
Chapter 5
Extensions: Improving the Poisson
solver

The FEniCS programs we have written so far have been designed as flat Python
scripts. This works well for solving simple demo problems. However, when you
build a solver for an advanced application, you will quickly find the need for more
structured programming. In particular, you may want to reuse your solver to solve
a large number of problems where you vary the boundary conditions, the domain,
and coefficients such as material parameters. In this chapter, we will see how to
write general solver functions to improve the usability of FEniCS programs. We
will also discuss how to utilize iterative solvers with preconditioners for solving
linear systems, how to compute derived quantities, such as, e.g., the flux on a part
of the boundary, and how to compute errors and convergence rates.

5.1 Refactoring the Poisson solver

Most programs discussed in this book are “flat”; that is, they are not orga-
nized into logical, reusable units in terms of Python functions. Such flat pro-
grams are useful for quickly testing ideas and sketching solution algorithms,
but are not well suited for serious problem solving. We shall therefore look
at how to refactor the Poisson solver from Chapter 2. For a start, this means
splitting the code into functions. But refactoring is not just a reordering of
existing statements. During refactoring, we also try to make the functions
we create as reusable as possible in other contexts. We will also encapsu-
late statements specific to a certain problem into (non-reusable) functions.
Being able to distinguish reusable code from specialized code is a key issue
when refactoring code, and this ability depends on a good mathematical un-
derstanding of the problem at hand (what is general, what is special?). In
a flat program, general and specialized code (and mathematics) are often
mixed together, which tends to give a blurred understanding of the problem
at hand.
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5.1.1 A more general solver function

We consider the flat program ft01_poisson.py for solving the Poisson prob-
lem developed in Chapter 2. Some of the code in this program is needed to
solve any Poisson problem −∇2u = f on [0,1]× [0,1] with u = uD on the
boundary, while other statements arise from our simple test problem. Let
us collect the general, reusable code in a function called solver. Our spe-
cial test problem will then just be an application of our solver with some
additional statements. We limit the solver function to just compute the nu-
merical solution. Plotting and comparing the solution with the exact solution
are considered to be problem-specific activities to be performed elsewhere.

We parameterize solver by f , uD , and the resolution of the mesh. Since
it is so trivial to use higher-order finite element functions by changing the
third argument to FunctionSpace, we also add the polynomial degree of the
finite element function space as an argument to solver.

from fenics import *
import numpy as np

def solver(f, u_D, Nx, Ny, degree=1):
"""
Solve -Laplace(u) = f on [0,1] x [0,1] with 2*Nx*Ny Lagrange
elements of specified degree and u = u_D (Expresssion) on
the boundary.
"""

# Create mesh and define function space
mesh = UnitSquareMesh(Nx, Ny)
V = FunctionSpace(mesh, ’P’, degree)

# Define boundary condition
def boundary(x, on_boundary):

return on_boundary

bc = DirichletBC(V, u_D, boundary)

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = dot(grad(u), grad(v))*dx
L = f*v*dx

# Compute solution
u = Function(V)
solve(a == L, u, bc)

return u

The remaining tasks of our initial program, such as calling the solver
function with problem-specific parameters and plotting, can be placed in

https://fenicsproject.org/pub/tutorial/python/vol1/ft01_poisson.py
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a separate function. Here we choose to put this code in a function named
run_solver:

def run_solver():
"Run solver to compute and post-process solution"

# Set up problem parameters and call solver
u_D = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’, degree=2)
f = Constant(-6.0)
u = solver(f, u_D, 8, 8, 1)

# Plot solution and mesh
plot(u)
plot(u.function_space().mesh())

# Save solution to file in VTK format
vtkfile = File(’poisson_solver/solution.pvd’)
vtkfile << u

The solution can now be computed, plotted, and saved to file by simply
calling the run_solver function.

5.1.2 Writing the solver as a Python module

The refactored code is placed in a file ft12_poisson_solver.py. We should
make sure that such a file can be imported (and hence reused) in other pro-
grams. This means that all statements in the main program that are not
inside functions should appear within a test if __name__ == ’__main__’:.
This test is true if the file is executed as a program, but false if the file
is imported. If we want to run this file in the same way as we can run
ft01_poisson.py, the main program is simply a call to run_solver followed
by a call to interactive to hold the plot:

if __name__ == ’__main__’:
run_solver()
interactive()

This complete program can be found in the file ft12_poisson_solver.py.

5.1.3 Verification and unit tests

The remaining part of our first program is to compare the numerical and
the exact solutions. Every time we edit the code we must rerun the test
and examine that error_max is sufficiently small so we know that the code
still works. To this end, we shall adopt unit testing, meaning that we create
a mathematical test and corresponding software that can run all our tests

https://fenicsproject.org/pub/tutorial/python/vol1/ft12_poisson_solver.py
https://fenicsproject.org/pub/tutorial/python/vol1/ft12_poisson_solver.py
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automatically and check that all tests pass. Python has several tools for unit
testing. Two very popular ones are pytest and nose. These are almost identical
and very easy to use. More classical unit testing with test classes is offered by
the built-in module unittest, but here we are going to use pytest (or nose)
since that will result in shorter and clearer code.

Mathematically, our unit test is that the finite element solution of our
problem when f =−6 equals the exact solution u= uD = 1+x2 +2y2 at the
vertices of the mesh. We have already created a code that finds the error
at the vertices for our numerical solution. Because of rounding errors, we
cannot demand this error to be zero, but we have to use a tolerance, which
depends on the number of elements and the degrees of the polynomials in
the finite element basis. If we want to test that the solver function works
for meshes up to 2× (20×20) elements and cubic Lagrange elements, 10−10

is an appropriate tolerance for testing that the maximum error vanishes.
To make our test case work together with pytest and nose, we have to

make a couple of small adjustments to our program. The simple rule is that
each test must be placed in a function that

• has a name starting with test_,
• has no arguments, and
• implements a test expressed as assert success, msg.

Regarding the last point, success is a boolean expression that is False if
the test fails, and in that case the string msg is written to the screen. When
the test fails, assert raises an AssertionError exception in Python, and
otherwise runs silently. The msg string is optional, so assert success is the
minimal test. In our case, we will write assert error_max < tol, where tol
is the tolerance mentioned above.

A proper test function for implementing this unit test in the pytest or nose
testing frameworks has the following form. Note that we perform the test for
different mesh resolutions and degrees of finite elements.

def test_solver():
"Test solver by reproducing u = 1 + x^2 + 2y^2"

# Set up parameters for testing
tol = 1E-10
u_D = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’, degree=2)
f = Constant(-6.0)

# Iterate over mesh sizes and degrees
for Nx, Ny in [(3, 3), (3, 5), (5, 3), (20, 20)]:

for degree in 1, 2, 3:
print(’Solving on a 2 x (%d x %d) mesh with P%d elements.’

% (Nx, Ny, degree))

# Compute solution
u = solver(f, u_D, Nx, Ny, degree)
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# Extract the mesh
mesh = u.function_space().mesh()

# Compute maximum error at vertices
vertex_values_u_D = u_D.compute_vertex_values(mesh)
vertex_values_u = u.compute_vertex_values(mesh)
error_max = np.max(np.abs(vertex_values_u_D - \

vertex_values_u))

# Check maximum error
msg = ’error_max = %g’ % error_max
assert error_max < tol, msg

To run the test, we type the following command:
Terminal

Terminal> py.test ft12_poisson_solver.py

This will run all functions named test_* (currently only the test_solver
function) found in the file and report the results. For more verbose output,
add the flags -s -v.

We shall make it a habit to encapsulate numerical test problems in unit
tests as above, and we strongly encourage the reader to create similar unit
tests whenever a FEniCS solver is implemented.

Tip: Print messages in test functions

The assert statement runs silently when the test passes so users may
become uncertain if all the statements in a test function are really
executed. A psychological help is to print out something before assert
(as we do in the example above) such that it is clear that the test really
takes place. Note that py.test needs the -s option to show printout
from the test functions.

Tip: Debugging with iPython

One can easily enter iPython from a Python script by adding the fol-
lowing line anywhere in the code:

from IPython import embed; embed()

This line starts an interactive Python session which lets you print and
plot variables, which can be very helpful for debugging.
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5.1.4 Parameterizing the number of space dimensions

FEniCS makes it is easy to write a unified simulation code that can op-
erate in 1D, 2D, and 3D. As an appetizer, go back to the previous pro-
grams ft01_poisson.py or ft12_poisson_solver.py and change the mesh
construction from UnitSquareMesh(8, 8) to UnitCubeMesh(8, 8, 8). Now
the domain is the unit cube partitioned into 8× 8× 8 boxes, and each box
is divided into six tetrahedron-shaped finite elements for computations. Run
the program and observe that we can solve a 3D problem without any other
modifications! (In 1D, expressions must be modified to not depend on x[1].)
The visualization allows you to rotate the cube and observe the function
values as colors on the boundary.

If we want to parameterize the creation of unit interval, unit square, or unit
cube over dimension, we can do so by encapsulating this part of the code in a
function. Given a list or tuple specifying the division into cells in the spatial
coordinates, the following function returns the mesh for a d-dimensional cube:

def UnitHyperCube(divisions):
mesh_classes = [UnitIntervalMesh, UnitSquareMesh, UnitCubeMesh]
d = len(divisions)
mesh = mesh_classes[d - 1](*divisions)
return mesh

The construction mesh_class[d - 1] will pick the right name of the object
used to define the domain and generate the mesh. Moreover, the argument
*divisions sends all the components of the list divisions as separate ar-
guments to the constructor of the mesh construction class picked out by
mesh_class[d - 1]. For example, in a 2D problem where divisions has
two elements, the statement

mesh = mesh_classes[d - 1](*divisions)

is equivalent to

mesh = UnitSquareMesh(divisions[0], divisions[1])

The solver function from ft12_poisson_solver.py may be modified
to solve d-dimensional problems by replacing the Nx and Ny parameters by
divisions, and calling the function UnitHyperCube to create the mesh. Note
that UnitHyperCube is a function and not a class, but we have named it using
so-called CamelCase notation to make it look like a class:

mesh = UnitHyperCube(divisions)

https://fenicsproject.org/pub/tutorial/python/vol1/ft01_poisson.py
https://fenicsproject.org/pub/tutorial/python/vol1/ft12_poisson_solver.py
https://fenicsproject.org/pub/tutorial/python/vol1/ft12_poisson_solver.py
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5.2 Working with linear solvers

Sparse LU decomposition (Gaussian elimination) is used by default to solve
linear systems of equations in FEniCS programs. This is a very robust and
simple method. It is the recommended method for systems with up to a few
thousand unknowns and may hence be the method of choice for many 2D
and smaller 3D problems. However, sparse LU decomposition becomes slow
and one quickly runs out of memory for larger problems. For large problems,
we instead need to use iterative methods which are faster and require much
less memory. We will now look at how to take advantage of state-of-the-art
iterative solution methods in FEniCS.

5.2.1 Choosing a linear solver and preconditioner

Preconditioned Krylov solvers is a type of popular iterative methods that
are easily accessible in FEniCS programs. The Poisson equation results in
a symmetric, positive definite system matrix, for which the optimal Krylov
solver is the Conjugate Gradient (CG) method. For non-symmetric problems,
a Krylov solver for non-symmetric systems, such as GMRES, is a better
choice. Incomplete LU factorization (ILU) is a popular and robust all-round
preconditioner, so let us try the GMRES-ILU pair:

solve(a == L, u, bc,
solver_parameters={’linear_solver’: ’gmres’,

’preconditioner’: ’ilu’})
# Alternative syntax
solve(a == L, u, bc,

solver_parameters=dict(linear_solver=’gmres’,
preconditioner=’ilu’))

Section 5.2.6 lists the most popular choices of Krylov solvers and precondi-
tioners available in FEniCS.

5.2.2 Choosing a linear algebra backend

The actual GMRES and ILU implementations that are brought into action
depend on the choice of linear algebra package. FEniCS interfaces several
linear algebra packages, called linear algebra backends in FEniCS terminology.
PETSc is the default choice if FEniCS is compiled with PETSc. If PETSc is
not available, then FEniCS falls back to using the Eigen backend. The linear
algebra backend in FEniCS can be set using the following command:

parameters.linear_algebra_backend = backendname
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where backendname is a string. To see which linear algebra backends are avail-
able, you can call the FEniCS function list_linear_algebra_backends.
Similarly, one may check which linear algebra backend is currently being
used by the following command:

print(parameters.linear_algebra_backend)

5.2.3 Setting solver parameters

We will normally want to control the tolerance in the stopping criterion and
the maximum number of iterations when running an iterative method. Such
parameters can be controlled at both a global and a local level. We will start
by looking at how to set global parameters. For more advanced programs,
one may want to use a number of different linear solvers and set different
tolerances and other parameters. Then it becomes important to control the
parameters at a local level. We will return to this issue in Section 5.3.1.

Changing a parameter in the global FEniCS parameter database affects all
linear solvers (created after the parameter has been set). The global FEniCS
parameter database is simply called parameters and it behaves as a nested
dictionary. Write

info(parameters, verbose=True)

to list all parameters and their default values in the database. The nesting of
parameter sets is indicated through indentation in the output from info. Ac-
cording to this output, the relevant parameter set is named ’krylov_solver’,
and the parameters are set like this:

prm = parameters.krylov_solver # short form
prm.absolute_tolerance = 1E-10
prm.relative_tolerance = 1E-6
prm.maximum_iterations = 1000

Stopping criteria for Krylov solvers usually involve some norm of the residual,
which must be smaller than the absolute tolerance parameter or smaller than
the relative tolerance parameter times the initial residual.

We remark that default values for the global parameter database can be
defined in an XML file. To generate such a file from the current set of pa-
rameters in a program, run

File(’parameters.xml’) << parameters

If a dolfin_parameters.xml file is found in the directory where a FEniCS
program is run, this file is read and used to initialize the parameters object.
Otherwise, the file .config/fenics/dolfin_parameters.xml in the user’s
home directory is read, if it exists. Another alternative is to load the XML
file (with any name) manually in the program:
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File(’parameters.xml’) >> parameters

The XML file can also be in gzip’ed form with the extension .xml.gz.

5.2.4 An extended solver function

We may extend the previous solver function from ft12_poisson_solver.py
in Section 5.1.1 such that it also offers the GMRES+ILU preconditioned
Krylov solver:

This new solver function, found in the file ft10_poisson_extended.py,
replaces the one in ft12_poisson_solver.py. It has all the functionality
of the previous solver function, but can also solve the linear system with
iterative methods.

5.2.5 A remark regarding unit tests

Regarding verification of the new solver function in terms of unit tests,
it turns out that unit testing for a problem where the approximation error
vanishes gets more complicated when we use iterative methods. The problem
is to keep the error due to iterative solution smaller than the tolerance used
in the verification tests. First of all, this means that the tolerances used in the
Krylov solvers must be smaller than the tolerance used in the assert test,
but this is no guarantee to keep the linear solver error this small. For linear
elements and small meshes, a tolerance of 10−11 works well in the case of
Krylov solvers too (using a tolerance 10−12 in those solvers). The interested
reader is referred to the demo_solvers function in ft10_poisson_extended.
py for details: this function tests the numerical solution for direct and iterative
linear solvers, for different meshes, and different degrees of the polynomials
in the finite element basis functions.

5.2.6 List of linear solver methods and preconditioners

Which linear solvers and preconditioners that are available in FEniCS de-
pends on how FEniCS has been configured and which linear algebra backend
is currently active. The following table shows an example of which linear
solvers that can be available through FEniCS when the PETSc backend is
active:

https://fenicsproject.org/pub/tutorial/python/vol1/ft12_poisson_solver.py
https://fenicsproject.org/pub/tutorial/python/vol1/ft10_poisson_extended.py
https://fenicsproject.org/pub/tutorial/python/vol1/ft12_poisson_solver.py
https://fenicsproject.org/pub/tutorial/python/vol1/ft10_poisson_extended.py
https://fenicsproject.org/pub/tutorial/python/vol1/ft10_poisson_extended.py
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Name Method

’bicgstab’ Biconjugate gradient stabilized method
’cg’ Conjugate gradient method
’gmres’ Generalized minimal residual method
’minres’ Minimal residual method
’petsc’ PETSc built in LU solver
’richardson’ Richardson method
’superlu_dist’ Parallel SuperLU
’tfqmr’ Transpose-free quasi-minimal residual method
’umfpack’ UMFPACK

The set of available preconditioners also depends on configuration and linear
algebra backend. The following table shows an example of which precondi-
tioners may be available:

Name Method

’icc’ Incomplete Cholesky factorization
’ilu’ Incomplete LU factorization
’petsc_amg’ PETSc algebraic multigrid
’sor’ Successive over-relaxation

An up-to-date list of the available solvers and preconditioners for your FEn-
iCS installation can be produced by

list_linear_solver_methods()
list_krylov_solver_preconditioners()

5.3 High-level and low-level solver interfaces

The FEniCS interface allows different ways to access the core functionality,
ranging from very high-level to low-level access. So far, we have mostly used
the high-level call solve(a == L, u, bc) to solve a variational problem a
== L with a certain boundary condition bc. However, sometimes you may
need more fine-grained control of the solution process. In particular, the call
to solve will create certain objects that are thrown away after the solution
has been computed, and it may be practical or efficient to reuse those objects.

5.3.1 Linear variational problem and solver objects

In this section, we will look at an alternative interface to solving linear varia-
tional problems in FEniCS, which may be preferable in many situations com-
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pared to the high-level solve function interface. This interface uses the two
classes LinearVariationalProblem and LinearVariationalSolver. Using
this interface, the equivalent of solve(a == L, u, bc) looks as follows:

u = Function(V)
problem = LinearVariationalProblem(a, L, u, bc)
solver = LinearVariationalSolver(problem)
solver.solve()

Many FEniCS objects have an attribute parameters, similar to the global
parameters database, but local to the object. Here, solver.parameters play
that role. Setting the CG method with ILU preconditioning as the solution
method and specifying solver-specific parameters can be done like this:

solver.parameters.linear_solver = ’gmres’
solver.parameters.preconditioner = ’ilu’
prm = solver.parameters.krylov_solver # short form
prm.absolute_tolerance = 1E-7
prm.relative_tolerance = 1E-4
prm.maximum_iterations = 1000

Settings in the global parameters database are propagated to parameter sets
in individual objects, with the possibility of being overwritten as above. Note
that global parameter values can only affect local parameter values if set
before the time of creation of the local object. Thus, changing the value of
the tolerance in the global parameter database will not affect the parameters
for already created solvers.

5.3.2 Explicit assembly and solve

As we saw already in Section 3.4, linear variational problems can be as-
sembled explicitly in FEniCS into matrices and vectors using the assemble
function. This allows even more fine-grained control of the solution pro-
cess compared to using the high-level solve function or using the classes
LinearVariationalProblem and LinearVariationalSolver. We will now
look more closely into how to use the assemble function and how to combine
this with low-level calls for solving the assembled linear systems.

Given a variational problem a(u,v) = L(v), the discrete solution u is com-
puted by inserting u=

∑N
j=1Ujφj into a(u,v) and demanding a(u,v) = L(v)

to be fulfilled for N test functions φ̂1, . . . , φ̂N . This implies

N∑
j=1

a(φj , φ̂i)Uj = L(φ̂i), i= 1, . . . ,N,

which is nothing but a linear system,



120 5 Extensions: Improving the Poisson solver

AU = b,

where the entries of A and b are given by

Aij = a(φj , φ̂i),
bi = L(φ̂i) .

The examples so far have specified the left- and right-hand sides of the
variational formulation and then asked FEniCS to assemble the linear system
and solve it. An alternative is to explicitly call functions for assembling the
coefficient matrix A and the right-hand side vector b, and then solve the
linear system AU = b for the vector U . Instead of solve(a == L, U, b) we
now write

A = assemble(a)
b = assemble(L)
bc.apply(A, b)
u = Function(V)
U = u.vector()
solve(A, U, b)

The variables a and L are the same as before; that is, a refers to the bilinear
form involving a TrialFunction object u and a TestFunction object v, and
L involves the same TestFunction object v. From a and L, the assemble
function can compute A and b.

Creating the linear system explicitly in a program can have some advan-
tages in more advanced problem settings. For example, A may be constant
throughout a time-dependent simulation, so we can avoid recalculating A at
every time level and save a significant amount of simulation time.

The matrix A and vector b are first assembled without incorporating es-
sential (Dirichlet) boundary conditions. Thereafter, the call bc.apply(A,
b) performs the necessary modifications of the linear system such that u is
guaranteed to equal the prescribed boundary values. When we have multiple
Dirichlet conditions stored in a list bcs, we must apply each condition in bcs
to the system:

for bc in bcs:
bc.apply(A, b)

# Alternative syntax using list comprehension
[bc.apply(A, b) for bc in bcs]

Alternatively, we can use the function assemble_system, which takes the
boundary conditions into account when assembling the linear system. This
method preserves the symmetry of the linear system for a symmetric bilinear
form. Even if the matrix A that comes out of the call to assemble is sym-
metric (for a symmetric bilinear form a), the call to bc.apply will break the
symmetry. Preserving the symmetry of a variational problem is important
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when using particular linear solvers designed for symmetric systems, such as
the conjugate gradient method.

Once the linear system has been assembled, we need to compute the so-
lution U = A−1b and store the solution U in the vector U = u.vector().
In the same way as linear variational problems can be programmed us-
ing different interfaces in FEniCS—the high-level solve function, the class
LinearVariationalSolver, and the low-level assemble function—linear
systems can also be programmed using different interfaces in FEniCS. The
high-level interface to solving a linear system in FEniCS is also named solve:

solve(A, U, b)

By default, solve(A, U, b) uses sparse LU decomposition to compute
the solution. Specification of an iterative solver and preconditioner can be
made through two optional arguments:

solve(A, U, b, ’cg’, ’ilu’)

Appropriate names of solvers and preconditioners are found in Section 5.2.6.
This high-level interface is useful for many applications, but sometimes

more fine-grained control is needed. One can then create one or more
KrylovSolver objects that are then used to solve linear systems. Each differ-
ent solver object can have its own set of parameters and selection of iterative
method and preconditioner. Here is an example:

solver = KrylovSolver(’cg’, ’ilu’)
prm = solver.parameters
prm.absolute_tolerance = 1E-7
prm.relative_tolerance = 1E-4
prm.maximum_iterations = 1000
u = Function(V)
U = u.vector()
solver.solve(A, U, b)

The function solver_linalg in the program file ft10_poisson_extended.
py implements such a solver.

The choice of start vector for the iterations in a linear solver is often
important. By default, the values of u and thus the vector U = u.vector()
will be initialized to zero. If we instead wanted to initialize U with random
numbers in the interval [−100,100] this can be done as follows:

n = u.vector().array().size
U = u.vector()
U[:] = numpy.random.uniform(-100, 100, n)
solver.parameters.nonzero_initial_guess = True
solver.solve(A, U, b)

Note that we must both turn off the default behavior of setting the start
vector (“initial guess”) to zero, and also set the values of the vector U to
nonzero values. This is useful if we happen to know a good initial guess for
the solution.

https://fenicsproject.org/pub/tutorial/python/vol1/ft10_poisson_extended.py
https://fenicsproject.org/pub/tutorial/python/vol1/ft10_poisson_extended.py
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Using a nonzero initial guess can be particularly important for time-
dependent problems or when solving a linear system as part of a nonlinear
iteration, since then the previous solution vector U will often be a good ini-
tial guess for the solution in the next time step or iteration. In this case, the
values in the vector U will naturally be initialized with the previous solution
vector (if we just used it to solve a linear system), so the only extra step
necessary is to set the parameter nonzero_initial_guess to True.

5.3.3 Examining matrix and vector values

When calling A = assemble(a) and b = assemble(L), the object A will be
of type Matrix, while b and u.vector() are of type Vector. To examine the
values, we may convert the matrix and vector data to numpy arrays by calling
the array method as shown before. For example, if you wonder how essential
boundary conditions are incorporated into linear systems, you can print out
A and b before and after the bc.apply(A, b) call:

A = assemble(a)
b = assemble(L)
if mesh.num_cells() < 16: # print for small meshes only

print(A.array())
print(b.array())

bc.apply(A, b)
if mesh.num_cells() < 16:

print(A.array())
print(b.array())

With access to the elements in A through a numpy array, we can easily per-
form computations on this matrix, such as computing the eigenvalues (using
the eig function in numpy.linalg). We can alternatively dump A.array()
and b.array() to file in MATLAB format and invoke MATLAB or Octave to
analyze the linear system. Dumping the arrays to MATLAB format is done
by

import scipy.io
scipy.io.savemat(’Ab.mat’, {’A’: A.array(), ’b’: b.array()})

Writing load Ab.mat in MATLAB or Octave will then make the array vari-
ables A and b available for computations.

Matrix processing in Python or MATLAB/Octave is only feasible for
small PDE problems since the numpy arrays or matrices in MATLAB file
format are dense matrices. FEniCS also has an interface to the eigen-
solver package SLEPc, which is the preferred tool for computing the eigen-
values of large, sparse matrices of the type encountered in PDE prob-
lems (see demo/documented/eigenvalue/python/ in the FEniCS/DOLFIN
source code tree for a demo).



5.4 Degrees of freedom and function evaluation 123

5.4 Degrees of freedom and function evaluation

5.4.1 Examining the degrees of freedom

We have seen before how to grab the degrees of freedom array from a finite
element function u:

nodal_values = u.vector().array()

For a finite element function from a standard continuous piecewise linear
function space (P1 Lagrange elements), these values will be the same as the
values we get by the following statement:

vertex_values = u.compute_vertex_values(mesh)

Both nodal_values and vertex_values will be numpy arrays and they will
be of the same length and contain the same values (for P1 elements), but
with possibly different ordering. The array vertex_values will have the same
ordering as the vertices of the mesh, while nodal_values will be ordered in
a way that (nearly) minimizes the bandwidth of the system matrix and thus
improves the efficiency of linear solvers.

A fundamental question is: what are the coordinates of the vertex whose
value is nodal_values[i]? To answer this question, we need to understand
how to get our hands on the coordinates, and in particular, the numbering
of degrees of freedom and the numbering of vertices in the mesh.

The function mesh.coordinates returns the coordinates of the vertices
as a numpy array with shape (M,d), M being the number of vertices in the
mesh and d being the number of space dimensions:

>>> from fenics import *
>>> mesh = UnitSquareMesh(2, 2)
>>> coordinates = mesh.coordinates()
>>> coordinates
array([[ 0. , 0. ],

[ 0.5, 0. ],
[ 1. , 0. ],
[ 0. , 0.5],
[ 0.5, 0.5],
[ 1. , 0.5],
[ 0. , 1. ],
[ 0.5, 1. ],
[ 1. , 1. ]])

We see from this output that for this particular mesh, the vertices are first
numbered along y = 0 with increasing x coordinate, then along y = 0.5, and
so on.

Next we compute a function u on this mesh. Let’s take u= x+y:

>>> V = FunctionSpace(mesh, ’P’, 1)
>>> u = interpolate(Expression(’x[0] + x[1]’, degree=1), V)
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>>> plot(u, interactive=True)
>>> nodal_values = u.vector().array()
>>> nodal_values
array([ 1. , 0.5, 1.5, 0. , 1. , 2. , 0.5, 1.5, 1. ])

We observe that nodal_values[0] is not the value of x+ y at vertex num-
ber 0, since this vertex has coordinates x = y = 0. The numbering of the
nodal values (degrees of freedom) U1, . . . ,UN is obviously not the same as the
numbering of the vertices.

The vertex numbering may be examined by using the FEniCS plot com-
mand. To do this, plot the function u, press w to turn on wireframe instead of
a fully colored surface, m to show the mesh, and then v to show the numbering
of the vertices.

Let’s instead examine the values by calling u.compute_vertex_values:

>>> vertex_values = u.compute_vertex_values()
>>> for i, x in enumerate(coordinates):
... print(’vertex %d: vertex_values[%d] = %g\tu(%s) = %g’ %
... (i, i, vertex_values[i], x, u(x)))
vertex 0: vertex_values[0] = 0 u([ 0. 0.]) = 8.46545e-16
vertex 1: vertex_values[1] = 0.5 u([ 0.5 0. ]) = 0.5
vertex 2: vertex_values[2] = 1 u([ 1. 0.]) = 1
vertex 3: vertex_values[3] = 0.5 u([ 0. 0.5]) = 0.5
vertex 4: vertex_values[4] = 1 u([ 0.5 0.5]) = 1
vertex 5: vertex_values[5] = 1.5 u([ 1. 0.5]) = 1.5
vertex 6: vertex_values[6] = 1 u([ 0. 1.]) = 1
vertex 7: vertex_values[7] = 1.5 u([ 0.5 1. ]) = 1.5
vertex 8: vertex_values[8] = 2 u([ 1. 1.]) = 2



5.4 Degrees of freedom and function evaluation 125

We can ask FEniCS to give us the mapping from vertices to degrees of
freedom for a certain function space V :

v2d = vertex_to_dof_map(V)

Now, nodal_values[v2d[i]] will give us the value of the degree of free-
dom corresponding to vertex i (v2d[i]). In particular, nodal_values[v2d]
is an array with all the elements in the same (vertex numbered) order as
coordinates. The inverse map, from degrees of freedom number to vertex
number is given by dof_to_vertex_map(V). This means that we may call
coordinates[dof_to_vertex_map(V)] to get an array of all the coordinates
in the same order as the degrees of freedom. Note that these mappings are
only available in FEniCS for P1 elements.

For Lagrange elements of degree larger than 1, there are degrees of free-
dom (nodes) that do not correspond to vertices. For these elements, we may
get the vertex values by calling u.compute_vertex_values(mesh), and we
can get the degrees of freedom by the call u.vector().array(). To get the
coordinates associated with all degrees of freedom, we need to iterate over
the elements of the mesh and ask FEniCS to return the coordinates and
dofs associated with each element (cell). This information is stored in the
FiniteElement and DofMap object of a FunctionSpace. The following code
illustrates how to iterate over all elements of a mesh and print the coordinates
and degrees of freedom associated with the element.

element = V.element()
dofmap = V.dofmap()
for cell in cells(mesh):

print(element.tabulate_dof_coordinates(cell))
print(dofmap.cell_dofs(cell.index()))

5.4.2 Setting the degrees of freedom

We have seen how to extract the nodal values in a numpy array. If desired,
we can adjust the nodal values too. Say we want to normalize the solution
such that maxj |Uj |= 1. Then we must divide all Uj values by maxj |Uj |. The
following function performs the task:

def normalize_solution(u):
"Normalize u: return u divided by max(u)"
u_array = u.vector().array()
u_max = np.max(np.abs(u_array))
u_array /= u_max
u.vector()[:] = u_array
#u.vector().set_local(u_array) # alternative
return u
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When using Lagrange elements, this (approximately) ensures that the maxi-
mum value of the function u is 1.

The /= operator implies an in-place modification of the object on the left-
hand side: all elements of the array nodal_values are divided by the value
u_max. Alternatively, we could do nodal_values = nodal_values / u_max,
which implies creating a new array on the right-hand side and assigning this
array to the name nodal_values.

Be careful when manipulating degrees of freedom

A call like u.vector().array() returns a copy of the data in u.vector().
One must therefore never perform assignments like u.vector.array()[:]
= ..., but instead extract the numpy array (i.e., a copy), manipulate it,
and insert it back with u.vector()[:] = or use u.set_local(...).

5.4.3 Function evaluation

A FEniCS Function object is uniquely defined in the interior of each cell
of the finite element mesh. For continuous (Lagrange) function spaces, the
function values are also uniquely defined on cell boundaries. A Function
object u can be evaluated by simply calling

u(x)

where x is either a Point or a Python tuple of the correct space dimension.
When a Function is evaluated, FEniCS must first find which cell of the mesh
that contains the given point (if any), and then evaluate a linear combination
of basis functions at the given point inside the cell in question. FEniCS uses
efficient data structures (bounding box trees) to quickly find the point, but
building the tree is a relatively expensive operation so the cost of evaluating
a Function at a single point is costly. Repeated evaluation will reuse the
computed data structures and thus be relatively less expensive.

Cheap vs expensive function evaluation

A Function object u can be evaluated in various ways:

1. u(x) for an arbitrary point x
2. u.vector().array()[i] for degree of freedom number i
3. u.compute_vertex_values()[i] at vertex number i

The first method, though very flexible, is in general expensive while the
other two are very efficient (but limited to certain points).
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To demonstrate the use of point evaluation of Function objects, we print
the value of the computed finite element solution u for the Poisson problem
at the center point of the domain and compare it with the exact solution:

center = (0.5, 0.5)
error = u_D(center) - u(center)
print(’Error at %s: %g’ % (center, error))

For a 2× (3×3) mesh, the output from the previous snippet becomes

Error at (0.5, 0.5): -0.0833333

The discrepancy is due to the fact that the center point is not a node in this
particular mesh, but a point in the interior of a cell, and u varies linearly over
the cell while u_D is a quadratic function. When the center point is a node,
as in a 2× (2×2) or 2× (4×4) mesh, the error is of the order 10−15.

5.5 Postprocessing computations

As the final theme in this chapter, we will look at how to postprocess computa-
tions; that is, how to compute various derived quantities from the computed
solution of a PDE. The solution u itself may be of interest for visualizing gen-
eral features of the solution, but sometimes one is interested in computing
the solution of a PDE to compute a specific quantity that derives from the
solution, such as, e.g., the flux, a point-value, or some average of the solution.

5.5.1 Test problem

As a test problem, we consider again the variable-coefficient Poisson problem
with a single Dirichlet boundary condition:

−∇· (κ∇u) = f in Ω, (5.1)
u= uD on ∂Ω . (5.2)

Let us continue to use our favorite solution u(x,y) = 1 +x2 + 2y2 and then
prescribe κ(x,y) = x+y. It follows that uD(x,y) = 1+x2 +2y2 and f(x,y) =
−8x−10y.

As before, the variational formulation for this model problem can be spec-
ified in FEniCS as

a = kappa*dot(grad(u), grad(v))*dx
L = f*v*dx

with the coefficient κ and right-hand side f given by
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kappa = Expression(’x[0] + x[1]’, degree=1)
f = Expression(’-8*x[0] - 10*x[1]’, degree=1)

5.5.2 Flux computations

It is often of interest to compute the flux Q=−κ∇u. Since u=
∑N
j=1Ujφj ,

it follows that

Q=−κ
N∑
j=1

Uj∇φj .

We note that the gradient of a piecewise continuous finite element scalar field
is a discontinuous vector field since the basis functions {φj} have discontin-
uous derivatives at the boundaries of the cells. For example, using Lagrange
elements of degree 1, u is linear over each cell, and the gradient becomes a
piecewise constant vector field. On the contrary, the exact gradient is con-
tinuous. For visualization and data analysis purposes, we often want the
computed gradient to be a continuous vector field. Typically, we want each
component of ∇u to be represented in the same way as u itself. To this end,
we can project the components of ∇u onto the same function space as we
used for u. This means that we solve w =∇u approximately by a finite ele-
ment method, using the same elements for the components of w as we used
for u. This process is known as projection.

Projection is a common operation in finite element analysis and, as we have
already seen, FEniCS has a function for easily performing the projection:
project(expression, W), which returns the projection of some expression
into the space W.

In our case, the flux Q=−κ∇u is vector-valued and we need to pick W as
the vector-valued function space of the same degree as the space V where u
resides:

V = u.function_space()
mesh = V.mesh()
degree = V.ufl_element().degree()
W = VectorFunctionSpace(mesh, ’P’, degree)

grad_u = project(grad(u), W)
flux_u = project(-k*grad(u), W)

The applications of projection are many, including turning discontinuous
gradient fields into continuous ones, comparing higher- and lower-order func-
tion approximations, and transforming a higher-order finite element solution
down to a piecewise linear field, which is required by many visualization
packages.

Plotting the flux vector field is naturally as easy as plotting anything else:
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plot(flux_u, title=’flux field’)

flux_x, flux_y = flux_u.split(deepcopy=True) # extract components
plot(flux_x, title=’x-component of flux (-kappa*grad(u))’)
plot(flux_y, title=’y-component of flux (-kappa*grad(u))’)

The deepcopy=True argument signifies a deep copy, which is a general term in
computer science implying that a copy of the data is returned. (The opposite,
deepcopy=False, means a shallow copy, where the returned objects are just
pointers to the original data.)

For data analysis of the nodal values of the flux field, we can grab the
underlying numpy arrays (which demands a deepcopy=True in the split of
flux):

flux_x_nodal_values = flux_x.vector().dofs()
flux_y_nodal_values = flux_y.vector().dofs()

The degrees of freedom of the flux_u vector field can also be reached by

flux_u_nodal_values = flux_u.vector().array()

However, this is a flat numpy array containing the degrees of freedom for both
the x and y components of the flux and the ordering of the components may
be mixed up by FEniCS in order to improve computational efficiency.

The function demo_flux in the program ft10_poisson_extended.py
demonstrates the computations described above.

Manual projection.

Although you will always use project to project a finite element func-
tion, it can be instructive to look at how to formulate the projection
mathematically and implement its steps manually in FEniCS.

Let’s say we have an expression g= g(u) that we want to project into
some space W . The mathematical formulation of the (L2) projection
w = PW g into W is the variational problem∫

Ω
wvdx=

∫
Ω
gvdx (5.3)

for all test functions v ∈W . In other words, we have a standard varia-
tional problem a(w,v) = L(v) where now

a(w,v) =
∫
Ω
wvdx, (5.4)

L(v) =
∫
Ω
gvdx. (5.5)

https://fenicsproject.org/pub/tutorial/python/vol1/ft10_poisson_extended.py
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Note that when the functions in W are vector-valued, as is the case
when we project the gradient g(u) =∇u, we must replace the products
above by w ·v and g ·v.

The variational problem is easy to define in FEniCS.

w = TrialFunction(W)
v = TestFunction(W)

a = w*v*dx # or dot(w, v)*dx when w is vector-valued
L = g*v*dx # or dot(g, v)*dx when g is vector-valued
w = Function(W)
solve(a == L, w)

The boundary condition argument to solve is dropped since there are
no essential boundary conditions in this problem.

5.5.3 Computing functionals

After the solution u of a PDE is computed, we occasionally want to compute
functionals of u, for example,

1
2 ||∇u||

2 = 1
2

∫
Ω
∇u ·∇udx, (5.6)

which often reflects some energy quantity. Another frequently occurring func-
tional is the error

||ue−u||=
(∫

Ω
(ue−u)2 dx

)1/2
, (5.7)

where ue is the exact solution. The error is of particular interest when study-
ing convergence properties of finite element methods. Other times, we may
instead be interested in computing the flux out through a part Γ of the
boundary ∂Ω,

F =−
∫
Γ
κ∇u ·nds, (5.8)

where n is the outward-pointing unit normal on Γ .
All these functionals are easy to compute with FEniCS, as we shall see in

the examples below.

Energy functional. The integrand of the energy functional (5.6) is de-
scribed in the UFL language in the same manner as we describe weak forms:

energy = 0.5*dot(grad(u), grad(u))*dx
E = assemble(energy)
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The functional energy is evaluated by calling the assemble function that we
have previously used to assemble matrices and vectors. FEniCS will recognize
that the form has ”rank 0” (since it contains no trial and test functions) and
return the result as a scalar value.

Error functional. The functional (5.7) can be computed as follows:

error = (u_e - u)**2*dx
E = sqrt(abs(assemble(error)))

The exact solution ue is here represented by a Function or Expression
object u_e, while u is the finite element approximation (and thus a Function).
Sometimes, for very small error values, the result of assemble(error) can
be a (very small) negative number, so we have used abs in the expression for
E above to ensure a positive value for the sqrt function.

As will be explained and demonstrated in Section 5.5.4, the integration of
(u_e - u)**2*dx can result in too optimistic convergence rates unless one is
careful how the difference u_e - u is evaluated. The general recommendation
for reliable error computation is to use the errornorm function:

E = errornorm(u_e, u)

Flux Functional. To compute flux integrals like F = −
∫
Γ κ∇u ·nds, we

need to define the n vector, referred to as a facet normal in FEniCS. If
the surface domain Γ in the flux integral is the complete boundary, we can
perform the flux computation by

n = FacetNormal(mesh)
flux = -k*dot(grad(u), n)*ds
total_flux = assemble(flux)

Although grad(u) and nabla_grad(u) are interchangeable in the above
expression when u is a scalar function, we have chosen to write grad(u)
because this is the right expression if we generalize the underlying equa-
tion to a vector PDE. With nabla_grad(u) we must in that case write
dot(n, nabla_grad(u)).

It is possible to restrict the integration to a part of the boundary by using a
mesh function to mark the relevant part, as explained in Section 4.4. Assum-
ing that the part corresponds to subdomain number i, the relevant syntax
for the variational formulation of the flux is -k*dot(grad(u), n)*ds(i).

A note on the accuracy of integration

As we have seen before, FEniCS Expressions must be defined using
a particular degree. The degree tells FEniCS into which local finite
element space the expression should be interpolated when performing
local computations (integration). As an illustration, consider the com-
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putation of the integral
∫ 1

0 cosxdx = sin1. This may be computed in
FEniCS by

mesh = UnitIntervalMesh(1)
I = assemble(Expression(’cos(x[0])’, degree=degree)*dx(domain=mesh))

Note that we must here specify the argument domain=mesh to the mea-
sure dx. This is normally not necessary when defining forms in FEniCS
but is necessary here since cos(x[0]) is not associated with any domain
(as is the case when we integrate a Function from some FunctionSpace
defined on some Mesh).

Varying the degree between 0 and 5, the value of |sin(1)−I| is 0.036,
0.071, 0.00030, 0.00013, 4.5E-07, and 2.5E-07.

FEniCS also allows expressions to be expressed directly as part of a
form. This requires the creation of a SpatialCoordinate. In this case,
the accuracy is dictated by the accuracy of the integration, which may
be controlled by a degree argument to the integration measure dx.
The degree argument specifies that the integration should be exact for
polynomials of that degree.

The following code snippet shows how to compute the integral∫ 1
0 cosxdx using this approach:

mesh = UnitIntervalMesh(1)
x = SpatialCoordinate(mesh)
I = assemble(cos(x[0])*dx(degree=degree))

Varying the degree between 0 and 5, the value of |sin(1)− I| is 0.036,
0.036, 0.00020, 0.00020, 4.3E-07, 4.3E-07. Note that the quadrature
degrees are only available for odd degrees so that degree 0 will use the
same quadrature rule as degree 1, degree 2 will give the same quadrature
rule as degree 3 and so on.

5.5.4 Computing convergence rates

A central question for any numerical method is its convergence rate: how
fast does the error approach zero when the resolution is increased? For finite
element methods, this typically corresponds to proving, theoretically or em-
pirically, that the error e = ue−u is bounded by the mesh size h to some
power r; that is, ‖e‖ ≤ Chr for some constant C. The number r is called the
convergence rate of the method. Note that different norms, like the L2-norm
‖e‖ or H1

0 -norm ‖∇e‖ typically have different convergence rates.
To illustrate how to compute errors and convergence rates in FEniCS,

we have included the function compute_convergence_rates in the tutorial
program ft10_poisson_extended.py. This is a tool that is very handy when
verifying finite element codes and will therefore be explained in detail here.

https://fenicsproject.org/pub/tutorial/python/vol1/ft10_poisson_extended.py
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Computing error norms. As we have already seen, the L2-norm of the
error ue−u can be implemented in FEniCS by

error = (u_e - u)**2*dx
E = sqrt(abs(assemble(error)))

As above, we have used abs in the expression for E above to ensure a positive
value for the sqrt function.

It is important to understand how FEniCS computes the error from the
above code, since we may otherwise run into subtle issues when using the
value for computing convergence rates. The first subtle issue is that if u_e is
not already a finite element function (an object created using Function(V)),
which is the case if u_e is defined as an Expression, FEniCS must interpolate
u_e into some local finite element space on each element of the mesh. The
degree used for the interpolation is determined by the mandatory keyword
argument to the Expression class, for example:

u_e = Expression(’sin(x[0])’, degree=1)

This means that the error computed will not be equal to the actual error
‖ue−u‖ but rather the difference between the finite element solution u and
the piecewise linear interpolant of ue. This may yield a too optimistic (too
small) value for the error. A better value may be achieved by interpolating
the exact solution into a higher-order function space, which can be done by
simply increasing the degree:

u_e = Expression(’sin(x[0])’, degree=3)

The second subtle issue is that when FEniCS evaluates the expression
(u_e - u)**2, this will be expanded into u_e**2 + u**2 - 2*u_e*u. If the
error is small (and the solution itself is of moderate size), this calculation
will correspond to the subtraction of two positive numbers (u_e**2 + u**2
∼ 1 and 2*u_e*u ∼ 1) yielding a small number. Such a computation is very
prone to round-off errors, which may again lead to an unreliable value for the
error. To make this situation worse, FEniCS may expand this computation
into a large number of terms, in particular for higher order elements, making
the computation very unstable.

To help with these issues, FEniCS provides the built-in function errornorm
which computes the error norm in a more intelligent way. First, both u_e and
u are interpolated into a higher-order function space. Then, the degrees of
freedom of u_e and u are subtracted to produce a new function in the higher-
order function space. Finally, FEniCS integrates the square of the difference
function and then takes the square root to get the value of the error norm.
Using the errornorm function is simple:

E = errornorm(u_e, u, normtype=’L2’)

It is illustrative to look at a short implementation of errornorm:

def errornorm(u_e, u):
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V = u.function_space()
mesh = V.mesh()
degree = V.ufl_element().degree()
W = FunctionSpace(mesh, ’P’, degree + 3)
u_e_W = interpolate(u_e, W)
u_W = interpolate(u, W)
e_W = Function(W)
e_W.vector()[:] = u_e_W.vector().array() - u_W.vector().array()
error = e_W**2*dx
return sqrt(abs(assemble(error)))

Sometimes it is of interest to compute the error of the gradient field:
||∇(ue − u)||, often referred to as the H1

0 or H1 seminorm of the error.
This can either be expressed as above, replacing the expression for error
by error = dot(grad(e_W), grad(e_W))*dx, or by calling errornorm in
FEniCS:

E = errornorm(u_e, u, norm_type=’H10’)

Type help(errornorm) in Python for more information about available norm
types.

The function compute_errors in ft10_poisson_extended.py illustrates
the computation of various error norms in FEniCS.

Computing convergence rates. Let’s examine how to compute conver-
gence rates in FEniCS. The solver function in ft10_poisson_extended.py
allows us to easily compute solutions for finer and finer meshes and enables
us to study the convergence rate. Define the element size h = 1/n, where n
is the number of cell divisions in the x and y directions (n = Nx = Ny in
the code). We perform experiments with h0 > h1 > h2 > · · · and compute
the corresponding errors E0,E1,E2 and so forth. Assuming Ei = Chri for
unknown constants C and r, we can compare two consecutive experiments,
Ei−1 = Chri−1 and Ei = Chri , and solve for r:

r = ln(Ei/Ei−1)
ln(hi/hi−1) .

The r values should approach the expected convergence rate (typically the
polynomial degree + 1 for the L2-error) as i increases.

The procedure above can easily be turned into Python code. Here we run
through a list of element degrees (P1, P2, and P3), perform experiments over
a series of refined meshes, and for each experiment report the six error types
as returned by compute_errors.

Test problem. To demonstrate the computation of convergence rates, we
pick an exact solution ue, this time a little more interesting than for the test
problem in Chapter 2:

ue(x,y) = sin(ωπx)sin(ωπy).

https://fenicsproject.org/pub/tutorial/python/vol1/ft10_poisson_extended.py
https://fenicsproject.org/pub/tutorial/python/vol1/ft10_poisson_extended.py
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This choice implies f(x,y) = 2ω2π2u(x,y). With ω restricted to an integer,
it follows that the boundary value is given by uD = 0.

We need to define the appropriate boundary conditions, the exact solution,
and the f function in the code:

def boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, Constant(0), boundary)

omega = 1.0
u_e = Expression(’sin(omega*pi*x[0])*sin(omega*pi*x[1])’,

degree=6, omega=omega)

f = 2*pi**2*omega**2*u_e

Experiments. An implementation of the computation of the convergence
rate can be found in the function demo_convergence_rates in the demo
program ft10_poisson_extended.py. We achieve some interesting results.
Using the infinity norm of the difference of the degrees of freedom, we obtain
the following table:

element n = 8 n = 16 n = 32 n = 64

P1 1.99 2.00 2.00 2.00
P2 3.99 4.00 4.00 4.01
P3 3.95 3.99 3.99 3.92

An entry like 3.99 for n = 32 and P3 means that we estimate the rate 3.99
by comparing two meshes, with resolutions n = 32 and n = 16, using P3
elements. Note the superconvergence for P2 at the nodes. The best estimates
of the rates appear in the right-most column, since these rates are based
on the finest resolutions and are hence deepest into the asymptotic regime
(until we reach a level where round-off errors and inexact solution of the
linear system starts to play a role).

The L2-norm errors computed using the FEniCS errornorm function show
the expected hd+1 rate for u:

element n = 8 n = 16 n = 32 n = 64

P1 1.97 1.99 2.00 2.00
P2 3.00 3.00 3.00 3.00
P3 4.04 4.02 4.01 4.00

However, using (u_e - u)**2 for the error computation, with the same de-
gree for the interpolation of u_e as for u, gives strange results:

https://fenicsproject.org/pub/tutorial/python/vol1/ft10_poisson_extended.py
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element n = 8 n = 16 n = 32 n = 64

P1 1.97 1.99 2.00 2.00
P2 3.00 3.00 3.00 3.01
P3 4.04 4.07 1.91 0.00

This is an example where it is important to interpolate u_e to a higher-
order space (polynomials of degree 3 are sufficient here). This is handled
automatically by using the errornorm function.

Checking convergence rates is an excellent method for verifying PDE
codes.

5.5.5 Taking advantage of structured mesh data

Many readers have extensive experience with visualization and data analysis
of 1D, 2D, and 3D scalar and vector fields on uniform, structured meshes,
while FEniCS solvers exclusively work with unstructured meshes. Since it
can many times be practical to work with structured data, we discuss in this
section how to extract structured data for finite element solutions computed
with FEniCS.

A necessary first step is to transform our Mesh object to an object repre-
senting a rectangle (or a 3D box) with equally-shaped rectangular cells. The
second step is to transform the one-dimensional array of nodal values to a
two-dimensional array holding the values at the corners of the cells in the
structured mesh. We want to access a value by its i and j indices, i counting
cells in the x direction, and j counting cells in the y direction. This trans-
formation is in principle straightforward, yet it frequently leads to obscure
indexing errors, so using software tools to ease the work is advantageous.

In the directory of example programs included with this book, we have
included the Python module boxfield which provides utilities for working
with structured mesh data in FEniCS. Given a finite element function u, the
following function returns a BoxField object that represents u on a structured
mesh:

from boxfield import *
u_box = FEniCSBoxField(u, (nx, ny))

The u_box object contains several useful data structures:

• u_box.grid: object for the structured mesh
• u_box.grid.coor[X]: grid coordinates in X=0 direction
• u_box.grid.coor[Y]: grid coordinates in Y=1 direction
• u_box.grid.coor[Z]: grid coordinates in Z=2 direction
• u_box.grid.coorv[X]: vectorized version of u_box.grid.coor[X]
• u_box.grid.coorv[Y]: vectorized version of u_box.grid.coor[Y]

https://fenicsproject.org/pub/tutorial/python/vol1/boxfield.py
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• u_box.grid.coorv[Z]: vectorized version of u_box.grid.coor[Z]
• u_box.values: numpy array holding the u values; u_box.values[i,j]

holds u at the mesh point with coordinates
(u_box.grid.coor[X][i], u_box.grid.coor[Y][j])

Iterating over points and values. Let us now use the solver function
from the ft10_poisson_extended.py code to compute u, map it onto a
BoxField object for a structured mesh representation, and print the coordi-
nates and function values at all mesh points:

u = solver(p, f, u_b, nx, ny, 1, linear_solver=’direct’)
u_box = structured_mesh(u, (nx, ny))
u_ = u_box.values

# Iterate over 2D mesh points (i, j)
for j in range(u_.shape[1]):

for i in range(u_.shape[0]):
print(’u[%d, %d] = u(%g, %g) = %g’ %

(i, j,
u_box.grid.coor[X][i], u_box.grid.coor[Y][j],
u_[i, j]))

Computing finite difference approximations. Using the multidimen-
sional array u_ = u_box.values, we can easily express finite difference ap-
proximations of derivatives:

x = u_box.grid.coor[X]
dx = x[1] - x[0]
u_xx = (u_[i - 1, j] - 2*u_[i, j] + u_[i + 1, j]) / dx**2

Making surface plots. The ability to access a finite element field as struc-
tured data is handy in many occasions, e.g., for visualization and data anal-
ysis. Using Matplotlib, we can create a surface plot, as shown in Figure 5.1
(upper left):

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D # necessary for 3D plotting
from matplotlib import cm
fig = plt.figure()
ax = fig.gca(projection=’3d’)
cv = u_box.grid.coorv # vectorized mesh coordinates
ax.plot_surface(cv[X], cv[Y], u_, cmap=cm.coolwarm,

rstride=1, cstride=1)
plt.title(’Surface plot of solution’)

The key issue is to know that the coordinates needed for the surface plot is
in u_box.grid.coorv and that the values are in u_.

Making contour plots. A contour plot can also be made by Matplotlib:

https://fenicsproject.org/pub/tutorial/python/vol1/ft10_poisson_extended.py
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Fig. 5.1 Various plots of the solution on a structured mesh.

fig = plt.figure()
ax = fig.gca()
levels = [1.5, 2.0, 2.5, 3.5]
cs = ax.contour(cv[X], cv[Y], u_, levels=levels)
plt.clabel(cs) # add labels to contour lines
plt.axis(’equal’)
plt.title(’Contour plot of solution’)

The result appears in Figure 5.1 (upper right).

Making curve plots through the domain. A handy feature of BoxField
objects is the ability to give a starting point in the domain and a direction,
and then extract the field and corresponding coordinates along the nearest
line ofmesh points. We have already seen how to interpolate the solution along
a line in the mesh, but with BoxField you can pick out the computational
points (vertices) for examination of these points. Numerical methods often
show improved behavior at such points so this is of interest. For 3D fields one
can also extract data in a plane.

Say we want to plot u along the line y = 0.4. The mesh points, x, and the
u values along this line, u_val, can be extracted by

start = (0, 0.4)
x, u_val, y_fixed, snapped = u_box.gridline(start, direction=X)
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The variable snapped is true if the line is snapped onto to nearest gridline
and in that case y_fixed holds the snapped (altered) y value. The keyword
argument snap is by default True to avoid interpolation and force snapping.

A comparison of the numerical and exact solution along the line y ≈ 0.41
(snapped from y = 0.4) is made by the following code:

# Plot u along a line y = const and compare with exact solution
start = (0, 0.4)
x, u_val, y_fixed, snapped = u_box.gridline(start, direction=X)
u_e_val = [u_D((x_, y_fixed)) for x_ in x]
plt.figure()
plt.plot(x, u_val, ’r-’)
plt.plot(x, u_e_val, ’bo’)
plt.legend([’P1 elements’, ’exact’], loc=’best’)
plt.title(’Solution along line y=%g’ % y_fixed)
plt.xlabel(’x’); plt.ylabel(’u’)

See Figure 5.1 (lower left) for the resulting curve plot.

Making curve plots of the flux. Let us also compare the numerical and
exact fluxes −κ∂u/∂x along the same line as above:

# Plot the numerical and exact flux along the same line
flux_u = flux(u, kappa)
flux_u_x, flux_u_y = flux_u.split(deepcopy=True)
flux2_x = flux_u_x if flux_u_x.ufl_element().degree() == 1 \

else interpolate(flux_x,
FunctionSpace(u.function_space().mesh(), ’P’, 1))

flux_u_x_box = FEniCSBoxField(flux_u_x, (nx,ny))
x, flux_u_val, y_fixed, snapped = \

flux_u_x_box.gridline(start, direction=X)
y = y_fixed
plt.figure()
plt.plot(x, flux_u_val, ’r-’)
plt.plot(x, flux_u_x_exact(x, y_fixed), ’bo’)
plt.legend([’P1 elements’, ’exact’], loc=’best’)
plt.title(’Flux along line y=%g’ % y_fixed)
plt.xlabel(’x’); plt.ylabel(’u’)

The function flux called at the beginning of the code snippet is defined in
the example program ft10_poisson_extended.py and interpolates the flux
back into the function space.

Note that Matplotlib is one choice of plotting package. With the unified
interface in the SciTools package1 one can access Matplotlib, Gnuplot, MAT-
LAB, OpenDX, VisIt, and other plotting engines through the same API.

Test problem. The graphics referred to in Figure 5.1 correspond to a test
problem with prescribed solution ue =H(x)H(y), where

H(x) = e−16(x− 1
2 )2

sin(3πx) .

1 https://github.com/hplgit/scitools

https://fenicsproject.org/pub/tutorial/python/vol1/ft10_poisson_extended.py
https://github.com/hplgit/scitools


140 5 Extensions: Improving the Poisson solver

The corresponding right-hand side f is obtained by inserting the exact solu-
tion into the PDE and differentiating as before. Although it is easy to carry
out the differentiation of f by hand and hardcode the resulting expressions
in an Expression object, a more reliable habit is to use Python’s symbolic
computing engine, SymPy, to perform mathematics and automatically turn
formulas into C++ syntax for Expression objects. A short introduction was
given in Section 3.2.3.

We start out with defining the exact solution in sympy:

from sympy import exp, sin, pi # for use in math formulas
import sympy as sym

H = lambda x: exp(-16*(x-0.5)**2)*sin(3*pi*x)
x, y = sym.symbols(’x[0], x[1]’)
u = H(x)*H(y)

Turning the expression for u into C or C++ syntax for Expression objects
needs two steps. First we ask for the C code of the expression:

u_code = sym.printing.ccode(u)

Printing u_code gives (the output is here manually broken into two lines):

-exp(-16*pow(x[0] - 0.5, 2) - 16*pow(x[1] - 0.5, 2))*
sin(3*M_PI*x[0])*sin(3*M_PI*x[1])

The necessary syntax adjustment is replacing the symbol M_PI for π in
C/C++ by pi (or DOLFIN_PI):

u_code = u_code.replace(’M_PI’, ’pi’)
u_b = Expression(u_code, degree=1)

Thereafter, we can progress with the computation of f =−∇· (κ∇u):

kappa = 1
f = sym.diff(-kappa*sym.diff(u, x), x) + \

sym.diff(-kappa*sym.diff(u, y), y)
f = sym.simplify(f)
f_code = sym.printing.ccode(f)
f_code = f_code.replace(’M_PI’, ’pi’)
f = Expression(f_code, degree=1)

We also need a Python function for the exact flux −κ∂u/∂x:

flux_u_x_exact = sym.lambdify([x, y], -kappa*sym.diff(u, x),
modules=’numpy’)

It remains to define kappa = Constant(1) and set nx and ny before calling
solver to compute the finite element solution of this problem.
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5.6 Taking the next step

If you have come this far, you have learned how to both write simple script-
like solvers for a range of PDEs, and how to structure Python solvers using
functions and unit tests. Solving a more complex PDE and writing a more
full-featured PDE solver is not much harder and the first step is typically to
write a solver for a stripped-down test case as a simple Python script. As the
script matures and becomes more complex, it is time to think about design,
in particular how to modularize the code and organize it into reusable pieces
that can be used to build a flexible and extensible solver.

On the FEniCS web site you will find more extensive documentation, more
example programs, and links to advanced solvers and applications written on
top of FEniCS. Get inspired and develop your own solver for your favorite
application, publish your code and share your knowledge with the FEniCS
community and the world!

PS: Stay tuned for the FEniCS Tutorial Volume 2!
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