṽt ,H̃t ,Ct)≤0}

because 1{τ>t}x+1{g(Vt ,Ht ,Ct)>0} = x̃+1{τ>t}1{g(Vt ,Ht ,Ct)>0}, and on {τ > t} we have
Vt = Ṽt and Ht = H̃t , and hence g(Vt,Ht,Ct) > 0 ⇐⇒ g(Ṽt, H̃t,Ct) > 0.

We note that this expression is of the form Vt = 1{τ>t}ϒ meaning that Vt is zero
on {τ ≤ t} and that on the set {τ > t} it coincides with the F -measurable random
variable ϒ . But we already know a variable that coincides with Vt on {τ > t}, i.e.
Ṽt . Hence we can write the following:

Ṽt =EFt

[∫ T

t
D(t, u, r + λ)(πu + (fu − cu)Cu + (ru − fu)Ṽu − (ru − hu)H̃u)du

]

+ EFt

[

D(t, T , r + λ)Φ(ST ) +
∫ T

t
D(t, u, r + λ)θ̃udu

]

.

(10)

We now show a way to obtain a BSDE from Eq. (10), another possible approach
(without default risk) is shown for example in [9]. We introduce the process

Xt =
∫ t

0
D(0, u, r + λ)πudu +

∫ t

0
D(0, u, r + λ)θ̃udu

+
∫ t

0
D(0, u, r + λ)

[
(fu − cu)Cu + (ru − fu)Ṽu − (ru − hu)H̃u

]
du.

(11)
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Now we can construct a martingale summing up Xt and the discounted value of
the deal as in the following:

D(0, t, r + λ)Ṽt + Xt = EF
t [XT + D(0,T , r + λ)Φ(ST )].

So differentiating both sides we obtain:

− (ru + λu)D(0, u, r + λ)Ṽudu + D(0, u, r + λ)dṼu + dXu

= dEF
u [XT + D(0,T , r + λ)Φ(ST )].

If we substitute for Xt we have that the expression:

dṼu + [
πu − (ru + λu)Ṽu + θ̃u + (fu − cu)Cu + (ru − fu)Ṽu − (ru − hu)H̃u

]
du

is equal to;
dEF

u [XT + D(0,T , r + λ)Φ(ST )]
D(0, u, r + λ)

.

The process (EF
t [XT + D(0,T , r + λ)Φ(ST )])t≥0 is clearly a closedF -martingale,

and hence ∫ t

0
D(0, u, r + λ)−1dEF

u [XT + D(0,T , r + λ)Φ(ST )]

is a local F -martingale. Then, being

∫ t

0
D(0, u, r + λ)−1dEF

u [XT + D(0,T , r + λ)Φ(ST )]

adapted to the Brownian-driven filtrationF , by the martingale representation theo-
rem we have

∫ t

0
D(0, u, r + λ)−1dEF

u [XT + D(0,T , r + λ)Φ(ST )] =
∫ t

0
ZudWu

for some F -predictable process Zu. Hence we can write:

dṼu + [
πu − (fu + λu)Ṽu + θ̃u + (fu − cu)Cu − (ru − hu)H̃u

]
du = ZudWu. (12)
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4 Markovian FBSDE and PDE for ˜Vt and the Invariance
Theorem

As it is, Eq. (12) is way too general, thus wewill make some simplifying assumptions
in order to guarantee existence and uniqueness of a solution. First we assume a
Markovian setting, and hence we suppose that all the processes appearing in (12) are
deterministic functions of Su, Ṽu or Zu and time. More precisely we assume that:

• the dividend process πu is a deterministic function π(u, Su) of u and Su, Lipschitz
continuous in Su;

• the rates r, f ±, c±, λI , λC are deterministic bounded functions of time;
• the rate ht is a deterministic function of time, and does not depend on the sign of
H, namely h+ = h−, hence there is only one rate relative to the repo market of
assets;

• the collateral process is a fraction of the process Ṽu, namely Cu = αuṼu, where
0 ≤ αu ≤ 1 is a function of time;

• the close-out value εt is equal to Ṽt (this adds a source of nonlinearity with respect
to choosing a risk-free closeout, see for example [6] and [5]);

• the diffusion coefficientσ(t, St)of the underlying dynamic isLipschitz continuous,
uniformly in time, in St ;

• we consider a delta-hedging strategy, and to this extent we choose H̃t = St
Zt

σ(t,St)
;

this reasoning derives from the fact that if we suppose Ṽt = V (t, St)with V (·, ·) ∈
C1,2 applying Ito’s formula and comparing it with Eq. (12), we have that σ(t, St)
∂SV (t, St) = Zt .2

Under our assumptions, Eq. (12) becomes the following FBSDE:

dSt =rtStdt + σ(t, St)dWt

S0 =s

dṼt = −
[

πt + θ̃t − λt Ṽt + ft Ṽt(αt − 1) − ct(αt Ṽt) − (rt − ht)St
Zt

σ(t, St)

]

︸ ︷︷ ︸
B(t,St ,Ṽt ,Zt)

dt + ZtdWt

VT =Φ(ST )

(13)

Wewant to obtain existence and uniqueness of the solution to the above-mentioned
FBSDE and a related PDE. A possible choice is the following (see J. Zhang [15]
Theorem2.4.1 on page 41):

2At this stage the assumption we made on V is not properly justified, see Theorem3 and Remark4
for details.
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Theorem 1 Consider the following FBSDE on [0,T ]:

dXq,x
t = μ(t,Xq,x

t )dt + σ(t,Xq,x
t )dWt q < t ≤ T

Xt = x 0 ≤ t ≤ q

dYq,x
t = −f (t,Xq,x

t ,Yq,x
t ,Zq,x

t )dt + Zq,x
t dWt

Yq,x
T = g(Xq,x

T )

(14)

If we assume that there exists a positive constant K such that

• σ(t, x)2 ≥ 1
K ;• |f (t, x, y, z) − f (t, x′, y′, z′)| + |g(x) − g(x′)| ≤ K(|x − x′| + |y − y′| +

|z − z′|);
• |f (t, 0, 0, 0)| + |g(0)| ≤ K;

and moreover the functions μ(t, x) and σ(t, x) are C2 with bounded derivatives,
then Eq. (14) has a unique solution (Xq,x

t ,Yq,x
t ,Zq,x

t ) and u(t, x) = Yt,x
t is the unique

classical (i.e. C1,2) solution to the following semilinear PDE

∂tu(t, x) + 1

2
σ(t, x)2∂2x u(t, x) + μ(t, x)∂xu(t, x) + f (t, x, u(t, x), σ (t, x)∂xu(t, x)) = 0

u(T , x) = g(x)
(15)

We cannot directly apply Theorem1 to our FBSDE because B(t, s, v, z) is not
Lipschitz continuous in s because of the hedging term. But, since the hedging term
is linear in Zt we can move it from the drift of the backward equation to the drift of
the forward one. More precisely consider the following:

dSq,st = htS
q,s
t dt + σ(t, Sq,st )dWt q < t ≤ T

Sq = sq 0 ≤ t ≤ q

dV q,s
t = − [

πt + θt − λtV
q,s
t + ftV

q,s
t (αt − 1) − ct(αtV

q,s
t )

]

︸ ︷︷ ︸
B′(t,Sq,st ,V q,s

t )

dt + Zq,s
t dWt

V q,s
T = Φ(Sq,sT ).

(16)

Indeed, one can check that the assumptions of Theorem1 are satisfied for this
equation:

Theorem 2 If the rates λt, ft, ct, ht, rt are bounded, then |B′(t, s, v) − B′
(t, s′, v′)| ≤ K(|s − s′| + |v − v′|) and |B′(t, 0, 0)| + Φ(0) ≤ K. Hence if σ(t, s) is a
positive C2 function with bounded derivatives, then the assumptions of Theorem1 are
satisfied and so Eq. (16) has a unique solution, and moreover V t,s

t = u(t, s) ∈ C1,2

and satisfies the following semilinear PDE:
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∂tu(t, s) + 1

2
σ(t, s)2∂2

s u(t, s) + hts∂su(t, s) + B′(t, s, u(t, s)) = 0

u(T , s) = Φ(s)
(17)

Proof We start by rewriting the term

B′(t, s, v) = πt(s) + θt(v) + (ft(αt − 1) − λt − ctαt)v.

Since the sum of two Lipschitz functions is itself a Lipschitz function we can restrict
ourselves to analyzing the summands that appear in the previous formula. The term
πt is Lipschitz continuous in s by assumption. The θ term and the (ft(αt − 1) − λt −
ctαt)v term are continuous and piece-wise linear, hence Lipschitz continuous and
this concludes the proof.

Note that the S-dynamics in (16) has the repo rate h as drift. Since in general h
will depend on the future values of the deal, this is a source of nonlinearity and is at
times represented informally with an expected value Eh or a pricing measureQh, see
for example [5] and the related discussion on operational implications for the case
h = f .

We now show that a solution to Eq. (13) can be obtained by means of the classical
solution to the PDE (17). We start considering the following forward equation which
is known to have a unique solution under our assumptions about σ(t, s).

dSt = rtStdt + σ(t, St)dWt S0 = s. (18)

We define Vt = u(t, St) and Zt = σ(t, St)∂su(t, St). By Theorem2 we know that
u(t, s) ∈ C1,2 and by applying Ito’s formula and (17) we obtain:

dVt = du(t, St)

=
(

∂tu(t, St) + rtSt∂su(t, St) + 1

2
σ(t, St)

2∂2s u(t, St)

)

dt + σ(t, St)∂su(t, St)dWt

= (
(rt − ht)St∂su(t, St) − B′(t, St, u(t, St))

)
dt + σ(t, St)∂su(t, St)dWt

=
(

(rt − ht)St
Zt

σ(t, St)
− πt(St) − θt(Vt) − (ft(αt − 1) − λt − ctαt)Vt)

)

dt + ZtdWt

Hence we found the following:

Theorem 3 (Solution to the Valuation Equation) Let St be the solution to Eq. (18)
and u(t, s) the classical solution to Eq. (17). Then the process (St, u(t, St), σ (t, St)
∂su(t, St)) is the unique solution to Eq. (13).

Proof From the reasoning above we found that (St, u(t, St), σ (t, St)∂su(t, St)) solves
Eq. (13). Finally from the seminal result of [14] we know that if there exist K > 0
and p ≥ 1

2 such that:

• |μ(t, x) − μ(t, x′)| + |σ(t, x) − σ(t, x′)| ≤ K|x − x′|
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• |μ(t, x)| + |σ(t, x)| ≤ K(1 + |x|)
• |f (t, x, y, z) − f (t, x, y′, z′)| ≤ K(|y − y′| + |z − z′|)
• |g(x)| + |f (t, x, 0, 0)| ≤ K(1 + |x|p)
then the FBSDE (14) has a unique solution. Since we have to check the Lipschitz
continuity just for y and z we can verify that Eq. (13) satisfies the above-mentioned
assumptions and hence has a unique solution.

Remark 4 Since we proved that Vt = u(t, St) with u(t, s) ∈ C1,2, the reasoning we
used,when saying that H̃t = St

Zt
σ(t,St)

represented choosing a delta-hedge, it is actually
more than a heuristic argument.

Moreover, since (17) does not depend on the risk-free rate rt so we can state the
following:

Theorem 4 (Invariance Theorem) If we are under the assumptions at the beginning
of Sect.4 and we assume that we are backing our deal with a delta hedging strategy,
then the price Vt can be calculated via the semilinear PDE (17) and does not depend
on the risk-free rate r(t).

This invariance result shows that even when starting from a risk-neutral valuation
theory, the risk-free rate disappears from the nonlinear valuation equations. A discus-
sion on consequences of nonlinearity and invariance on valuation in general, on the
operational procedures of a bank, on the legitimacy of fully charging the nonlinear
value to a client, and on the related dangers of overlapping valuation adjustments is
presented elsewhere, see for example [3, 5] and references therein.
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Nonlinear Monte Carlo Schemes
for Counterparty Risk on Credit Derivatives

Stéphane Crépey and Tuyet Mai Nguyen

Abstract Two nonlinear Monte Carlo schemes, namely, the linear Monte Carlo
expansion with randomization of Fujii and Takahashi (Int J Theor Appl Financ
15(5):1250034(24), 2012 [9], Q J Financ 2(3), 1250015(24), 2012, [10]) and the
marked branching diffusion scheme of Henry-Labordère (Risk Mag 25(7), 67–73,
2012, [13]), are compared in terms of applicability and numerical behavior regarding
counterparty risk computations on credit derivatives. This is done in two dynamic
copula models of portfolio credit risk: the dynamic Gaussian copula model and
the model in which default dependence stems from joint defaults. For such high-
dimensional and nonlinear pricing problems, more standard deterministic or simu-
lation/regression schemes are ruled out by Bellman’s “curse of dimensionality” and
only purely forward Monte Carlo schemes can be used.

Keywords Counterparty risk · Funding · BSDE · Gaussian copula ·
Marshall–Olkin copula · Particles

1 Introduction

Counterparty risk is a major issue since the global credit crisis and the ongoing
European sovereign debt crisis. In a bilateral counterparty risk setup, counterparty
risk is valued as the so-called credit valuation adjustment (CVA), for the risk of
default of the counterparty, and debt valuation adjustment (DVA), for own default
risk. In such a setup, the classical assumption of a locally risk-free funding asset
used for both investing and unsecured borrowing is no longer sustainable. The proper
accounting of the funding costs of a position leads to the funding valuation adjustment
(FVA).Moreover, these adjustments are interdependent andmust be computed jointly
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through a global correction dubbed total valuation adjustment (TVA). The pricing
equation for the TVA is nonlinear due to the funding costs. It is posed over a random
time interval determined by the first default time of the two counterparties. To deal
with the corresponding backward stochastic differential equation (BSDE), a first
reduced-form modeling approach has been proposed in Crépey [3], under a rather
standard immersion hypothesis between a reference (or market) filtration and the full
model filtration progressively enlarged by the default times of the counterparties. This
basic immersion setup is fine for standard applications, such as counterparty risk on
interest rate derivatives. But it is too restrictive for situations of strong dependence
between the underlying exposure and the default risk of the two counterparties, such
as counterparty risk on credit derivatives, which involves strong adverse dependence,
called wrong-way risk (for some insights of related financial contexts, see Fujii
and Takahashi [11], Brigo et al. [2]). For this reason, an extended reduced-form
modeling approach has been recently developed in Crépey and Song [4–6]. With
credit derivatives, the problem is also very high-dimensional. From a numerical point
of view, for high-dimensional nonlinear problems, only purely forward simulation
schemes can be used. In Crépey and Song [6], the problem is addressed by the linear
Monte Carlo expansion with randomization of Fujii and Takahashi [9, 10].

In the present work, we assess another scheme, namely the marked branching
diffusion approach of Henry-Labordère [13], which we compare with the previous
one in terms of applicability and numerical behavior. This is done in two dynamic
copula models of portfolio credit risk: the dynamic Gaussian copula model and
the dynamic Marshall–Olkin model in which default dependence stems from joint
defaults.

The paper is organized as follows. Sections2 and 3 provide a summary of the
main pricing and TVA BSDEs that are derived in Crépey and Song [4–6]. Section4
exposes two nonlinear Monte Carlo schemes that can be considered for solving
these in high-dimensional models, such as the portfolio credit models of Sect. 5.
Comparative numerics in these models are presented in Sect. 6. Section7 concludes.

2 Prices

2.1 Setup

We consider a netted portfolio of OTC derivatives between two defaultable coun-
terparties, generally referred to as the contract between a bank, the perspective of
which is taken, and its counterparty. After having bought the contract from its coun-
terparty at time 0, the bank sets up a hedging, collateralization (or margining), and
funding portfolio. We call the funder of the bank a third party, possibly composed in
practice of several entities or devices, insuring funding of the bank’s strategy. The
funder, assumed default-free for simplicity, plays the role of lender/borrower of last
resort after the exhaustion of the internal sources of funding provided to the bank
through its hedge and collateral.
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For notational simplicity we assume no collateralization. All the numerical con-
siderations, our main focus in this work, can be readily extended to the case of
collateralized portfolios using the corresponding developments in Crépey and Song
[6]. Likewise, we assume hedging in the simplest sense of replication by the bank and
we consider the case of a fully securely funded hedge, so that the cost of the hedge
of the bank is exactly reflected by the wealth of its hedging and funding portfolio.

We consider a stochastic basis (Ω,GT ,G , Q), whereG = (Gt)t∈[0,T ] is interpreted
as a risk-neutral pricing model on the primary market of the instruments that are used
by the bank for hedging its TVA. The reference filtration F is a subfiltration of G
representing the counterparty risk-free filtration, not carrying any direct information
about the defaults of the two counterparties. The relation between these twofiltrations
will be pointed out in the condition (C) introduced later. We denote by:

• Et, the conditional expectation under Q given Gt ,
• r, the risk-free short rate process, with related discount factor βt = e− ∫ t0 rsds,
• T , the maturity of the contract,
• τb and τc, the default time of the bank and of the counterparty, modeled as G
stopping times with (G , Q) intensities γ b and γ c,

• τ = τb ∧ τc, the first-to-default time of the two counterparties, also a G stopping
time, with intensity γ such that max(γ b, γ c) ≤ γ ≤ γ b + γ c,

• τ̄ = τ ∧ T , the effective time horizon of our problem (there is no cashflow after
τ̄ ),

• D, the contractual dividend process,
• Δ = D − D−, the jump process of D.

2.2 Clean Price

We denote by P the reference (or clean) price of the contract ignoring counterparty
risk and assuming the position of the bank financed at the risk-free rate r, i.e. the G
conditional expectation of the future contractual cash-flows discounted at the risk-
free rate r. In particular,

βtPt = Et

[∫ τ̄

t
βsdDs + βτ̄Pτ̄

]

, ∀t ∈ [0, τ̄ ]. (1)

We also define Qt = Pt + 1{t=τ<T}Δτ , so that Qτ represents the clean value of the
contract inclusive of the promised dividend at default (if any)Δτ , which also belongs
to the “debt” of the counterparty to the bank (or vice versa depending on the sign
of Qτ ) in case of default of a party. Accordingly, at time τ (if < T ), the close-out
cash-flow of the counterparty to the bank is modeled as

R = 1{τ=τc}
(
RcQ

+
τ − Q−

τ

)− 1{τ=τb}
(
RbQ

−
τ − Q+

τ

)− 1{τb=τc}Qτ , (2)

where Rb and Rc are the recovery rates of the bank and of the counterparty to
each other.
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2.3 All-Inclusive Price

Let Π be the all-inclusive price of the contract for the bank, including the cost of
counterparty risk and funding costs. Since we assume a securely funded hedge (in
the sense of replication) and no collateralization, the amounts invested and funded
by the bank at time t are respectively given byΠ−

t andΠ+
t . The all-inclusive priceΠ

is the discounted conditional expectation of all effective future cash flows including
the contractual dividends before τ , the cost of funding the position prior to time τ

and the terminal cash flow at time τ . Hence,

βtΠt = Et

[∫ τ̄

t
βs1s<τdDs −

∫ τ̄

t
βsλ̄sΠ

+
s ds + βτ̄1τ<TR

]

, (3)

where λ̄ is the funding spread over r of the bank toward the external funder, i.e. the
bank borrows cash from its funder at rate r + λ̄ (and invests cash at the risk-free
rate r). Since the right hand side in (3) depends also on Π , (3) is in fact a backward
stochastic differential equation (BSDE). Consistent with the no arbitrage principle,
the gain process on the hedge is a Q martingale, which explains why it does not
appear in (3).

3 TVA BSDEs

The total valuation adjustment (TVA) process Θ is defined as

Θ = Q − Π. (4)

In this section we review the main TVA BSDEs that are derived in Crépey and Song
[4–6]. Three BSDEs are presented. These three equations are essentially equivalent
mathematically. However, depending on the underlying model, they are not always
amenable to the same numerical schemes or the numerical performance of a given
scheme may differ between them.

3.1 Full TVA BSDE

By taking the difference between (1) and (3), we obtain

βtΘt = Et

[∫ τ̄

t
βsfvas(Θs)ds + βτ̄1τ<Tξ

]

, ∀t ∈ [0, τ̄ ], (5)
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where fvat(ϑ) = λ̄t(Pt − ϑ)+ is the funding coefficient and where

ξ = Qτ − R = 1{τ=τc}(1 − Rc)(Pτ + Δτ)
+ − 1{τ=τb}(1 − Rb)(Pτ + Δτ)

− (6)

is the exposure at default of the bank. Equivalent to (5), the “full TVA BSDE” is
written as

Θt = Et

[∫ τ̄

t
fs(Θs)ds + 1τ<Tξ

]

, 0 ≤ t ≤ τ̄ , (I)

for the coefficient ft(ϑ) = fvat(ϑ) − rtϑ.

3.2 Partially Reduced TVA BSDE

Let ξ̂ be a G -predictable process, which exists by Corollary 3.23 2 in He et al. [12],
such that ξ̂τ = E[ξ |Gτ−] on τ < ∞ and let f̄ be the modified coefficient such that

f̄t(ϑ) + rtϑ = γt ξ̂t︸︷︷︸
cdvat

+ λ̄t(Pt − ϑ)+
︸ ︷︷ ︸

fvat(ϑ)

.
(7)

As easily shown (cf. [4, Lemma 2.2]), the full TVA BSDE (I) can be simplified into
the “partially reduced BSDE”

Θ̄t = Et

[∫ τ̄

t
f̄s(Θ̄s)ds

]

, 0 ≤ t ≤ τ̄ , (II)

in the sense that if Θ solves (I), then Θ̄ = Θ1[0,τ ) solves (II), while if Θ̄ solves (II),
then the process Θ defined as Θ̄ before τ̄ and Θτ̄ = 1τ<Tξ solves (I). Note that both
BSDEs (I) and (II) are (G , Q) BSDEs posed over the random time interval [0, τ̄ ],
but with the terminal condition ξ for (I) as opposed to a null terminal condition (and
a modified coefficient) for (II).

3.3 Fully Reduced TVA BSDE

Let
f̂t(ϑ) = f̄t(ϑ) − γtϑ = cdvat + fvat(ϑ) − (rt + γt)ϑ.
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Assume the following conditions, which are studied in Crépey and Song [4–6]:

Condition (C). There exist:

(C.1) a subfiltration F of G satisfying the usual conditions and such that F semi-
martingales stopped at τ are G semimartingales,

(C.2) a probability measure P equivalent to Q on FT such that any (F , P) local
martingale stopped at (τ−) is a (G , Q) local martingale on [0,T ],

(C.3) anF progressive “reduction” f̃t(ϑ) of f̂t(ϑ) such that
∫ ·
0 f̂t(ϑ)dt = ∫ ·

0 f̃t(ϑ)dt
on [0, τ̄ ].

Let Ẽt denote the conditional expectation under P given Ft . It is shown in Crépey
and Song [4–6]) that the full TVA BSDE (I) is equivalent to the following “fully
reduced BSDE”:

Θ̃t = Ẽt

[∫ T

t
f̃s(Θ̃s)ds

]

, t ∈ [0,T ], (III)

equivalent in the sense that if Θ solves (I), then the “F optional reduction” Θ̃ of Θ

(F optional process that coincides with Θ before τ ) solves (III), while if Θ̃ solves
(III), then Θ = Θ̃1[0,τ ) + 1[τ ]1τ<Tξ solves (I).

Moreover, under mild assumptions (see e.g. Crépey and Song [6, Theorem 4.1]),
one can easily check that f̄t(ϑ) in (7) (resp. f̃t(ϑ)) satisfies the classical BSDE
monotonicity assumption

(
f̄t(ϑ) − f̄t(ϑ

′)
)
(ϑ − ϑ ′) ≤ C(ϑ − ϑ ′)2

(and likewise for f̃ ), for some constant C. Hence, by classical BSDE results nicely
surveyed in Kruse and Popier [14, Sect. 2 (resp. 3)], the partially reduced TVABSDE
(II), hence the equivalent full TVA BSDE (I) (resp. the fully reduced BSDE (III)), is
well-posed in the space of (G , Q) (resp. (F , P)) square integrable solutions, where
well-posedness includes existence, uniqueness, comparison and BSDE standard esti-
mates.

3.4 Marked Default Time Setup

In order to be able to compute γ ξ̂ in f̄ , we assume that τ is endowed with a mark e
in a finite set E, in the sense that

τ = min
e∈E τe, (8)
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where each τe is a stopping time with intensity γ e
t such that Q(τe �= τe′) = 1, e �= e′,

and
Gτ = Gτ− ∨ σ(ε),

where ε = argmine∈Eτe yields the “identity” of the mark. The role of the mark is
to convey some additional information about the default, e.g. to encode wrong-way
and gap risk features. The assumption of a finite set E in (8) ensures tractability of
the setup. In fact, by Lemma 5.1 in Crépey and Song [6], there exists G -predictable
processes P̃e

t and Δ̃e
t such that

Pτ = P̃e
τ and Δτ = Δ̃e

τ on the event {τ = τe}.

Assuming further that τb = mine∈Eb τe and τc = mine∈Ec τe, where E = Eb ∪ Ec (not
necessarily a disjoint union), one can then take on [0, τ̄ ]:

γt ξ̂t = (1 − Rc)
∑

e∈Ec

γ e
t

(
P̃e
t + Δ̃e

t

)+ − (1 − Rb)
∑

e∈Eb

γ e
t

(
P̃e
t + Δ̃e

t

)−
,

where the two terms have clear respective CVA and DVA interpretation. Hence, (7)
is rewritten, on [0, τ̄ ], as

f̄t(ϑ) + rtϑ = (1 − Rc)
∑

e∈Ec

γ e
t

(
P̃e
t + Δ̃e

t

)+

︸ ︷︷ ︸
CVA coefficient (cvat)

− (1 − Rb)
∑

e∈Eb

γ e
t

(
P̃e
t + Δ̃e

t

)−

︸ ︷︷ ︸
DVA coefficient (dvat)

+ λ̄t(Pt − ϑ)+
︸ ︷︷ ︸

FVA coefficient (fvat(ϑ))

.

(9)

If the functions P̃e
t and Δ̃e

t above not only exist, but can be computed explicitly (as
will be the case in the concrete models of Sects. 5.1 and 5.2), once stated in aMarkov
setup where

f̄t(ϑ) = f̄ (t,Xt, ϑ), t ∈ [0,T ], (10)

for some (G , Q) jump diffusion X, then the partially reduced TVA BSDE (II) can be
tackled numerically. Similarly, once stated in a Markov setup where

f̃t(ϑ) = f̃ (t, X̃t, ϑ), t ∈ [0,T ], (11)

for some (F , P) jump diffusion X̃, then the fully reduced TVA BSDE (III) can be
tackled numerically.



60 S. Crépey and T.M. Nguyen

4 TVA Numerical Schemes

4.1 Linear Approximation

Our first TVA approximation is obtained replacing Θs by 0 in the right hand side of
(I), i.e.

Θ0 ≈ E

[∫ τ̄

0
fs(0)ds + 1τ<Tξ

]

= E

[∫ τ̄

0
λ̄sP

+
s ds + 1τ<Tξ

]

. (12)

We then approximate the TVA by standard Monte-Carlo, with randomization of
the integral to reduce the computation time (at the cost of a small increase in the
variance). Hence, introducing an exponential time ζ of parameter μ, i.e. a random
variable with density φ(s) = 1s≥0 μ e−μs, we have

E

[∫ τ̄

0
fs(0)ds

]

= E

[∫ τ̄

0
φ(s)

1

μ
eμsfs(0)ds

]

= E

[

1ζ<τ̄

eμζ

μ
fζ (0)

]

. (13)

We can use the same technic for (II) and (III), which yields:

Θ0 = Θ̄0 ≈ E

[∫ τ̄

0
f̄s(0)ds

]

= E

[

1ζ<τ̄

eμζ

μ
f̄ζ (0)

]

, (14)

Θ0 = Θ̃0 ≈ Ẽ

[∫ T

0
f̃s(0)ds

]

= Ẽ

[

1ζ<T
eμζ

μ
f̃ζ (0)

]

. (15)

4.2 Linear Expansion and Interacting Particle
Implementation

Following Fujii and Takahashi [9, 10], we can introduce a perturbation parameter ε

and the following perturbed form of the fully reduced BSDE (III):

Θ̃ε
t = Ẽt

[∫ T

t
ε̃fs(Θ̃

ε
s )ds

]

, t ∈ [0,T ], (16)

where ε = 1 corresponds to the original BSDE (III). Suppose that the solution of
(16) can be expanded in a power series of ε:

Θ̃ε
t = Θ̃

(0)
t + εΘ̃

(1)
t + ε2Θ̃

(2)
t + ε3Θ̃

(3)
t + · · · . (17)
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The Taylor expansion of f at Θ̃(0) reads

f̃t(Θ̃
ε
t ) = f̃t(Θ̃

(0)
t ) + (εΘ̃

(1)
t + ε2Θ̃

(2)
t + · · · )∂ϑ f̃t(Θ̃

(0)
t )

+ 1

2
(εΘ̃

(1)
t + ε2Θ̃

(2)
t + · · · )2∂2

ϑ 2̃ ft(Θ̃
(0)
t ) + · · ·

Collecting the terms of the same order with respect to ε in (16), we obtain Θ̃
(0)
t = 0,

due to the null terminal condition of the fully reduced BSDE (III), and

Θ̃
(1)
t = Ẽt

[∫ T

t
f̃s(Θ̃

(0)
s )ds

]

,

Θ̃
(2)
t = Ẽt

[∫ T

t
Θ̃(1)

s ∂ϑ f̃s(Θ̃
(0)
s )ds

]

,

Θ̃
(3)
t = Ẽt

[∫ T

t
Θ̃(2)

s ∂ϑ f̃s(Θ̃
(0)
s )ds

]

,

(18)

where the third order term should contain another component based on ∂2
ϑ 2̃ f . But, in

our case, ∂2
ϑ 2̃ f involves a Dirac measure via the terms (Pt − ϑ)+ in fvat(ϑ), so that

we truncate the expansion to the term Θ̃
(3)
t as above. If the nonlinearity in (III) is

sub-dominant, one can expect to obtain a reasonable approximation of the original
equation by setting ε = 1 at the end of the calculation, i.e.

Θ̃0 ≈ Θ̃
(1)
0 + Θ̃

(2)
0 + Θ̃

(3)
0 .

Carrying out a Monte Carlo simulation by an Euler scheme for every time s in a
time grid and integrating to obtain Θ̃

(1)
0 would be quite heavy. Moreover, this would

become completely unpractical for the higher order terms that involve iterated (mul-
tivariate) time integrals. For these reasons, Fujii and Takahashi [10] have introduced
a particle interpretation to randomize and compute numerically the integrals in (18),
which we call the FT scheme. Let η1 be the interaction time of a particle drawn
independently as the first jump time of a Poisson process with an arbitrary intensity
μ > 0 starting from time t ≥ 0, i.e., η1 is a random variable with density

φ(t, s) = 1s≥t μ e−μ(s−t). (19)

From the first line in (18), we have

Θ̃
(1)
t = Ẽt

[∫ T

t
φ(t, s)

eμ(s−t)

μ
f̃s(Θ̃

(0)
s )ds

]

= Ẽt

[

1η1<T
eμ(η1−t)

μ
f̃η1(Θ̃

(0)
η1

)

]

. (20)

Similarly, the particle representation is available for the higher order. By applying
the same procedure as above, we obtain
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Θ̃
(2)
t = Ẽt

[

1η1<T Θ̃(1)
η1

eμ(η1−t)

μ
∂ϑ f̃η1(Θ̃

(0)
η1

)

]

,

where Θ̃(1)
η1

can be computed by (20). Therefore, by using the tower property of
conditional expectations, we obtain

Θ̃
(2)
t = Ẽt

[

1η2<T
eμ(η2−η1)

μ
f̃η2(Θ̃

(0)
η2

)
eμ(η1−t)

μ
∂ϑ f̃η1(Θ̃

(0)
η1

)

]

, (21)

where η1, η2 are the two consecutive interaction times of a particle randomly drawn
with intensity μ starting from t. Similarly, for the third order, we get

Θ̃
(3)
t = Ẽt

[

1η3<T
eμ(η3−η2)

μ
f̃η3(Θ̃

(0)
η3

)
eμ(η2−η1)

μ
∂ϑ f̃η2(Θ̃

(0)
η2

)
eμ(η1−t)

μ
∂ϑ f̃η1(Θ̃

(0)
η1

)

]

,

(22)

where η1, η2, η3 are consecutive interaction times of a particle randomly drawn with
intensity μ starting from t. In case t = 0, (20), (21) and (22) can be simplified as

Θ̃
(1)
0 = Ẽ

[

1ζ1<T
eμζ1

μ
f̃ζ1 (Θ̃

(0)
ζ1

)

]

Θ̃
(2)
0 = Ẽ

[

1ζ1+ζ2<T
eμζ1

μ
∂ϑ f̃ζ1 (Θ̃

(0)
ζ1

)
eμζ2

μ
f̃ζ1+ζ2 (Θ̃

(0)
ζ1+ζ2

)

]

Θ̃
(3)
0 = Ẽ

[

1ζ1+ζ2+ζ3<T
eμζ1

μ
∂ϑ f̃ζ1 (Θ̃

(0)
ζ1

)
eμζ2

μ
∂ϑ f̃ζ1+ζ2 (Θ̃

(0)
ζ1+ζ2

)
eμζ3

μ
f̃ζ1+ζ2+ζ3 (Θ̃

(0)
ζ1+ζ2+ζ3

)

]

(23)

where ζ1, ζ2, ζ3 are the elapsed time from the last interaction until the next interaction,
which are independent exponential random variables with parameter μ.

Note that the pricing model is originally defined with respect to the full stochastic
basis (G , Q). Even in the case where there exists a stochastic basis (F , Q) satisfying
the condition (C), (F , Q) simulation may be nontrivial. Lemma 8.1 in Crépey and
Song [6] allows us to reformulate the Q expectations in (23) as the following Q

expectations, with Θ̄(0) = 0:

Θ̃
(1)
0 = Θ̄

(1)
0 = E

[

1ζ1<τ̄

eμζ1

μ
f̄ζ1(Θ̄

(0)
ζ1

)

]

Θ̃
(2)
0 = Θ̄

(2)
0 = E

[

1ζ1+ζ2<τ̄

eμζ1

μ
∂ϑ f̄ζ1(Θ̄

(0)
ζ1

)
eμζ2

μ
f̄ζ1+ζ2(Θ̄

(0)
ζ1+ζ2

)

]

Θ̃
(3)
0 = Θ̄

(3)
0 = E

[
1ζ1+ζ2+ζ3<τ̄

eμζ1

μ
∂ϑ f̄ζ1(Θ̄

(0)
ζ1

)
eμζ2

μ
∂ϑ f̄ζ1+ζ2(Θ̄

(0)
ζ1+ζ2

)

× eμζ3

μ
f̄ζ1+ζ2+ζ3(Θ̄

(0)
ζ1+ζ2+ζ3

)
]
,

(24)
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which is nothing but the FT scheme applied to the partially reduced BSDE (II). The
tractability of the FT schemes (23) and (24) relies on the nullity of the terminal
condition of the related BSDEs (III) and (II), which implies that Θ̄(0) = Θ̃(0) = 0.
By contrast, an FT scheme would not be practical for the full TVA BSDE (5) with
terminal condition ξ �= 0. Also note that the first order in the FT scheme (23) (resp.
(24)) is nothing but the linear approximation (15) (resp. (14)).

4.3 Marked Branching Diffusion Approach

Based on an old idea of McKean [16], the solution u(t0, x0) to a PDE

∂tu + L u + μ(F(u) − u) = 0, u(T , x) = Ψ (x), (25)

where L is the infinitesimal generator of a strong Markov process X and F(y) =∑d
k=0 aky

k is a polynomial of order d, admits a probabilistic representation in terms
of a random tree T (branching diffusion). The tree starts from a single particle
(“trunk”) born from (t0, x0). Subsequently, every particle born from a node (t, x)
evolves independently according to the generator L of X until it dies at time t′ =
(t + ζ ) in a state x′, where ζ is an independent μ-exponential time (one for each
particle). Moreover, in dying, a particle gives birth to an independent number of
k′ new particles starting from the node (t′, x′), where k′ is drawn in the finite set
{0, 1, . . . , d} with some fixed probabilities p0, p1, . . . , pd . The marked branching
diffusion probabilistic representation reads

u(t0, x0) = Et0,x0

⎡

⎣
∏

{inner nodes (t,x,k) of T }

ak
pk

∏

{states x of particles alive at T}
Ψ (x)

⎤

⎦

= Et0,x0

[
d∏

k=0

(
ak
pk

)nk ν∏

l=1

Ψ (xl)

]

, (26)

where nk is the number of branching with k descendants up on (0,T) and ν is the
number of particles alive at T , with corresponding locations x1, . . . , xν .

The marked branching diffusion method of Henry-Labordère [13] for CVA com-
putations, dubbed PHL scheme henceforth, is based on the idea that, by approximat-
ing y+ by a well-chosen polynomial F(y), the solution to the PDE

∂tu + L u + μ(u+ − u) = 0, u(T , x) = Ψ (x), (27)

can be approximated by the solution to the PDE (25), hence by (26). We want to
apply this approach to solve the TVA BSDEs (I), (II) or (III) for which, instead
of fixing the approximating polynomial F(y) once for all in the simulations, we
need a state-dependent polynomial approximation to gt(y) = (Pt − y)+ (cf. (7)) in
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a suitable range for y. Moreover, (I) and (II) are BSDEs with random terminal time
τ̄ , equivalently written in a Markov setup as Cauchy–Dirichlet PDE problems, as
opposed to the pure Cauchy problem (27). Hence, some adaptation of the method is
required. We show how to do it for (II), after which we directly give the algorithm in
the similar case of (I) and in the more classical (pure Cauchy) case of (III). Assuming
τ given in terms of a (G , Q) Markov factor process X as τ = inf{t > 0 : Xt /∈ D}
for some domainD, the Cauchy–Dirichlet PDE used for approximating the partially
reduced BSDE (II) reads:

(∂t + A )ū + μ
(
F̄(ū) − ū

) = 0 on [0,T ] × D, ū(t, x) = 0 for t = T or x /∈ D,

(28)
where A is the generator of X and F̄t,x(y) =∑d

k=0 āk(t, x)y
k is such that

μ(F̄t,x(y) − y) ≈ f̄ (t, x, y), i.e. F̄t,x(y) ≈ f̄ (t, x, y)

μ
+ y. (29)

Specifically, in view of (9), one can set

F̄t,x(y) = 1

μ

(
cdva(t, x) + λ̄pol

(
P(t, x) − y

)− ry
)+ y =

d∑

k=0

āk(t, x)y
k, (30)

where pol(r) is a d-order polynomial approximation of r+ in a suitable range
for r. The marked branching diffusion probabilistic representation of ū(t0, x0) ∈ D
involves a random treeT made of nodes and “particles” between consecutive nodes
as follows. The tree starts from a single particle (trunk) born from the root (t0, x0).
Subsequently, every particle born from a node (t, x) evolves independently accord-
ing to the generator L of X until it dies at time t′ = (t + ζ ) in a state x′, where ζ

is an independent μ-exponential time. Moreover, in dying, if its position x′ at time
t′ lies in D, the particle gives birth to an independent number of k′ new particles
starting from the node (t′, x′), where k′ is drawn in the finite set {0, 1, . . . , d} with
some fixed probabilities p0, p1, . . . , pd . Figure1 describes such a random tree in case
d = 2. The first particle starts from the root (t0, x0) and dies at time t1, generating two
new particles. The first one dies at time t11 and generates a new particle, who dies at
time t111 > T without descendant. The second one dies at time t12 and generates two
new particles, where the first one dies at time t121 without descendant and the second
one dies at time t122 outside the domainD , hence also without descendant. The blue
points represent the inner nodes, the red points the outer nodes and the green points
the exit points of the tree out of the time–space domain [0,T ] × D .

The marked branching diffusion probabilistic representation of ū is written as

ū(t0, x0) = Et0,x0

⎡

⎢
⎣1T ⊂[0,T ]×D

∏

{inner nodes (t,x,k) of T }

āk(t, x)

pk

⎤

⎥
⎦ , (t0, x0) ∈ [0,T ] × D .

(31)
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Fig. 1 PHL random tree

Note that (31) is unformal at that stage, where we did not justify whether the PDE
(28) has a solution ū and in which sense. In fact, the following result could be used
for proving that the function ū defined in the first line is a viscosity solution to (28).

Proposition 1 Denoting by ū the function defined by the right hand side in (31)
(assuming integrability of the integrand on the domain [0,T ] × D), the process Yt =
ū(t,Xt), 0 ≤ t ≤ τ̄ , solves the BSDE associated with the Cauchy–Dirichlet PDE
(28), namely

Yt = Et

[∫ τ̄

t
μ
(
F̄s,Xs(Ys) − Ys

)
ds

]

, t ∈ [0, τ̄ ] (32)

(which, in view of (29), approximates the partially reduced BSDE (II), so that Y ≈ Θ̄

provided Y is square integrable).

Proof Let (t1, x1, k1) be the first branching point in the tree rooted at (0,X0) and
let T j denote k1 independent trees of the same kind rooted at (t1, x1). By using the
independence and the strong Markov property postulated for X, we obtain

ū(t,Xt) =
d∑

k1=0

Et,Xt

[

1t1<T pk1
ak1 (t1, x1)

pk1

×
k1∏

j=1

Et1,x1

⎡

⎢
⎣1T j⊂[0,T ]×D}

∏

{inner node (s,x,k) of T j}

ak(s, x)

pk

⎤

⎥
⎦

⎤

⎥
⎦

= Et,Xt

⎡

⎢
⎣1t1<T

d∑

k1=0

ak1 (t1, x1)
k1∏

j=1

Et1,x1

⎡

⎢
⎣1T j⊂[0,T ]×D

∏

{inner node (s,x,k) of T j}

ak(s, x)

pk

⎤

⎥
⎦

⎤

⎥
⎦

= Et,Xt

⎡

⎣1t1<T

d∑

k1=0

ak1 (t1, x1)
k1∏

j=1

ū(t1, x1)

⎤

⎦
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= Et,Xt

[
1t1<T F̄t1,x1 (ū(t,X

t1,x1
t ))

]

= Et,Xt

[∫ τ̄

t
μ(s)e− ∫ st μ(u)duF̄s,Xt,x

s
(ū(s,Xt,x

s ))ds

]

, 0 ≤ t ≤ τ̄ ,

i.e. Yt = ū(t,Xt) solves (32). �

If1τ<Tξ is given as a deterministic functionΨ (τ,Xτ ), then a similar approach (using
the same treeT ) can be applied to the full BSDE (I) in terms of the Cauchy–Dirichlet
PDE

(∂t + A )u + μ (F(u) − u) = 0 on [0,T ] × D, u(t, x) = Ψ (t, x) for t = T or x /∈ D,

(33)
where Ft,x(y) =∑d

k=0 ak(t, x)yk is such that

μ(Ft,x(y) − y) ≈ f (t, x, y), i.e. Ft,x(y) ≈ f (t, x, y)

μ
+ y.

This yields the approximation formula alternative to (31):

Θ0 ≈ E

⎡

⎣
∏

{inner node (t,x,k) of T }

ak(t, x)

pk

∏

{exit point (t,x) of T }
Ψ (t, x)

⎤

⎦ , (34)

where an exit point ofT means a point where a branch of the tree leaves for the first
time the time–space domain [0,T ] × D . Last, regarding the (F , Q) reduced BSDE
(III), assuming an (F , Q) Markov factor process X̃ with generator Ã and domain
D, we can apply a similar approach in terms of the Cauchy PDE

(∂t + Ã )̃u + μ
(
F̃t,x (̃u) − ũ

) = 0 on [0,T ] × D, ũ(t, x) = 0 for t = T or x /∈ D,

(35)
where F̃t,x(y) =∑d

k=0 ãk(t, x)y
k is such that

μ(F̃t,x(y) − y) ≈ f̃ (t, x, y), i.e. F̃t,x(y) ≈ f̃ (t, x, y)

μ
+ y.

We obtain

Θ0 = Θ̃0 ≈ Ẽ

⎡

⎣1T̃ ⊂[0,T ]×D

∏

inner node (t,x,k) of T̃

ãk(t, x)

pk

⎤

⎦ , (36)

where T̃ is the branching tree associated with the Cauchy PDE (35) (similar to T̃
but for the generator Ã ).
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5 TVA Models for Credit Derivatives

Our goal is to apply the above approaches to TVA computations on credit derivatives
referencing the names inN� = {1, . . . , n}, for somepositive integern, traded between
the bank and the counterparty respectively labeled as −1 and 0. In this section we
briefly survey twomodels of the default times τi, i ∈ N = {−1, 0, 1, . . . , n}, that will
be used for that purpose with τb = τ−1 and τc = τ0, namely the dynamic Gaussian
copula (DGC) model and the dynamic Marshall–Olkin copula (DMO) model. For
more details the reader is referred to [8, Chaps. 7 and 8] and [6, Sects. 6 and 7].

5.1 Dynamic Gaussian Copula TVA Model

5.1.1 Model of Default Times

Let there be given a function ς(·) with unit L2 norm on R+ and a multivariate
Brownian motion B = (Bi)i∈N with pairwise constant correlation ρ ≥ 0 in its own
completed filtrationB = (Bt)t≥0. For each i ∈ N , let hi be a continuously differen-
tiable increasing function from R

∗+ to R, with lim0 hi(s) = −∞ and lim+∞ hi(s) =
+∞, and let

τi = h−1
i

(
εi
)
, where εi =

∫ +∞

0
ς(u)dBi

u. (37)

Thus the (τi)i∈N follow the standard Gaussian copula model of Li [15], with corre-
lation parameter ρ and with marginal survival function Φ ◦ hi of τi, where Φ is the
standard normal survival function. In particular, these τi do not intersect each other.
In order to make the model dynamic as required by counterparty risk applications,
the model filtration G is given as the Brownian filtration B progressively enlarged
by the τi, i.e.

Gt = Bt ∨
∨

i∈N

(
σ(τi ∧ t) ∨ σ({τi > t})), ∀t ≥ 0, (38)

and the reference filtration F is given as B progressively enlarged by the default
times of the reference names, i.e.

Ft = Bt ∨
∨

i∈N�

(
σ(τi ∧ t) ∨ σ({τi > t})), ∀t ≥ 0. (39)

As shown in Sect. 6.2 of Crépey and Song [6], for the filtrations G andF as above,
there exists a (unique) probability measure P equivalent to Q such that the condition
(C) holds. For every i ∈ N , let

mi
t =
∫ t

0
ς(u)dBi

u, k
i
t = τi1{τi≤t},
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and let mt = (mi
t)i∈N , kt = (kit)i∈N , k̃t = (1i∈N�kit)i∈N . The couple Xt = (mt, kt)

(resp. X̃t = (mt, k̃t)) plays the role of a (G , Q) (resp. (F , P)) Markov factor process
in the dynamic Gaussian copula (DGC) model.

5.1.2 TVA Model

A DGC setup can be used as a TVA model for credit derivatives, with mark i =
−1, 0 and Eb = {−1}, Ec = {0}. Since there are no joint defaults in this model, it is
harmless to assume that the contract promises no cash-flow at τ , i.e.,Δτ = 0, so that
Qτ = Pτ . By [8, Propositions 7.3.1 p. 178 and 7.3.3 p. 181], in the case of vanilla
credit derivatives on the reference names, namely CDS contracts and CDO tranches
(cf. (47)), there exists a continuous, explicit function P̃i such that

Pτ = P̃i(τ, mτ , kτ−), (40)

or P̃i
τ in a shorthand notation, on the event {τ = τi}. Hence, (9) yields

f̄t(ϑ) + rtϑ = (1 − Rc)γ
0
t (P̃0

t )
+ − (1 − Rb)γ

−1
t (P̃−1

t )− + λ̄t(Pt − ϑ)+, ∀t ∈ [0, τ̄ ].

Assume that the processes r and λ̄ are given before τ as continuous functions of
(t,Xt), which also holds for P in the case of vanilla credit derivatives on names in
N . Then the coefficients f̄ and in turn f̃ are deterministically given in terms of the
corresponding factor processes as

f̄t(ϑ) = f̄ (t,Xt, ϑ), f̃t(ϑ) = f̃ (t, X̃t, ϑ),

so that we are in the Markovian setup where the FT and the PHL schemes are valid
and, in principle, applicable.

5.2 Dynamic Marshall–Olkin Copula TVA Model

The above dynamic Gaussian copula model allows dealing with TVA on CDS con-
tracts. But a Gaussian copula dependence structure is not rich enough for ensuring a
proper calibration to CDS andCDOquotes at the same time. If CDO tranches are also
present in a portfolio, a possible alternative is the following dynamicMarshall–Olkin
(DMO) copula model, also known as the “common shock” model.
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5.2.1 Model of Default Times

We define a familyY of “shocks”, i.e. subsets Y ⊆ N of obligors, usually consisting
of the singletons {−1}, {0}, {1}, . . . , {n}, and a few “common shocks” I1, I2, . . . , Im
representing simultaneous defaults. For Y ∈ Y , the shock time ηY is defined as an
i.i.d. exponential random variable with parameter γY . The default time of obligor i
in the common shock model is then defined as

τi = min
Y∈Y ,i∈Y

ηY . (41)

Example 1 Figure2 shows one possible default path in a common-shock model
with n = 3 and Y = {{−1}, {0}, {1}, {2}, {3}, {2, 3}, {0, 1, 2}, {−1, 0}}. The inner
oval shows which shocks happened and caused the observed default scenarios at
successive default times.

The full model filtration G is defined as

Gt =
∨

Y∈Y

(
σ(ηY ∧ t) ∨ σ({ηY > t})), ∀t ≥ 0.

Letting Y◦ = {Y ∈ Y ; −1, 0 /∈ Y}, the reference filtrationF is given as

Ft =
∨

Y∈Y◦

(
σ(ηY ∧ t) ∨ σ({ηY > t})), t ≥ 0.
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Fig. 2 One possible default path in the common-shock model with n = 3 and Y =
{{−1}, {0}, {1}, {2}, {3}, {2, 3}, {0, 1, 2}, {−1, 0}}
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As shown in Sect. 7.2 of Crépey and Song [6], in the DMO model with G and F
as above, the condition (C) holds for P = Q. Let JY = 1[0,ηY ). Similar to (m, k)

(resp. (m, k̃)) in the DGC model, the process

X = (JY )Y∈Y (resp. X̃ = (1Y∈Y◦J
Y )Y∈Y ) (42)

plays the role of a (G , Q) (resp. (F , Q)) Markov factor in the DMO model.

5.2.2 TVA Model

A DMO setup can be used as a TVA model for credit derivatives, with

Eb = Yb := {Y ∈ Y ; −1 ∈ Y}, Ec = Yc := {Y ∈ Y ; 0 ∈ Y}, E = Y• := Yb ∪ Yc

and
τb = τ−1 = min

Y∈Yb

ηY , τc = τ0 = min
Y∈Yc

ηY ,

hence
τ = min

Y∈Y•
ηY , γ = 1[0,τ )γ̃ with γ̃ =

∑

Y∈Y•

γY . (43)

By [8, Proposition 8.3.1 p. 205], in the case of CDS contracts and CDO tranches,
for every shock Y ∈ Y and process U = P or Δ, there exists a continuous, explicit
function ŨY such that

Uτ = ŨY (τ,Xτ−), (44)

or ŨY
τ in a shorthand notation, on the event {τ = ηY }. The coefficient f̄t(ϑ) in (9) is

then given, for t ∈ [0, τ̄ ], by

f̄t(ϑ) + rtϑ = (1 − Rc)
∑

Y∈Yc

γ Y
t

(
P̃Y
t + Δ̃Y

t

)+ − (1 − Rb)
∑

Y∈Yb

γ Y
t

(
P̃Y
t + Δ̃Y

t

)−

+ λ̄t(Pt − ϑ)+.

(45)
Assuming that the processes r and λ̄ are given before τ as continuous functions of
(t,Xt), which also holds for P in case of vanilla credit derivatives on the reference
names, then

f̄t(ϑ) = f̄ (t,Xt, ϑ), f̃t(ϑ) = f̄t(ϑ) − γ̃ ϑ = f̃ (t, X̃t, ϑ) (46)

(cf. (43)), so that we are again in a Markovian setup where the FT and the PHL
schemes are valid and, in principle, applicable.
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5.3 Strong Versus Weak Dynamic Copula Model

However, one peculiarity of the TVA BSDEs in our credit portfolio models is that,
even though full and reduced Markov structures have been identified, which is
required for justifying the validity of the FT and/or PHL numerical schemes, and the
corresponding generators A or Ã can be written explicitly, the Markov structures
are too heavy for being of any practical use in the numerics. Instead, fast and exact
simulation and clean pricing schemes are available based on the dynamic copula
structures.

Moreover, in the case of the DGC model, we lose the Gaussian copula structure
after a branching point in the PHL scheme. In fact, as visible in [8, Formula (7.7) p.
175], theDGCconditionalmultivariate survival probability function is stated in terms
of a ratio of Gaussian survival probability functions, which is explicit but does not
simplify into a single Gaussian survival probability function. It is only in the DMO
model that the conditional multivariate survival probability function, which arises
as a ratio of exponential survival probability functions (see [8, Formula (8.11) p.
197 and Sect. 8.2.1.1]), simplifies into a genuine exponential survival probability
function. Hence, the PHL scheme is not applicable in the DGC model.

The FT scheme based on (III) is not practical either because the Gaussian copula
structure is only under Q and, again, the (full or reduced) Markov structures are not
practical. In the end, the only practical scheme in the DGC model is the FT scheme
based on the partially reduced BSDE (II). Eventually, it is only in the DMO model
that the FT and the PHL schemes are both practical and can be compared numerically.

6 Numerics

For the numerical implementation,we consider stylizedCDScontracts andprotection
legs of CDO tranches corresponding to dividend processes of the respective form,
for 0 ≤ t ≤ T :

Di
t = ((1 − Ri)1t≥τi − Si(t ∧ τi)

)
Nomi

Dt =
((

(1 − R)
∑

j∈N
1t≥τj − (n + 2)a

)+ ∧ (n + 2)(b − a)
)
Nom, (47)

where all the recoveries Ri and R (resp. nominals Nomi and Nom) are set to 40%
(resp. to 100). The contractual spreads Si of the CDS contracts are set such that
the corresponding prices are equal to 0 at time 0. Protection legs of CDO tranches,
where the attachment and detachment points a and b are such that 0 ≤ a ≤ b ≤
100%, can also be seen as CDO tranches with upfront payment. Note that credit
derivatives traded as swaps or with upfront payment coexist since the crisis. Unless
stated otherwise, the following numerical values are used:
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r = 0,Rb = 1,Rc = 40%, λ̄ = 100 bp = 0.01, μ = 2

T
,m = 104.

6.1 Numerical Results in the DGC Model

First we consider DGC random times τi defined by (37), where the function hi
is chosen so that τi follows an exponential distribution with parameter γi (which
in practice can be calibrated to a related CDS spread or a suitable proxy). More
precisely, let Φ and Ψi be the survival functions of a standard normal distribution
and an exponential distribution with intensity γi. We choose hi = Φ−1 ◦ Ψi, so that
(cf. (37))

Q(τi≥t) = Q
(
Ψ −1
i (Φ (εi)) ≥t

) = Q

(
Φ (εi) ≤ Ψi(t)

)
= Ψi(t),

for Φ (εi) has a standard uniform distribution. Moreover, we use a function ς(·) in
(37) constant before a time horizon T̄ > T and null after T̄ , so that ς(0) = 1√

T̄
(given

the constraint that ν2(0) = ∫∞
0 ς2(s)ds = 1) and, for t ≤ T̄ ,

ν2(t) =
∫ ∞

t
ς2(s)ds = T̄ − t

T̄
, mi

t =
∫ t

0
ς(u)dBi

u = 1√
T̄
Bi
t,

∫ ∞

0
ς(u)dBi

u = 1√
T̄
Bi
T̄
.

In the case of the DGC model, the only practical TVA numerical scheme is the FT
scheme (24) based on the partially reduced BSDE (II), which can be described by
the following steps:

1. Draw a time ζ1 following an exponential law of parameter μ. If ζ1 < T , then
simulatemζ1 = ( 1√

T̄
Bi

ζ1
)l∈N ∼ N (0, ζ1

T̄
In(1, ρ)), where In(1, ρ) is a n × nmatrix

with diagonal equal to 1 and all off-diagonal entries equal to ρ, and go to Step 2.
Otherwise, go to Step 4.

2. Draw a second time ζ2, independent from ζ1, following an exponential law of
parameter μ. If ζ1 + ζ2 < T , then obtain the vector mζ1+ζ2 as mζ1 + (mζ1+ζ2 −
mζ1), where mζ1+ζ2 − mζ1 = ( 1√

T̄
(Bi

ζ1+ζ2
− Bi

ζ1
))l∈N ∼ N (0, ζ2

T̄
In(1, ρ)), and go

to Step 3. Otherwise, go to Step 4.
3. Draw a third time ζ3, independent from ζ1 and ζ2, following an exponen-

tial law of parameter μ. If ζ1 + ζ2 + ζ3 < T , then obtain the vector mζ1+ζ2+ζ3

as mζ1+ζ2 + (mζ1+ζ2+ζ3 − mζ1+ζ2), where mζ1+ζ2+ζ3 − mζ1+ζ2 = ( 1√
T̄
(Bi

ζ1+ζ2+ζ3
−

Bi
ζ1+ζ2

))l∈N ∼ N (0, ζ3
T̄
In(1, ρ)). Go to Step 4.
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4. Simulate the vector mT̄ from the last simulated vector mt (t = 0 by default) as
mt + (mT̄ − mt), where mT̄ − mt = ( 1√

T̄
(Bi

T̄
− Bi

t))i∈N ∼ N (0, T̄−t
T̄
In(1, ρ)).

Deduce (Bi
T̄
)i∈N , hence τi = Ψ −1

i ◦ Φ
(

1√
T̄
Bi
T̄

)
, i ∈ N , and in turn the vectors kζ1

(if ζ1 + ζ2 + ζ3 < T ), kζ1+ζ2 (if ζ1 + ζ2 < T ) and kζ1+ζ2+ζ3 (if ζ1 + ζ2 + ζ3 < T ).
5. Compute f̄ζ1 , f̄ζ1+ζ2 , and f̄ζ1+ζ2+ζ3 for the three orders of the FT scheme.

WeperformTVAcomputations onCDScontractswithmaturityT = 10 years, choos-
ing for that matter T̄ = T + 1 = 11 years, hence ς = 1[0,11]√

11
, for ρ = 0.6 unless oth-

erwise stated. Table1 displays the contractual spreads of the CDS contracts used in
these experiments. In Fig. 3, the left graph shows the TVA on a CDS on name 1,
computed in a DGC model with n = 1 by FT scheme of order 1 to 3, for different
levels of nonlinearity represented by the value of the unsecured borrowing spread
λ̄. The right graph shows similar results regarding a portfolio comprising one CDS
contract per name i = 1, . . . , 10. The time-0 clean value of the default leg of the
CDS in case n = 1, respectively the sum of the ten default legs in case n = 10, is
4.52, respectively 40.78 (of course P0 = 0 in both cases by definition of fair contrac-
tual spreads). Hence, in relative terms, the TVA numbers visible in Fig. 3 are quite
high, much greater for instance than in the cases of counterparty risk on interest rate
derivatives considered in Crépey et al. [7]. This is explained by the wrong-way risk
feature of the DGCmodel, namely, the default intensities of the surviving names and
the value of the CDS protection spike at defaults in this model. When λ̄ increases
(for λ̄ = 0 that’s a case of linear TVA where FT higher order terms equal 0), the
second (resp. third) FT term may represent in each case up to 5–10% of the first

Table 1 Time-0 bp CDS spreads of names −1 (the bank), 0 (the counterparty) and of the reference
names 1 to n used when n = 1 (left) and n = 10 (right)
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Fig. 3 Left DGC TVA on one CDS computed by FT scheme of order 1–3, for different levels of
nonlinearity (unsecured borrowing spread λ̄). Right similar results regarding the portfolio of CDS
contracts on ten names
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Fig. 4 LeftTVAononeCDScomputed byFT schemeof order 3 as a function of theDGCcorrelation
parameter ρ. Right similar results regarding a portfolio of CDS contracts on ten different names
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Fig. 5 Left the % relative standard errors of the different orders of the expansions do not explode
with the number of names (λ̄ = 100 bp). Middle the % relative standard errors of the different
orders of the expansions do not explode with the level of nonlinearity represented by the unsecured
borrowing spread λ̄ (n = 1). Right since FT terms are computed by purely forward Monte Carlo
schemes, their computation times are linear in the number of names (λ̄ = 100 bp)

(resp. second) FT term, from which we conclude that the first FT term can be used
as a first order linear estimate of the TVA, with a nonlinear correction that can be
estimated by the second FT term.

In Fig. 4, the left graph shows the TVA on one CDS computed by FT scheme of
order 3 as a function of the DGC correlation parameter ρ, with other parameters set
as before. The right graph shows the analogous results regarding the portfolio of ten
CDS contracts. In both cases, the TVA numbers increase (roughly linearly) with ρ,

including for high values of ρ, as desirable from the financial interpretation point of
view, whereas it has been noted in Brigo and Chourdakis [1] (see the blue curve in
Fig. 1 of the ssrn version of the paper) that for high levels of the correlation between
names, other models may show some pathological behaviors.

In Fig. 5, the left graph shows that the errors, in the sense of the relative standard
errors (% rel. SE), of the different orders of the FT scheme do not explode with the
dimension (number of credit names that underlie the CDS contracts). The middle
graph, produced with n = 1, shows that the errors do not explode with the level
of nonlinearity represented by the unsecured borrowing spread λ̄. Consistent with
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the fact that the successive FT terms are computed by purely forward Monte Carlo
schemes, their computation times are essentially linear in the number of names, as
visible in the right graph.

To conclude this section,we compare the linear approximation (14) corresponding
to the first FT term in (24) (FT1 in Table2) with the linear approximations (12)–
(13) (LA in Table2). One can see from Table2 that the LA and FT1 estimates are
consistent (at least in the sense of their 95% confidence intervals, which always
intersect each other). But the LA standard errors are larger than the FT1 ones. In
fact, using the formula for the intensity γ of τ in FT1 can be viewed as a form of
variance reduction with respect to LA, where τ is simulated. Of course, for λ̄ �= 0
(case of the right tables where λ̄ = 3%), both linear approximations are biased as
compared with the complete FT estimate (with nonlinear correction, also shown in
Table2), particularly in the high dimensional case with 10 CDS contracts (see the
bottom panels in Table2). Figure6 completes these results by showing the LA, FT1

Table 2 LA, FT1 and FT estimates: 1 CDS (top) and 10 CDSs (bottom), with parameters λ̄ = 0%,
ρ = 0.8 (left) and λ̄ = 3%, ρ = 0.6 (right)
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Fig. 6 The % relative standard errors of the different schemes do not explode with the level of
nonlinearity represented by the unsecured borrowing spread λ̄. Left 1 CDS.Middle 10 CDSs. Right
the % relative standard errors of the different schemes (LA, FT1, FT in figures) do not explode with
the number of names (λ̄ = 100 bp, ρ = 0.6)
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and FT standard errors computed for different levels of nonlinearity and different
dimensions.

Summarizing, in the DGC model, the PHL is not practical. The FT scheme based
on the partially reduced TVA BSDE (II) gives an efficient way of estimating the
TVA. The nonlinear correction with respect to the linear approximations (14) or (15)
amounts up to 5% in relative terms, depending on the unsecured borrowing spread
λ̄.

6.2 Numerical Results in the DMO Model

In the DMO model, the FT scheme (18) for the fully reduced BSDE (23) can be
implemented through following steps:

1. Simulate the time ηY of each (individual or joint) shock following an independent
exponential law of parameter γY , Y ∈ Y , then retrieve the τi through the formula
(41).

2. Draw a time ζ1 following an exponential law of parameter μ. If ζ1 < T , compare
the default time of each name with ζ1 to obtain the reduced Markov factor X̃ζ1 as
of (42) and in turn f̃ζ1 as of (45)–(46), then go to Step 3. Otherwise stop.

3. Draw a second time ζ2 following an independent exponential law of parameterμ.
If ζ1 + ζ2 < T , compare the default time τi of each name with ζ1 + ζ2 to obtain
the Markov factor X̃ζ1+ζ2 and f̃ζ1+ζ2 then go to Step 4. Otherwise stop.

4. Draw a third time ζ3 following an independent exponential law of parameter μ.
If ζ1 + ζ2 + ζ3 < T , compare the default time of each name with ζ1 + ζ2 + ζ3 to
obtain the Markov factor X̃ζ1+ζ2+ζ3 and f̃ζ1+ζ2+ζ3 .

We can also consider the PHL scheme (31) based on the partially reduced BSDE
(II) with

D = {x = (xY )Y∈Y ∈ {0, 1}Y such that xY = 1 for Y ∈ Y•}.

To simulate the random treeT in (31), we follow the approach sketched before (31)
where, in order to evolveX according to the DMOgeneratorA during a time interval
ζ, a particle born from a node x = (jY )Y∈Y ∈ {0, 1}Y at time t, all one needs is, for
each Y such that jY = 1, draw an independent exponential random variable ηY of
parameter γY and then set x′ = (jY1[0,ηY )(ζ ))Y∈Y . Rephrasing in more algorithmic
terms:

1. To simulate the random tree T under the expectation in (31), we repeat the fol-
lowing step (generation of particles, or segments between consecutive nodes of
the tree) until a generation of particles dies without children:

For each node (t, x = (jY )Y∈Y , k) issued from the previous generation of particles
(starting with the root-node (0,X0, k = 1)), for each of the k new particles, indexed by
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l, issued from that node, simulate an independent exponential random variable ζl and
set

(t′l , x
′
l, k

′
l) = (t + ζl, (jY1[0,ηlY )(ζl))Y∈Y ,1x′

l∈Dνl),

where, for each l, theηlY are independent exponential-γY randomdraws and νl is an inde-
pendent draw in the finite set {0, 1, . . . , d}with some fixed probabilities p0, p1, . . . , pd .

2. To compute the random variable Φ under the expectation in (31), we loop over
the nodes of the tree T thus constructed (if T ⊂ [0,T ] × D, otherwise Φ = 0
in the first place) and we form the product in (31), where the āk(t, x) are retrieved
as in (30).

The PHL schemes (34) based on the full BSDE (I) or (36) based on the fully reduced
BSDE (III) can be implemented along similar lines.

We perform TVA computations in a DMO model with n = 120, for individual
shock intensities taken as γ{i} = 10−4 × (100 + i) (increasing from ∼100 bps to
220 bps as i increases from 1 to 120) and four nested groups of common shocks I1 ⊂
I2 ⊂ I3 ⊂ I4, respectively consisting of the riskiest 3, 9, 21 and 100% (i.e. all) names,
with respective shock intensities γI1 = 20 bp, γI2 = 10 bp, γI3 = 6.67 bp and γI4 = 5
bp. The counterparty (resp. the bank) is taken as the eleventh (resp. tenth) safest name
in the portfolio. In the model thus specified, we consider CDO tranches with upfront
payment, i.e. credit protection bought by the bank from the counterparty at time
0, with nominal 100 for each obligor, maturity T = 2 years and attachment (resp.
detachment) points are 0, 3 and 14% (resp. 3%, 14% and 100%). The respective
value of P0 (upfront payment) for the equity, mezzanine and senior tranche is 229.65,
5.68, and 2.99. Accordingly, the ranges of approximation chosen for pol(y) ≈ y+ in
the respective PHL schemes are 250, 200, and 10.We use polynomial approximation
of order d = 4 with (p0, p1, p2, p3, p4) = (0.5, 0.3, 0.1, 0.09, 0.01). We set μ = 0.1
in all PHL schemes and μ = 2/T = 0.2 in all FT schemes.
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tranche. Right senior tranche. Originally published in Crépey and Song [6]. Published with kind
permission of©Springer-Verlag Berlin Heidelberg 2016. All Rights Reserved. This figure is subject
to copyright protection and is not covered by a Creative Commmons License
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Table 3 FT, PHL, PHL and ˜PHL schemes applied to the equity (top), mezzanine (middle), and
senior (bottom) tranche, for the parameters λ̄ = 0%, λIj = 60bp/j (left) or λ̄ = 3%, λIj = 20bp/j
(right)

Figure7 shows the TVA computed by the FT scheme (23) based on the fully
reduced BSDE (III), for different levels of nonlinearity (unsecured borrowing
basis λ̄). We observe that, in all cases, the third order term is negligible. Hence,
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published in Crépey and Song [6]. Published with kind permission of ©Springer-Verlag Berlin
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Fig. 9 Bottom the % relative standard errors do not explode with the number of names
(λ̄ = 100 bp). Top the % relative standard errors do not explode with the level of nonlinearity
represented by the unsecured borrowing spread λ̄ (n = 120). Left FT scheme.Middle ˜PHL scheme.
Right PHL scheme

in further FT computations, we only compute the orders 1 (linear part) and 2
(nonlinear correction) (Fig. 8). Table3 compares the results of the above FT scheme
(23) based on the fully reduced BSDE (III) with those of the PHL schemes (36)
based on (III) again (P̃HL in the tables), (31) based on the partially reduced BSDE
(II) (PHL in the tables) and (34) based on the full BSDE (I) (PHL in the tables),
for the three CDO tranches and two sets of parameters. The three PHL schemes are
of course slightly biased, but the first two, based on the BSDEs with null terminal
condition (III) or (II), exhibit much less variance than the third one, based on the
full BSDE with terminal condition ξ . This is also visible in Fig. 9 (note the different
scales of the y axes going from left to right in the picture), which also shows that, for
any of these schemes, the relative standard errors do not explode with the level of
nonlinearity or the number of reference names in the CDO (the results for the PHL
scheme are not shown on the figure as very similar to those of the P̃HL scheme). In
comparing the TVA values on the left and the right hand side of Table3, we see that
the intensities of the common shocks, which play a role similar to the correlation ρ

in the DGCmodel, have a more important impact on the higher tranches (mezzanine
and senior tranche), whereas the equity tranche is more sensitive to the level of the
unsecured borrowing spread λ̄.
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7 Conclusion

Under mild assumptions, three equivalent TVA BSDEs are available. The original
“full” BSDE (I) is stated with respect to the full model filtration G and the original
pricing measure Q. It does not involve the intensity γ of the counterparty first-to-
default time τ. The partially reduced BSDE (II) is also stated with respect to (G , Q)

but it involves both τ and γ . The fully reduced BSDE (III) is stated with respect to a
smaller “reference filtration” F and it only involves γ. Hence, in principle, the full
BSDE (I) should be preferred for models with a “simple” τ whereas the fully reduced
BSDE (III) should be preferred for models with a “simple” γ . But, in nonimmersive
setups, the fully reduced BSDE (III) is stated with respect to a modified probability
measure P. Even though switching from (G , Q) to (F , P) is transparent in terms of
the generator of related Markov factor processes, this can be an issue in situations
where the Markov structure is important in the theory to guarantee the validity of the
numerical schemes, but is not really practical from an implementation point of view.
This is for instance the casewith the credit portfoliomodels thatwe use for illustrative
purposes in our numerics, where theMarkov structure that emerges from the dynamic
copula model is too heavy and it is only the copula features that can be used in the
numerics—copula features under the original stochastic basis (G , Q), which do not
necessarily hold under a reduced basis (F , P) (especially when P �= Q). As for the
partially reduced BSDE (II), as compared with the full BSDE (I), its interest is its
null terminal condition, which is key for the FT scheme as recalled below. But of
course (II) can only be used when one has an explicit formula for γ .

For nonlinear and very high-dimensional problems such as counterparty risk on
credit derivatives, the only feasible numerical schemes are purely forward simu-
lation schemes, such as the linear Monte Carlo expansion of Fujii and Takahashi
[9, 10] or the branching particles scheme of Henry–Labordère [13], respectively
dubbed “FT scheme” and “PHL scheme” in the paper. In our setup, the PHL scheme
involves a nontrivial and rather sensitive fine-tuning for finding a polynomial in ϑ

that approximates the terms (Pt − ϑ)± in fvat(ϑ) in a suitable range for ϑ . This fine-
tuning requires a preliminary knowledge on the solution obtained by running another
approximation (linear approximation or FT scheme) in the first place. Another lim-
itation of the PHL scheme in our case is that it is more demanding than the FT
scheme in terms of the structural model properties that it requires. Namely, in our
credit portfolio problems, both aMarkov structure and a dynamic copula are required
for the PHL scheme. But, whereas a “weak” dynamic copula structure in the sense
of simulation and forward pricing by copula means is sufficient for the FT scheme,
a dynamic copula in the stronger sense that the copula structure is preserved in the
future is required in the case of the PHL scheme. This strong dynamic copula prop-
erty is satisfied by our common-shock model but not in the Gaussian copula model.
In conclusion, the FT schemes applied to the partially or fully reduced BSDEs (II)
or (III) (a null terminal condition is required so that the full BSDE (I) is not eligible
for this scheme) appear as the method of choice on these problems.
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An important message of the numerics is that, even for realistically high levels
of nonlinearity, i.e. an unsecured borrowing spread λ̄ = 3%, the third order FT
correction was always found negligible and the second order FT correction less than
5–10% of the first order, linear FT term. In conclusion, a first order FT term can
be used for obtaining “the best linear approximation” to our problem, whereas a
nonlinear correction, if wished, can be computed by a second order FT term.
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Tight Semi-model-free Bounds
on (Bilateral) CVA

Jördis Helmers, Jan-J. Rückmann and Ralf Werner

Abstract In the last decade, counterparty default risk has experienced an increased
interest both by academics as well as practitioners. This was especially motivated
by the market turbulences and the financial crises over the past decade which have
highlighted the importance of counterparty default risk for uncollateralized deriv-
atives. After a succinct introduction to the topic, it is demonstrated that standard
models can be combined to derive semi-model-free tight lower and upper bounds on
bilateral CVA (BCVA). It will be shown in detail how these bounds can be easily
and efficiently calculated by the solution of two corresponding linear optimization
problems.

Keywords Counterparty credit risk · CVA · Tight bounds · Mass transportation
problem

1 Introduction

Events such asLehman’s default have drawn the attention to counterparty default risk.
At the very latest after this default, it has become obvious to all market participants
that the credit qualities of both counterparties—usually a client and an investment
bank—need to be considered in the pricing of uncollateralized OTC derivatives.
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Over the past years, several authors have been investigating the pricing of deriva-
tives based on a variety of models which take into account these default risks. Most
of these results are covered by a variety of excellent books, for example Pykhtin [16],
Gregory [12], or Brigo et al. [7] just to name a few. For a profound discussion on the
pros and cons of unilateral versus bilateral counterparty risk let us refer to the two
articles by Gregory [11, 13].

In the following exposition, we are concerned with the quantification of the small-
est and largest BCVAwhich can be obtained by any given model with predetermined
marginal laws. This takes considerations of Turnbull [21] much further, who first
derived weak bounds on CVA for certain types of products. Our approach extends
first ideas from Hull and White [15], where the hazard rate determining defaults
is coupled to the exposure or other risk factors in either deterministic or stochastic
way. Still, Hull and White rely on an explicit choice of the default model and on
an explicit coupling. More related is the work by Rosen and Saunders et al. [8, 17],
on which we prefer to comment later in Remark8. As the most related work we
note the paper by Cherubini [9] which provided the basis for this semi-model-free
approach. There, only one particular two-dimensional copula was used to couple
each individual forward swap par rate with the default time. Obviously, a more gen-
eral approach couples each forward swap par rate with each other and the default
time—which is in gist similar to Hull andWhite [15]. From there the final step to our
approach is to observe that the most general approach directly links the whole sto-
chastic evolution of the exposure with both random default times. We will illustrate
in the following that these couplings can be readily derived by linear programming.
For this purpose the BCVAwill be decomposed into three main components: the first
component is represented by the loss process, the second component consists of the
default indicators of the two counterparties and the third component is comprised of
the exposure-at-default of the OTC derivative, i.e. the risk-free present value of the
outstanding amount1 at time of default. This approach takes further early consider-
ations of Haase and Werner [14], where comparable results were obtained from the
point of view of generalized stopping problems.

In a very recent working paper by Scherer and Schulz [18], the above idea was
analyzed in more detail. It was shown that the computational complexity of the
problem is the same, no matter if only marginal distributions of defaults or the joint
distribution of defaults are known.

After submission of this paper we became aware of related results by Glasserman
and Yang, see [10]. Although the main idea of their exposition is similar in gist,
Glasserman and Yang focus on the unilateral CVA instead of bilateral CVA. Besides
an analysis of the convergence of finite samples to the continuous setup, their exposi-
tion is mainly focused on the penalization of deviation from some base distribution.
In contrast, our focus is on bilateral CVA, with special attention to numerical solution
and to the case that payoffs also depend on the credit quality.

1In accordance with the full two-way payment rule under ISDA master contracts, see e.g. Bielecki
and Rutkowski [2] (Sect. 14.4.4), we assume that the close-out value is determined by the then
prevailing risk-free present value.
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In summary, this exposition makes the following main contributions:

• First, the three main building blocks of such an adjustment are clearly identified
and separated, and it is shown how any coupling of these blocks leads to a feasible
adjustment. Unlike Cherubini, who only considered the very specific case of an
interest rate swap, all kinds of derivatives (interest rate, FX, commodity, and even
credit derivatives) are covered in a unified way—even if the payoff, and thus the
present value of the derivative, is explicitly depending on the credit quality of any
of the two counterparties.

• Second, by generalizing Cherubini’s approach, upper and lower bounds on
unilateral and bilateral counterparty value adjustments are derived. It will be
demonstrated that these bounds can be efficiently obtained by the solution of linear
optimization problems, more specifically, by the solution of balanced transporta-
tion problems. In contrast to the approaches of Turnbull [21] or Cherubini [9], both
the upper and lower bound derived here are tight bounds, i.e. there exists some
stochastic model which is consistent with all given market prices in which these
bounds are attained.

The rest of the paper is organized as follows. In Sect. 2 a succinct introduction to
bilateral counterparty risk is given, before the decomposition of the BCVA into its
building blocks is carried out in Sect. 3. In Sect. 4 the two main approaches for the
calculation of counterparty valuation adjustments are briefly reviewed. Finally, the
tight bounds on CVA are derived in Sect. 5, before the paper concludes.

2 Counterparty Default Risk

As usual, to model financial transactions with default risk, let (Ω,G ,Gt,Q) be a
probability space where Gt models the flow of information and Q denotes the risk-
neutral measure for a given risk-free numéraire process Nt > 0, see e.g. Bielecki
and Rutkowski [2] for more details. Further, let the space be endowed with a right-
continuous and complete sub-filtration Ft modeling the flow of information except
default, such thatFt ⊆ Gt := Ft ∨ Ht withHt being the right-continuous filtration
generated by the default events.

Subsequently, we consider a transaction with maturity T between a client A and
a counterparty B where both are subject to default. The respective random default
times are denoted by τA and τB. In order to take into account counterparty default
risk we distinguish three cases:

• neither A nor B defaults before T : D0 := {τA > T} ∩ {τB > T},
• A defaults before B and before T : DA := {τA ≤ T} ∩ {τA ≤ τB},
• B defaults before A and before T : DB := {τB ≤ T} ∩ {τB ≤ τA}.
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For simplicity of presentation, we assume in the following thatQ[τA = T ] = Q[τB =
T ] = Q[τA = τB] = 0. Under this assumption these sets2 yield a decomposition of
one, i.e. it holds

1D0 + 1DA + 1DB = 1 Q-almost-surely.

In the following, let us consider a transaction consisting of cash flows C(B,A,Ti)
paid by the counterpartyB at times Ti, i = 1, . . . ,mB, and cash flowsC(A,B,Tj) paid
by the client A at times Tj, j = 1, . . . ,mA. Taking into account default risk of both
counterparties, the quantification of the bilateral CVA is summarized in the following
well-known theorem, which in essence goes back to Sorensen and Bollier [19].

Theorem 1 Conditional on the event {t < min(τA, τB)}, i.e. no default has occurred
until time t, the value VD

A (t,T) of the transaction under consideration of bilateral
counterparty risk at time t is given by

VD
A (t,T) = VA(t,T) − CVAA(t,T) = −(

VB(t,T) − CVAB(t,T)
) = −VD

B (t,T)

where the risk-free present value of the transaction is given as

VA(t,T) = E

[
mB∑

i=1

Nt

NTi

· C(B,A,Ti)

∣∣∣∣∣
Ft

]

− E

⎡

⎣
mA∑

j=1

Nt

NTj

· C(A,B,Tj)

∣∣∣∣∣∣
Ft

⎤

⎦

= −VB(t,T)

and where the bilateral counterparty value adjustment CVAA(t,T) is defined as

CVAA(t,T) :=E

[
1DB · Nt

NτB

· LB
τB

· max(0, VA(τB,T)) |Gt

]

− E

[
1DA · Nt

NτA

· LA
τA

· max(0, VB(τA,T)) |Gt

]

= − CVAB(t,T). (1)

Here Li
t denotes the random loss (between 0 and 1) of counterparty i at time t.

Proof A proof of Theorem 1 can be found in Bielecki and Rutkowski [2], Formula
(14.25) or Brigo and Capponi [4], Proposition 2.1 and Appendix A, respectively.

Based on Theorem 1, the general approach for the calculation of the counterparty
risk adjusted value VD

A (t,T) is to determine first the risk-free value VA(t,T) of the
transaction. This can be done by any common valuation method for this kind of
transaction. In a second step the counterparty value adjustment CVAA(t,T) needs to
be determined. So far, two main approaches have emerged in the academic literature,
which will be briefly reviewed in Sect. 4.

2We note that Brigo et al. (in [4, 6]) use different sets to order the default times, which are in essence
reducible to the above three events.
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3 The Main Building Blocks of CVA

Subsequently, let us assume that the default times τi with i ∈ {A,B} can only take a
finite number of values {t̄1, . . . , t̄K} in the interval ]0,T [. For continuous timemodels
this assumption can be justified by the default bucketing approach, which can, for
example, be found in Brigo and Chourdakis [5], if K is chosen sufficiently large.
To be able to separate the default dynamics from the market value dynamics, let us
introduce the auxiliary time s, s ∈ [t,T ] and the discounted market value

Ṽ+
i (t, s,T) := Nt

Ns
· max(0, Vi(s,T)).

Then we can rewrite Eq. (1) as:

CVAA(t,T) = E

[
K∑

k=1

LB
t̄k

· 1DB · 1t̄k (τB) · Ṽ+
A (t, t̄k,T) |Gt

]

(2)

−E

[
K∑

k=1

LA
t̄k

· 1DA · 1t̄k (τA) · Ṽ+
B (t, t̄k,T) |Gt

]

.

Here,1M is the indicator function of the setM; ifM = {m}we simplywrite1m instead.
Now, collecting all terms relating to the default in the default indicator process δ,

δik := 1Di · 1t̄k (τi),

we can rewrite the BCVA in a more compact manner as

CVAA(t,T) = E

[
K∑

k=1

LB
t̄k

· δBk · Ṽ+
A (t, t̄k,T) |Gt

]

(3)

−E

[
K∑

k=1

LA
t̄k

· δAk · Ṽ+
B (t, t̄k,T) |Gt

]

.

From Eq. (3) we immediately see that the BCVA at time t is composed of six discrete
time3 processes:

• two default indicator processes δAs and δBs ,
• two loss processes LA

s and LB
s , and

• two discounted exposure processes Ṽ+
A (t, s,T) and Ṽ+

B (t, s,T).

In this way, we are able to separate the default dynamics δ from the loss process L
and the exposure process Ṽ . From this decomposition, it becomes obvious that the
BCVA is completely determined by the joint distribution of these six processes.

3In the following, we replace the time index t̄k with k for notational convenience.
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Remark 1 We note that in general it is even sufficient to model four processes
(loss dynamics and market value dynamics) plus a two-dimensional random variable
(τA, τB). However, in the case of finitely many default times, it is more convenient
to work with the default indicator process instead.

Remark 2 For simplicity of the subsequent exposition, we assume that the loss
process is actually constant and equals 1: Li

t = li = 1. The theory of the remainder
of this exposition is not affected by this simplifying assumption, with one notable
exception: the resulting two-dimensional transportation problems will become a
multi-dimensional transportation problemwhich renders its numerical solutionmore
complex, but still feasible.

Remark 3 As we have noted, the default indicator process can only take a finite
number of values in the bucketing approach. More exactly, it holds that the joint (i.e.
two-dimensional) default indicator process δ = (δk)k=1,...,K ∈ R2×K , defined by

δk :=
(

δAk
δBk

)
, k = 1, . . . ,K,

takes only values in the finite set

Y :=
⎧
⎨

⎩
γ ∈ R2×K | γi,k ∈ {0, 1},

∑

i,k

γi,k ≤ 1

⎫
⎬

⎭

which has exactly 2K + 1 elements. Therefore, the discrete time default indicator
process is also a process with a finite state space.

Let us further introduce the joint exposure process in analogy to the above,

Xk :=
(
Ṽ+
A (t,t̄k ,T)

Ṽ+
B (t,t̄k ,T)

)
, k = 1, . . . ,K .

Then it holds

CVAA(t,T) =
K∑

k=1

(
E

[
δBk · XA

k |Gt
] − E

[
δAk · XB

k |Gt
])

. (4)

To avoid technical considerations for brevity of presentation, we prefer to work
with discrete processes (i.e. discrete state space) in discrete time. Thus, it may be
necessary to discretize the state space of the remaining discounted exposure process.
In general, there exist (at least) two different approaches how a suitable discrete state
space version of the process X could be obtained:

• In the first approach—completely similar to the default bucketing approach—
the state space R2×K for the joint exposure process X is divided into N disjoint
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components. Then X is replaced by some representative value on this component
(usually an average value) on each of the components, and the probabilities of the
discretized process are set in accordance with the original probabilities of each
component (cf. the default bucketing approach).

• From a computational and practical point of view, a much more convenient
approach relies on Monte Carlo simulation: N different scenarios (i.e. realiza-
tions) of the process X are used instead of the original process. Each realization is
assumed to have probability 1/N .

For both approaches it is known that they converge at least4 in distribution to the
original process, which is sufficient for our purposes. For more details on the con-
vergence, let us refer to the recent working paper by Glasserman and Yang [10].

4 Models for Counterparty Risk

In the last decade two main approaches have emerged in the literature how to model
the individual, resp. joint distribution of the processes δ and X:

• The most popular approach is based on the rather strong assumption of indepen-
dence between exposure and default. Based on this independence assumption, only
individual models for δ and X need to be specified for the CVA calculation. This
kind of independence assumption is quite standard in the market, see for example
the Bloomberg CVA function (for more details on the Bloomberg model let us
refer to Stein and Lee [20]).

• Alternatively, andmore recently, amore general approach is based on a jointmodel
(also called hybrid model) for the building blocks δ and X of the CVA calculation,
see Sect. 4.3.

4.1 Independence of CVA Components

Let us assume that the exposure process X is independent of the default process δ.
Then the expectation inside the summation can be split into two parts:

K∑

k=1

E
[
δBk · XA

k |Gt
] =

K∑

k=1

E
[
δBk |Gt

] · E [
XA
k |Gt

]
. (5)

4The Monte Carlo approach converges in distribution due to the Theorem of Glivenko–Cantelli.
For state space discretization, if for example conditional expectations are used on each bucket, then
convergence is in fact almost surely and in L1 due Lévy’s 0–1 law.
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It is well known that the expected value

E
[
XA
k |Gt

] = E
[
Ṽ+
A (t, t̄k,T)

∣∣Gt
] = E

[
Nt

Nt̄k

· max(VA(t, t̄k,T), 0)

∣
∣∣∣Ft

]
(6)

matches exactly the price of a call option on the basis transaction at time t with strike
0 and exercise time t̄k . The CVA equation can hence be rewritten as

CVAA(t,T) =
K∑

k=1

(
E

[
δBk |Gt

] · E [
XA
k |Gt

] − E
[
δAk |Gt

] · E [
XB
k |Gt

])
, (7)

and thus the BCVA can be calculated without any further problems as the corre-
sponding default probabilities5 E

[
δBk |Gt

] = Q [τB ∈ Δk, τB ≤ τA|Gt] can be easily
computed from any given credit risk model: in order to calculate the probability
Q [τB ∈ Δk, τB ≤ τA|Gt], the default times τA and τB together with their dependence
structure have to be modeled. One of the most popular models for default times in
general are intensity models, as for example described in Bielecki and Rutkowsi [2],
Part III.

Remark 4 It has to be noted that a model with deterministic default intensities plus
a suitable copula is sufficient for the arbitrary specification of the joint distribution
of default times. Stochastic intensities do not add any value in this context. This is
true as long as the default risk-free discounted present value is independent of the
credit quality of each counterpart. This means that the payoff itself is not allowed to
be linked explicitly to the credit quality of any counterparty.

Remark 5 Let us point out that the intensity model is just one specific example
how default times could be modeled. The big advantage of our approach is that any
arbitrary credit risk model can be used instead, as only the distribution of the default
indicator δ finally matters. In case only marginal default models are available, we
can also take into account the remaining unknown dependence between the default
times, however, at the price of a higher dimensional transportation problem.

4.2 Modeling Options on the Basis Transaction

Since it could be observed in Eq. (6) that options on the basis transaction need to be
priced, a suitable model for this option pricing task needs to be available. Depending
on the type of derivative, any model which can be reasonably well calibrated to
the market data is sufficient. For instance, for interest rate derivatives, any model
ranging from a simple Vasicek or CIR model to sophisticated Libor market models
or two-factor Hull–White models could be applied. In case of a credit default swap,

5With Δk :=]t̄k−1, t̄k] if the default bucketing approach has been used, otherwise Δk := {t̄k}.
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any model which allows to price CDS options, i.e. any model with stochastic credit
spreadwould be feasible. However, for CVAcalculations, usually a trade-off between
accuracy of the model and efficiency of calculations needs to be made. For this
reason, usually simplermodels are applied forCVAcalculations than for other pricing
applications. It needs to be noted that since the financial market usually provides
sufficiently many prices of liquid derivatives, any reasonable model can be calibrated
to these market prices, and therefore, we can assume in the following that the market
implied distribution of the discounted exposure process is fully known and available.

4.3 Hybrid Models—An Example

Anotherway to calculate theCVA is to use a so-called hybrid approachwhichmodels
all the involved underlying risk factors. Instances of such models can for example be
found in Brigo and Capponi [4] for the case of a credit default swap, or Brigo et al. [6]
for interest rate derivatives. In Brigo et al. [6], an integrated framework is introduced,
where a two-factor Gaussian interest-rate model is set up for a variety of interest rate
derivatives6 in order to deal with the option inherent in the CVA. Further, tomodel the
possible default of the client and its counterparty their stochastic default intensities are
given as CIR processes with exponentially distributed positive jumps. The Brownian
motions driving those risk factors are assumed to be correlated. Additionally, the
defaults of the client and the counterparty are linked by a Gaussian copula.

In summary, the amount of wrong-way risk which can be modeled within such
a framework strongly depends on the model choice. If solely correlations between
default intensities (i.e. credit spreads) and interest rates are taken into account, only
a rather weak relation will emerge between default and the exposure of interest rate
derivatives, cf. Brigo et al. [6]. Figure5 in Scherer and Schulz [18] provides an
overview of potential CVA values for different models which illustrates that models
can differ quite significantly.

5 Tight Bounds on CVA

From the previous section it becomes obvious that hybrid models yield different
CVAs depending on the (model and parameter implied) degree of dependence
between default and exposure. However, it remains unclear how large the impact
of this dependence can be. In other words: Is it possible to quantify, how small or
large the CVA can get for any model, given that the marginal distributions for expo-

6Although this modeling approach is a rather general one, it has to be noted that it links the
dependence on tenors of swaption volatilities to the form of the initial yield curve. Therefore, the
limits of such an approach became apparent as the yield curve steepened in conjunction with a
movement of the volatility surface in the aftermath of the beginning of financial crisis in 2008,
when these effects could not be reproduced by such a model.
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sure and default are already given? In the following, wewant to address this question
based on our initially given decomposition of the CVA in building blocks.

As mentioned in Sect. 4.2, we can reasonably assume that the distribution of
the exposure process X is already completely determined by the available market
information. In a similar manner, we have argued that also the distribution of the
default indicator process δ can be assumed to be given by the market. Nevertheless,
let us point out that the following ideas and concepts could indeed be generalized to
the case that only the marginal distributions of the default times are known. Further,
we can even consider the case that the dependence structure between different market
risk factors is not known but remains uncertain. However, all these generalizations
come at the price that the resulting two-dimensional transportation problem will
become multi-dimensional.

For the above reasons, we argue that the following approach is indeed semi-model-
free in the sense that no model needs to be specified which links the default indicator
process with the discounted exposure processes.

5.1 Tight Bounds on CVA by Mass Transportation

Let us reconsider Eq. (4) and let us highlight the dependence of the BCVA on the
measure P.

CVAP
A(t,T) =

K∑

k=1

(
EP

[
δBk · XA

k |Gt
] − EP

[
δAk · XB

k |Gt
])

.

With some abuse of notation, the measure P denotes the joint distribution of the
default process δ and the exposure processX. Since both processes havefinite support,
P can be represented as a (2K + 1) × N matrix with entries in [0, 1]. We note that the
marginals of P, i.e. the distributions of δ and X (denoted by the probability vectors
p(X) ∈ RN and p(δ) ∈ R2K+1) are already predetermined from the market. Therefore,
P has to satisfy

1�P = p(X), and P1 = p(δ).

Remark 6 In case of independence between δ and X, P is given by the product
distribution of δ andX,whereas in hybridmodels the joint distributionP is determined
by the specification and parametrization of the hybridmodel. In the independent case,
P is hence given by the dyadic product

P = p(δ)p(X)�.
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Obviously, the smallest and largest CVA which can be obtained by any P which is
consistent with the given marginals, is given by

CVAl
A(t,T) := min

P∈P
CVAP

A(t,T),

CVAu
A(t,T) := max

P∈P
CVAP

A(t,T),

where
P := {P ∈ [0, 1](2K+1)×N | 1�P = p(X), P1 = p(δ)}.

It can be easily noted that the setP is a convex polytope. Thus, the computation of
CVAl

A(t,T) and CVAu
A(t,T) essentially requires the solution of a linear program, as

the objective functions are linear in P.

Remark 7 The structure of the above LPs coincides with the structure of so-
called balanced linear transportation problems. Transportation problems constitute
a very important subclass of linear programming problems, see for example Bazaraa
et al. [1], Chap. 10, for more details. There exist several very efficient algorithms for
the numerical solution of such transportation problems, see also Bazaraa et al. [1],
Chaps. 10, 11 and 12.

Let us summarize our results in the following theorem:

Theorem 2 Under the given prerequisites, it holds:

1. CVAl
A(t,T) ≤ CVAA(t,T) ≤ CVAu

A(t,T).
2. These bounds are tight, i.e. they represent the lowest and the highest CVA which

can be obtained by any (hybrid) model which is consistent with the market data
and there exists at least one model which reaches these bounds.

The tightness of our bounds is in contrast to Turnbull [21], where only weak bounds
were derived. Of course, bounds always represent a best-case and a worst-case esti-
mate only, which may strongly under- and overestimate the true CVA.

Remark 8 We note that a related approach of coupling default and exposure via
copulas was presented by Rosen and Saunders [17] and Crepedes et al. [8]. However,
their approach differs from ours in some significant aspects. First, exposure scenarios
are sorted by a single number (e.g. effective exposure) to be able to couple exposure
scenarios with risk factors of defaults by copulas. Second, risk factors of some credit
riskmodel are employed instead of workingwith the default indicator directly. Third,
their approach is restricted to the real-world setting and does not consider restrictions
on the marginal distributions in the coupling process, which is e.g. necessary if
stochastic credit spreads should be considered.



94 J. Helmers et al.

5.2 An Alternative Formulation as Assignment Problem

For the above setupwehave assumed that the probabilities for all possible realizations
of the default indicator process could be precomputed from a suitable default model.
If for somedefaultmodel this should not be the case, but only scenarios (with repeated
outcomes for the default indicator) could be obtained by a simulation, an alternative
LP formulation could be obtained. In such a scenario setting, it is advisable that
for both Monte Carlo simulations, the same number N of scenarios is chosen. Then
for both given marginal distributions we have p(δ)

j = p(X)
i = 1/N . If we apply the

same arguments as above we obtain again a transportation problem, however, with
probabilites 1/N each. If we have a closer look at this problem, we see that the
optimization actually runs over all N × N permutation matrices—since each default
scenario is mapped onto exactly one exposure scenario. This means that this problem
eventually belongs to the class of assignment problems, for which very efficient
algorithms are available, cf. Bazaraa et al. [1]. Nevertheless, please note that although
assignment problems can be solved more efficiently than transportation problems, it
is still advisable to solve the transportation problemdue to its lower dimensionality, as
usually 2K + 1 � N (i.e. time discretization is usually much coarser than exposure
discretization). However, if stochastic credit spreads have to be considered, they have
to be part of the default simulation and thus assignment problems (with additional
linear constraints to guarantee consistency of exposure paths and spreads) become
unavoidable.

6 Example

6.1 Setup

To illustrate these semi-model-free CVA bounds let us give a brief example. For this
purpose let us consider a standard payer swap with a remaining lifetime of T = 4
years analyzed within a Cox–Ingersoll–Ross (CIR) model at time t = 0. The time
interval ]0, 4[ is split up into K = 8 disjoint time intervals each covering half a year.
For simplicity, the loss process is again assumed to be 1.

6.1.1 Counterparty’s Default Modeling

Tomodel the defaults we have chosen the well-known copula approach with constant
intensities using the Gaussian copula. For further analyses in this example we will
focus on the case of uncorrelated counterparties (ρ = 0) and highly correlated coun-
terparties (ρ = 0.9). Furthermore, the counterpartys’ default intensities are assumed
to be deterministic.Wewill distinguish between symmetric counterparties with iden-
tical default intensities and asymmetric counterparties. Thus, four different settings
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Fig. 1 Probabilities EQ[ δik] in % for Case 1 to Case 4

result: Fig. 1 shows the probabilities Q[ δik = 1] = EQ[ δik] in each of the four cases
under the risk-neutral measure Q implied from the market. To be in line with the
following figures, the probabilities for a default of counterparty B inΔk , i.e. EQ[ δBk ],
correspond to the positive bars and defaults of counterparty A to the negative bars.
The left plots show identical counterparties (cases 1 and 2) and the right ones the
cases, where counterparty B has a higher default intensity (cases 3 and 4). Further-
more, the upper plots correspond to uncorrelated defaults and for the ones below we
have ρ = 0.9.

Case 1: symmetric, uncorrelated λA = 150 bps λB = 150 bps ρ = 0
Case 2: symmetric, correlated λA = 150 bps λB = 150 bps ρ = 0.9
Case 3: asymmetric, uncorrelated λA = 150 bps λB = 300 bps ρ = 0
Case 4: asymmetric, correlated λA = 150 bps λB = 300 bps ρ = 0.9
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Fig. 2 Expected exposures
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Table 1 EQ
[
XA
k

]
and EQ

[
XB
k

]
in basis points

k 1 2 3 4 5 6 7 8

EQ[XA
k ] in bp 49.2 59.2 60.1 55.2 45.9 33.4 17.9 0

EQ[XB
k ] in bp 48.9 58.5 59.1 54.2 45.1 32.6 17.5 0

6.1.2 Counterparty Exposure Modeling

As already mentioned, a simple CIR model is applied for the valuation of the payer
swap. Since our focus is on the coupling of the default and the exposure model, we
have opted for such a simple model for ease of presentation. In the CIR model, the
short rate rt follows the stochastic differential equation

drt = κ(θ − rt)dt + σ
√
rtdWt

where (Wt)t≥0 denotes a standard Brownian motion. Instead of calibrating the para-
meters to market data (yield curve plus selected swaption prices) on one specific day,
we have set the parameters in the following way

κ = 0.0156, θ = 0.0311, σ = 0.0313, r0 = 0.030

to obtain an interest rate market which is typical for the last years. Considering now
the discounted exposure of each counterparty within the discrete time framework of
our example, we can easily compute EQ

[
Xi
k

]
as the average of all generated scenar-

ios from a Monte Carlo simulation. Figure2 illustrates the results of a simulation,
which are also given in Table1. Positive bars correspond toEQ

[
XA
k

]
, negative bars to

EQ
[
XB
k

]
, and the small bars correspond to EQ[ṼA(tk,T)]. Since payer and receiver

swap are not completely symmetric instruments, there remains a residual expectation,
as can be observed from Fig. 2.
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Fig. 3 Minimal and maximal CVAA, EQi

[
δBk · XA

k |Gt
]
and −EQi

[
δAk · XB

k |Gt
]
in bps

6.2 Results

In case of independence between default and exposure, the bilateral CVA is easily
obtained by multiplying the default probabilities (as shown in Fig. 1) with the cor-
responding exposures (as shown in Fig. 2) and summation. Besides the independent
CVAi, the minimal and maximal CVAl and CVAu have been calculated as well.

The results of these calculations are illustrated in Fig. 3 and Table2 for each time
intervalΔk . Analogously toFig. 1wehave for each of the four cases a separate subplot
and the left plots belong again to cases 1 and 2. The positive bars now correspond
to EQi

[
δBk · XA

k

]
and the negative ones to EQi

[
δAk · XB

k

]
. In the case of the minimal

CVA, EQl

[
δBk · XA

k

]
vanishes, meaning that for counterparty A in case of a default

of counterparty B the exposure is zero, as the present value of the swap at that time
is negative from counterparty A’s point of view. Contrarily, for the maximal CVA,
EQu

[
δAk · XB

k

]
is zero. Here, Qu, Ql, and Qi denote the optimal measures for the

maximal, the minimal, and the independent CVA, respectively. As expected there
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Table 3 Computation times for the two-dimensional transportation problem

K 10 20 20 20

N 1024 1024 2048 4096

Time in seconds 0.2 0.5 1.5 6

are large gaps between the lower and the independent CVA, as well as between
the independent CVA and the upper bound. This means that wrong-way risk (i.e.
higher exposure comes with higher default rates) can have a significant impact on
the bilateral CVA. Interestingly, this observation holds true for all four cases, of
course, with different significance depending on the specific setup. Although it is
clear that our analysis naturally shows more extreme gaps than any hybrid model, it
has to be mentioned that these bounds are indeed tight.

6.3 Computation Time, Choice of Algorithm,
and Impact of Assumptions

Theoretically, the computation of the bounds boils down to the solution of a linear
programming problem. From this it can be expected that state-of-the-art solvers like
CPLEX or Gurobi will yield the optimal solution within reasonable computation
time.UsingCPLEX,we have obtained the following computation times on a standard
workstation (Table3).

It can be observed that the problem can be solved for reasonable discretization
levels within decent time. Rather similar computation times have been obtained with
an individual implementation of the standard network simplex based on Fibonacci
heaps. However, for larger sizes, the performance of standard solvers begins to dete-
riorate. To dampen the explosion of computation time, we have resorted to a special
purpose solver for min cost network flows (which are a general case of the trans-
portation problem) for highly asymmetric problems, as in our case 2K + 1 � N .
Based on Brenner’s min cost flow algorithm, see Brenner [3], we could still solve
problems with K = 40 and N = 8192 beneath a minute.

If one has to resort to the assignment formulation (to consider credit spreads
accordingly), computation times increase due to the fact that now assignment prob-
lems have to be solved. Here, a factor 100 compared to the above computation times
cannot be avoided.

If the coupling of the twodefault times is left flexible, the problembecomes a trans-
portationproblemwith threemargins, i.e. of sizeK + 1 × K + 1 × N . For these types
of problems, no special purpose solver is available and one has to resort to CPLEX.
Scherer and Schultz [18] have exploited the structure of this three-dimensional trans-
portation problem to reduce computational complexity. They were able to reduce the
problem to a standard two-dimensional transportation problem, hence rendering the
computation of bounds similarly easy, no matter if default times are already coupled
or not.
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7 Conclusion and Outlook

In this paper we have shown how tight bounds on unilateral and bilateral counter-
party valuation adjustment can be derived by a linear programming approach. This
approach has the advantage that simulations of the uncertain loss, of the default
times and of the uncertain value of a transaction during her remaining life can be
completely separated. Although we have restricted the exposition to the case of
two counterparties and one derivative transaction, the model can easily be extended
to more counterparties and a whole netting node of trades. Further, as exposure is
simulated separately from default, all risk-mitigating components like CSAs, rating
triggers, and netting agreements can be easily included in a such a framework.

Interesting open questions for future research include the analogous treatment in
continuous time, which requiresmuchmore technically involved arguments. Further,
this approach yields a newmotivation to consider efficient algorithms for transporta-
tion or assignment problems with more than two marginals, which did not yet get
much attention so far.
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CVA with Wrong-Way Risk in the Presence
of Early Exercise

Roberto Baviera, Gaetano La Bua and Paolo Pellicioli

Abstract Hull–White approach of CVA with embedded WWR (Hull and White,
Financ. Anal. J. 68:58-69, 2012, [11]) can be easily applied also to portfolios of
derivatives with early termination features. The tree-based approach described in
Baviera et al. (Int. J. Financ. Eng. 2015, [1]) allows to deal with American or Bermu-
dan options in a straightforward way. Extensive numerical results highlight the non-
trivial impact of early exercise on CVA.

Keywords American andBermudanoptions ·Wrong-way risk ·Credit value adjust-
ment

1 Introduction

As a direct consequence of the 2008 financial turmoil, counterparty credit risk has
become substantial in OTC derivatives transactions. In particular, the credit value
adjustment (CVA) is meant to measure the impact of counterparty riskiness on a
derivative portfolio value as requested by the current Basel III regulatory framework.
Accounting standards (IFRS 13, FAS 157), moreover, require a CVA1 adjustment as
part of a consistent fair value measurement of financial instruments.

CVAis strongly affectedbyderivative transaction arrangements: exposure depends
on collateral and netting agreement between the two counterparties that have written

1Even if in this paperwe focus onCVApricing, it isworthwhile to note that accounting standards
ask also for a debt value adjustment (DVA) to take into account the own credit risk.
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the derivative contracts of interest. Despite the increased use of collateral, however, a
significant portion of OTC derivatives remains uncollateralized. This is mainly due to
the nature of the counterparties involved, such as corporates and sovereigns, without
the liquidity and operational capacity to adhere to daily collateral calls. In such cases,
an institution must consider the impact of counterparty risk on the overall portfolio
value and a correct CVA quantification acquires even more importance. Extensive
literature has been produced on the topic in recent years, as for example [5] and [9]
that give a comprehensive overview of CVA computation and the more general topic
of counterparty credit risk management. It seems, however, that attention has been
mainly paid to CVAwith respect to portfolios of European-style derivatives. Dealing
with derivatives with early exercise features is even more delicate. Indeed, as pointed
out in [3], for American- and Bermudan-style derivatives CVA computation becomes
path-dependent since we need to take into account the exercise strategy and the fact
that exposure falls to zero after the exercise.

A peculiar problem that we encounter in CVA computation is the presence of the
so-called wrong-way risk (WWR), that is the non-negligible dependency between
the value of a derivatives portfolio and counterparty default probability. In particular
we faceWWR if a deterioration in counterparty creditworthiness is more likely when
portfolio exposure increases. Several attempts have been made to deal with WWR.
From a regulatory point of view, the Basel III Committee currently requires to correct
by a multiplicative factor α = 1.4 the CVA computed under hypothesis of market-
credit independence. In this way the impact of WWR is considered equivalent to a
40% increase in standard CVA. However, the Committee leaves room for financial
institutions with approved models to apply for lower multipliers (floored at 1.2). This
opportunity opens the way for more sophisticated models in order to reach a more
efficient risk capital allocation.

Relevant contributions on alternative approaches tomanageWWRinclude copula-
based modeling as in [6], introduction of jumps at default as in [13], the backward
stochastic differential equations framework developed in [7], and the stochastic haz-
ard rate approach in [11]. In particular [11] introduces the idea to link the counterparty
hazard rate to the portfolio value by means of an arbitrary monotone function. The
dependence structure is, then, described uniquely by one parameter that controls the
impact of exposures on the hazard rate. Additionally, a deterministic time-dependent
function is introduced to match the counterparty credit term structure observed on
the market. In this framework CVA pricing in the presence of WWR involves just a
small adjustment to the pricing machinery already in place in financial institutions.
We only need to take into account the randomness incorporated into the counterparty
default probabilities by means of the stochastic hazard rate and price CVAwith stan-
dard techniques. This is probably the most relevant property of the model: as soon
as we associate a WWR parameter to a given counterparty–portfolio combination,
we are able to deal with WWR using the same pricing engine underlying standard
CVA computation. As pointed out in [14], leveraging as much as possible on existing
platforms should be one of the principles an optimal risk model should be shaped on.
However, the original approach in [11] relies on a Monte Carlo-based technique to
determine the auxiliary deterministic function in order to calibrate the model on the
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counterparty credit structure. Obtaining this auxiliary function is the trickiest part in
the calibration procedure, because it involves a “delicate” path-dependent problem
that is difficult to implement for realistic portfolios. In [1], it is shown how it is possi-
ble to overcome such a limitation by transforming the path-dependent problem into a
recursive one with a considerable reduction in the overall computational complexity.
The basic idea is to consider discrete market factor dynamics and induce a change
of probability such that the new set of (transition) probabilities are computed recur-
sively in time. We presented a straightforward implementation of our approach via
tree methods. Trees are also a straightforward and well understood tool to manage
the early termination in derivatives pricing. So combining tree-based dynamic pro-
graming and the recursive algorithm in [1] leads to a simple and effective procedure
to price CVA with WWRwhen American or Bermudan features are considered. The
paper is organized as follows: in Sect. 2 we review the Hull–White model for CVA
in the presence of WWR and the recursive approach in [1]. In Sect. 3 we analyze the
effects of early termination on CVA adjustments via numerical tests and in Sect. 4
we study the relevant case of a long position on a Bermudan swaption. Finally Sect. 5
reports some final remarks.

2 CVA Pricing and WWR

For a given derivatives portfolio we can define the unilateral CVA2 as the risk-neutral
expectation of the discounted loss that can be suffered over a given period of time

CVA = (1 − R)

∫ T

t0

B(t0, t) EE(t) PD(dt), (1)

where usually t0 is the value date (hereinafter we set t0 = 0 if not stated otherwise)
and T is the longest maturity date in the portfolio. Here R is the recovery rate, PD(dt)
is the probability density of counterparty default between t and t + dt (with no default
before t), and B(t0, t)EE(t) is the discounted expected exposure in t. If interest rates
are stochastic, the expected exposure is defined

B(t0, t) EE(t) ≡ E[D(t0, t) E(t)],

with E[·] the expectation operator given the information at value date t0, D(t0, t)
the stochastic discount, and E(t) the (stochastic) exposure at time t. The latter is
inherently defined by the collateral agreement that the parties have in place: for
example in uncollateralized transactions,E(t) is simply themaxw.r.t. zero of v(t), the
portfolio value at time t. For practical computation, the integral in (1) is approximated

2The party that carries out the valuation is thus considered default-free. Even if it is a restrictive
assumption, unilateral CVA is the only relevant quantity for regulatory and accounting purposes.
For a detailed discussion on other forms of CVA, see e.g. [9].
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by choosing a discretized set of times T = {ti}i=0,...,n with tn = T . In particular, the
Basel III standard approach for CVA valuation is

CVA = (1 − R)

n∑

i=1

Bi EEi + Bi−1 EEi−1

2
PDi, (2)

with Bi that stands for3 B(t0, ti) and

PDi ≡ SPi−1 − SPi,

where SPi is the counterparty survival probability up to ti. Assuming that the default
is modeled by means of a generic intensity-based model, we can link survival prob-
abilities to the so-called hazard rate function h(t), (see e.g. [15]):

SPi = exp

(
−

∫ ti

t0

h(t) dt

)
.

A common assumption is to consider h(t) constant between two consecutive dates
in the set T . Pricing CVA with (2) holds if there is no “market-credit” dependency.
However, in case of wrong-way risk (WWR) a new, more sophisticated, model is
needed because exposure and counterparty default probabilities are nomore indepen-
dent: exposure is conditional to default and a positive “market-credit” dependence
originates the WWR. Recently Hull and White [11] have proposed an approach to
WWR that is financially intuitive: the conditional hazard rate is modeled as a sto-
chastic quantity related to the portfolio value v(t) through a monotonic increasing
function. In the following we focus on the specific functional form

h̃(t) = exp

(
a(t) + b v(t)

)
, (3)

where b ∈ �+ is the WWR parameter. However, results still hold for an arbitrary
order-preserving function. The function a(t) is a deterministic function of time,
chosen in such a way that on each date

SPi = E

[
exp

(
−

∫ ti

t0

h̃(t) dt

)]
∀i = 1, . . . , n. (4)

Combining (3) and (4) we clearly see that function a(t) depends also on the value
specified for the parameter b.

The main advantage of this model is that once we know b and a(t), WWR can be
implemented easily by means of a simple generalization of (2):

3From now on we use the notation xi to represent a discrete-time variable while x(t) indicates its
analogous variable in continuous-time. For avoidance of doubt, any other form of dependency (·)
does not refer to the temporal one, unless stated otherwise.
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CVAW = (1 − R)

n∑

i=1

E

[
Di Ei + Di−1 Ei−1

2
P̃Di

]
, (5)

where P̃Di is the stochastic probability to default between ti−1 and ti defined in terms
of h̃i. We want to stress that expectation in (5) can be computed via any feasible
numerical method: this fact implies that, given b and a(t), taking into account WWR
just requires a slight modification in the payoff of existing algorithms used for the
calculation of CVA.

We now briefly recall the recursive approach presented in [1] that avoids the path
dependency in the determination of a(t) so that Eq. (4) is satisfied. Hereinafter we
refer to the technique to get such a function as either the calibration of a(t) or the
“calibration problem”: once the three sets of parameters (the recovery R, the default
probabilities PDs, and the WWR parameter b) for dealer’s clients are estimated
(e.g. with statistical methods) it is the most complicated issue in the calibration of
Hull–White model.

Let us assume that the market risk factors underlying the portfolio are discrete
and we indicate with ji the discrete state variable that describes the market at time ti.
In this framework market dynamics is described by a Markov chain with

qi(ji−1, ji) ∀i = 1, . . . , n

the transition probability between ji−1 at time ti−1 and ji at time ti. Typical examples
where such a discrete approach is natural are lattice models. In particular, in [1], we
applied tree methods to the pricing of CVA for linear derivatives portfolios.

Embedding the Hull–White model (3) in our setting, the stochastic survival prob-
ability between ti−1 and ti becomes

P̃i(j) ≡ exp
(
−(ti − ti−1) h̃i(j)

)
≡ Pi ηi(j) ∀i = 1, . . . , n, (6)

where

Pi ≡ SPi

SPi−1

is the forward survival probability between ti−1 and ti valued in t0. For notational
convenience, we also set P̃0(j0) = η0(j0) = 1. The η process introduced in (6) can
be seen as the driver of the stochasticity in survival probabilities and it plays a key
role in circumventing path-dependency in the calibration of a(t), as shown in the
following proposition.

Proposition

In the model with discrete market risk factors, the calibration problem (4) becomes

∑

ji

pi(ji) ηi(ji) = 1 ∀i = 1, . . . , n, (7)



108 R. Baviera et al.

where pi(ji) are probabilities and they can be obtained via the recursive equation

pi(ji) =
∑

ji−1

qi(ji−1, ji) ηi−1(ji−1) pi−1(ji−1) ∀i = 1, . . . , n, (8)

with the initial condition p0(j0 = 0) = 1.

Proof See [1].

Thus the calibration problem (4) can be solved at each discrete date ti via (7) by
simply exploiting the fact that the process η, non-path-dependent, is a martingale
under the probability measure p. Equation (8), in addition, specifies an algorithm
to build this new probability measure recursively. In this framework P̃Di can be
readily obtained from (6). Let us mention that, although this is just one of the viable
approaches to solve (4), it turns out to be, as shown in the next section, a natural way
to handle the additional complexity induced by early exercises within theHull–White
approach to WWR modeling.

3 The Impact of Early Exercise

As already anticipated in Sect. 1, CVA when early exercise is allowed gives rise to
additional features. In this sectionwewant to highlight the differences in CVAfigures
when both European and American options are considered, implementing the tree-
based procedure described in the previous section. It is well known that backward
induction and dynamic programing applied on (recombining) trees are, probably,
the simplest and most intuitive tool to price derivatives with an early exercise as
American options. For these options, indeed, Monte Carlo techniques turn out to be
computationally intensive in case of CVA: the exercise date, after which the exposure
falls to zero, depends on the path of the underlying asset and on the exercise strategy.
In such a case we are asked to describe two random times: the optimal exercise time
and the counterparty default time.

3.1 The Pricing Problem

Since our goal is to study the effects of early exercise clauses on CVA, we focus on
the case of a dealer that enters into a long position4 on American-style derivatives
with a defaultable counterparty. That is, the dealer is the holder of the option and
she has the opportunity to choose the optimal exercise strategy in order to maximize
the option value. In particular, following [3], we would need to differentiate between
two possible assumptions depending on the effects of counterparty defaultability on

4A short option position does not produce any potential CVA exposure.
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the exercise strategy. The option holder would or would not take into account the
possibility of counterparty default when she chooses whether to exercise or not. In
the former case, the continuation value (the value of holding the option until the next
exercise date) should be adjusted for the possibility of default. However, following
the actual practice in CVA computation, we assume that counterparty defaultability
plays no role in defining the exercise strategy of the dealer. This means that the
pricing problem (before any CVA consideration) is the classical one for American
options in a default-free world.

Let us assume to have a tree for the evolution of market risk factors5 up to time
T . Hereinafter, without loss of generality, we can set a constant time step Δt and
denote the time partition on the tree by means of an index i in T = {ti}i=0,...,n with
ti = i Δt. We further introduce an arbitrary set of m exercise dates E = {ek}k=1,...,m

with E ⊆ T at which the holder can exercise her rights receiving a payoff φk that
could depend on the specific exercise date ek . In this setting we can deal indistinctly
with European (m = 1), Bermudan (m ∈ N), and American options (m → ∞). The
standard dynamic programing approach then allows us to compute the derivative
value at each node of the tree:

vi(ji) =

⎧
⎪⎨

⎪⎩

φm(ji) for i s.t. ti = em = T ,

max(ci(ji), φk(ji)) for i s.t. ti ∈ E \{em},
ci(ji) otherwise.

(9)

with ci the continuation value of the derivative defined as

ci(ji) = B(i, i + 1; ji)
∑

ji+1

qi(ji, ji+1) vi+1(ji+1), (10)

where the summust be considered over all possible ti+1-nodes connected to ji at time
ti and B(i, i + 1; ji) is the future discount factor that applies from ti and ti+1 possibly
depending on the state variable ji on the tree.

We describe in detail the simple 1-dimensional tree; however, extensions to the 2-
factor case (as, for example, the G2++model in [4] or the recent dual curve approach
in [12]) are straightforward. Once the derivative value is computed for all nodes and
the WWR parameter b is specified,6 we can calibrate the auxiliary function a(t) in
(3) by means of the recursive approach in [1]. The advantages of such an approach
are, in this case, twofold: we avoid path-dependency in the calibration of a(t), as in
any other possible application, and we deal with early exercises via (9) and (10) in
a very intuitive way.

5If we describe the dynamics of the price of a corporate stock, we assume—for the sake of
simplicity—that such entity is not subject to default risk.
6We refer the interested reader to the original paper [11] for a heuristic approach to determine the
parameter and to [14] for comprehensive numerical tests with market data.
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3.2 The Plain Vanilla Case

We nowwant to assess the impact of early termination on CVA in order to understand
the potential differences that could arise between European and American options
from a counterparty credit risk management perspective.

In the first test we study the plain vanilla option case: we assume that the dealer
buys a call option from a defaultable counterparty. Counterparty default probabilities
are described in terms of a CDS flat curve at 125 basis points as in [11]. More pre-
cisely, with a flat CDS curve we can approximate quite well the survival probability
between t0 and ti as

SPi = exp

(
− si ti
1 − R

)
,

where si is the credit spread relative to maturity ti and R the recovery rate, equal
to 40%. We further assume that trades are fully uncollateralized.7 The underlying
asset is lognormally distributed and represented by means of a Cox-Ross-Rubinstein
binomial tree. We can thus apply the dynamic programing approach described above
to price options on the tree and calibrate the function a(t) recursively via (7). This
procedure turns out to be quite fast: the Matlab coded algorithm takes less than
0.1 second to run on a 3.06 GHz desktop PC with 4 GB RAM when n = m = 500.
Figure1 showsCVAprofile8 for bothEuropean andAmerican call options as function
of WWR parameter b and for different levels of cost of carry. From standard non-
arbitrage arguments, we indeed know that the optimality of early exercise for plain
vanilla call options is related to the cost of carry (defined as the net cost of holding
positions in the underlying asset).9

As shown in Fig. 1, CVA profiles are significantly different for European and
American options when early exercise can represent the optimal strategy (black and
dark gray lines). In particular the impact ofWWR is significantly less pronounced for
American options compared to the corresponding European ones. On the other hand,
when early exercise is no more optimal, the two options are equivalent: light gray
lines in Fig. 1 are undistinguishable from each other. In addition, the upward shift in
CVA exposures is due to the fact that an increase in cost of carry (e.g. a reduction in
the dividend yield) is reflected entirely in an augmented drift of the underlying asset
dynamics that makes, ceteris paribus, the call option more valuable.

The effect of early exercise on exposure profiles is depicted in Fig. 2 where a
possible underlying asset path is displayed along with the optimal exercise boundary

7Here we are interested in analysing the full exposure profile as function of early exercise oppor-
tunities. On the other hand, more realistic collateralization schemes can be taken into account in a
straightforward manner within the described framework.
8Once b and a(t) are determined we can use whatever numerical technique to compute (5). Here we
simply implement a simulation-based scheme that uses the tree as discretization grid. The number
of generated paths is 105.
9The classical example is an option written on a dividend paying stock. This frame includes also
a call option on a commodity whose forward curve is in backwardation or on a currency pair for
which the interest rate of the base currency is higher than the one of the reference currency.
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T = 1, n = m = 500. Counterparty CDS curve flat at 125 basis points
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Fig. 2 The effect of early exercise on exposures. Parameters are S0 = 100, K = 100, σ = 25%,
r = 1%, CoC = −2%, T = 1, n = m = 500. Left hand scale Asset path (black solid line) and
optimal exercise boundary (dashed line). Right hand scale European option (light gray line) and
American option (dark gray line)

(reconstructed on the binomial tree) and the corresponding value of European and
American options. Until the asset value remains within the continuation region (the
area below the dashed line), the two options have a similar value with the only differ-
ence given by the early exercise premium embedded in the American style derivative.
However, if the asset value reaches or crosses the exercise boundary, the exposure
due to the American option falls to zero while the European option remains alive
until maturity. From the definition of CVA (1), we can see that early exercise, if
optimal, reduces the exposure of the holder to the counterparty default by shorten-
ing the life of the option. The effect is even more pronounced when we introduce
the WWR: early redemption, indeed, would occur as soon as the portfolio value is
large enough with the consequence to eliminate the exposure just when counterparty
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default probabilities become more relevant. It is possible, then, to identify in the
early termination clause an important mechanism that limits CVA charges, particu-
larly when market-credit dependency is non-negligible as shown in [8] in the case
without WWR. Any change that makes early exercise more likely tends to enhance
such a mechanism. We see this effect in Fig. 3 where we display the difference in
CVA between European and American options as function of WWR parameter and
option moneyness. With a given underlying asset dynamics, potential early exercise
date is closer for more in the money options: the right of the holder is more likely
to be exercised sooner. This shortens the life of the option and reduces both CVA
charge (with respect to European options) and WWR sensitivity (with respect to the
corresponding European option and the American options with lower moneyness).
In this section we have shown that WWR can play a very different role for European
and American options. In our opinion, however,WWR should be analyzed on a case-
by-case basis in order to determine its magnitude and the adequate capital charge: a
40% increase in standard CVA could overestimate the losses for an American option
that can be optimally exercised in a short period while could be reductive in cases
where early termination is less likely.

4 The Bermudan Swaption Case

Probably the most relevant case of long position on options with early exercise
opportunities in the portfolios of financial institutions is represented by Bermudan
swaptions. Such exotic derivatives are, indeed, used by corporate entities to enhance
the financial structure related to the issue of callable bonds. Often, by selling a
Bermudan receiver swaption to a dealer, the callable bond issuer can reduce its net
borrowing cost. Usually the swaption is structured such that exercise dates match
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Table 1 Diagonal implied volatility of European ATM swaptions used to calibrate the 1-factor
Hull–White model

Swaption 1y9y 2y8y 3y7y 4y6y 5y5y 7y3y

Volatility% 40.4 37.6 35.1 32.8 30.8 27.7

Calibrated parameters are â = 0.0146 and σ̂ = 0.0089

the callability schedule of the bond.10 Let T̂ be the bond maturity date. The dealer
has the right, at any exercise date ek ∈ E \{em}, to enter into an interest rate swap
with maturity T̂ , where she receives the fixed rate K (equal to the fixed coupon rate
of the bond) and pays the floating rate to the bond issuer with first payment made
on date ek+1. In our test we use the Euro interbank market data as of September 13,
2012 as given in [2]. We assume that the dealer buys a 10-year Bermudan receiver
swaption where the underlying swap has, for simplicity, both fixed and floating
legs with semiannual payments. The swaption can be exercised semiannually and
its notional amount is Eur 100 million. We describe interest rates dynamics with a
1-factor Extended Vasicek model on a trinomial tree as in [10]. Model parameters
are calibrated to market prices of European ATM swaptions with overall contract
maturity equal to 10 years as shown in Table1. As done in the previous section, we
value the Bermudan swaption on the tree via dynamic programing and calibrate the
WWR model function a(t). Once again the combined approach on the tree allows
to perform both tasks in a negligible amount of time. Figure4 reports the WWR
impact11 for uncollateralized transactions struck at different levels of moneyness: at
the money (swaption strike set equal to the market 10 years spot swap rate) and ±50
basis points. The upper graph reports the case with no initial lockout period while
in the lower one we assume that the option cannot be exercised in the first 2 years.
When the option can be exercised with no restrictions, we observe amoderate inverse
relationship betweenmoneyness andWWR impact due to the protectionmechanism:
the opportunity to early exercise when the exposure is large limits the effect of
increased counterparty default probabilities. On the other hand, the introduction of
a lockout period intensifies the WWR impact. Intuitively, by expanding the lockout
period we move toward the limiting case of a European option. In this case the
moneyness–WWR effect is reversed: the more in the money the option is, the more
relevant theWWReffect becomes.During the lockout period the in-the-moneyoption
has a considerably higher exposure to counterparty default that cannot be mitigated
via early termination.

10Often the bond can be called at any coupon payment date after an initial lockout period.
11We define it to be the ratio CVAW /CVA as given, respectively, by (5) and (2).
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Fig. 4 Impact of WWR on Bermudan receiver swaptions as function of WWR parameter b for
several levels of moneyness. Market data as of September 13, 2012. Counterparty CDS curve flat
at 125 basis points

5 Concluding Remarks

NowadaysWWR is a crucial concern in OTC derivatives transactions. This is partic-
ularly true for uncollateralized trades that a financial institution could have in place
with medium-sized corporate clients. The presence of early termination clauses in
vulnerable derivatives portfolios makes the CVA computation even more tricky. We
have shown a simple and effective approach to deal with calibration and pricing of
CVAwithin the Hull–White framework [11] for American or Bermudan options. We
extended the procedure in [1] to the dynamic programing algorithm required to take
into account the free boundary problem inherent in the pricing of such derivatives.
Numerical tests carried out underline the importance of adequate procedures to dif-
ferentiate CVA profiles for European and American options. The possibility of early
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exercise, indeed, plays a remarkable role in mitigating theWWR: an undifferentiated
CVA pricing for contingent claims with different exercise styles would then lead to
severe misspecification of regulatory capital charges.

An interesting topic for further researchwould consider the impact of counterparty
defaultability in defining the dealer’s optimal exercise strategy. Even if intuitive, this
poses nontrivial problems mainly due to the interrelation among derivative pricing,
WWR, and calibration of function a(t). It is our opinion, however, that the described
framework could be extended in this direction.
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Simultaneous Hedging of Regulatory
and Accounting CVA

Christoph Berns

Abstract As a consequence of the recent financial crisis, Basel III introduced a new
capital charge, the CVA risk charge to cover the risk of future CVAfluctuations (CVA
volatility). Although Basel III allows for hedging the CVA risk charge, mismatches
between the regulatory (Basel III) and accounting (IFRS) rules lead to the fact that
hedging the CVA risk charge is challenging. The reason is that the hedge instruments
reducing the CVA risk charge cause additional Profit and Loss (P&L) volatility. In
the present article, we propose a solution which optimizes the CVA risk charge and
the P&L volatility from hedging.

Keywords CVA risk charge · Accounting CVA · Hedging · Optimization

1 Introduction

Counterparty credit risk is the risk that a counterparty in a derivatives transaction
will default prior to expiration of the trade and will therefore not be able to fulfill its
contractual obligations. Before the recent financial crisis many market participants
believed that some counterparties will never fail (“too big to fail”) and therefore
counterparty risk was generally considered as not significant. This view changed
due to the bankruptcy of Lehman Brothers during the financial crisis and market
participants realized that even major banks can fail. For that reason, counterparty
risk is nowadays considered to be significant for investment banks. The International
Financial Reporting Standards (IFRS) demand that the fair value of a derivative
incorporates the credit quality of the counterparty. This is achieved by a valuation
adjustment which is commonly referred to as credit valuation adjustment (CVA), see
e.g. [3–5]. The CVA is part of the IFRS P&L, i.e. losses (gains) caused by changes
of the counterparties credit quality reduce (increase) the balance sheet equity.

Basel III requires a capital charge for future changes of the credit quality of
derivatives, i.e. CVA volatility. Banks can either use a standardized approach to
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compute this capital charge or an internal model [2]. The latter charge is commonly
referred to as CVA risk charge. Many banks have implemented a CVA desk in order
to manage actively their CVA risk. CVA desks buy CDS protection on the capital
markets to hedge the counterparty credit risk of uncollateralized derivatives which
have been bought by the ordinary trading desks. Recognizing that banks actively
manage CVA positions, Basel III allows for hedging the CVA risk charge using
credit hedges such as single name CDSs and CDS indexes. However, the recognition
of hedges is different depending on whether the standardized approach or an internal
model is used [2].

Summarizing, we can look at counterparty credit risk from two different perspec-
tives: the regulatory (Basel III) and the accounting (IFRS) one. Depending whether
we consider counterparty risk from a regulatory or accounting perspective, different
valuation methods are applied for this risk. In general, the regulatory treatment of
counterparty risk ismore conservative than the accounting one, cf. [6]. The difference
between the regulatory and the accounting treatment of counterparty risk causes the
following problem in hedging the CVA risk charge: eligible hedge instruments such
as CDSs would lead to a reduction of the CVA risk charge. On the other hand, under
IFRS, a CDS is recognized as a derivative and thus accounted at fair value through
profit and loss and therefore introducing further P&L volatility.

The current accounting and regulatory rules expose banks to the situation that
they cannot achieve regulatory capital relief and low P&L volatility simultaneously.
Deutsche Bank, for instance, has largely hedged the CVA risk charge in the first half
of 2013. The hedging strategy that reduced the CVA risk charge has caused large
losses due to additional P&L volatility, cf. [7]. This example illustrates the mismatch
between the regulatory and accounting treatment of CVA.1 The mismatch demands
for a trade-off between these two regimes, cf. [8]. For this reason, we propose in this
article an approach which leads to an optimal allocation between CVA risk charge
reduction and P&L volatility. Our considerations are restricted to the standardized
CVA risk charge.

We start with an explanation of the standardized CVA risk charge, i.e. the reg-
ulatory treatment of CVA. Afterwards, we show that the standardized CVA charge
can be interpreted as a (scaled) volatility/variance of a portfolio of normally distrib-
uted positions. This interpretation reveals the modeling assumptions of the regulator
and will be crucial for the later considerations. In a next step, we explain the coun-
terparty risk modeling from an accounting perspective and we compute the impact
of the hedge instruments (used to reduce the CVA risk charge) to the overall P&L
volatility, assuming that the risk factor returns are normally distributed. Without
the mismatch between the regulatory and the accounting regime, the hedge instru-
ments would move anti-correlated to the corresponding accounting CVAs and the
resulting common volatility would be small. Due to the mismatch, the CVA and the
hedge instrument changes will not offset completely. For this reason we introduce a

1Due to the exclusion of DVA from the Basel III regulatory calculation, the mismatch potentially
intensifies.
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synthetic2 total volatility σsyn consisting basically of the sum of the additional
accounting P&L volatility σhed caused by fair value changes of the hedge instruments
(hedge P&L volatility) and the regulatory CVA volatility σCVA,reg (i.e. basically the
CVA risk charge)3:

σ 2
syn = σ 2

hed + σ 2
CVA,reg. (1)

Hence, (1) defines a steering variable describing the common effects of CVA risk
charge hedging and resulting P&L volatility. One should mention that formula (1)
may suggest statistical independence of the two quantities. However, there exists a
dependence in the following sense: both the regulatory CVA volatility and the hedge
P&L volatility depend on the hedge amount. The more we hedge, the smaller the
σCVA,reg. On the other hand, the more we hedge, the larger the σhed . The definition
of the synthetic volatility as a sum of σ 2

hed and σ 2
CVA,reg can be motivated by the

following consideration: the term σ 2
CVA,reg is related to the regulatory capital demand

for CVA risk. The other term, σ 2
hed , can be interpreted as capital demand for market

risk of the hedge instruments. Although the hedge instruments are excluded from the
regulatory capital demand computation for market risk, they potentially reduce the
balance sheet equity and therefore may reduce the available regulatory capital. The
sum in (1) is now motivated by the additivity of the total capital demand.

In the following we will consider σsyn as function of the hedge amount and search
for its minimum. The hedge amount minimizing σsyn leads to the optimal alloca-
tion between CVA risk charge relief and P&L volatility. We will derive analytical
solutions. The discussion of several special cases will provide an intuitive under-
standing of the optimal allocation. For technical reasons we exclude index hedges
in the derivation of the optimal hedge strategy. However, it is easy to generalize the
results to the case where index hedges are allowed.

2 Counterparty Risk from a Regulatory Perspective:
The Standardized CVA Risk Charge

In this sectionwe introduce the standardized CVA risk charge. A detailed explanation
of all involved parameters is given in the Basel III document [2]. The formula for the
standardized CVA risk charge is prescribed by the regulator and is used to determine
the amount of regulatory capital which banks must hold in order to absorb possible
losses caused by future deteriorations of the counterparties credit quality.Wewill see
that the standardized CVA risk charge can be interpreted as volatility (i.e. standard
deviation) of a normally distributed random variable. More precisely, we will show
that the CVA risk charge can be interpreted as the 99% quantile of a portfolio of

2We use theword synthetic since σsyn mixes a volatilitymeasured in regulatory terms and a volatility
measured in accounting terms.
3This connection will be explained later.



120 C. Berns

positions subject to normally distributed CVA changes (i.e. CVA P&L) only. This
gives some insights into the regulators modeling assumptions for future CVA. It is
worth to mention that the regulators modeling assumptions may hold or not hold. A
detailed look at the regulators modeling assumptions can be found in [6].

In order to be prepared for later computations, we introduce in this section some
notations and recall some facts about normally distributed random variables.

The standardized CVA risk charge K is given by [2]:

K = β
√
hΦ−1(q) (2)

with

• h = 1, the 1-year time horizon,
• Φ the cumulative distribution function of the standard normal distribution
• q = 99% the confidence level and
• β defined by4

β2 =
( n∑

i=1

0.5 · ωi

(

MiEADi − Mhed
i Bi

)

− ωindMindBind

)2

+
n∑

i=1

0.75 · ω2
i

(

MiEADi − Mhed
i Bi

)2

(3)

with

• ωi a weight depending on the rating of the counterparty i, n is the number of
counterparties

• Mi, Mhed
i , and Mind the effective maturities for the ith netting set (corresponding

to counterparty i), the hedged instrument for counterparty i and the index hedge
• EADi the discounted regulatory exposure w.r.t. counterparty i
• Bi,Bind the discounted hedge notional amounts invested in the hedge instrument
(CDS) for counterparty i and the index hedge.

Formula (2) is determined by the regulator. In order to get a better understanding
of this formula, we will derive a stochastic interpretation of it. Before that, we need
to recall a fact about normal distributions: if the random vector �X has a multivariate
normal distribution, i.e. �X ∼ N (0,Σ) with mean 0 and covariance matrix Σ , then,
for a deterministic vector �a, the scalar product

〈�a, �X〉 :=
∑

i

aiXi (4)

4For simplicitywe consider only one index hedge. The results in this article can easily be generalized
to more than one index hedge.
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has a univariate normal distribution with mean 0 and variance

σ 2 = 〈�a,Σ�a〉. (5)

Now we are able to derive the stochastic interpretation of the CVA risk charge, more
precise the interpretation as volatility.

2.1 Standardized CVA Risk Charge as Volatility

In this section we will show that the regulators’ modeling assumptions behind the
standardized CVA risk charge are given by normally distributed CVA returns which
are aggregated by using a one-factor Gaussian copula model.5 We consider n coun-
terparties. By Ri, we denote the (one year) CVA P&L (i.e. those P&L effects caused
by CVA changes) w.r.t. counterparty i.

Lemma 1 If one assumes Ri ∼ N (0, σ 2
i ) and further, if one assumes that the ran-

dom vector6

�R = (R1, . . . ,Rn)
t

is distributed according to a one-factor Gaussian copula model, i.e. �R ∼ N (0, Γ )

with Γii = σ 2
i and Γij = ρσiσj with ρ independent of i and j for i �= j, then the 99%

quantile of the distribution of �R is equal to the CVA risk charge (2).

Proof Using (4) and (5), we find that the aggregated CVA return (common CVA
P&L) RCVA,reg := ∑n

i=1 Ri = 〈�1, �R〉7 has the distributionN (0, σ 2
CVA,reg) with

σ 2
CVA,reg = 〈�1, Γ �1〉 =

n∑

i,j=1

Γi,j =
(√

ρ

n∑

i=1

σi

)2

+ (1 − ρ)

n∑

i=1

σ 2
i (6)

If we compare the above expression with (3), we see that this expression is equal to
β2 (with Bind = 0, i.e. no index hedges) if we set ρ = 0.25 and σi = ωi(MiEADi −
Mhed

i Bi). The quantile interpretation of the CVA risk charge (i.e. Formula (2)) follows
from standard properties of the normal distribution.

The above lemma shows that the standardized CVA risk charge is basically the
volatility of the sum

∑
i Ri of n normally distributed random variables. The normally

distributed random variables are equicorrelated: ρ(Ri,Rj) = 0.25. Each CVA return
Ri has the volatility

σi = ωi(MiEADi − Mhed
i Bi). (7)

5This is a very strong assumption that might not be true in reality.
6By ·t we denote the transpose of a vector/matrix.
7By �1 we denote the vector (1, . . . , 1)t .
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Hence, buying credit protection on counterparty i reduces the corresponding CVA
volatility. If we assume Mi = Mhed

i , the optimal hedge w.r.t. counterparty i is given
by a CDS with notional amount Bi equals

Bi = EADi. (8)

3 Counterparty Risk from an Accounting Perspective

As explained in the introduction, counterparty risk from an accounting perspective is
quantified by a fair value adjustment called credit valuation adjustment (CVA). The
CVA reduces the present value (PV) of a derivatives portfolio in order to incorporate
counterparty risk:

PV = PVriskfree − CVA,

whereby PVriskfree denotes the market value of the portfolio without counterparty risk
and CVA is the adjustment to reflect counterparty risk. For the modeling of CVA,
banks have some degrees of freedom. Typically, the accounting CVA is computed
by means of the following formula (see e.g. [4]):

CVA =
∫ T

0
D(t)EE(t)dP(t) (9)

with T the effective maturity of the derivatives portfolio, D(t) the risk-free discount
curve, EE(t) = E[max{0,PV (t)}] the (risk-neutral) expected positive exposure at
(future time point) t, and dP(t) is the (risk-neutral) default probability of the coun-
terparty in the infinitesimal interval [t, t + dt]. For the implementation of (9), a
discretization of the integral is necessary. Many banks assume a constant EE profile
(i.e. EE(t) = EE∗ for all t). In that case, (9) simplifies to

CVA = EE∗
∫ T

0
D(t)dP(t). (10)

Further, the (risk-neutral) default probabilities are typically modeled by a hazard
rate model, i.e. one assumes that the default time is exponentially distributed with
parameter λ. Using this assumption, we can write:

CVA = λEE∗
∫ T

0
D(t)e−λtdt. (11)

The approximation (11) will be helpful in the next section, where we describe the
hedging of CVA from an accounting perspective
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3.1 CVA Hedging from an Accounting Perspective

In previous sections we have seen that the regulatory CVA hedging (i.e. CVA risk
charge hedging) can be achieved by buying credit protection. Effectively, (7) says
that the regulatory exposure is reduced by the notional amount of the bought credit
protection. At this place, we describe CVA hedging from an accounting perspective.

Let us consider a derivatives portfolio with a single counterparty. In order to hedge
the corresponding counterparty risk, one can buy, for example, a single name CDS
such that the CVA w.r.t. the counterparty together with the CDS is Delta neutral
(i.e. up to first order, CVA movements are neutralized by the CDS movements). The
condition for Delta neutrality is

ΔCVA = ΔCDS (12)

whereby Δ describes the derivative of the CVA and CDS respectively (w.r.t. the
credit spread of the counterparty). To be more precise, the default leg of the CDS
should compensate the CVA movements. Using a standard valuation model for a
CDS (see e.g. [4]) and computing the derivatives in (12), it is easy to see that (12) is
equivalent to

B = EE∗, (13)

i.e. the optimal hedge amount is given by EE∗. Typically, EE∗ is given by the average
of the expected positive exposures EE(t) at future time points t:

EE∗ = 1

T

∫ T

0
EE(t)dt. (14)

Ifwe compare (13)with (8)we see that the optimal hedgenotional amount for hedging
CVA risk from a regulatory perspective is the regulatory exposure EAD, while the
optimal hedge notional amount for hedging accounting CVA risk is given by EE∗. In
general it holdsEAD > EE∗, due to conservative assumptionsmade by the regulator8

(we refer to [6] for a detailed comparison of these two quantities). Thus, hedgingCVA
risk differs whether it is considered from an accounting or a regulatory perspective.
This mismatch causes additional P&L volatility in the accounting framework, if the
CVA risk is hedged from a regulatory perspective (i.e. if the CVA risk charge is
hedged).

Finally we remark that we can write the CVA sensitivities ΔCVA = d
dsCVA as

ΔCVA = EE∗ΔCDS, (15)

whereby ΔCDS is the sensitivity of (the default leg of) a CDS with notional amount
B = 1.

8For example, the alphamultiplier in the IMMcontext overstates the EADby a factor of 1.4. Further,
the non-decreasing constraint to the exposure profile leads to an overstatement, see [6] for details.
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4 Portfolio P&L

Asexplained above, the hedge instruments reduce the (regulatory) counterparty credit
risk. But they may cause new market risk due to additional P&L volatility. However,
although in accordance with Basel III eligible hedge instruments are excluded from
market risk RWA calculations, the additional P&L volatility of the hedge instruments
leads to fluctuations in reported equity. In order to describe the effects of hedging to
the overall P&L, we introduce in the present section the corresponding framework.
We divide the overall P&L in different parts: the P&L of the hedge instruments, the
P&L of the remaining positions, and the CVA P&L. The framework will be helpful
later on, when we want to quantify the impact of the CVA risk charge hedges to the
accounting P&L.

4.1 Portfolio P&L Without CVA

Let us assume that a bank holds derivatives with n different counterparties for which
single name CDS exists. The bank has to decide to which extent it hedges the coun-
terparty risk w.r.t. these counterparties by either single name CDS or index hedges.
By Σ we denote the correlation matrix (of dimension N × N , N > n) of all risk
factors ri, i = 1, . . . ,N the banks (trading) portfolio is exposed to. Without loss of
generality,we assume that the correlations between theCDSof the consideredn coun-
terparties are given by the first n × n components of Σ , i.e. Σi,j = ρ(CDSi,CDSj),
i, j = 1, . . . , n. Further, Σn+1,i denotes the correlation between the index hedge and
the CDS on counterparty i ∈ {1, . . . , n}. The whole portfolio Π of the bank contains
the hedge instruments (CDS and index hedge) as well as other instruments (e.g.
bonds): Π = Πhed ∪ Πrest . The sub-portfolio Πhed is driven by the credit spreads of
the counterparties. Note that Πrest may depend on some of these credit spreads as
well. In the following, we will assume the P&L of the portfolio Π is given by:

P&L =
n∑

i=1

(BiΔi + Δi,rest)dri + BindΔinddrind +
N∑

j=n+2

Δjdrj, (16)

whereby Δi denotes the sensitivity of CDSi w.r.t. the corresponding credit spread,
Δi,rest denotes the sensitivity of the remaining positions which are sensitive w.r.t. the
credit spread of counterparty i as well,9 Bi (resp. Bind) denotes the notional of CDSi
(resp. the notional of the index hedge), and dri describes the change of the risk factor
ri (the first n risk factors are the credit spreads) in the considered time period.

9For example, if Πrest contains a bond emitted by the counterparty i, then (ignoring the Bond-CDS
Basis) Δi,rest = −Δi).
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4.2 Impact with CVA

This section extends the above considerations to the case where we allow for a CVA
component. We define the total P&L as the difference between the P&L given by
(16) and the CVA P&L:

P&Ltot = P&L − P&LCVA, (17)

whereby P&LCVA is defined in a similar manner as in (16)10:

P&LCVA =
n+1∑

i=1

Δi,CVAdri. (18)

In (18), the risk factors ri are the same risk factors which appear in the first n + 1
summands of (16). This is because the CVAs are driven by the same risk factors as
the corresponding hedge instruments. Recall that in a setup where counterparty risk
is completely hedged, the P&L of the hedge instruments is canceled out by the P&L
of the CVAs. This is the case, if the corresponding sensitivity is equal. In Sect. 3.1
we have shown how one can achieve this (using the condition of Delta neutrality) by
choosing the right hedge notional amounts.

4.3 Impact of CVA Risk Charge Hedging on the Accounting
P&L Volatility

The additional P&L volatility caused by the hedge instruments is basically given by
the residual volatility of the hedge instruments which is not canceled by the CVAs.
In order to derive an expression for this volatility, we start with the derivation of the
volatility of the total portfolio P&L. The residual volatility will consist of those parts
of the total volatility which are sensitive w.r.t. the hedge instruments.

In order to proceed, we have to introduce the following notations: the vec-
tor �ΔCVA ∈ Rn+1 contains the CVA sensitivities and the return vector �dr ∈ RN

describes the changes of the N risk factors the trading book is exposed to. We
further introduce the sensitivity vectors11 �Δ = (Δ1, . . . , Δind, . . . , ΔN )t ∈ RN

10We consider only the credit spreads as risk factors. Exposure movements due to changes in market
risk factors are not considered. This is unproblematic for the considerations in this article since we
will end up with dynamic CVA hedging strategy (cf. Sect. 5) which incorporates the exposure
changes.
11The first n components of �Δ are the CDS sensitivities w.r.t. credit spread changes and the n + 1th
component is the sensitivity of the index hedge.
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and12 �Δrest = (Δ1,rest, . . . , Δn,rest)
t ∈ Rn, the notional vector �B = (B1, . . . ,Bn,Bind)

t ∈
Rn+1 and the diagonal matrix QΔ = diag(Δ1, . . . , Δn,Δind) ∈ R(n+1)×(n+1).

Lemma 2 If we assume that the portfolio P&L is given by (17) and if we further
assume �dr ∼ N (0,Σ) (for some correlation matrix Σ), then the squared volatility
(i.e. the variance) of (17) is given by13

σ 2
P&Ltot =

〈(
QΔ

�B
�0

)

Σ

(
QΔ

�B
�0

)〉

+
〈( �ΔCVA

�0
)

Σ

( �ΔCVA
�0

)〉

+
〈( �Δrest

�ΔN−n−1

)

Σ

( �Δrest
�ΔN−n−1

)〉

− 2

〈(
QΔ

�B
�0

)

Σ

( �ΔCVA
�0

)〉

+ 2

〈(
QΔ

�B
�0

)

Σ

( �Δrest
�ΔN−n−1

)〉

− 2

〈( �Δrest
�ΔN−n−1

)

Σ

( �ΔCVA
�0

)〉

. (19)

Proof With the above defined vectors, we can write:

P&Ltot = 〈QΔ
�B − �ΔCVA, �drn+1〉 + 〈 �Δrest, �drn+1〉 + 〈 �ΔN−n−1, �drN−n−1〉

=
〈(

QΔ
�B

�0N−n−1

)

−
( �ΔCVA

�0N−n−1

)

+
( �Δrest

�ΔN−n−1

)

, �dr
〉

= 〈�a − �b + �c, �dr〉 (20)

whereby �drn+1 denotes the n + 1-dimensional vector consisting of the first n + 1
components of �dr, �drN−n−1 consists of the remaining N − n − 1 components of �dr,
�ΔN−n−1 denotes the vector of the remaining N − n − 1 sensitivities, and �0N−n−1 is
the N − n − 1-dimensional vector whose components are all equal to 0.14 Clearly,
the vectors �a, �b and �c coincide with the respective summands of the left hand side of
the scalar product in (20). If we use �dr ∼ N (0,Σ), it follows from (4) to (5):

σ 2
P&Ltot = 〈�a − �b + �c,Σ(�a − �b + �c)〉

= 〈�a,Σ�a〉 + 〈�b,Σ�b〉 + 〈�c,Σ�c〉 − 2〈�a,Σ�b〉 + 2〈�a,Σ�c〉 − 2〈�c,Σ�b〉. (21)

If we plug in the expressions for �a, �b and �c, we obtain (19). �

In order to be prepared for later computations, we will further simplify Expression
(19). To this end, we introduce the following notations: by Σn+1 we denote the
(n + 1) × (n + 1) matrix consisting of the first n + 1 column and row entires of
Σ only, i.e. Σi,j, i, j = 1, . . . n + 1. The matrix ΣN,n+1 is the N × (n + 1) matrix

12The vector �Δrest contains the n sensitivities w.r.t. credit spread changes of those trading book
positions which are different from the CDSs used for hedging but are sensitive w.r.t. to the credit
spreads of the hedge instruments as well.
13The vector �ΔN−n−1 is defined in the proof.
14In the following, we will omit the index N − n − 1 and simply write �0.
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obtained from Σ by deleting the last N − n − 1 columns and Σ t
N,n+1 denotes its

transpose matrix. With this notation and using that �0 cancels many components in
(19), we can write:

σ 2
P&Ltot = 〈QΔ

�B,Σn+1QΔ
�B〉 + 〈 �ΔCVAΣn+1, �ΔCVA〉 − 2〈QΔ

�B,Σn+1 �ΔCVA〉

+ 2

〈
�B,QΔΣ t

N,n+1

( �Δrest
�ΔN−n−1

)〉

− 2

〈
�ΔCVA,Σ

t
N,n+1

( �Δrest
�ΔN−n−1

)〉

+
〈( �Δrest

�ΔN−n−1

)

Σ

( �Δrest
�ΔN−n−1

)〉

.

(22)

In (22), the first summand describes the volatility of the hedge instruments if they are
considered as isolated from the remaining positions (i.e. those positions which are
different from the hedge instruments). Analogously, the other quadratic terms (i.e.
the second and the last summand in (22)) represent the volatility of the CVA and the
remaining positions respectively. The cross terms (third, fourth, and fifth summand)
describe the interactions between the volatility of the hedge instruments, the CVA
and the remaining positions. For example, the third term describes the interaction
between the CVA and the hedge instruments.

The P&L volatility σ 2
hed caused by the hedge instruments is given by those terms

of (22) which depend on the hedge instruments, i.e. those terms which depend on �B.
These are the first, the third, and the fourth term of (22), i.e.

σ 2
hed = 〈QΔ

�B, Σn+1QΔ
�B〉 − 2〈QΔ

�B, Σn+1 �ΔCVA〉 + 2

〈
�B,QΔΣ t

N,n+1

( �Δrest
�ΔN−n−1

)〉

.

(23)

The other terms of (22) describe the volatility caused by the remaining positions.
In order to simplify the notation, we write σ 2

hed in the following way:

σ 2
hed = 〈A�B, �B〉 + 〈�B, �b〉 (24)

with

A = QΔΣn+1QΔ (25)

and

�b = QΔΣ t
N,n+1

( �Δrest
�ΔN−n−1

)

− QΔΣn+1 �ΔCVA. (26)

Note that σ 2
hed is not simply given by a quadratic form but also incorporates a linear

part. The quadratic form describes the volatility of a portfolio consisting of the hedge
instruments, while the linear part describes the correlations of the hedge instruments
with the remaining positions and with the CVAs.
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4.3.1 Definition of the Steering Variable

We now define a steering variable aiming to define a unified framework for CVA
risk charge hedging and P&L volatility. The steering variable is given by a synthetic
volatility consisting of the sum of the regulatory CVA volatility and the volatility of
the accounting P&L caused by the hedge instruments:

σ 2
syn = σ 2

CVA,reg + σ 2
hed . (27)

The synthetic volatility unifies both the regulatory and the accounting framework.
It can be considered as a function of the hedge notional amounts. The minimum
of σ 2

tot,syn describes the optimal allocation between CVA risk charge reduction and
P&L volatility. Note that σ 2

tot,syn contains now the matrices Γ and Σ , who describe
the correlations between the same risk factors. This mismatch can be resolved, if
the advanced CVA risk charge is used [2]. However, the use of different CVA sen-
sitivities cannot be resolved. The most significant differences arise due to different
exposure definitions: while the exposures EADi contained in the regulatory CVA
sensitivities are based on the effective EPE and multiplied by the alpha multiplier
(for IMM banks), this is not the case for the exposures used to compute the account-
ing CVA sensitivities. In general, these mismatches will lead to smaller accounting
CVA sensitivities. Thus, a complete hedging of the CVA risk charge leads to an
overhedged accounting CVA. See [6] for a complete description of the sources of the
mismatch. Another source of potential overhedging is the following: if accounting
CVA is already hedged by instruments which are not eligible hedge instruments in
the sense of Basel III, additional hedge instruments are necessary for the hedging
of the CVA risk charge. These hedge instruments will cause additional P&L volatil-
ity, since their offsetting counterparts (i.e. the CVAs) are not present (since they are
already hedged).

5 Determination of the Optimal Hedge Strategy

This section describes concretely how the mismatch between the regulatory regime
and the accounting regime can be mitigated. The result will be a dynamic CVA hedg-
ing strategy based on an optimization principle of the steering variable introduced
in the previous section. We will ignore index hedges but all results can easily be
generalized to the case where index hedges are included.

As opposed to the previous sections, the vector �B will not contain the compo-
nent Bind in this section. As explained before, we want to minimize the synthetic
volatility15

σ 2
syn(

�B) = σ 2
hed(

�B) + σ 2
CVA(

�B) (28)

15We ignore the index tot.
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as a function of �B. The component B∗
i of the minimum �B∗ describes the optimal

notional amounts of CDSi, used to hedge the counterparty risk w.r.t. counterparty i.
We now determine �B∗ by computing the zeros of the first derivative of σ 2

syn.

Theorem 1 Under the same assumptions as in Lemma 2, the minimum �B∗ of (28) is
given by16

�B∗ = H−1�f (29)

with
H := 2(A + QMhedΓQMhed ) (30)

and
�f := 2QMhedΓQM

−−→
EAD − �b. (31)

Proof In order to keep the display of the computations clear, we introduce the
diagonal matrices QM := diag(ω1M1, . . . , ωnMn) and QMhed := diag(ω1Mhed

1 , . . . ,

ωnMhed
n ) and the n-dimensional vector

−−→
EAD whose components are given by the

counterparty exposures. Using these definitions, we can write:

σ 2
CVA = 〈QM

−−→
EAD − QMhed �B, Γ (QM

−−→
EAD − QMhed �B)〉. (32)

whereby Γ describes the constant correlation between the CVAs (all diagonal ele-
ments given by 1). Using (32) and (24), we can write:

∂σ 2
syn

∂ �B = ∂

∂ �B (〈A�B, �B〉 + 〈�b, �B〉)

+ ∂

∂ �B 〈QMhed �B, ΓQMhed �B〉

− 2
∂

∂ �B 〈QMhed �B, ΓQM
−−→
EAD〉

= 2A�B + �b + 2QMhedΓQMhed �B − 2QMhedΓQM
−−→
EAD

= H �B − �f , (33)

where we have used the notations (30) and (31). This shows (29). Further, we note
that the matrix H is derived from correlation matrices and therefore positive semi-
definite. As a result, H is indeed invertible. Moreover, it holds

∂2σ 2
syn

∂2 �B = H.

Hence, the second derivative of σ 2
syn is positive semi-definite and B∗ is indeed a

minimum.

16All terms are introduced in the proof.
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Remark The implementation of the optimal hedge strategy works as follows: one
has to compute on a regular basis (e.g. daily, weekly, etc.) the optimal solution (29).
To do this one needs the CVA sensitivities,17 the trading book sensitivities, and the
correlation matrix of the risk factors.18 Afterwards, the CVA desk needs to buy credit
protection described by the optimal solution. This reduces the capital demand for
counterparty risk and (by construction) minimizes the accounting P&L of the bought
credit protection.

The approach presented in this article is based on many simplifying assumptions
and restricted to the standardized CVA risk charge. Obviously, one could relax these
assumptions and apply a comparable optimization principle. In such a case, it would
possibly be hard to derive an analytical solution. Instead, one would obtain a numer-
ical solution.

5.1 Special Cases

For illustration purposes, we consider the case n = 1, i.e. the special case of a single
netting set. In that case both H and �f are scalars:

H = 2Δ2Σ1,1 + 2ω2(Mhed)2

and

f = 2ω2MMhedEAD + 2ΔΔCVAΣ1,1 −
⎛

⎝ΔΣ1,1Δrest + Δ

N∑

j=2

Σ1,jΔj

⎞

⎠ , (34)

whereby Δ describes the sensitivity of the hedge instrument of the considered coun-
terparty, Δrest the sensitivity of the remaining positions (i.e. all positions without the
CDS used for hedging purposes), ΔCVA the sensitivity of accounting CVA and Δj

are the sensitivities to the risk factors of the remaining positions. Thus, the optimal
solution is

B∗ =
2ω2MMhedEAD + 2σ 2ΔΔCVA −

(
Δσ 2Δrest + Δ

∑N
j=2 Σ1,jΔj

)

2Δ2σ 2 + 2ω2(Mhed)2
(35)

where we have used that Σ1,1 is equal to the volatility σ 2 of the hedge instrument.
First, in order to get a better understanding of B∗, let us assume that the risk factor
(credit spread) of the hedge instrument is independent of the remaining positions, i.e.

17Banks which actively manage their CVA risk usually compute these sensitivities.
18Larger banks usually have these data available, e.g. for market risk management purposes.
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Δrest = 0 and Σ1,j = 0, for j = 2, . . . ,N . In that case (35) (we assume additionally
M = Mhed) becomes

B∗ = 2ω2M2EAD + 2ΔΔCVAσ
2

2ω2M2 + 2Δ2σ 2
. (36)

We see already thatB∗ is (at least from a certain volatility level) a decreasing function
inσ 2, aswewould expect it. Obviously, if we ignore the fact that the hedge instrument
introduces further volatility (i.e. we assume σ 2 = 0), it holds

B∗ = EAD.

It is easy to see that this is the optimal hedge amount if we minimize the CVA risk
charge alone. As explained above, the most significant differences between the IFRS
CVA and the regulatory CVA are the different exposure computation methodologies.
In (36), these differences are reflected in EAD and ΔCVA: while EAD is based on
the regulatory methodology, ΔCVA is based on accounting CVA methodology.19

For illustration purposes, let us assume that ΔCVA is based on the same exposure
methodology as the regulatory CVA sensitivities (and that the modeling assumptions
Sect. 3 holds). This means, that cf. (15)

ΔCVA = EADΔ, (37)

i.e. we use the regulatory exposure EAD in (15) instead of the economical exposure
EE∗. If we plug in (37) in (36), we obtain:

B∗ = (2ω2M2 + 2Δ2σ 2)EAD

2ω2M2 + 2Δ2σ 2
= EAD. (38)

Thus, if we ignore the mismatch between the accounting and the regulatory CVA,
the optimal hedge solution is given by the optimal hedge solution of the CVA risk
charge only. If we include the mismatch, we can approximate the accounting CVA
sensitivity by (cf. (15))

ΔCVA = EE∗Δ. (39)

As explained in Sect. 4.3.1, EE∗ is smaller than EAD. Using (36) and (39) yields:

B∗ = 2ω2M2EAD + 2Δσ 2EE∗

2ω2M2 + 2Δ2σ 2
<

2ω2M2EAD + 2Δσ 2EAD

2ω2M2 + 2Δ2σ 2
= EAD. (40)

Hence, the mismatch leads to a smaller optimal hedge amount than the current reg-
ulatory exposure.

19Note that ΔCVA depends on the exposure as well (while Δ is based on a unit exposure, cf.
(16)). But this exposure is computed based on accounting methodology. This is the main source of
differences between the accounting and regulatory regimes.



132 C. Berns

We remark that it cannot be excluded that B∗ becomes negative. This is the case
if the risk factors of the remaining positions are strongly correlated to the risk factor
of the hedge instrument. In such a situation it seems to be reasonable to set B∗ = 0.
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Capital Optimization Through an Innovative
CVA Hedge

Michael Hünseler and Dirk Schubert

Abstract One of the lessons of the financial crisis as of late was the inherent credit
risk attached to the value of derivatives. Since not all derivatives can be cleared by
central counterparties, a significant amount of OTC derivatives will be subject to
increased regulatory capital charges. These charges cover both current and future
unexpected losses; the capital costs for derivatives transactions can become substan-
tial if not prohibitive. At the same time, capital optimization through CDS hedging of
counterparty risks will result in a hedge position beyond the economic risk (“over-
hedging”) required to meet Basel II/III rules. In addition, IFRS accounting rules
again differ from Basel, creating a mismatch when hedging CVA. Even worse, CVA
hedging using CDS may introduce significant profit and loss volatility while satis-
fying the conditions for capital relief. An innovative approach to hedging CVA aims
to solve these issues.

Keywords CVA ·Hedging ·CDS ·Contingent financial guarantee ·Risk charges ·
OTC derivatives

1 Preface

In the following the nexus between credit risk (counterparty risk), liquidity, and
market risk is analyzed and a solutionwith respect to CVAhedging of OTC derivative
contracts is proposed.

The starting point is the consideration of collateral and its respective recognition in
different but “basic” financial instruments like repos and (partially un-) collateralized
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OTCderivative contracts aswell as the comparison to corresponding uncollateralized
financial instruments like money market loans or uncollateralized OTC derivative
contracts. The role of collateral is analyzedwith respect to its legal basis, its treatment
in Financial Accounting (IFRS, refer to [4]) and regulatory reporting according to
Basel II/III (cf. [1, 2]).

The analysis leads to a definition of the concept of liquidity and its relation to
the use of collateral in financial markets. As will be shown, the concept of liquidity,
inherent in the legal framework related to collateral of basic financial instruments, can
be considered as a transformation of secured into unsecured financing and vice versa.
Moreover, with respect to the associated valuation and risk the liquidity transforma-
tion exhibits similarities to the concept of wrong-way risk. The transformation of
unsecured into secured financing can be used to derive new types of financial instru-
ments, e.g. in the application to CVA hedging issues of OTC derivative contracts. In
this case the hedging instrument also solves the issue of disentangling funding value
adjustments (FVA) and counterparty value adjustments (CVA), which is intensively
discussed by practitioners in context with the pricing of OTC derivatives.

2 The Role of Collateral in OTC Contracts and Its Legal
Basis

In the following the main legal basis with respect to the role of collateral is outlined.

2.1 The Role of Legal Versus Economic Ownership

There are two main properties which are of relevance in connection with the role of
collateral, the transfer of legal ownership (i.e. the possibility of “re-hypothecation”)
in contrast to the economic ownership and the value of the collateral.

By entering into a repurchase agreement the legal title to the securities is trans-
ferred to the counterparty but economically the securities stay with the selling coun-
terparty since the buying counterparty has the obligation to compensate the selling
counterparty for income (manufactured payments) associated with the securities and
to redeliver the securities. In case of an Event of Default, both obligations terminate.
The treatment in an Event of Default provides that the residual claim is settled in
cash and determined taking into account the cash side as well as the value of the
collateral. In this case the obligation to redeliver securities transferred as collateral
expires and the buying counterparty remains the legal owner. Thus the price risk of
the collateral (uncertainty of value) is entirely borne by the legal owner.

In case of (only) economic ownership, e.g. a pledge, this is not necessarily the
case, since the treatment in an Event of Default differs as e.g. this kind of “collateral”
is part of the bankrupt/legal estate and therefore underlying the insolvency procedure.
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Despite these legal differences, the regulatory rules according to Basel II/III and the
accounting rules under IFRS also require different treatment of collateral. In general
IFRS follows the economic ownership concept irrespective of the legal basis of the
collateral while Basel II/III rather follows the legal ownership concept.

2.2 Affected Market Participants

Not all market participants are affected by the same accounting and regulatory rules.
Banks have to follow IFRS and Basel II/III rules, while e.g. investment funds are not
affected by Basel II/III rules but are governed by investment fund legislation, e.g.
UCITS directive. These different legal frameworks for market participants impact
the usage of collateral in OTC contracts, e.g. the assets of an investment fund under
UCITS represent special assets and the use of repos and cash collateral is limited. In
addition, these investment funds have no access to sources of liquidity other than the
capital paidwhich limits the use of cash and the provision of cash collateral in context
of derivatives exposure. For example, cash collateral received from OTC derivative
contracts has to be kept in segregated accounts and cannot be used for any kind of
(reverse) repo transaction. Alternatively, the use of a custodian for optimizing the
provision of cash collateral can be considered.

2.3 Financial Instruments Involving Collateral and Standard
Legal Frameworks (Master Agreements)

Analyzing the legal basis of collateral facilitates the definition of liquidity and liq-
uidity transformation.

2.3.1 Derivatives Under ISDA Master Agreement

The type and use of collateral are governed in the CSA (credit support annex), which
represents an integral part of the ISDAMaster Agreement framework1 and cannot be
considered separately. The ISDA Master Agreement forms the legal framework and
is applicable for the individual derivative contracts supplemented by the CSA. For
example, default netting in theEvent ofDefault (default of a counterparty) is governed
by the ISDA Master Agreement including the netting of the collateral which in turn
is defined in the CSA. The CSA defines the type(s) of collateral and the terms of
margining/posting, while the transfer of the legal ownership is governed in the ISDA
Master Agreement. In general ISDA Master Agreements contracted under English
Law provide the legal transfer of ownership of the collateral while ISDA Master

1ISDA®, International Swaps and Derivatives Association, Inc., 2002 Master Agreement.
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Agreements contracted under New York Law do not. In the latter re-hypothecation,
i.e. the re-use of the received collateral for counterparties is prohibited.

In case of ISDA Master Agreements under English Law the derivative contracts
are terminated in case of an Event of Default and the collateral is taken into account
in order to determine the residual claim. The determination of the residual claim is
performed independently from the estate of the insolvent party.

2.3.2 Repos Under GMRA

A repo or repurchase agreement under GMRA2 can economically be seen as a collat-
eralized loan and is typically motivated by the request for cash. In case of repurchase
agreements, the legal title to the securities provided as collateral is transferred to the
counterparty (buyer) in exchange of the desired cash (purchase price). The credit risk
and liquidity of the underlying securities determine the haircut in the valuation of the
collateral. Adverse changes in the inherent credit risk of the securities are offset by an
increase in haircut and induce in terms of margining additional posting of collateral
to the counterparty. At maturity the securities are legally transferred back to original
owner (seller) in exchange for the agreed cash amount (repurchase price). In case of
a counterparty’s default the securities are not returned and the recovery risk of the
securities is borne by their legal owner (the buyer).

2.3.3 Securities Lending Under GSLMA

In contrast to a repo, a securities lending under GSLMA3 is motivated by the need for
securities but is (commonly) also a secured financing transaction since the securities
as well as the collateral are legally transferred to the respective counterparty. In the
secured case the collateral can be cash or other securities.

2.4 Credit and Counterparty Risk Related to Collateral

Consider the case that Bank 1 and Bank 2 enter into a repo transaction, where
Bank 2 receives cash from Bank 1 in return for securities. There are two features of
importance: Bank 1 needs cash funding, which requires an assumption with respect
to the sources of funding, e.g. central bank, deposits. The corresponding assumption
represents a component in determining the profitability of the repo. An additional
feature is the inherent wrong-way risk within the repo transaction. In this case the

2Sifma, Securities Industry and Financial Markets Association and ICMA, International Capital
Market Association, 2011 version Global Master Repurchase Agreement.
3ISLA, International Securities LendingAssociation,GlobalMaster Securities LendingAgreement,
Version: January 2010.
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wrong-way risk for Bank 1 is defined as an adverse correlation (positive in the
example above) between counterparty credit risk toward Bank 2 and market value
of the collateral (securities). Assuming a long position in the underlying securities
(collateral) for Bank 1, the wrong-way risk constitutes a decrease in value of the
securities (collateral) and a simultaneous decrease in credit worthiness of Bank 2. In
this case the risk for Bank 1 is the failure of Bank 2 in balancing the collateral posting.
Since in a repo transaction the legal ownership is transferred to Bank 1, the net risk
position comprises the price risk (in the Event of Default of Bank 2) associated with
the collateral (securities) including the haircut and the cash claim (cash loan). A
similar rationale holds in case of a short position in securities (collateral) since an
event of default affects the ability to post as well as to return posted collateral. Similar
considerations hold in case of a (partially) collateralized OTC derivative transaction,
e.g. an interest rate swap.

3 Terms of Liquidity and Definition of Liquidity
Transformation

Dealing with the concept of liquidity reveals that the term is not defined consistently
or not uniformly in financial regulations. A natural way is to adopt legal definitions.

3.1 Terms of Liquidity

There is a variety of definitions for the term liquidity, e.g. meeting payment oblig-
ations (liquidity of an entity), liquid marketable securities (ability to buy and sell
financial instruments), etc. The analysis above reveals the interdependence of “liq-
uidity” and counterparty credit risk, respectively credit risk. As such liquidity of an
entity can be considered as the relatively measured ability for a bank to raise cash
from a credit line or in return of collateral which in turn is dependent on the liquid-
ity of financial instruments. The collateral itself is only accepted if the price of the
collateral can be reliably determined, e.g. it is traded with sufficient frequency on an
active market.

3.2 Comparison of Secured and Unsecured Financing

The best way to illustrate the concept formation of liquidity respectively liquidity
transformation is the comparison of unsecured and secured financing in case of a
default event. Continuing the example above, the following comparison considers
Bank 1 as cash provider.
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1. Financial action

Secured: Exchange of cash versus collateral
Unsecured: Paying out cash of a loan granted

2. Prerequisite and term of liquidity

Secured: “Liquid” collateral (price of collateral can be reliably determined)
Unsecured: Credit line loan illiquid - not marketable

3. Net (relative) risk position in case of default

Secured: Market value of collateral: Default Probability (issuer of the secu-
rity received as collateral)× recovery rate of collateral× amount
of collateral (proximate representation via haircut)

Unsecured: Recovery rate of cash loan × exposure at default (EAD)

4. Relation to estate of insolvent party

Secured: Only residual claim part of the estate of the insolvent party but
amount of residual claim is determined independently of the estate
of the insolvent party

Unsecured: Entirely part of the estate of the insolvent party

5. Risk

Secured: Credit risk of collateral issuer, correlation between counterparty
risk and price of collateral (wrong-way risk in an adverse case)

Unsecured: Credit risk with respect to the borrower

Note that in the comparison above the net (relative) risk position in both cases, for
secured and unsecured financing, involves a recovery rate but the associated risk
relates to different counterparties. In case of secured financing the default risk is
coupled with the recovery risk (price risk) of the collateral and the risk position can
be settled promptly in case of a default while in case of the unsecured financing the
settlement of the recovery depends on the insolvency process.

This comparison in particular shows that the credit risk toward the counterparty
in the unsecured financing transaction being rather illiquid is opposed to the market
value risk of the received collateral which is assumed to be liquid in the secured case
plus the correlation of this risk and the credit risk of the issuer of the securities taken
as collateral. In the adverse case this risk correlation is also known as “wrong way
risk”.

3.3 Liquidity Transformation

Accordingly considering liquidity as an absolute quantity is not useful but as a relative
quantity: a relation between secured financing and unsecured financing, which we
term liquidity transformation. This transformation is not independent from credit
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respective counterparty risk, since each type of financing is associatedwith a different
type of credit risk. The liquidity transformation is dependent on the type of entity
and cannot be considered separately from its legal status. A bank has different access
and a higher degree of freedom to assign liquidity irrespective of the purpose than,
e.g. an investment fund.

4 New Approach to CVA Hedging

The new CVA hedging approach outlined below represents a response to current
challenges in banking regulation and reveals the importance of liquidity transfor-
mation. The legal-based background described above can be used to explain current
challenges of banking industry if in addition to prevailing market conditions the
regulatory and financial accounting environments are taken into account. Recent
environmental changes have immediate impact on banking business activities con-
cerning counterparty risk and can be summarized as follows:

Regulatory andAccountingAspects

• CCR (counterparty credit risk) is
under scrutiny of regulators and
financial accounting standard set-
ters.

• Increased regulatory require-
ments on bilateral collateraliza-
tion and clearing.

• Increased (regulatory) capital
requirements for banks.

• Increased P/L volatility due to
IFRS fair value accounting rules
(e.g. recognition of CVA).

Business Impact

• Increased (regulatory) capital
affects resp. limits banking busi-
ness.

• Intensified application of credit risk
mitigation by netting, collateraliza-
tion and hedging.

• Increased demand for secured (col-
lateralized) transactions

• Increased demand for (liquid / high
quality) collateral.

• Increased demand for optimization
of collateral.

4.1 Issue

During the financial crises regulators and financial accounting setters notified the
relevance of counterparty credit risk in OTC derivative contracts. In response to this
relevance several regulatory (legislative) initiatives have been undertaken like central
clearing, increased regulatory capital, etc. These impacted the business of banking
industry in several ways: intensified use of credit risk mitigation techniques and
increased demand for secured transactions (demand for collateral, cf. also [3]).
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Despite the environmental changes credit risk mitigation is and remains essential
to continue banking business. Considering equity as a scarce source, banks are forced
to tighten their credit exposure in order to offset the increase in capital charges due to
increased costs for CCR and other factors. The tightening of credit exposure limits
banking business and increases the demand for credit risk mitigation techniques
(including hedging).

Thementioned regulatory changes induce tremendous costs for the banking indus-
try. Therefore, managing credit risk by commonly used CDS hedging strategies
becomes expensive in presence of the banking regulation, so credit risk manage-
ment will be rearranged, e.g. more offsetting positions, avoiding exposures (reduc-
ing limits) or transferred (“outsourced”) outside the regulated banking sector, so e.g.
investment funds are in a favorable position to manage a bank’s risks. This also holds
for counterparty credit risk following the idea to transfer counterparty credit risk to
market participants outside the banking sector that are in the situation to manage this
risk economically at lower cost than banks.

Additionally banking industry is faced with various different regulations. With
respect to counterparty credit risk a bank is confronted with conflicting objectives
resulting from regulatory requirements, i.e. Basel II/III, and financial accounting
rules. Therefore, under current regulatory and accounting requirements banks can-
not manage counterparty credit risk (CCR) of derivatives uniformly in respect of
capital requirements and P/L volatility. This results from the fact that the hedging
of counterparty credit risk exposure (in terms of Basel II/III requirements) requires
the hedging of current and future changes of exposure, while IFRS only considers
current exposure. So a bank is required to hedge more than the current exposure
(“overhedging”) in terms of Basel II/III. But since hedging is mainly carried out by
derivatives as CDS, these CDS cause P/L volatility under IFRS, since derivatives are
recognized at fair value through P/L.

As described above secured and unsecured financing is common practice in
finance industry and can be observed in counterparty credit risk of OTC derivative
contracts. As illustrated below in an uncollateralized OTC derivative trade between
Bank A and counterparty B, the parties enter into an unsecured financing relation-
ship. If the market value of the derivative trades of Bank A against counterparty
B increases then Bank A is exposed to counterparty credit risk (CVA risk). Bank A
implicitly provides counterparty B an illiquid credit line in the sense, that the positive
exposure amount (“market value”) is recognized as an asset which becomes a legal
claim in the Event of Default. This exposure is not a tradable asset but needs to be
funded thus it could be interpreted as an illiquid asset. In comparison to standard
banking credit business, this credit line is unlimited and varies with the market value
of the underlying derivative trades, which implies also unlimited funding. The cur-
rent focus of discussions and research concentrates on measuring counterparty credit
risk by exposure and default probability modeling (CVA risk) and the assignment of
the appropriate discount rate for the OTC derivative trades reflecting the FVA. The
discussed approaches share the following assumptions:



Capital Optimization Through an Innovative CVA Hedge 141

1. No market segmentation between collateralized and uncollateralized OTC deriv-
ative trades.

2. The application of the absence of arbitrage principle, which in particular assumes
the unlimited use of liquidity by market participants.

3. Liquidity risk and credit risk cannot be decoupled.
4. The coincidence of counterparty credit risk and credit risk, which can be both

hedged by the same type of hedging instruments (credit default swaps (CDS),
contingent credit default swaps (CCDS)).

5. The absence of transaction costs, which are represented by regulatory costs (e.g.
CVA risk charges according to Basel II/III) and reported earnings volatility under
IFRS stemming from fair value accounting of counterparty fair value adjustments
and derivative valuation.

These ideal assumptions are not necessarily met in reality, therefore alternative
approaches have to be explored.

4.2 Solution

Since banks with significant activities in derivatives markets can be affected quite
heavily by the aforementioned issues, a workable solution should solve the build-in
conflict of regulatory and accounting requirements. As a result, the solution con-
tributes to an improved competitiveness of the bank in the context of derivative risk
management, derivatives’ pricing, and support the bank in conducting derivatives
business which will ultimately benefit the economy as a whole. Consequently, a
potential solution is about developing a financial instrument (“credit risk mitigating
instrument”) which reduces the Basel II/III CCR capital requirements and CVA risk
charge without resulting in additional P/L volatility under IFRS. Such a financial
instrument represents a solution to the issues described above since it creates:

• A market for counterparty credit risk exposure
The positive exposure of an (un-) collateralized derivative portfolio can be con-
sidered as an illiquid asset in contrast, e.g. to a liquid issuance of a bank.

• A new asset type—make the derivative claim a tradable asset
The idea is to make this exposure tradable in exchange for collateral by means of
an instrument like Collateral Support Annex (CSA) which directly refers to the
possibly varying positive exposure of a derivative portfolio.

• An active market involving banks and investment funds
In order to increase liquidity and to avoid only a shift of capital charges from one
institution to another due to hedging activities for the taken credit risk a transfer
to a market participant outside the banking sector is considered.

The outline of a solution follows the liquidity transformation. The unsecured financ-
ing for OTC derivatives would be represented by uncollateralized OTC derivatives
while secured financing requires corresponding posting of collateral. Pursuing the
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Fig. 1 Secured OTC derivative transaction

aim of decoupling liquidity and counterparty risk, at least three parties are necessary
to involve as demonstrated in the analysis on repos above. Therefore, the aim could
not be achieved by cash collateralized bilateral OTC derivatives commonly used in
the interbankmarket, since there is still a one-to-one correspondence between liquid-
ity requirements (e.g. cash collateral postings) and counterparty risk. Additionally
a bilateral CSA assumes that both counterparties have unlimited access to liquidity,
which represents a difficulty if counterparty B is a corporate according to its limited
access to collateral/cash. Therefore a secured financing transaction for CVA hedging
has to be structured differently.

The secured financing transaction outlined in Fig. 1 involves a third party “Default
Risk Taker” C, who is posting collateral to Bank A on behalf of counterparty B, i.e.
whenever the value of the derivative trade is positive for Bank A. This transaction
represents a tri-party CSA andworks similar to amargining. The transaction between
“Default Risk Taker” C and Bank A is an asymmetric contract, since if the value of
the derivative trade is negative for Bank A, no collateral is provided to or by Bank A.
In case of a default of counterparty B the posted collateral is not returned to “Default
Risk Taker C”. The structure described above represents the appropriate complement
for a bilateral uncollateralized OTC derivative transaction.

The structure reveals the concept of liquidity transformation including a decou-
pling of liquidity and counterparty risk, since by using the contract the unsecured
financing transaction is transformed into a secured financing transaction. Referring
to the comparison of unsecured and secured financing described above (cf. Sect. 2.3),
the proposed structure goes one step further by linking both market segments and
transforming liquidity within one single transaction. By definition of the liquidity
transformation, the transaction exchanges different types of credit risk.

4.3 Application

The table in Fig. 2 shows the contemplation of the new CVA hedge structure (cash
collateral with contingent financial guarantee, “CCCFG”; for more detail refer to
[5]) to existing credit risk mitigation techniques applied in the banking industry. Its
main features are summarized as follows:

• The proposed structure represents a credit risk mitigating instrument, which
reduces the Basel II/III CCR capital requirements CVA risk charge, since the cash
collateral provided by a third party is permitted under Basel II/III requirements
and reduces the exposure according to Basel II/III.
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Aspects Netting
Bilateral
Collateralization

Credit Default 
Swap (CDS) 
based hedges

Contingent
CDS

Economics Reduction of the 
risk position by 
netting of 
exposures

Counterparty risk is 
reduced by posted 
(cash) collateral

Hedges of the 
counterparty
default risk

Hedges of the 
counterparty
default and 
exposure risk

Operational Legally 
enforceable
Default netting 
(ISDA 
standard)

Changes in OTC 
derivative contracts 
(CSA)
Requires liquidity (an 
issue for corporates)

Delta Hedging 
required
Liquid CDS

No Delta 
Hedging 
required
Less liquid 
than CDS

Financial 
Accounting 
(IFRS)

IAS 32 requires 
simultaneous 
payment- and 
default netting

Posted collateral 
reduces fair value 
volatility

Fair value
accounting through 
P&L

Fair value
accounting 
through P&L

Regulatory 
(Basel II/III)

Basel differs 
from IFRS due 
to default netting

Reduces derivative 
exposure (credit risk 
mitigation)

Credit risk mitiga-
tion if requirements
are met

Credit risk miti-
gation if require-
ments are met

Fig. 2 Current and new approaches for credit risk mitigation in banking industry

• Accordingly there is immediate regulatory capital relief, which results in an imme-
diate saving respectively reduction of the cost of equity.

• Theproposed structure simultaneously qualifies as a contingent financial guarantee
such that there is no additional P/L volatility under IFRS. In particular the financial
guarantee accounting under IFRS applies to the proposed structure by considering
the case of default. In case of a default of OTC derivatives contracted under ISDA
the final claim is determined. The financial guarantee under IFRS comes into effect
only at default—not before—and “guarantees” the value of the final claim, which
is recognized at amortized cost and physically transferred to counterparty C in
return for cash to Bank A. The final claim takes into account the posted collateral
until the Event of Default. For a more detailed description refer to [5].

• As becomes apparent from the table above the new CVA hedge structure is a sepa-
rate financial instrument. This cash collateral with contingent financial guarantee
(“CCCFG”) differs from a “traditional” CDS/CCDS, since the collateral postings
are directly related to the counterpartys exposure. In case of a CCDS the cash col-
lateral refers to the CCDS contract itself reflecting its value and there is no direct
legal link to the exposure subject to hedging by the CCDS. Additionally CCDS
represents derivatives in terms of IFRS and not necessarily qualify as credit risk
mitigation instrument under Basel II/III. If a CCDS qualifies as credit risk mitiga-
tion instrument it applies to the Basel II/III PD, while the CCCFG directly affects
the exposure.

• Operationally the new CVA hedging instrument is more effective and less costly
than CDS delta hedging approaches, since a constant adjustment of a hedging
position using CDS induces transaction costs and depends also on the gamma of
the risk position. Accordingly the hedge position is never “perfect”.
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• The approach is flexible with respect to counterparty risk profiles, since it applies
to linear and nonlinear exposure profiles.

• The legal framework of the approach is based on ISDA, which ensures the oper-
ational effectiveness in terms of legal certainty and the recognition in front office
IT systems in order to process the transaction.

• It has to be noticed that investment funds have to observe certain rules and reg-
ulations which come with the specific fund format and domicile. For example,
funds fulfilling the highest standards are limited to invest in eligible assets which
are characterized by sufficient liquidity in order to ensure that the fund is in a
position to meet potential redemptions. Bilateral transactions that are illiquid by
definition require a buy-and-hold investment strategy which may not be suitable
for all investment funds.

4.4 Example

In the following for the sake of simplicity only a qualitative example is provided, since
by comparing the induced costs the CVA hedge already indicates its profitability.

• Bank A holds a portfolio of uncollateralized derivatives (e.g. interest rate swaps
(IRS)) with Counterparty B (e.g. a corporate) a netting set is considered.4

• Bank A enters into a CVA hedge transaction with Investment Fund C who is
taking over credit (counterparty credit risk of B) and market risk and provides
liquidity with reference to the uncollateralized derivative transaction(s) between
Bank A and Counterparty B in terms of the cash collateral postings to Bank A. The
transaction between Investment Fund C and Bank A is a unilateral (asymmetric)
collateral contract in favour of Bank A (and on behalf of Counterparty B). The
transaction chart follows Fig. 1.

• In the following table the impact for Bank A with and without CVA hedge is
summarized:

With respect to the risk illustrated in the first line in the table above, the CVA
hedge transaction mitigates entirely the risk of Bank A by transferring the risk to
investment fund C. This results from the posted cash collateral of Investment Fund
C to Bank A on behalf of counterparty C. Comparing the induced costs (second line
in the table above) reveals that the (uncollateralized) derivative business is exposed
to regulatory and cost of equity charges as well as funding costs. In case of the CVA
hedge transaction all these costs are inapplicable, since the posted cash collateral by
Investment Fund C to Bank A on behalf of counterparty B leads to entire regulatory
capital and cost of capital relief and serves as funding to the derivative exposure
between Bank A and counterparty B. On the other hand Bank A pays a fee to
Investment Fund C for taking over the counterparty credit risk of B and also interest

4In order to keep legal and operational complexity in an event of default low one netting set is
considered.
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Fig. 3 Comparison derivatives exposure with and without CVA Hedge transaction from bank A’s
perspective

on the posted cash collateral. Describing the associated cash flow profiles the two
situations, default and non-default of the counterparty, are distinguished (third line
in the table above). While in case without CVA hedge structure the cash profiles are
straightforward, with CVA hedge transaction in addition fee and interest payments
on the collateral have to be considered in the non-default situation. In the event of
default of counterparty B, the residual claim of the transaction is physically delivered
to Investment Fund C in return for cash equal to the notional of the residual claim.
This procedure follows standard ISDA rules (Fig. 3).

5 Conclusion

The new CVA hedging instrument is used in order to transfer counterparty credit
risk to entities which are able to manage the risk on an economic basis at lower
cost. Investment funds can act as “credit risk taker” and manage counterparty credit
exposure at a lower cost than banks, since investment funds are not subject to regu-
latory capital requirements according to Basel II/III. It has to be noted though that
an implementation of the solution described above requires an intense capability and
knowledge of dealing with derivatives at the risk taking investment funds. On the
other hand, since investment funds are not subject to the same regulations as those for
banks described above they may become a natural partner for banks in this context.

The proposed structure bridges the difference between capital rules and financial
accounting standards in order to optimize capital requirements and charges for CVA.
This is achieved by its liquidity transformation property—the liquidity and credit risk
transformation of the counterparty’s exposure—and by meeting the Basel II/III and
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IFRS requirements: simultaneous CCR capital and CVA risk charge relief as well as
reduced P/L volatility in IFRS resulting from CVA accounting. While the objective
outlined herein is predominantly to provide a suitable solution for CVA issues in
context of derivatives transactions, it may also create interesting opportunities for
investors of the risk taking investment funds.

This solution also contributes to valuation and the discussion on FVA and CVA,
since it requires the pricing of the collateral between counterparties “at arm’s length”.
This price determines the discount rate by applying the absence of arbitrage principle.
As a consequence FVA is disentangled from CVA by using the proposed structure
as a mean.
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FVA and Electricity Bill Valuation
Adjustment—Much of a Difference?

Damiano Brigo, Christian P. Fries, John Hull, Matthias Scherer,
Daniel Sommer and Ralf Werner

Abstract Pricing counterparty credit risk, although being in the focus for almost a
decade by now, is far from being resolved. It is highly controversial if any valuation
adjustment besides the basic CVA should be taken into account, and if so, for what
purpose. Even today, the handling of CVA, DVA, FVA, . . . differs between the regu-
latory, the accounting, and the economic point of view. Eventually, if an agreement
is reached that CVA has to be taken into account, it remains unclear if CVA can
be modelled linearly, or if nonlinear models need to be resorted to. Finally, indus-
try practice and implementation differ in several aspects. Hence, a unified theory
and treatment of FVA and alike is not yet tangible. The conference Challenges in
Derivatives Markets, held at Technische Universität München in March/April 2015,
featured a panel discussion with panelists representing different points of view: John
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Hull, who argues that FVA might not exist at all; in contrast to Christian Fries, who
sees the need of all relevant costs to be covered within valuation but not within
adjustments. Damiano Brigo emphasises the nonlinearity of (most) valuation adjust-
ments and is concerned about overlapping adjustments and double-counting. Finally,
Daniel Sommer puts the exit price in the focus. The following (mildly edited) record
of the panel discussion repeats the main arguments of the discussants—ultimately
culminating in the awareness that if everybody charges an electricity bill valuation
adjustment, it has to become part of any quoted price.

Keywords Counterparty credit risk · Credit valuation adjustment · Debit valuation
adjustment ·Wrong way risk

1 Welcome

Matthias: Welcome back from the coffee break. After the many interesting talks we
already enjoyed today, we will now continue the conference with a panel discussion
on current issues in counterparty credit risk. And we are very proud to present you
such prestigious speakers on this topic—our anchorman Ralf Werner will introduce
them to you in a minute (Fig. 1).

We hope that this discussion will provide you with insights on the current discus-
sion aboutCVA,DVA,FVA, etc. that gobeyondwhat you can read in scientific papers.
Inmy personal view, these valuation adjustments are a special topic in financialmath-
ematics, because they are not simply expressed by formulas some mathematicians
invent and you implement in a spreadsheet. In contrast, these adjustments are chal-

Fig. 1 View on the panel. From left to right: Matthias, Ralf, Daniel, Christian, Damiano, and John
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lenges a whole bank has to work on as a team, because they can involve different
departments, different asset classes, different trading desks, the IT-infrastructure,
lots of data, etc. Hence, it is not something that is “done” after a scientific paper
has been published. Moreover, there is no consensus—neither in academia nor in
practice—on what adjustments should be used and how they must be computed. In
this regard, I am very happy to see representatives from the financial industry as well
as from academia gathering for this discussion.

I will now pass the microphone to Ralf Werner who will be our anchorman. Ralf
is professor for “Wirtschaftsmathematik” at Augsburg University. Prior to this he
was professor at the University of Applied Sciences in Munich, and prior to this he
worked for several financial institutions—most of which have defaulted.

Ralf: Yes, indeed. Three in total.
Matthias: In any case, he gained quite some experience—practical and

theoretical—with credit defaults that he is now sharing with you. Thank you very
much Ralf!

Ralf: Thank you, Matthias, and a warm welcome to everybody from my side. I’m
very honoured to chair this discussion. I don’t think I will need to do much because
we already had an excellent warm-up over lunchtime, andmy experience is that these
four experts in the panel won’t need much input frommy side to keep the discussions
controversial, yet fruitful.

For the unlikely event that the discussion might get stuck, we have prepared a
few additional questions. Further, any question or comment from the audience will
be addressed immediately, i.e. we will interrupt whenever possible and whenever
meaningful.

The idea is that each discussant has about tenminutes to address one ormore topics
he deems important. I’ll try to dig a bit deeper and if you like you join in asking and
eventually after 15 minutes we hand over to the next discussant. This means that in
one hour we should be able to pretty much cover everything concerning DVA, FVA,
CVA, multi-curve, whatsoever, within the scope of the conference.

Let me now introduce the participants in reverse alphabetical order. I would like
to start with Daniel Sommer to my left. Daniel is not only representing one of the
main sponsors of this conference, but he’s further representing almost 20 years of
experience in financial consulting. Daniel is a member of the financial risk man-
agement group at KPMG, and for more than ten years he’s responsible partner for
risk methodology. Daniel holds a PhD on interest-rate models from the University of
Bonn, he has published several papers, he is working for all major banks in Germany,
so in short he comes with a broad experience of what’s going on in the market. I think
this is an excellent opportunity for us to challenge his knowledge and his experience.

On the other end of the panel we have John Hull. I both asked John as well as
Damiano during the lunch break, and we agreed that re-introducing both of them
after we had such great and detailed introductions this morning prior to their talks
is saying the same thing twice over. John will hopefully talk a bit about FVA, and
I assume all of you have read his 2012 paper, see [7]. If not, my introduction may
last another 60 s, so please at least run through the abstract of this great paper. It’s an
excellent work, starting heavy discussions in the community, I’d like to say—fruitful
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discussions, raising lots of interesting questions on FVA: Is it really there? Should
it be zero or not? For me, somehow, the discussion is not yet over, so I am looking
forward to what John has to say.

Besides John, between Daniel and Damiano, we have Christian Fries, our local
panel member from the LMU. Christian was appointed professor for FinancialMath-
ematics a few years ago. I should emphasise that besides his academic duties he is
still mainly working at DZ BANK where he is responsible for model development,
heading this department. Of course, I think you all know Christian from his open-
source library and from his book, resp. on Monte Carlo methods in finance [5], and
I’m sure we will gain a lot of insight from this mixed-role in practice and academia.

And, finally, we have Damiano Brigo with us, whom I would like to start right
away without any further notice, so please, Damiano.

2 Damiano Brigo

Damiano: Okay, thank you. I made some of the points during the presentation, but
I think it’s worth summing up a little bit what’s been happening from my point of
view. I worked on what is now called CVA since, I think, 2002 or 2003 at the bank.
At the time it was called counterparty risk pricing, not CVA, and nobody was really
very interested because the spreads were small for most of the trades and so on, so
the work was recycled a few years later, especially in 2007. But as we did that it was
clear that this was only a small part of a much broader picture where we had to update
the valuation paradigms used in investment banking and not only there (Fig. 2).

The big point that seems to come out, at least methodologically, from that big
picture is nonlinearity, which shows up in a number of aspects that can or may be
neglected in many cases but not always. So one of the aspects is the close-out, what

Fig. 2 Damiano Brigo
giving his presentation on
“Nonlinear valuation under
credit gap risk, collateral
margins, funding costs, and
multiple curves”
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happens at default. What do you put in your simulation? Should you use a risk-free
close-out, where at the first default you just stop and present-value the remaining cash
flows without including any further credit, collateral, and funding liquidity effects?
Or should you rather use a replacement closeout, where those effects are all included
in the valuation at default?

This is a big question. If you go for the replacement, then the problem as we
have seen becomes recursive, if you like, or nonlinear from a different point of view.
And that’s not because we mathematicians are trying to push BSDEs or semi-linear
PDEs on you. It’s simply because of the accounting assumptions. It’s a basic fact,
an accounting rule that says that you have to value your deal at default using a
replacement value. This is a simple accounting rule, but it translates into a quite
nightmarish nonlinear constraint in the valuation. Then when borrowing and lending
rates are asymmetric in financing your hedge, if they are justified to be, then you
have another source of nonlinearity because to price these costs of carry you need to
know the future value of the hedge accounts and of the trade itself. And this induces
another component of nonlinearity (see [4] and [3]).

If it’s there or not depends on the funding model you adopt for your treasury. If
the trading desk is always net borrowing and possible liquidity bases are symmetric,
you don’t have that, and you can more or less have a symmetric problem, but if it’s
not net borrowing then you do have an asymmetry in the funding rate: one is the
credit risk of your bank, one is the credit risk of the external funder, plus liquidity
bases. So, we all know that borrowing and lending don’t happen at the same rates
usually (well, we experience it personally, at least).

So, the nonlinearity is there. The big question is Should we embrace it or keep it
at arm’s length?, because it makes things too complicated in practice. The answer
is the second one, and basically if there is any real nonlinearity in the picture, the
required methods like BSDE’s or semilinear PDE’s are very hard to implement on
large portfolios in an efficient way that ensures that you can value the book many
times during trading activity very quickly—especially because nonlinearity means
the price or the value is not obtained by adding up the values of the assets in the
portfolio, so you need to price the portfolios at all the possible aggregation levels
that you need, and if each component of such a run is slow, you can imagine what
kind of operational nightmare you get into. So I don’t think it’s realistic or feasible
at the moment that we embrace nonlinearity. We need to linearise, which means, in
the two cases I mentioned, we assume that borrowing and lending rates are the same,
which is true for some funding policies, and you also assume that you don’t use a
replacement closeout at default in the CVA calculation of the valuation adjustment
for credit.

Then the other problem I would mention is keeping all the risks in separate
boxes with a label on each box: CVA: this is credit risk, FVA: this is funding cost,
LVA: this is collateral cost and so on. This is a little misleading because these risks
interact in the way that I just described. Each cash flow involves the whole future
value which depends on all the risks together. The classification in boxes is useful
managerially because youwant to assign responsibility in an organisation; you cannot
have everyone responsible for everything unless you have a very illuminated kind of
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workplace, but if you don’t, you want to assign responsibility for credit risk to the
CVA desk, and maybe the funding costs to a different team in the CVA or XVA desk
and so on. But if these aspects are so connected as I said, it’s very hard to separate
the risks in different boxes. Wrong-way risk is another aspect of the fact that the
dependence makes the idea that you can have risk taken care of separately by the
CVA desk for credit risk and by the traditional trading desk for the trade main market
risk not very realistic. To some extent, you can do it, but it’s not precise.

So, these are labels that we apply in order to be able to work operationally in a
realistic setting, but they don’t have the amount of rigour or precision that we would
sometimes think they have in practice. So, should we, again, monitor and watch
out for manifestations of nonlinearity like overlapping adjustments? We saw that in
some set-ups DVA almost completely overlaps with the funding adjustment. And,
so, should we be aware of these and avoid the double-counting, or should we forget
it and just compute the different adjustments, add them up, and forget about all these
overlaps and analyses?

I think it’s important to have at least an initial understanding of these issues before
throwing ourselves into very difficult calculations. There are many other things I
could say. The nonlinearity makes the deal pricing very difficult—in funding costs
especially.When you don’t know the funding policy of the other institution, ormaybe
you don’t agree with the funding policy of the other institution, but you’re still asked
to pay their funding prices, you might object and go to another bank, or you might
in turn say, I also have some funding costs, and I want to charge you. And there
is no transparency in the funding model of the treasury process. How can bilateral
valuation be achieved in a transparent way? This is another problem.

So a number of authors conclude by saying the funding-adjusted value is a value;
it’s not a price. You can use it for profitability analysis internally, but you shouldn’t
charge it outright to a client because it’s hard to justify this charge fully, as we
have seen. On the other hand and this is the final point I want to raise, which is
kind of a meta-topic, I would like to talk about the self-fulfilling aspect in financial
methodology, that if two or three top banks start doing something, everybody else
follows because this becomes the new standard. Top bank A is doing this, top bank
B is doing this, so we have to do this as well. And then even if something is not
justified based on financial principles, or it is not reasonable methodologically or
even mathematically it doesn’t matter because if you don’t do it you place yourself
out of the market.

This is very frustrating for a scientist, for someonewho thinks there are underlying
sound principles behind what’s going on, but in the end you are forced to set the
problem aside, because that’s what the market is doing, and if you don’t follow, you
are automatically out.

I would like to conclude with that kind of provocative point, and I’m sure my
colleagues will have more interesting points to make on it. Thank you.
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Ralf: Thank you, Damiano. Is there anyone in the panel who wants to take up one
of these points? Or in the audience?

Christian: I’d like to ask you, Damiano: you said close-out value. This is a very
important discussion. So, from my point of view, is this an issue for the lawyers, or
is this an issue for financial mathematics? What would you say?

Damiano: I think it’s an issue for both in a sense, in that the lawyers should tell us
if it makes sense to have this close-out there or not based on legal considerations. In
the end, I don’t think we can decide this with mathematics alone. With mathematics
we can say, If you adopt this close-out, the valuation problem is like this, and if you
adopt this other, the valuation problem is like that, but the decision must be taken
based on accounting, financial, and legal principles, not based on mathematics.

I would say that the regulations should converge. We’ve had ISDA pushing a
little towards the replacement close-out, but very mildly. ISDA wrote in 2009 that
in determining a close-out amount, the determining party may consider any rele-
vant information, including quotations (either firm or indicative) for replacement
transactions supplied by one or more third parties (!) that may take into account the
creditworthiness of the determining party at the time the quotation is provided (notice
the use of may). In the end I think it’s a decision for the regulators and the policy-
makers. We discussed this earlier, but let me be more explicit. Are you thinking, with
respect to your operational model, let’s say, when the deal has defaulted do you think
to actually replace it with a new one or simply to liquidate everything and close the
position? This is the real question. If you think to replace it with another physical
deal, and you intend to re-start the trade with another contracting party, then you
should assume a replacement close-out. If you’re thinking of liquidating the posi-
tion, then it stops here, with a cash settlement, and you may use a risk-free closeout.
However, from the point of view of continuity, mathematics seems to suggest that
you should include the replacement because you value the trade, mark it to market
every day, including credit and funding costs, and all of a sudden at the default event,
you remove this. You create a discontinuity in valuation this way, which shows up
as some funny effect, which I don’t want to go into right now.

I think mathematics gives you some hint, but it’s really a regulatory / accounting /
legal discussion that we should have, and then use the maths to include the outcome
properly into the valuation. That’s my view.

Ralf: Let me exaggerate a bit, but will this lead into a situation where your line
of reasoning is also applied to mortgages or government debt? Would Greece say,
I’ll only pay 60 because I’m valued at 50 anyway, so this is the right replacement
value? Will this lead us into such kind of discussions?

Damiano: That is very hard to model because when you have such a large market
effect, then the close-out itself could change the economy basically, so I don’t think
it’s very realistic in that sense.

In fact, we found in the published paper [1] that there is no superior close-out. If
you use the replacement close-out, you have some advantages in terms of continuity
and consistency, but you’ll have some problemswhen the correlation goes up towards
the systemic risk scenario. In that case the risk-free close-out becomes more sensible
economically. There is no clear-cut case, and you cannot make a regulation that
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depends on correlation or the level of perceived systemic risk switching from one
close-out to the other. Can you imagine what happens when you are in the middle. I
don’t even want to go there (see [2]).

So I think we have to be very careful about the maths, and we have to clearly
understand which level of aggregation, of size, we’re talking about, and in the case
of a country, I think that would be quite dangerous.

Daniel: I agree.
Damiano:At the global derivatives conference a couple of years ago, I was talking

to some of the banking quants and I said, Which close-out are you using?, and they
would say We’re using the risk-free close-out because that’s the only thing we can
implement on a large portfolio.

Ralf: I agree. I’ve heard this is hidden in the recovery rate, anyway.
Christian: So maybe I’d like to comment or offer a question on this self-fulfilling

prophecy because I do not understand it. I do understand that if there is some idiot
in the market who’s trading options at the wrong price, then I can use his incorrect
pricing to have an implied volatility. Hence, I can imply his dumbness into mymodel
and that’s fine. But now you say that everybody is doing it, so we should do it. And
I believe this does not apply to FVA. For me, FVA is a real cost and, for example,
the market will now decree not to account for FVA, I still picture that I have lost, for
example, if I issue a bond at LIBOR plus spread, and just put the money to the ECB
for a zero interest rate, I have a loss, right? So, then I would say I would rather go
out of the market instead of making the loss.

Damiano: Okay, so let me ask you another question. Suppose electricity bills
become prohibitive and electricity skyrockets, will you start charging your client an
electricity bill valuation adjustment because that’s a real cost you’re having? Or will
this be embedded in the prices like in the old days.

Christian: It is.
Damiano: When you go and buy some bread from the baker, the baker doesn’t

charge you a runningwater and electricity bill valuation adjustment because he needs
some water to run his bakery, you know ...

Christian:Yeah, but if you go to the bakery, he charges you such that he is covering
all his costs.

Damiano: That’s right.
Christian: It’s just not transparent.
Damiano: That’s right.
Christian: But the cost is inside the price.
Damiano: But then if you add these valuation adjustments one by one, one after

the next, every year a new one, with the nonlinearity effects we see that they possibly
overlap, you are overcharging sometimes, and this is not good, and that’s what I feel
is happening.

KVA. Think about it. KVA is a valuation adjustment on capital requirements,
but the future CVA potential losses trigger capital requirements—so you have your
valuation adjustment on a valuation adjustment. This is getting out of hand.
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Christian: This point I understand, but that is regulatory …
Damiano: But going back to the self-fulfilling prophecy, the other thing I wanted

to say: think about base correlation. For CDOs base correlation is a model. You use a
Gaussian copula, flatten 7,750 correlations into one, apply different flat correlations
to each different tranche on the same pool. To explain a panel of 15CDOs you have 15
different and inconsistent models and then … I kid you not, once at an international
conference I met one quant from a top bank who was lecturing about base correlation
along the lines of here’s an example of calibration, this is a great model, you should
use it, CDOs are great, invest in this. And when I asked, after his talk, I have some
questions for you about this model, he’d say, Oh, I’m the marketing quant. I don’t
do models really. And I said, Take me to your leader!, meaning the real quants then,
and he said, Oh, you cannot talk to them; they don’t talk to the public. My function
is to convince people, investors and the market that this is a great model, this is a
great product, and everybody must come into this market.

However what you are saying is partly true. If the market is kind of complete in a
way, then by hedging your strategy according to the correct hedge you can prove that
your price is right against an opponent, but if the market is largely incomplete, this
is very hard to do. And this is what we look at when we look at funding costs. We
don’t know the hedging or the funding policy of another entity. It’s not transparent.
You don’t know what they’re doing, how they’re financing, their short-term/long-
term funding policy, their internal fund transfer pricing, their bases. You don’t know
many things.

Christian: This is exactly the point. The market is not complete here, and I cannot
pass this risk to someone else. This is my example with the volatility: if someone
is on the wrong volatility I can pass this risk to him, but with my funding it’s still
my risk and it’s my cost to cover it. I believe it has to be in there. If you make it
transparent, it’s something different, maybe.

Damiano: Okay, but then you have to really watch out for the overlap as you add
new risk. For example, in some formulations if you take into account the trading
DVA and also the full funding benefit, you have the same thing twice. You have to
be very careful there. So this practice of adding a new adjustment on top of the old
ones every year is very dangerous because you may miss some of the overlaps. The
banks are paying attention to it; it’s not that bad. If it develops in the fact that in ten
years we’ll have 15 new valuation adjustment, this will be out of control.

Audience member: I have a question because I really like this bakery example, so
let’s say you have one bakery who sells bread for 1.80 and who doesn’t have very
high electricity costs, and you have another bakery which sells it for 2.00 because
they have a lot higher electricity costs. So what is the market price, then? Is it 1.80?

Damiano: The price, if you look at a clean price versus an adjusted price, the price
would be the clean price without costs. But then, of course, the price is adjusted into
an operational price that takes into account the bill, but the bill is not quoted explicitly,
it’s embedded in the price, so that if you think this baker is too expensive, you’ll go to
the other one. Maybe the other one is out of town, so they have lower costs because
of that.
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But in the other industries, we always knew that the price of a good that you end
up buying depends on many circumstances that are not in a theoretical price in a way.
Somehow ironically, part of the finance industry arrived at this realisation quite late.
But that’s another matter. I took too much time and I don’t want to monopolise this
panel.

John: Don’t forget that we have bid-offer spreads in this industry. Those bid-offer
spreads are designed to cover overhead costs, so adding in costs for electricity and
other things is not really the way to do it.

Ralf: Thank you, John. Let me hand over to Christian. Christian, maybe you want
to tell us your opinion on what’s going on in financial institutions at the moment.
Maybe with some more focus on the practitioner’s point of view.

3 Christian Fries

Christian: You’ve asked me to make a few statements and I take the role of the
practitioner.

I have the same opinion as Damiano, but I’d like to make the point that I don’t like
the adjustments. And why? Maybe because the word “adjustment” already implies
that you did something wrong. If I have to adjust something, it tells me that the
original value is wrong. For example, in my car there is this small device that tells
me how long it takes to get from Frankfurt to Munich, and what would I like to see
there? With my car it takes five hours. I could also fly. It would take one hour if you
take the plane, but you have to add four hours’ adjustment. So I would prefer just to
see the five because the five is correct. The one hour is no information for me.

Then, let me give you another example. Consider a swapwhich exchanges LIBOR
against a fixed rate, and this swap is traded at a bank, usually at a swap desk, some-
times it’s called flow trading. And then we have another swap that exchanges LIBOR
capped and floored against the fixed rate; this swap is called a structured swap, and
it’s traded at a different desk. This desk is sometimes called nonlinear trading desk
because these people are doing the nonlinear stuff, but except sometimes for informa-
tion purposes, we do not express the price of the swap as the price of the linear product
plus the nonlinear trading premium. So there is no such thing as an option-valuation
adjustment, so we do not have an OVA or something like that.

Daniel: Going back a few years, people tried to calculate option-adjusted bond
spreads.

Christian: Yes, I know, and I am sometimes reminded of it. And so there is one
desk in the bank that is taking the responsibility for all this complex stuff. This desk is
also making transactions through the swap desk because the desk needs to hedge its
interest rate risk, so he’s hedging out all linear stuff to the other guys, and he keeps all
the nonlinear risks. Let me make a remark about FVA; I will come back to CVA. For
me FVA has a strong analogy to cross-currency, to multi-currencymodels—at least if
you have the same rate for borrowing and lending. Each issuer has its own currency.
So what is his currency? His currency is the bond he’s issuing. Everything has to be
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denominated in his own interest rate, his funding rate. There are even instruments on
the market which profit from this arbitrage between two banks which have different
funding. These are the total return swaps where one bank with poor funding goes
to another bank with good funding and they exchange funding and they both profit
from this deal. I mean, the market for total return swaps is currently dead because
funding is for free, but these things existed. I have a little paper with my colleague
Mark Lichtner on this (see [6]).

This currency analogy: we had this in multi-currencies for years. We know how
to value instruments in different currencies, and we have the same phenomena in
currencies. For example, the cross-currency swap exchanges a floating rate in one
currency for a floating rate in another currency. From the theory, this should be zero:
both are floaters which are at par, but cross-currency swaps trade at a premium. There
is a cross-currency basis spread. The reason is that there is a preference in the market,
that one likes to finance oneself in U.S. Dollars and not in Euros (or vice versa), so,
for example, a Euro bank would prefer to go to Euro financing instead of U.S. Dollar
financing. I believe that FVA is something very natural. Also in mathematical theory
it has been there in this currency analogy since, and it should be recognised inside the
valuation because we wouldn’t value Euro derivatives using the U.S. Dollar curve,
would we?

One more word to CVA. If I’m provocative, I would say, like Damiano already
pointed out, counterparty risk isn’t something new. We had a defaultable LIBOR
market model years ago, and counterparty risk was used years ago maybe only
for credit derivatives, but it’s not so new, and what is actually new here is that
we suddenly have to look at netting. So the big change for me in this valuation
adjustment topic is that we are talking about portfolio effects. What Damiano said
this morning: the sum of each individual product valuation doesn’t give you the value
of the portfolio. So you have portfolio effects, you have to value everything in a single
huge valuation framework, but if you define all the products of a bank as a portfolio,
as one single product—I believe that the theory to be able to do this is actually to
some extent known—the big problem is how do you implement numerically what
you do on the computational side. For me this is the main motivation for these
valuation adjustments. It is because we have computational problems, and we like
to decompose the valuations into valuations for which we can sum up the products.

Going back to FVA, I do not understand why many people still use the risk-free
interest rate as the basis for this valuation, for your reference valuation—because,
first of all, I don’t believe there’s such a thing as a risk-free interest rate; it’s just a
misnomer. And wouldn’t it be better to keep the adjustments as small as possible
such that the price which you calculate is already as close as possible to the true
price? So, for example, my navigation system in the car tells me, from Frankfurt to
Munich you need four hours and thirty minutes. Okay, when I drive you need five
hours and thirty minutes, but it gives me a good proxy. The proxy is using the average
information available.

So coming back to Damiano’s talk, maybe we should simplify things. I like to
have things simplified, and my question is how can you simplify things such that you
can implement them in a bank. For example, we can simplify and say that treasury
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uses an average funding rate which is in the middle of the bid-offer, and we use that
rate to calculate the funding costs so that we have symmetry there and so on.

Finally, I would like to have just one desk where nonlinear effects are managed.
We could have this set-up, so the question is how can we have this set-up in a
bank. We could have this set-up if we have internal transactions in the bank, and
these transactions are fully collateralised. So we have these linear traders who trade
collateralised transactions with this nonlinear trading desk, and the nonlinear trading
desk has the residual.

My conclusion is that I would like to have one formula or one model which gives
me the true price, and then we can set up internal transactions, but what is the good
way to set up these internal transactions such that we can implement this in a bank?
This is my concern.

Audience member: Talking about implementation in the bank: What can you
implement? Where is banking nowadays? CVA, we have all the data for CVA, I
assume. No clue on wrong-way risk on these correlations you need and you already
think about FVA and adjustments on adjustments but still didn’t manage to find a
decent proxy for wrong-way risk? The question is, are we looking and are we solving
the right problems? What is your impression?

Christian: The data is actually the critical thing here. We can include more and
more effects in a nonlinear trading valuation framework by improving themodel—for
example like the approaches we have seen here including wrong-way risk, copulas,
whatever, but the problem is that we actually do not have the data to calibrate the
model.

For example, going back to John’s talk this morning, I have a little comment
here: you’ll see the effect of this multi-curve switch from LIBOR to OIS, but in
this calculation there is an assumption. The assumption is that the swap, which is
LIBOR-collateralised, so we use LIBOR discounting, trades at the same swap rate
as the swap rate that is OIS-collateralised, so we use OIS discounting, so if you have
the same rates for the swap, you get different forward rates. That’s what we saw this
morning.

The problem is you do not observe the swap rate for a LIBOR-collateralised swap.
So it could even be that the swap rates are different and the forwards are the same. If
we value, for example, an uncollateralised product, we do not even know what the
correct forward rate is because we would need the uncollateralised swap to calibrate
this forward rate. Data already start at the very beginning. The problem is data.

Ralf: Do you agree, Damiano?
Damiano: I talked to one of the CVA traders at a top tier 1 bank. They told me

they have what they call zero-order risks in mind more than cross-gamma hedging.
What they don’t have for many counterparties is a healthy default-probability curve
because there’s no liquidity in the relevant CDS, so maybe they have a product with
the airport of Duckburg, and this airport hasn’t issued a liquid bond and there is no
CDS. Where do you obtain the default probability? From the rating? But that’s a
physical measure, not a risk-neutral measure. And then the wrong-way correlations:
you should use market-implied correlations because you are pricing, but then, where
do you get them? It’s almost impossible to get them for many assets, and also, finally,
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I would say that with CVA, you’re right—we talk about KVA, but CVA is still very
much a problem—and there is what I call payout risk, so depending on which close-
out you use, and whether you include the first default check or not (some banks don’t,
because by avoiding it you avoid credit correlation, which is a bad beast in many
cases), so depending on the type of CVA formula you implement—you have five,
six different definitions of CVA—and that is payout risk. With old-style exotics, you
had a very clear description of the payout, then you implemented the dynamics; you
would get a price and hedge, and that would change with the model, and that would
be model risk. Now with CVA we have payout risk. We don’t even know which
payout we are trading exactly, unless we have a very precise description of the CVA
calculation.

But it’s not like when you ask another bank, What CVA charge are you applying
to me?, they tell you It’s a first-to-default inclusive, risk-free closeout … They don’t
tell you that. … And I’m using this kind of CDS curve. Sometimes they don’t tell you
that, and you don’t know.

Ralf: Daniel, do you have the same experience?
Daniel: Absolutely. I think even as many banks are talking about FVA these days,

I think CVA is still an unresolved topic, and our observation is that even in a small
market like the German market, there are a lot of different approaches taken by the
banks to calculate CVA. The problem is becoming more difficult by the minute as
the observable CDS prices, or tradable and liquid CDS prices get fewer and fewer.
So this is an issue that gets more complicated by the minute.

And then another observation: we had a talk about wrong-way risk this morning,
and we learned about the difficulties that this involves, and not surprisingly it’s our
observation that many banks are far from including wrong-way risk in their CVA
calculations, so there’s a long way to go before even CVA is settled.

Ralf: Okay, thank you very much, Daniel.
John: Maybe I should just respond to the point that Christian made about my

presentation this morning. My swap rates were all fully collateralised swap rates,
which would today reflect OIS discounting. I think Wolfgang [Rungaldier] called
them the clean rates. As soon as you look at the uncollateralised market, any rates
you see are contaminated by CVA and DVA.

You say, Use LIBOR discounting. I would say the correct thing to do even with
uncollateralised transactions is still to use OIS discounting and calculate your CVA
and DVA using spreads relative to the OIS curve. Forget about the LIBOR curve. The
LIBOR curve is no longer appropriate for valuing derivatives. It could by chance be
that LIBOR is the correct borrowing rate for the counterparty you’re dealing with,
but in most cases the borrowing rate of an uncollateralised end user is different from
LIBOR, so LIBOR is not a relevant rate. I don’t care whether we call the OIS rate
the risk-free rate or not, but it is the best close-to-risk-free benchmark that we have.

Ralf: Thank you, John. It’s now your turn, so please continue with your statement.
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4 John Hull

John: Hard to know where to start because I have written quite a bit on FVA in the
last few years. I’ve actually consciously decided to stop doing it because I realise I
could spend the whole of the rest of my academic career writing about this, and I’d
never convince most people.

Actually, my interest in FVA has got an interesting history. In the middle of 2012,
I got a call from the editor of Risk magazine saying, We’re bringing out the 25th
anniversary edition of Risk magazine. We’d like you to write an article for it. I agreed
to write the article. (No academic ever says no to writing an article.) I asked What
would you like me to write about? He said, We don’t mind what you write about, so
long as it’s interesting to our readership. But, by the way, we need the article in three
weeks.

I went down the corridor to discuss this with my colleague Alan White. We had
a number of interesting ideas for the article. After two and a half weeks we settled
on FVA. The trouble was that we then had only three days to write the article. In
retrospect, I wish we’d had longer. So what did that article say? That article said,
you should not make an FVA adjustment. I’ll explain why in a minute. The reaction
to the article was interesting. Usually when you write these articles, nothing much
happens. You get maybe a little bit of a response from a few other academics. But in
this case we were absolutely inundated with emails from people about this article.
Two-thirds of emails were saying You’re crazy. You don’t know what you’re talking
about. Clearly there should be an FVA adjustment. We’ve been doing for a while
now … and so on.

The other one-third were a little bit more positive, and some of them even went
so far as to say, We’re glad someone’s finally said this because we were a little
uncomfortable with this FVA adjustment. And, of course, Risk magazine realised
that this was an exciting topic for them, so they started organising conferences on
FVA.

Two people from Royal Bank of Scotland wrote a rejoinder to our article, which
appeared in the next issue of Risk. And we were invited to write a rejoinder to the
rejoinder, and so it went on. It was a really crazy time.

What I very quickly found out was that: Alan and I had a different perspective
from most of the people we were corresponding with on this, and the reason was
that we’ve been trained in finance. We’ve moved from finance into derivatives, and
most of the people we were talking to had moved from physics or mathematics into
derivatives. One important idea in corporate finance is that when you’re valuing an
investment, the discount rate should be determined by the riskiness of the investment.
How you finance the investments is not important. Whether you finance it with debt
or equity, it’s the riskiness of the investment that matters. In other words, you should
separate out the funding from the valuation of the investment (Fig. 3).

That was where we were coming from. In the case of derivatives a complication is
that we can use risk-neutral valuation, so we’ve got a nice way of doing the valuation,
but that does not alter the basic argument. Expected cash flows that are directly related
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Fig. 3 John Hull giving his
presentation on “OIS
discounting, interest rate
derivatives, and the modeling
of stochastic interest rate
spreads”

to the investment should be taken into account. In the case of derivative transactions
these expected cash flows include CVA and DVA.

So that’s where we were coming from. We’ve modified our opinion a little bit
recently. I think I’m more or less in the same camp as Damiano here, judging by his
presentation. Let’s suppose that you fund at OIS plus 200 basis points. If the whole
of the 200 basis points is compensation for default risk, then you are actually getting
a benefit from that 200 basis points, in that that 200 basis points is reflecting the
losses to the lender (and benefits to you) of a possible default on your borrowings.
That is what we call DVA 2, and what Damiano called DVA(F), and other people
have called it FDA. This is not what we usually think of as DVA. What we usually
think of as DVA is the fact that as a bank you might default on your derivatives, and
that could be a gain to you. Here we are applying the same idea to the bank’s debt.

DVA 2 cancels out FVA, and that was the main argument we made in that Risk
magazine article. But if you say that the bank’s borrowing rate is OIS plus 200 basis
points where 120 basis points is for default risk, and 80 basis points is for other
things—maybe liquidity—we can argue that 80 basis points is a dead-weight cost.
It’s part of the cost of doing business, you’re not getting any benefit from that 80
basis points. You are getting benefit from the 120 basis points: a DVA-type benefit
because you can default on your funding.

So I think I am in the same camp as Damiano. I think he called it LVA. This
component of your funding cost which is not related to default risk, is arguably a
genuine FVA. The problem is, of course, that it’s very, very difficult to separate out
the bit of your funding cost that’s due to default risk and the bit of your funding cost
that’s due to other things.

And then another complication is, of course, that accountants assume—for exam-
ple when calculating CVA—the whole of your credit spread reflects default risk.

I have lots and lots of discussions with people on this. You realise very quickly
that you’re never going to convince somebody who’s in a different mindset from
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yourself on this. One important question, though, is what are we trying to do here?
With these sorts of adjustments, are we trying to calculate a price we should charge
a customer? (Obviously in this day and age, we would be talking about the price
we should charge an end user because transactions with other banks are going to be
fully collateralised.) Or are we concerned with internal accounting? Or is it financial
accounting that is our objective? I’ve always taken the view that what we’re really
talking about here is what we record in our books as the value of this derivative.
But if you take the view that what we’re trying to do is to work out what we should
charge an end user, a customer, then actually I have no problems doing whatever you
like, even trying to convince a customer that the customer should pay an ECA, an
electricity cost adjustment. We all know that what you’re trying to do is get the best
price you can and hopefully cover your costs.

What I found was when I was talking to people about FVA is you start talking
about how derivatives should be accounted for and very quickly you slip into talking
about how much the customer should be charged, which is a totally different issue.
Obviously, there’s all sorts of costs you’ve got to recover in terms of what you charge
the customer.

Where are accountants coming from? As you all know, accountants want you to
value derivatives at exit prices. The accounting bodies are quite clear, that the exit
prices have nothing to do with your own costs. Exit prices should be related to what’s
going on in the marketplace. Therefore, your own funding costs can’t possibly come
into an exit price. If other dealers are using FVA in their pricing, their funding costs
may be relevant, but your own funding costs are not relevant. An interesting question
is how should we determine exit prices in a world where all dealers are incorporating
FVA into their pricing. Should we build into our exit price an average of the funding
costs of all dealers or the funding cost of the dealer that gives the most competitive
price? You can argue about this, but it is difficult to argue that it is your own funding
costs that should be used in accounting.

What we have found is there’s a lot of confusion between DVA and FVA, and as
I said there’s really two distinct parts to DVA. There’s the DVA associated with the
fact that you may default on your derivatives. That’s what we call DVA 1. It’s the
usual DVA. Your DVA 1 is your counterparty’s CVA and vice versa. And then there’s
what we call DVA 2, which is the fact that you might default on your funding.

Banks have always beenuncomfortablewithDVA.Even though accountingbodies
have approvedDVA they dislike the idea of taking their own default risk into account.
This has led some banks to replace DVA by FVA. In this context, FVA is sometimes
divided into a funding benefit adjustment and a funding cost adjustment with the
funding benefit adjustment being regarded as a substitute for DVA.

When you look at what’s actually going on right now, banks are all over the place
in terms of how they make funding value adjustments. I agree with Damiano that
once JPMorgan announced that it is taking account of FVA, then everybody felt they
had to do it as well. The correctness of FVA becomes a self-fulfilling prophecy. A
bank’s auditors are going to say, Everybody else is doing this? Why aren’t you doing
it? Whether or not you believe the models used by everyone else are correct, you
have got to use those models to determine accounting values.
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You can have research models for trading, but for accounting you’ve just got to
do what everybody else does. When a critical mass of people move over to doing
something, whether it’s right or wrong, you’ve got to do it.

I notice from a recent article in Risk that the Basel committee is getting interested
in funding value adjustments. And U.S. regulators are getting interested in funding
value adjustments aswell. In addition, I can tell you that a fewmonths ago,AlanWhite
and I were invited to FASB to talk to them about funding value adjustments. They
have concerns about the use of FVA in accounting. They like derivatives accounting
valuations to be based on market prices not on internal costs.

I think we are in a fairly fluid situation here. When JP Morgan has said, We’re
doing it this way, and we’re taking a one-and-half billion dollar hit it is tempting
to believe that everyone else will follow suit and that is the end of the story. I don’t
think it is the end of the story because we have not yet heard from accountants and
regulators. Also, I think it is fair to say that the views of banks and the quants that
work for them are evolving.

There’s some good news. (Maybe it’s not good news if you’re a quant working for
a bank.) The good news is that we’re clearly moving to a world where all derivatives
are fully collateralised. We’re now in a situation where if you deal with another
financial institution or another systemically important entity, you’ve got to be fully
collateralised. Dealing with an end user, you don’t have to be fully collateralised.
But there’s a lot of arguments (we talked about some of them at this conference)
suggesting that end users will get a better deal if they are fully collateralised.

FVA is not going to be such a big issue going forward. Indeed, I think it’s going to
fade away as full collateralisation becomes the norm. But no doubt arguments about
some other XVAs will continue.

Ralf: Thank you, John. I take away that for PhD students it is wise not to pursue
too much research on FVA, then, it might not be worth the effort …

Audience member: Sorry, just if you’ll allow me a little comment. Since the issue
of the self-fulfilling prophecy was picked up also by John Hull, just a little comment
from a mathematical point of view. If you do mathematics for the application, you
need a model. Possibly a true model. So what is a true model? Now, if you do
applications for the natural or physical sciences, possibly there is a true model. It is
very complicated, and what you do, you choose a model that is a good compromise
between representativity and tractability, right, so you can deal with this model and
it’s still relatively good.

Now we come to social / economic sciences. What is the true model? If, at some
point, the majority sort of implicitly uses a sort of model, isn’t that all of a sudden
the true model that other people should follow, or am I wrong here?

Damiano: Like base correlation, for example?
John: Yes, I don’t see it quite that way, though. I think opinions will fluctuate

through time. Nearly all large global banks do make funding value adjustments now.
There are two or three holdouts, but most of them do.

I think FVA is going to be more of a fad than a truth. I think that in five years’
time we could be in the opposite position to today: everybody just decides they don’t
want to make these funding value adjustments. That’s just my own personal opinion.
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One thing I meant to say is that there are interactions between CVA and DVA. If
one side defaults, you don’t care about the other side defaulting later, and there are
a number of other close-out issues. I agree with what Damiano says. Those create
a lot of complications. And they are relevant because those are complications in
assessing expected cash flows arising from the derivatives portfolio that you have
with a counterparty. They’re nothing to do with funding. They’re to do with expected
future cash flows, which are the relevant things to calculate a valuation. It does make
the valuation more complicated, but to overlay that with funding adjustments I don’t
think is correct except insofar as some part of the funding value adjustment is the
dead-weight cost I was talking about.

Ralf: Thank you, John. You mentioned valuation, so maybe this is the keyword
to hand over to Daniel.

5 Daniel Sommer

Daniel: First, John, as you immediately addressed the accounting profession, I’m not
an accountant but I work for a firm that does audit and accounting as some part of its
business. Are our accountants just people who tell the banks to do what everybody
else does? The story is slightly more complicated than that because what accountants
are interested in, and I pick up this story about self-fulfilling prophecies, what they
are interested in eventually is fair value. And, indeed, for financial instruments that’s
defined as the exit price. But then the big question is: How do you find out what the
exit price actually is?

Because it’s not like for all the instruments that we’re talking about in this seminar
here, it’s not something that you can read onBloomberg or any other data provider. It’s
nothing that people will tell you in the street immediately. It’s rather a complicated
exercise to find out what fair value actually is. What would be the exit price at
which you could actually exit your position? It’s at that point where that whole
reasoning comes up with the notion of how other people are thinking about valuing
a certain position. How are my counterparties, my potential counterparties in the
market, thinking about it? And that gives a bit more sense to the statement Do what
everybody else does. Because if everybody else is taking certain aspects of a financial
instrument into consideration when valuing this asset, it’s very likely that your exit
price that you are offered will also take that into consideration. It’s for that reason
that accountants are interested in what everybody else is doing, and frankly speaking,
yes, at KPMG, that was indeed the discussion we had with many banks over the last
three/four years where wemet the banks in London on various panels to discuss FVA
with them. Those were quite open discussions. From one year to the other, we sort
of made a roll call and asked who’s going to do what next year and when do you
think you will be moving to FVA, etc., just to get a feeling for where the market was
going in order to have a better understanding of what the market thought fair value
would be. In that sense, I think that gives a bit more meaning to accountants telling
the banks to do what everybody else is doing.
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Now, coming to the current situation, indeed, I think there is no major bank
globally left who has not declared they were doing something on funding valuation
adjustments, with a lot of banks having come up with that in their 2014 year-end
accounts. So I think the pressure on those bankswho have not yet done that is actually
rising. That’s something which I think is a matter of fact.

I’m happy to comment or give my personal opinion about FVA, and perhaps talk
about it by going back to some anecdotal evidence which I came across during the
financial crisis. Before that, let me just mention a few more things.

Indeed the regulators become interested in FVA, and I think that there are at least
two big issues that will have real effects on the banks that will enter the regulatory
discussion or should enter the regulatory discussion. One thing is, indeed, the overlap
between FVA andDVA,wheremany banks are happy to scrapDVA to a certain extent
and replace it with FVA because that will have an immediate effect on their available
regulatory capital. Because as they do the calculations these days, they offset FVA
benefits and FVA costs. Thus to reduce DVA, where they need to deduct DVA from
core Tier 1 capital, has a real effect on the bank’s balance sheets and profitability
calculations regarding regulatory capital.

The other thing people mentioned and it is true: hedging FVA just as is the case
with CVA is a complicated issue and involves also hedging the related market risk.
And so the question that we have been debating for CVA for a long time already is
whether you are allowed to include the market risk hedges in your internal model
for market risk or not. We’ve seen some movements in this direction recently by
the regulators, but I think that those are two questions that at least should be quite
prominent in the regulatory debate coming up.

That’s one thing. The other thing is related to accounting. People quite leisurely
mentioned that, well, yes, we need to go from a single deal valuation to portfolio
valuation. And indeed for CVA that’s absolutely inevitable. If you do that, neverthe-
less, for an accountant that raises a few uncomfortable questions because it raises the
question: What is actually the unit of account? Apparently it’s not a single deal. It
may be the netting set as far as CVA is concerned, but when you look at funding, the
netting set may even be too small, so it may be some sort of funding set, so all the
deals that you have in one currency or so. When you look at effects on the balance
sheet, do you need to value your whole bank before you can actually value your
derivatives correctly? That’s a bit of an uncomfortable direction we’re going into.

Those are a few comments on things that people have said up to now, but on
FVA itself, let me give you a little anecdote that occurred to me during the financial
crisis. During the financial crisis, the CFO and CEO of one of our top-ten German
banks asked me: Look, all the banks have to reduce the values of their ABS and CDO
books. Actually, don’t you think that if a book is match-funded, it should be worth
more than if a book is not match-funded? And this goes back to the real fundamental
question of liquidity risk and whether liquidity should play a role in pricing. And
everybody who’s read Modigliani and Miller, would say, By no means. That would
be the standard answer. Nevertheless, when you come to think about the situation that
the banks were in during the financial crisis, actually having a match-funded book
gave you at least the option to wait. And there’s real value in that option, as the banks
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who were able to wait were able to realise this because much of the write-downs
that happened during the financial crisis actually came back as defaults were not as
heavy as would have been thought at the time and indicated through the quotes at
the peak of the crisis. It wasn’t even traded prices at the time; it was basically quotes
that banks were valuing their books on.

One might think—a very personal view at this point—one might think that if
banks go for match-funding their books, it’s like buying a very, very deep out-of-
the-money option that they can then exercise when things get really bad. So that’s
one comment I would like to make.

The other point is somewhat more disconcerting. What does being liquid mean in
a world that has had the experience of the financial crisis? Is it sufficient to say that
a bank is liquid if it can generate enough funds through the collateralised inter-bank
money market? Or does a bank have to have access to sufficient central bank money
to prove that it is liquid? At least the experience of the financial crisis showed the
vulnerability of the inter-bank market and the importance of central bank money to
keep the system afloat. In that case at least part of the liquidity costs of banks would
be due to ensuring it has enough central bank money or assets that can swiftly be
turned into the latter. But if that was so then this would change our whole valuation
paradigm, which after all is based on the general equilibrium theory and the theory
of value by Gérard Debreu and others. In this theory there is no need for a central
bank to keep the systemworking. Therefore, acknowledging the existence of funding
costs through the introduction of FVA may have far reaching consequences on the
derivatives pricing theory compared to just the calculation of some odd valuation
adjustment and quarreling about which funding curve to use to determine an exit
price.

Ralf: Thank you, Daniel. John, do you want to comment on this? Is Miller and
Modigliani still valid in such an environment?

John: Well, I think it is, but what Modigliani and Miller say is that if you cut the
pie up, the sum of the pieces is worth the same as the whole. Now, the question is,
who are the potential stakeholders you’ve got to look at when you cut the pie up.

I agree with pretty much everything that Daniel said. It makes a lot of sense.
Ralf: Christian?
Christian: I have a question maybe from the practitioner’s side, also being a little

bit of a quant with respect to the exit price, which keeps me puzzling. Just to make
that clear, for me there are two prices at least. The exit price, I can realise it only
once: by going out of business. There’s only one opportunity to realise the exit price.
There is, of course, the price which I use in calculating my risk sensitivities, my
hedge, which I use in solving my optimal control problem, in my risk management
problem.

So, for example, if the exit price would include a tax, there would be some kind of
going-out-of-business tax, the exit price would clearly include this tax, but of course
as long as I’d like to stay in business I would never charge that tax, and I would not
include it in my hedging because it would never occur to me.

What is strange for me is that I believe that the good price for doing the optimal
control problem, so how do you hedge and so on, is actually the price which is going
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to concern and not the exit price, but the balance sheet is using the exit price, and it
appears to me as if management is always looking at the balance sheet. Isn’t there
some kind of contradictions?What is the price that should be used to find the optimal
path for the company? To make the investment decisions and so on?

Daniel: First of all, it’s very clear that what the accounting standards mean by
exit price is by no means the price at which the bank would go out of business. It’s a
going concern still. Of course it’s an artificial concept in the sense that you will never
… even if you were to sell just a portfolio of your trading book, you would probably
not realise what accountants think of as the fair value because they explicitly rule
out including portfolio effects on this fair value.

What this exit price actually means is, two people meet in the market and they
agree on a certain price at which to exchange a position without changing the market
equilibrium, it has to be small relative to the market.

Christian: For example, for my own bonds, the exit price is my bond value,
which obviously includes my funding, and for uncollateralised derivatives it is the
derivative valued with some average market funding, and if I take your example of
fully matched funding, this is puzzling me because the bonds are on funding and the
uncollateralised derivatives are not on funding.

Ralf: I think this goes in the same direction as my question to Damiano about the
close-out value—what value to use. I think we probably will not solve this puzzle
today. Looking at the time, I would like to thank all of you for your attention. Thank
you very much to all panelists, and I suppose there’s plenty of time for further
discussions during the dinner tonight. Thank you!
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