
Chapter 2
Fundamentals: Solving the Poisson
equation

The goal of this chapter is to show how the Poisson equation, the most basic of
all PDEs, can be quickly solved with a few lines of FEniCS code. We introduce
the most fundamental FEniCS objects such as Mesh, Function, FunctionSpace,
TrialFunction, and TestFunction, and learn how to write a basic PDE solver,
including how to formulate the mathematical variational problem, apply boundary
conditions, call the FEniCS solver, and plot the solution.

2.1 Mathematical problem formulation

Many books on programming languages start with a “Hello, World!” program.
Readers are curious to know how fundamental tasks are expressed in the
language, and printing a text to the screen can be such a task. In the world
of finite element methods for PDEs, the most fundamental task must be to
solve the Poisson equation. Our counterpart to the classical “Hello, World!”
program therefore solves the following boundary-value problem:

−∇2u(x) = f(x), x in Ω, (2.1)
u(x) = uD(x), x on ∂Ω . (2.2)

Here, u = u(x) is the unknown function, f = f(x) is a prescribed function,
∇2 is the Laplace operator (often written as ∆), Ω is the spatial domain,
and ∂Ω is the boundary of Ω. The Poisson problem, including both the
PDE −∇2u = f and the boundary condition u = uD on ∂Ω, is an example
of a boundary-value problem, which must be precisely stated before it makes
sense to start solving it with FEniCS.

In two space dimensions with coordinates x and y, we can write out the
Poisson equation as

11© The Author(s) 2016
H.P Langtangen and A. Logg, Solving PDEs in Python,
Simula SpringerBriefs on Computing 3, DOI 10.1007/978-3-319-52462-7_2

12 2 Fundamentals: Solving the Poisson equation

− ∂
2u

∂x2 −
∂2u

∂y2 = f(x,y) . (2.3)

The unknown u is now a function of two variables, u = u(x,y), defined over
a two-dimensional domain Ω.

The Poisson equation arises in numerous physical contexts, including heat
conduction, electrostatics, diffusion of substances, twisting of elastic rods, in-
viscid fluid flow, and water waves. Moreover, the equation appears in numer-
ical splitting strategies for more complicated systems of PDEs, in particular
the Navier–Stokes equations.

Solving a boundary-value problem such as the Poisson equation in FEniCS
consists of the following steps:

1. Identify the computational domain (Ω), the PDE, its boundary conditions,
and source terms (f).

2. Reformulate the PDE as a finite element variational problem.
3. Write a Python program which defines the computational domain, the

variational problem, the boundary conditions, and source terms, using the
corresponding FEniCS abstractions.

4. Call FEniCS to solve the boundary-value problem and, optionally, extend
the program to compute derived quantities such as fluxes and averages,
and visualize the results.

We shall now go through steps 2–4 in detail. The key feature of FEniCS is
that steps 3 and 4 result in fairly short code, while a similar program in most
other software frameworks for PDEs require much more code and technically
difficult programming.

What makes FEniCS attractive?
Although many software frameworks have a really elegant “Hello,
World!” example for the Poisson equation, FEniCS is to our knowl-
edge the only framework where the code stays compact and nice, very
close to the mathematical formulation, even when the mathematical
and algorithmic complexity increases and when moving from a laptop
to a high-performance compute server (cluster).

2.1.1 Finite element variational formulation

FEniCS is based on the finite element method, which is a general and efficient
mathematical machinery for the numerical solution of PDEs. The starting
point for the finite element methods is a PDE expressed in variational form.
Readers who are not familiar with variational problems will get a very brief
introduction to the topic in this tutorial, but reading a proper book on the

2.1 Mathematical problem formulation 13

finite element method in addition is encouraged. Section 1.6.2 contains a list
of recommended books. Experience shows that you can work with FEniCS as
a tool to solve PDEs even without thorough knowledge of the finite element
method, as long as you get somebody to help you with formulating the PDE
as a variational problem.

The basic recipe for turning a PDE into a variational problem is to multiply
the PDE by a function v, integrate the resulting equation over the domain Ω,
and perform integration by parts of terms with second-order derivatives. The
function v which multiplies the PDE is called a test function. The unknown
function u to be approximated is referred to as a trial function. The terms
trial and test functions are used in FEniCS programs too. The trial and
test functions belong to certain so-called function spaces that specify the
properties of the functions.

In the present case, we first multiply the Poisson equation by the test
function v and integrate over Ω:

−
∫
Ω

(∇2u)vdx=
∫
Ω
fvdx. (2.4)

We here let dx denote the differential element for integration over the domain
Ω. We will later let ds denote the differential element for integration over
the boundary of Ω.

A common rule when we derive variational formulations is that we try to
keep the order of the derivatives of u and v as small as possible. Here, we
have a second-order spatial derivative of u, which can be transformed to a
first-derivative of u and v by applying the technique of integration by parts1.
The formula reads

−
∫
Ω

(∇2u)vdx=
∫
Ω
∇u ·∇vdx−

∫
∂Ω

∂u

∂n
vds, (2.5)

where ∂u
∂n =∇u ·n is the derivative of u in the outward normal direction n

on the boundary.
Another feature of variational formulations is that the test function v is

required to vanish on the parts of the boundary where the solution u is known
(the book [24] explains in detail why this requirement is necessary). In the
present problem, this means that v = 0 on the whole boundary ∂Ω. The
second term on the right-hand side of (2.5) therefore vanishes. From (2.4)
and (2.5) it follows that ∫

Ω
∇u ·∇vdx=

∫
Ω
fvdx. (2.6)

If we require that this equation holds for all test functions v in some suit-
able space V̂ , the so-called test space, we obtain a well-defined mathematical
problem that uniquely determines the solution u which lies in some (possi-

1 https://en.wikipedia.org/wiki/Integration_by_parts

https://en.wikipedia.org/wiki/Integration_by_parts

14 2 Fundamentals: Solving the Poisson equation

bly different) function space V , the so-called trial space. We refer to (2.6) as
the weak form or variational form of the original boundary-value problem
(2.1)–(2.2).

The proper statement of our variational problem now goes as follows: find
u ∈ V such that ∫

Ω
∇u ·∇vdx=

∫
Ω
fvdx ∀v ∈ V̂ . (2.7)

The trial and test spaces V and V̂ are in the present problem defined as

V = {v ∈H1(Ω) : v = uD on ∂Ω},
V̂ = {v ∈H1(Ω) : v = 0 on ∂Ω} .

In short, H1(Ω) is the mathematically well-known Sobolev space containing
functions v such that v2 and |∇v|2 have finite integrals over Ω (essentially
meaning that the functions are continuous). The solution of the underlying
PDE must lie in a function space where the derivatives are also continuous,
but the Sobolev space H1(Ω) allows functions with discontinuous derivatives.
This weaker continuity requirement of u in the variational statement (2.7), as
a result of the integration by parts, has great practical consequences when it
comes to constructing finite element function spaces. In particular, it allows
the use of piecewise polynomial function spaces; i.e., function spaces con-
structed by stitching together polynomial functions on simple domains such
as intervals, triangles, or tetrahedrons.

The variational problem (2.7) is a continuous problem: it defines the solu-
tion u in the infinite-dimensional function space V . The finite element method
for the Poisson equation finds an approximate solution of the variational prob-
lem (2.7) by replacing the infinite-dimensional function spaces V and V̂ by
discrete (finite-dimensional) trial and test spaces Vh ⊂ V and V̂h ⊂ V̂ . The
discrete variational problem reads: find uh ∈ Vh ⊂ V such that∫

Ω
∇uh ·∇vdx=

∫
Ω
fvdx ∀v ∈ V̂h ⊂ V̂ . (2.8)

This variational problem, together with a suitable definition of the func-
tion spaces Vh and V̂h, uniquely define our approximate numerical solution
of Poisson’s equation (2.1). Note that the boundary conditions are encoded
as part of the trial and test spaces. The mathematical framework may seem
complicated at first glance, but the good news is that the finite element vari-
ational problem (2.8) looks the same as the continuous variational problem
(2.7), and FEniCS can automatically solve variational problems like (2.8)!

2.1 Mathematical problem formulation 15

What we mean by the notation u and V

The mathematics literature on variational problems writes uh for the
solution of the discrete problem and u for the solution of the continu-
ous problem. To obtain (almost) a one-to-one relationship between the
mathematical formulation of a problem and the corresponding FEniCS
program, we shall drop the subscript h and use u for the solution of the
discrete problem. We will use ue for the exact solution of the continuous
problem, if we need to explicitly distinguish between the two. Similarly,
we will let V denote the discrete finite element function space in which
we seek our solution.

2.1.2 Abstract finite element variational formulation

It turns out to be convenient to introduce the following canonical notation
for variational problems: find u ∈ V such that

a(u,v) = L(v) ∀v ∈ V̂ . (2.9)

For the Poisson equation, we have:

a(u,v) =
∫
Ω
∇u ·∇vdx, (2.10)

L(v) =
∫
Ω
fvdx. (2.11)

From the mathematics literature, a(u,v) is known as a bilinear form and
L(v) as a linear form. We shall, in every linear problem we solve, identify the
terms with the unknown u and collect them in a(u,v), and similarly collect
all terms with only known functions in L(v). The formulas for a and L can
then be expressed directly in our FEniCS programs.

To solve a linear PDE in FEniCS, such as the Poisson equation, a user
thus needs to perform only two steps:

• Choose the finite element spaces V and V̂ by specifying the domain (the
mesh) and the type of function space (polynomial degree and type).

• Express the PDE as a (discrete) variational problem: find u ∈ V such that
a(u,v) = L(v) for all v ∈ V̂ .

16 2 Fundamentals: Solving the Poisson equation

2.1.3 Choosing a test problem

The Poisson problem (2.1)–(2.2) has so far featured a general domain Ω and
general functions uD for the boundary conditions and f for the right-hand
side. For our first implementation we will need to make specific choices for
Ω, uD , and f . It will be wise to construct a problem with a known analytical
solution so that we can easily check that the computed solution is correct.
Solutions that are lower-order polynomials are primary candidates. Standard
finite element function spaces of degree r will exactly reproduce polynomials
of degree r. And piecewise linear elements (r = 1) are able to exactly repro-
duce a quadratic polynomial on a uniformly partitioned mesh. This important
result can be used to verify our implementation. We just manufacture some
quadratic function in 2D as the exact solution, say

ue(x,y) = 1 +x2 + 2y2 . (2.12)

By inserting (2.12) into the Poisson equation (2.1), we find that ue(x,y) is a
solution if

f(x,y) =−6, uD(x,y) = ue(x,y) = 1 +x2 + 2y2,

regardless of the shape of the domain as long as ue is prescribed along the
boundary. We choose here, for simplicity, the domain to be the unit square,

Ω = [0,1]× [0,1] .

This simple but very powerful method for constructing test problems is called
the method of manufactured solutions: pick a simple expression for the exact
solution, plug it into the equation to obtain the right-hand side (source term
f), then solve the equation with this right-hand side and using the exact
solution as a boundary condition, and try to reproduce the exact solution.

Tip: Try to verify your code with exact numerical solutions!

A common approach to testing the implementation of a numerical
method is to compare the numerical solution with an exact analyti-
cal solution of the test problem and conclude that the program works if
the error is “small enough”. Unfortunately, it is impossible to tell if an
error of size 10−5 on a 20×20 mesh of linear elements is the expected
(in)accuracy of the numerical approximation or if the error also contains
the effect of a bug in the code. All we usually know about the numerical
error is its asymptotic properties, for instance that it is proportional to
h2 if h is the size of a cell in the mesh. Then we compare the error
on meshes with different h-values to see if the asymptotic behavior is
correct. This is a very powerful verification technique and is explained

2.2 FEniCS implementation 17

in detail in Section 5.5.4. However, if we have a test problem for which
we know that there should be no approximation errors, we know that
the analytical solution of the PDE problem should be reproduced to
machine precision by the program. That is why we emphasize this kind
of test problems throughout this tutorial. Typically, elements of degree
r can reproduce polynomials of degree r exactly, so this is the start-
ing point for constructing a solution without numerical approximation
errors.

2.2 FEniCS implementation

2.2.1 The complete program

A FEniCS program for solving our test problem for the Poisson equation in
2D with the given choices of Ω, uD , and f may look as follows:

from fenics import *

Create mesh and define function space
mesh = UnitSquareMesh(8, 8)
V = FunctionSpace(mesh, ’P’, 1)

Define boundary condition
u_D = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’, degree=2)

def boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u_D, boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = dot(grad(u), grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u)
plot(mesh)

Save solution to file in VTK format
vtkfile = File(’poisson/solution.pvd’)
vtkfile << u

18 2 Fundamentals: Solving the Poisson equation

Compute error in L2 norm
error_L2 = errornorm(u_D, u, ’L2’)

Compute maximum error at vertices
vertex_values_u_D = u_D.compute_vertex_values(mesh)
vertex_values_u = u.compute_vertex_values(mesh)
import numpy as np
error_max = np.max(np.abs(vertex_values_u_D - vertex_values_u))

Print errors
print(’error_L2 =’, error_L2)
print(’error_max =’, error_max)

Hold plot
interactive()

This example program can be found in the file ft01_poisson.py.

2.2.2 Running the program

The FEniCS program must be available in a plain text file, written with a
text editor such as Atom, Sublime Text, Emacs, Vim, or similar. There are
several ways to run a Python program like ft01_poisson.py:

• Use a terminal window.
• Use an integrated development environment (IDE), e.g., Spyder.
• Use a Jupyter notebook.

Terminal window. Open a terminal window, move to the directory con-
taining the program and type the following command:

Terminal

Terminal> python ft01_poisson.py

Note that this command must be run in a FEniCS-enabled terminal. For
users of the FEniCS Docker containers, this means that you must type this
command after you have started a FEniCS session using fenicsproject run
or fenicsproject start.

When running the above command, FEniCS will run the program to com-
pute the approximate solution u. The approximate solution u will be com-
pared to the exact solution ue = uD and the error in the L2 and maximum
norms will be printed. Since we know that our approximate solution should
reproduce the exact solution to within machine precision, this error should be
small, something on the order of 10−15. If plotting is enabled in your FEniCS
installation, then a window with a simple plot of the solution will appear as
in Figure 2.1.

https://fenicsproject.org/pub/tutorial/python/vol1/ft01_poisson.py
https://fenicsproject.org/pub/tutorial/python/vol1/ft01_poisson.py

2.3 Dissection of the program 19

Spyder. Many prefer to work in an integrated development environment
that provides an editor for programming, a window for executing code, a
window for inspecting objects, etc. Just open the file ft01_poisson.py and
press the play button to run it. We refer to the Spyder tutorial to learn more
about working in the Spyder environment. Spyder is highly recommended if
you are used to working in the graphical MATLAB environment.

Jupyter notebooks. Notebooks make it possible to mix text and executable
code in the same document, but you can also just use it to run programs in a
web browser. Run the command jupyter notebook from a terminal window,
find the New pulldown menu in the upper right corner of the GUI, choose
a new notebook in Python 2 or 3, write %load ft01_poisson.py in the
blank cell of this notebook, then press Shift+Enter to execute the cell. The
file ft01_poisson.py will then be loaded into the notebook. Re-execute the
cell (Shift+Enter) to run the program. You may divide the entire program
into several cells to examine intermediate results: place the cursor where
you want to split the cell and choose Edit - Split Cell. For users of the
FEniCS Docker images, run the fenicsproject notebook command and
follow the instructions. To enable plotting, make sure to run the command
%matplotlib inline inside the notebook.

2.3 Dissection of the program

We shall now dissect our FEniCS program in detail. The listed FEniCS pro-
gram defines a finite element mesh, a finite element function space V on this
mesh, boundary conditions for u (the function uD), and the bilinear and lin-
ear forms a(u,v) and L(v). Thereafter, the solution u is computed. At the
end of the program, we compare the numerical and the exact solutions. We
also plot the solution using the plot command and save the solution to a file
for external postprocessing.

2.3.1 The important first line

The first line in the program,

from fenics import *

imports the key classes UnitSquareMesh, FunctionSpace, Function, and so
forth, from the FEniCS library. All FEniCS programs for solving PDEs by
the finite element method normally start with this line.

https://fenicsproject.org/pub/tutorial/python/vol1/ft01_poisson.py
https://fenicsproject.org/pub/tutorial/python/vol1/ft01_poisson.py

20 2 Fundamentals: Solving the Poisson equation

2.3.2 Generating simple meshes

The statement

mesh = UnitSquareMesh(8, 8)

defines a uniform finite element mesh over the unit square [0,1]× [0,1]. The
mesh consists of cells, which in 2D are triangles with straight sides. The
parameters 8 and 8 specify that the square should be divided into 8× 8
rectangles, each divided into a pair of triangles. The total number of triangles
(cells) thus becomes 128. The total number of vertices in the mesh is 9 ·9 = 81.
In later chapters, you will learn how to generate more complex meshes.

2.3.3 Defining the finite element function space

Once the mesh has been created, we can create a finite element function space
V:

V = FunctionSpace(mesh, ’P’, 1)

The second argument ’P’ specifies the type of element. The type of ele-
ment here is P, implying the standard Lagrange family of elements. You may
also use ’Lagrange’ to specify this type of element. FEniCS supports all
simplex element families and the notation defined in the Periodic Table of
the Finite Elements2 [2].

The third argument 1 specifies the degree of the finite element. In this case,
the standard P1 linear Lagrange element, which is a triangle with nodes at
the three vertices. Some finite element practitioners refer to this element
as the “linear triangle”. The computed solution u will be continuous across
elements and linearly varying in x and y inside each element. Higher-degree
polynomial approximations over each cell are trivially obtained by increasing
the third parameter to FunctionSpace, which will then generate function
spaces of type P2, P3, and so forth. Changing the second parameter to ’DP’
creates a function space for discontinuous Galerkin methods.

2.3.4 Defining the trial and test functions

In mathematics, we distinguish between the trial and test spaces V and V̂ .
The only difference in the present problem is the boundary conditions. In
FEniCS we do not specify the boundary conditions as part of the function

2 https://www.femtable.org

https://www.femtable.org
https://www.femtable.org

2.3 Dissection of the program 21

space, so it is sufficient to work with one common space V for both the trial
and test functions in the program:

u = TrialFunction(V)
v = TestFunction(V)

2.3.5 Defining the boundary conditions

The next step is to specify the boundary condition: u = uD on ∂Ω. This is
done by

bc = DirichletBC(V, u_D, boundary)

where u_D is an expression defining the solution values on the boundary,
and boundary is a function (or object) defining which points belong to the
boundary.

Boundary conditions of the type u= uD are known as Dirichlet conditions.
For the present finite element method for the Poisson problem, they are also
called essential boundary conditions, as they need to be imposed explicitly as
part of the trial space (in contrast to being defined implicitly as part of the
variational formulation). Naturally, the FEniCS class used to define Dirichlet
boundary conditions is named DirichletBC.

The variable u_D refers to an Expression object, which is used to represent
a mathematical function. The typical construction is

u_D = Expression(formula, degree=1)

where formula is a string containing a mathematical expression. The for-
mula must be written with C++ syntax and is automatically turned into an
efficient, compiled C++ function.

Expressions and accuracy

When defining an Expression, the second argument degree is a pa-
rameter that specifies how the expression should be treated in compu-
tations. On each local element, FEniCS will interpolate the expression
into a finite element space of the specified degree. To obtain optimal
(order of) accuracy in computations, it is usually a good choice to use
the same degree as for the space V that is used for the trial and test
functions. However, if an Expression is used to represent an exact so-
lution which is used to evaluate the accuracy of a computed solution,
a higher degree must be used for the expression (one or two degrees
higher).

22 2 Fundamentals: Solving the Poisson equation

The expression may depend on the variables x[0] and x[1] correspond-
ing to the x and y coordinates. In 3D, the expression may also depend on
the variable x[2] corresponding to the z coordinate. With our choice of
uD(x,y) = 1+x2 +2y2, the formula string can be written as 1 + x[0]*x[0]
+ 2*x[1]*x[1]:

u_D = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’, degree=2)

We set the degree to 2 so that u_D may represent the exact quadratic
solution to our test problem.

String expressions must have valid C++ syntax!

The string argument to an Expression object must obey C++ syntax.
Most Python syntax for mathematical expressions is also valid C++
syntax, but power expressions make an exception: p**a must be writ-
ten as pow(p, a) in C++ (this is also an alternative Python syntax).
The following mathematical functions can be used directly in C++ ex-
pressions when defining Expression objects: cos, sin, tan, acos, asin,
atan, atan2, cosh, sinh, tanh, exp, frexp, ldexp, log, log10, modf,
pow, sqrt, ceil, fabs, floor, and fmod. Moreover, the number π is
available as the symbol pi. All the listed functions are taken from the
cmath C++ header file, and one may hence consult the documentation
of cmath for more information on the various functions.

If/else tests are possible using the C syntax for inline branching. The
function

f(x,y) =
{
x2, x,y ≥ 0,
2, otherwise,

is implemented as

f = Expression(’x[0]>=0 && x[1]>=0 ? pow(x[0], 2) : 2’, degree=2)

Parameters in expression strings are allowed, but must be initial-
ized via keyword arguments when creating the Expression object. For
example, the function f(x) = e−κπ

2t sin(πkx) can be coded as

f = Expression(’exp(-kappa*pow(pi, 2)*t)*sin(pi*k*x[0])’, degree=2,
kappa=1.0, t=0, k=4)

At any time, parameters can be updated:

f.t += dt
f.k = 10

The function boundary specifies which points that belong to the part of
the boundary where the boundary condition should be applied:

2.3 Dissection of the program 23

def boundary(x, on_boundary):
return on_boundary

A function like boundary for marking the boundary must return a boolean
value: True if the given point x lies on the Dirichlet boundary and False
otherwise. The argument on_boundary is True if x is on the physical bound-
ary of the mesh, so in the present case, where we are supposed to return
True for all points on the boundary, we can just return the supplied value of
on_boundary. The boundary function will be called for every discrete point
in the mesh, which means that we may define boundaries where u is also
known inside the domain, if desired.

One way to think about the specification of boundaries in FEniCS is that
FEniCS will ask you (or rather the function boundary which you have imple-
mented) whether or not a specific point x is part of the boundary. FEniCS
already knows whether the point belongs to the actual boundary (the math-
ematical boundary of the domain) and kindly shares this information with
you in the variable on_boundary. You may choose to use this information (as
we do here), or ignore it completely.

The argument on_boundary may also be omitted, but in that case we need
to test on the value of the coordinates in x:

def boundary(x):
return x[0] == 0 or x[1] == 0 or x[0] == 1 or x[1] == 1

Comparing floating-point values using an exact match test with == is not good
programming practice, because small round-off errors in the computations of
the x values could make a test x[0] == 1 become false even though x lies on
the boundary. A better test is to check for equality with a tolerance, either
explicitly

tol = 1E-14
def boundary(x):

return abs(x[0]) < tol or abs(x[1]) < tol \
or abs(x[0] - 1) < tol or abs(x[1] - 1) < tol

or using the near command in FEniCS:

def boundary(x):
return near(x[0], 0, tol) or near(x[1], 0, tol) \

or near(x[0], 1, tol) or near(x[1], 1, tol)

Never use == for comparing real numbers!

A comparison like x[0] == 1 should never be used if x[0] is a real
number, because rounding errors in x[0] may make the test fail even
when it is mathematically correct. Consider the following calculations
in Python:

24 2 Fundamentals: Solving the Poisson equation

>>> 0.1 + 0.2 == 0.3
False
>>> 0.1 + 0.2
0.30000000000000004

Comparison of real numbers needs to be made with tolerances! The
values of the tolerances depend on the size of the numbers involved in
arithmetic operations:

>>> abs(0.1 + 0.2 - 0.3)
5.551115123125783e-17
>>> abs(1.1 + 1.2 - 2.3)
0.0
>>> abs(10.1 + 10.2 - 20.3)
3.552713678800501e-15
>>> abs(100.1 + 100.2 - 200.3)
0.0
>>> abs(1000.1 + 1000.2 - 2000.3)
2.2737367544323206e-13
>>> abs(10000.1 + 10000.2 - 20000.3)
3.637978807091713e-12

For numbers of unit size, tolerances as low as 3 ·10−16 can be used (in
fact, this tolerance is known as the constant DOLFIN_EPS in FEniCS).
Otherwise, an appropriately scaled tolerance must be used.

2.3.6 Defining the source term

Before defining the bilinear and linear forms a(u,v) and L(v) we have to
specify the source term f :

f = Expression(’-6’, degree=0)

When f is constant over the domain, f can be more efficiently represented
as a Constant:

f = Constant(-6)

2.3.7 Defining the variational problem

We now have all the ingredients we need to define the variational problem:

a = dot(grad(u), grad(v))*dx
L = f*v*dx

2.3 Dissection of the program 25

In essence, these two lines specify the PDE to be solved. Note the very close
correspondence between the Python syntax and the mathematical formulas
∇u · ∇vdx and fvdx. This is a key strength of FEniCS: the formulas in
the variational formulation translate directly to very similar Python code,
a feature that makes it easy to specify and solve complicated PDE prob-
lems. The language used to express weak forms is called UFL (Unified Form
Language) [1, 26] and is an integral part of FEniCS.

Expressing inner products

The inner product
∫
Ω∇u ·∇vdx can be expressed in various ways in

FEniCS. Above, we have used the notation dot(grad(u), grad(v))*dx.
The dot product in FEniCS/UFL computes the sum (contraction) over
the last index of the first factor and the first index of the second factor.
In this case, both factors are tensors of rank one (vectors) and so the
sum is just over the one single index of both ∇u and ∇v. To compute
an inner product of matrices (with two indices), one must instead of
dot use the function inner. For vectors, dot and inner are equivalent.

2.3.8 Forming and solving the linear system

Having defined the finite element variational problem and boundary condi-
tion, we can now ask FEniCS to compute the solution:

u = Function(V)
solve(a == L, u, bc)

Note that we first defined the variable u as a TrialFunction and used it
to represent the unknown in the form a. Thereafter, we redefined u to be a
Function object representing the solution; i.e., the computed finite element
function u. This redefinition of the variable u is possible in Python and is often
used in FEniCS applications for linear problems. The two types of objects
that u refers to are equal from a mathematical point of view, and hence it is
natural to use the same variable name for both objects.

2.3.9 Plotting the solution using the plot command

Once the solution has been computed, it can be visualized by the plot com-
mand:

plot(u)
plot(mesh)

26 2 Fundamentals: Solving the Poisson equation

interactive()

Note the call to the function interactive after the plot commands. This
call makes it possible to interact with the plots (rotating and zooming). The
call to interactive is usually placed at the end of a program that creates
plots. Figure 2.1 displays the two plots.

Fig. 2.1 Plot of the mesh and the solution for the Poisson problem created using the
built-in FEniCS visualization tool (plot command).

The plot command is useful for debugging and initial scientific investi-
gations. More advanced visualizations are better created by exporting the
solution to a file and using an advanced visualization tool like ParaView, as
explained in the next section.

By clicking the left mouse button in the plot window, you may rotate the
solution, while the right mouse button is used for zooming. Point the mouse to
the Help text in the lower left corner to display a list of all available shortcut
commands. The help menu may alternatively be activated by typing h in
the plot window. The plot command also accepts a number of additional
arguments, such as for example setting the title of the plot window:

plot(u, title=’Finite element solution’)
plot(mesh, title=’Finite element mesh’)

For detailed documentation, either run the command help(plot) in Python
or pydoc fenics.plot from a terminal window.

Built-in plotting on Mac OS X and in Docker

The built-in plotting in FEniCS may not work as expected when either
running on Mac OS X or when running inside a FEniCS Docker con-
tainer. FEniCS supports plotting using the plot command on Mac OS
X. However, the keyboard shortcuts may fail to work. When running

2.3 Dissection of the program 27

inside a Docker container, plotting is not supported since Docker does
not interact with your windowing system. For Docker users who need
plotting, it is recommended to either work within a Jupyter/FEniCS
notebook (command fenicsproject notebook) or rely on ParaView
or other external tools for visualization.

2.3.10 Plotting the solution using ParaView

The simple plot command is useful for quick visualizations, but for more
advanced visualizations an external tool must be used. In this section we
demonstrate how to visualize solutions in ParaView. ParaView3 is a powerful
tool for visualizing scalar and vector fields, including those computed by
FEniCS.

The first step is to export the solution in VTK format:

vtkfile = File(’poisson/solution.pvd’)
vtkfile << u

The following steps demonstrate how to create a plot of the solution of our
Poisson problem in ParaView. The resulting plot is shown in Figure 2.2.

1. Start the ParaView application.
2. Click File–Open... in the top menu and navigate to the directory con-

taining the exported solution. This should be inside a subdirectory named
poisson below the directory where the FEniCS Python program was
started. Select the file named solution.pvd and then click OK.

3. Click Apply in the Properties pane on the left. This will bring up a plot
of the solution.

4. To make a 3D plot of the solution, we will make use of one of ParaView’s
many filters. Click Filters–Alphabetical–Warp By Scalar in the top
menu and then Apply in the Properties pane on the left. This create an
elevated surface with the height determined by the solution value.

5. To show the original plot below the elevated surface, click the little eye
icon to the left of solution.pvd in the Pipeline Browser pane on the left.
Also click the little 2D button at the top of the plot window to change the
visualization to 3D. This lets you interact with the plot by rotating (left
mouse button) and zooming (Ctrl + left mouse button).

6. To show the finite element mesh, click on solution.pvd in the Pipeline
Browser, navigate to Representation in the Properties pane, and select
Surface With Edges. This should make the finite element mesh visible.

7. To change the aspect ratio of the plot, click on WarpByScalar1 in

the Pipeline Browser and navigate to Scale Factor in the Properties pane.
Change the value to 0.2 and click Apply. This will change the scale of the
3 http://www.paraview.org

http://www.paraview.org

28 2 Fundamentals: Solving the Poisson equation

warped plot. We also unclick Orientation Axis Visibility at the bottom
of the Properties pane to remove the little 3D axes in the lower left corner of
the plot window. You should now see something that resembles the plot in
Figure 2.2.

1. Finally, to export the visualization to a file, click File–Save Screen-
shot... and select a suitable file name such as poisson.png.

For more information, we refer to The ParaView Guide [30] (free PDF avail-
able), the ParaView tutorial4, and the instruction video Introduction to Par-
aView5.

Fig. 2.2 Plot of the mesh and the solution for the Poisson problem created using
ParaView.

2.3.11 Computing the error

Finally, we compute the error to check the accuracy of the solution. We do
this by comparing the finite element solution u with the exact solution, which
in this example happens to be the same as the expression u_D used to set the
boundary conditions. We compute the error in two different ways. First, we
compute the L2 norm of the error, defined by

4 http://www.paraview.org/Wiki/The_ParaView_Tutorial
5 https://vimeo.com/34037236

http://www.paraview.org/Wiki/The_ParaView_Tutorial
https://vimeo.com/34037236
https://vimeo.com/34037236

2.3 Dissection of the program 29

E =

√∫
Ω

(uD −u)2 dx.

Since the exact solution is quadratic and the finite element solution is piece-
wise linear, this error will be nonzero. To compute this error in FEniCS, we
simply write

error_L2 = errornorm(u_D, u, ’L2’)

The errornorm function can also compute other error norms such as the H1

norm. Type pydoc fenics.errornorm in a terminal window for details.
We also compute the maximum value of the error at all the vertices of the

finite element mesh. As mentioned above, we expect this error to be zero to
within machine precision for this particular example. To compute the error
at the vertices, we first ask FEniCS to compute the value of both u_D and u
at all vertices, and then subtract the results:

vertex_values_u_D = u_D.compute_vertex_values(mesh)
vertex_values_u = u.compute_vertex_values(mesh)
import numpy as np
error_max = np.max(np.abs(vertex_values_u_D - vertex_values_u))

We have here used the maximum and absolute value functions from numpy,
because these are much more efficient for large arrays (a factor of 30) than
Python’s built-in max and abs functions.

How to check that the error vanishes

With inexact (floating point) arithmetic, the maximum error at the ver-
tices is not zero, but should be a small number. The machine precision is
about 10−16, but in finite element calculations, rounding errors of this
size may accumulate, to produce an error larger than 10−16. Experi-
ments show that increasing the number of elements and increasing the
degree of the finite element polynomials increases the error. For a mesh
with 2×(20×20) cubic Lagrange elements (degree 3) the error is about
2 ·10−12, while for 128 linear elements the error is about 2 ·10−15.

2.3.12 Examining degrees of freedom and vertex values

A finite element function like u is expressed as a linear combination of basis
functions φj , spanning the space V :

u=
N∑
j=1

Ujφj . (2.13)

30 2 Fundamentals: Solving the Poisson equation

By writing solve(a == L, u, bc) in the program, a linear system will be
formed from a and L, and this system is solved for the values U1, . . . ,UN .
The values U1, . . . ,UN are known as the degrees of freedom (“dofs”) or nodal
values of u. For Lagrange elements (and many other element types) Uj is
simply the value of u at the node with global number j. The locations of
the nodes and cell vertices coincide for linear Lagrange elements, while for
higher-order elements there are additional nodes associated with the facets,
edges and sometimes also the interior of cells.

Having u represented as a Function object, we can either evaluate u(x)
at any point x in the mesh (expensive operation!), or we can grab all the
degrees of freedom in the vector U directly by

nodal_values_u = u.vector()

The result is a Vector object, which is basically an encapsulation of the
vector object used in the linear algebra package that is used to solve the linear
system arising from the variational problem. Since we program in Python it
is convenient to convert the Vector object to a standard numpy array for
further processing:

array_u = nodal_values_u.array()

With numpy arrays we can write MATLAB-like code to analyze the data.
Indexing is done with square brackets: array_u[j], where the index j al-
ways starts at 0. If the solution is computed with piecewise linear Lagrange
elements (P1), then the size of the array array_u is equal to the number of
vertices, and each array_u[j] is the value at some vertex in the mesh. How-
ever, the degrees of freedom are not necessarily numbered in the same way as
the vertices of the mesh. (This is discussed in some detail in Section 5.4.1).
If we therefore want to know the values at the vertices, we need to call the
function u.compute_vertex_values. This function returns the values at all
the vertices of the mesh as a numpy array with the same numbering as for
the vertices of the mesh, for example:

vertex_values_u = u.compute_vertex_values()

Note that for P1 elements, the arrays array_u and vertex_values_u have
the same lengths and contain the same values, albeit in different order.

2.4 Deflection of a membrane

Our first FEniCS program for the Poisson equation targeted a simple test
problem where we could easily verify the implementation. We now turn our
attention to a physically more relevant problem with solutions of somewhat
more exciting shape.

2.4 Deflection of a membrane 31

We want to compute the deflection D(x,y) of a two-dimensional, circular
membrane of radius R, subject to a load p over the membrane. The appro-
priate PDE model is

−T∇2D = p in Ω = {(x,y) |x2 +y2 ≤R} . (2.14)

Here, T is the tension in the membrane (constant), and p is the external
pressure load. The boundary of the membrane has no deflection, implying
D= 0 as a boundary condition. A localized load can be modeled as a Gaussian
function:

p(x,y) = A

2πσ exp
(
−1

2

(
x−x0
σ

)2
− 1

2

(
y−y0
σ

)2
)
. (2.15)

The parameter A is the amplitude of the pressure, (x0,y0) the localization
of the maximum point of the load, and σ the “width” of p. We will take the
center (x0,y0) of the pressure to be (0,R0) for some 0<R0 <R.

2.4.1 Scaling the equation

There are many physical parameters in this problem, and we can benefit
from grouping them by means of scaling. Let us introduce dimensionless
coordinates x̄ = x/R, ȳ = y/R, and a dimensionless deflection w = D/Dc,
where Dc is a characteristic size of the deflection. Introducing R̄0 = R0/R,
we obtain

−∂
2w

∂x̄2 −
∂2w

∂ȳ2 = αexp
(
−β2(x̄2 + (ȳ− R̄0)2)

)
for x̄2 + ȳ2 < 1,

where

α= R2A

2πTDcσ
, β = R√

2σ
.

With an appropriate scaling, w and its derivatives are of size unity, so the
left-hand side of the scaled PDE is about unity in size, while the right-hand
side has α as its characteristic size. This suggest choosing α to be unity,
or around unity. We shall in this particular case choose α = 4. (One can
also find the analytical solution in scaled coordinates and show that the
maximum deflection D(0,0) is Dc if we choose α= 4 to determine Dc.) With
Dc =AR2/(8πσT) and dropping the bars we obtain the scaled problem

−∇2w = 4exp
(
−β2(x2 + (y−R0)2)

)
, (2.16)

to be solved over the unit disc with w = 0 on the boundary. Now there are
only two parameters to vary: the dimensionless extent of the pressure, β, and

32 2 Fundamentals: Solving the Poisson equation

the localization of the pressure peak, R0 ∈ [0,1]. As β→ 0, the solution will
approach the special case w = 1−x2−y2.

Given a computed scaled solution w, the physical deflection can be com-
puted by

D = AR2

8πσT w.

Just a few modifications are necessary to our previous program to solve
this new problem.

2.4.2 Defining the mesh

A mesh over the unit disk can be created by the mshr tool in FEniCS:

from mshr import *
domain = Circle(Point(0, 0), 1)
mesh = generate_mesh(domain, 64)

The Circle shape from mshr takes the center and radius of the circle as
arguments. The second argument to the generate_mesh function specifies
the desired mesh resolution. The cell size will be (approximately) equal to
the diameter of the domain divided by the resolution.

2.4.3 Defining the load

The right-hand side pressure function is represented by an Expression ob-
ject. There are two physical parameters in the formula for f that enter the
expression string and these parameters must have their values set by keyword
arguments:

beta = 8
R0 = 0.6
p = Expression(’4*exp(-pow(beta, 2)*(pow(x[0], 2) + pow(x[1] - R0, 2)))’,

degree=1, beta=beta, R0=R0)

The coordinates in Expression objects are always an array x with compo-
nents x[0], x[1], and x[2], corresponding to x, y, and z. Otherwise we are
free to introduce names of parameters as long as these are given default values
by keyword arguments. All the parameters initialized by keyword arguments
can at any time have their values modified. For example, we may set

p.beta = 12
p.R0 = 0.3

2.4 Deflection of a membrane 33

2.4.4 Defining the variational problem

The variational problem and the boundary conditions are the same as in
our first Poisson problem, but we may introduce w instead of u as primary
unknown and p instead of f as right-hand side function:

w = TrialFunction(V)
v = TestFunction(V)
a = dot(grad(w), grad(v))*dx
L = p*v*dx

w = Function(V)
solve(a == L, w, bc)

2.4.5 Plotting the solution

It is of interest to visualize the pressure p along with the deflection w so that
we may examine the membrane’s response to the pressure. We must then
transform the formula (Expression) to a finite element function (Function).
The most natural approach is to construct a finite element function whose
degrees of freedom are calculated from p. That is, we interpolate p to the
function space V :

p = interpolate(p, V)

Note that the assignment to p destroys the previous Expression object p,
so if it is of interest to still have access to this object, another name must be
used for the Function object returned by interpolate. The two functions
w and p may be plotted using the built-in plot command:

plot(w, title=’Deflection’)
plot(p, title=’Load’)

As before, we also export the solutions in VTK format for visualization in
ParaView:

vtkfile_w = File(’poisson_membrane/deflection.pvd’)
vtkfile_w << w
vtkfile_p = File(’poisson_membrane/load.pvd’)
vtkfile_p << p

Figure 2.3 shows a visualization of the deflection w and the load p created
with ParaView.

34 2 Fundamentals: Solving the Poisson equation

Fig. 2.3 Plot of the deflection (left) and load (right) for the membrane problem created
using ParaView. The plot uses 10 equispaced isolines for the solution values and the
optional jet colormap.

2.4.6 Making curve plots through the domain

Another way to compare the deflection and the load is to make a curve plot
along the line x= 0. This is just a matter of defining a set of points along the
y-axis and evaluating the finite element functions w and p at these points:

Curve plot along x = 0 comparing p and w
import numpy as np
import matplotlib.pyplot as plt
tol = 0.001 # avoid hitting points outside the domain
y = np.linspace(-1 + tol, 1 - tol, 101)
points = [(0, y_) for y_ in y] # 2D points
w_line = np.array([w(point) for point in points])
p_line = np.array([p(point) for point in points])
plt.plot(y, 50*w_line, ’k’, linewidth=2) # magnify w
plt.plot(y, p_line, ’b--’, linewidth=2)
plt.grid(True)
plt.xlabel(’y’)
plt.legend([’Deflection ($\\times 50$)’, ’Load’], loc=’upper left’)
plt.savefig(’poisson_membrane/curves.pdf’)
plt.savefig(’poisson_membrane/curves.png’)

This example program can be found in the file ft02_poisson_membrane.py.
The resulting curve plot is shown in Figure 2.4. The localized input (p)

is heavily damped and smoothed in the output (w). This reflects a typical
property of the Poisson equation.

https://fenicsproject.org/pub/tutorial/python/vol1/ft02_poisson_membrane.py

2.4 Deflection of a membrane 35

Fig. 2.4 Plot of the deflection and load for the membrane problem created using
Matplotlib and sampling of the two functions along the y-axsis.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the work’s Creative Commons

license, unless indicated otherwise in the credit line; if such material is not included in the work’s

Creative Commons license and the respective action is not permitted by statutory regulation, users

will need to obtain permission from the license holder to duplicate, adapt or reproduce the material.

