
Chapter 2
Survey of the State of the Art

This second chapter of the ICME-13 Topical Survey on Early Algebra is divided
into five sections: (1) a brief history of the early algebra movement and its research
during the first phase of its development in the years leading up to the early 2000s,
(2) recent research on early algebra learning and the further evolution of the field
since the early 2000s, (3) early algebra in the elementary classroom, (4) a neu-
rocognitive perspective on early algebra, and (5) concluding remarks.

2.1 Brief History of Early Algebra Movement and Its
Research up to the Early 2000s

This first section of the chapter deals with the early days of the movement and
points to the main areas of research that were springing up in various parts of the
world in this new field of early algebra. Up to about the time of the 12th ICMI
Study Conference on The Future of the Teaching and Learning of Algebra (Stacey
et al. 2004), held in Australia in 2001, the research related to early algebra tended to
be rather patchwork in nature, as researchers grappled with questions related to
what the content and central focus of early algebra could or should be. During the
years that followed, the field of early algebra came to be more clearly delineated;
this later historical evolution is sketched in Sect. 2.2.

2.1.1 The Early Algebra Movement

The algebra research carried out during the latter decades of the 20th century with
12- to 15-year-olds pointed to some of the shortcomings of an arithmetic way of
thinking when students first experience algebra in high school. The countless
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research studies that had disclosed the difficulties involved in moving from an
arithmetic to an algebraic form of reasoning (e.g., Kieran 1992; Linchevski 1995;
Rojano and Sutherland 2001; Wagner and Kieran 1989) provided a stimulus for
exploring whether certain types of algebraic activity, with a focus on what was
coming to be generically referred to as algebraic thinking, might be accessible to
younger students and thereby aid in making the eventual transition to the more
formal study of algebra.

However, as Davis (1995) pointed out, research on the question of whether the
study of algebra should be spread throughout the primary and secondary curricula
had been underway since the 1960s. His ICME-5 report, titled “Algebraic thinking
in the early grades” (Davis 1985), was one of the main influences in early dis-
cussions of the question of algebra for children from 6 to 12 years of age. Other
influences included the research work of mathematics educators who were sug-
gesting alternative ways of conceptualizing the area of school algebra (e.g., Kaput
1998)—much of this work emanating from the Early Algebra Research Group
supported by the U.S. Department of Education in the early to mid-1990s (Kaput
et al. 2008b), as well as the initiatives of the National Council of Teachers of
Mathematics (NCTM 1989, 2000). At the 1987 Research Agenda Conference on
Algebra (Wagner and Kieran 1989), one of the areas deemed sorely in need of
research attention was that of algebraic thinking.

At the same time that the early algebra movement was beginning in the USA,
parallel developments were occurring, for example, in Russian experimental
schools and in Chinese primary education; however, as will be seen, descriptions of
this activity were not available in English research publications until somewhat
later. Reflections of the broader international interest in this emerging field were
also indicated by some of the papers presented at the conferences of the European
Society for Research in Mathematics Education (e.g., Bolea et al. 1998) and the
Psychology of Mathematics Education (PME) (e.g., Steinweg 2001). The year 2001
witnessed for the first time not only a PME Research Forum dedicated to the theme
of early algebra (Ainley 2001), but also the designation of one of the thematic
groups at the 12th ICMI Study Conference as the Early Algebra group (Lins and
Kaput 2004). In this Early Algebra group, international participants presented
papers and discussed the early algebra research that had been taking place during
the years leading up to the Study Conference. Those discussions emphasized that a
key characteristic of early algebraic thinking is the expression of generality—a
characteristic that figures prominently in the representative samples of research that
are highlighted in the sub-section below.

2.1.2 The Development of Algebraic Thinking in the Early
Grades: Some Examples

Research related to the development of algebraic thinking in the early grades was
such a new domain of study in the late 1980s that it was not treated as a separate
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category in the 1992 Handbook of research on mathematics teaching and learning
(Grouws 1992). It was an emerging body of work that was coming to be referred to
around the world as Early Algebra. In contrast to the traditional teaching of algebra
that usually begins when students are about 12 years of age, the growing body of
work on early algebra tended to focus on the 6- to 12-year-old. However, the
interest in algebraic thinking is not restricted to the young learner; the term alge-
braic thinking has become central to current algebra research involving the older
learner as well (see, e.g., Radford 2010; Zazkis and Liljedahl 2002)—algebraic
thinking having been defined by, for example, Blanton and Kaput (2004) as “a habit
of mind that permeates all of mathematics and that involves students’ capacity to
build, justify, and express conjectures about mathematical structure and relation-
ships” (p. 142).

In addition to the younger age range in this body of work known as Early
Algebra was a subtle shift in emphasis from a traditional content-centered char-
acterization of algebra to that of the mathematical reasoning processes and repre-
sentations that would seem appropriate for young children, as well as to the nature
of the early algebra activities that might promote the development of these pro-
cesses and representations. In particular, the main focal themes during the years
leading up to the early 2000s included: (i) generalizing related to patterning activity,
(ii) generalizing related to properties of operations and numerical structure,
(iii) representing relationships among quantities, and (iv) introducing alphanumeric
notation.

2.1.2.1 Generalizing Related to Patterning Activity

Kaput and Blanton (2001) suggested that the algebrafication of arithmetic involves
moving beyond a proficiency-oriented view to that of developing in the elementary
grades the ways of thinking that can support the later learning of algebra. Central to
this perspective, according to these two researchers, is the aspect of algebra that
includes generalization, and the ways in which this aspect can be capitalized on in
the elementary grades. By far, generalizing from numerical and geometric patterns
witnessed the largest amount of development and research interest.

An early example of this focus is drawn from an Australian study by Bourke and
Stacey (1988) with 371 students, aged 9–11 years of age, on a linear pattern that
involved representations of ladders of various lengths. According to the researchers,
none of the students had difficulty with finding a way to generalize; but they tended
to grab at quick solutions (such as multiplying the number of rungs by 3) and did
not subject their responses to critical thinking or to testing them in the face of the
given data (see also Stacey 1989). Findings such as these prompted researchers and
educators to advocate for a much greater variety in patterning tasks (e.g., Orton
1999), as well as to begin to grapple theoretically with questions on the nature of
algebraic thinking and the way it relates to generalization (e.g., Mason 1996;
Radford 2000).
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Although pattern finding in single-variable situations was becoming fairly
common in elementary mathematics curricula, Blanton and Kaput (2004, p. 142)
argued that elementary school programs that aim at promoting algebraic reasoning
should extend further to include functional thinking (which they defined as “rep-
resentational thinking that focuses on the relationship between two or more varying
quantities”). From the studies they carried out in prekindergarten up to 5th grade,
they found that students as young as those in kindergarten could engage in
co-variational thinking and 1st graders could describe how quantities corresponded.

2.1.2.2 Generalizing Related to Properties of Operations
and Numerical Structure

The thesis underlying the work of the Carpenter et al. (2003) research team was
that, if students understand their arithmetic in such a way as to be able to explain
and justify the properties they are using as they carry out calculations, they will
have learned some critical foundations of algebra. These researchers considered that
students not only make sense of the basic operations and procedures within the
context of word problems (Carpenter et al. 1999; see also Schifter 1999), but also
that such activity serves as occasions to reflect on important properties of these
operations. Tasks involving true/false and open number sentences (many drawn
from the earlier work of Davis (1964), in the Madison Project—e.g., Is 9 + 5 = 0 +
14 true or false? What is the value of Δ in 18 + 27 = Δ + 29?) were found, by the
researchers, to be extremely effective. The results of the research of Carpenter et al.
(2003) included (a) benchmarks related to students’ developing conceptions of the
equal sign, (b) a classification of the types of conjectures students make, and (c) a
host of rich descriptions of the ways in which young students come to be aware of
properties and learn to use them to articulate and justify conjectures. Their research
was an influential precursor of several early algebra studies involving number,
operations, and properties, which were to follow in the ensuing years.

Another example involving generalizing about number relations was the
research of Fujii (2003) and Fujii and Stephens (2001). Fujii introduced young
Japanese students to algebraic thinking through generalizable numerical expres-
sions, using numbers as quasi-variables—for example, with number sentences such
as 78 – 49 + 49 = 78, which are true whatever number is taken away and then added
back. Fujii (2003) claimed that these expressions “allow teachers to build a bridge
from existing arithmetic problems to opportunities for thinking algebraically
without having to rely on prior knowledge of literal symbolic forms” (p. 62).

2.1.2.3 Representing Relationships Among Quantities

In contrast to much of the numerically-related research on early algebraic thinking,
the Russian-based approach developed by Davydov and his colleagues (Davydov
et al. 1999) emphasized the teaching of algebra based, not on its numerical
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foundations, but on relationships among quantities and involving the use of literal
symbols right from the first grade. Schmittau translated the three-year Davydov
curriculum and implemented it in a USA primary school setting (see Schmittau and
Morris 2004). In reference to this curriculum where part-whole relationships are at
the core, Schmittau and Morris (2004) have stated that “children write ‘if C < P by
B, then C = P − B and C + B = P’; the notation indicates that they can move from
an inequality to an equality relationship by adding or subtracting the difference, and
that addition and subtraction are related actions” (p. 81). They have argued further
that this approach “develops theoretical thinking, which according to Vygotsky
comprises the essence of algebra” (p. 83). Dougherty (2003), who developed a
program in Hawaii based on the approach of Davydov, which she calls Measure
Up, found that 3rd graders’ use of algebraic symbols and diagrams, which evolves
within measuring situations, “positively impacts on their mathematical development
especially when used… [within] an approach that simultaneously links the physical
model, intermediate representations, and symbolizations” (Dougherty and Slovin
2004, p. 301).

The Russian-based approach does not teach children to solve equations by
thinking about “doing and undoing” numerical operations but by direct compar-
isons between quantities. This is quite different from the Singaporean approach to
developing algebraic thinking in the early grades (Ng 2004), where part-whole
relationships are also involved, but doing and undoing is considered central. The
Singapore elementary mathematics curriculum stresses three thinking processes:
analyzing parts and whole, generalizing and specializing, and doing and undoing.
An integral part of the curriculum is the model method (or pictorial equation, as it is
sometimes referred to)—a diagrammatic tool for representing quantitative and
numerical relationships and for solving related problems. It is believed that, if
children are provided with a means to visualize a problem, they will come to see its
structural underpinnings. An example of a word problem that is represented and
solved by the model method is provided in Fig. 2.1 (see Ng 2004, for details).

While the Singaporean model method does not involve algebraic symbols or
methods, the Chinese elementary curriculum for Grade 5 (10- and 11-year-olds)
focuses on application problems where students are taught to use both arithmetic
and algebraic solving methods (Cai 2004). According to Cai, the aim in teaching
younger students both arithmetic and algebraic methods is not only to help them
attain an in-depth understanding of quantitative relationships but also to guide them
to see the similarities between arithmetic and algebraic approaches and thus to make
for a smoother transition from arithmetic to algebraic thinking.

2.1.2.4 Introducing Alphanumeric Notation

As can be surmised from some of the examples presented thus far, the question
of whether early algebra should or should not involve symbolic forms was a
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hotly-debated issue during the decades leading up to the early 2000s. Proponents of
an early introduction to algebraic thinking, but without the use of algebraic sym-
bolism, included the researchers who developed the curriculum project,
Investigations in Number Data and Space for kindergarten up to 5th grade (TERC
1998; see Noble et al. 2001). Mathematical change, patterns and relationships,
representation, and modeling were the key focus areas of this project. Moyer et al.
(2004), who used the Driscoll (1999) framework to analyze this project (the
Driscoll framework includes the following algebraic “habits of mind”:
doing-undoing, building rules to represent functions, and abstracting from com-
putation), noted that, while students are expected to come up with a general rule, “it
is not the intent of the curriculum that students develop the ability to formally
represent functions with algebraic symbols” (p. 31). In fact, students’ use of natural
language to express arithmetical relationships, properties, and generalized pattern
structures was considered by many researchers (e.g., Malara and Navarra 2003;
Radford 2000) to be central to developing and expressing algebraic thinking, as
well as being a mediator in the longer-term construction of alphanumeric modes of
representation.

Even if Early Algebra does not mean moving the traditional algebra program
down to the elementary school level, there was a sense among certain researchers
that alphanumeric notation can and should be gradually introduced to early algebra
learners. The research program of, for example, Carraher et al. (2001; Schliemann
et al. 2003) has taken these researchers into the classrooms of 8- to 11-year-olds to
study the ways in which their innovative instruction leads young students to use
algebraic notation to represent problem situations and to interpret the relations
being represented. They have argued that students of this age can develop an
enlarged sense of the equal sign, represent unknown quantities with a letter, rep-
resent relations with variables, work with unknowns, write equations, and even
solve letter-symbolic linear equations (Brizuela and Schliemann 2004).

Despite the evidence that some children of this age are able to use alphanumeric
notation, Warren (2003) has urged caution. Her longitudinal study of young

Fig. 2.1 Representation and
solving of a problem by the
model method within the
Singapore elementary
mathematics curriculum (Ng
2004)
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Australian students’ understanding of the use of the equal sign found evidence of a
certain persistence of narrow views. Warren (2002) also noted the difficulties that
8- and 9-year-olds experience in handling problems with unknowns. Van Ameron
(2002) similarly reported from her study of Dutch students that nudging
11-year-olds to use symbolic formulas is not productive, not even if it is done in a
tentative and well-considered way.

While technology was not a major component of much of the early-days
research in Early Algebra, there were a few exceptions. For example, the research
of Ainley (1999) and Ainley et al. (1998) showed that spreadsheets, with their
algebra-like notation and graphing facility, can be quite productive with 8- to
11-year-olds as a tool for emergent algebraic reasoning. Sutherland’s (1993)
research in the ANA Logo project with 11- and 12-year-olds reported students’
successful use of variables to express simple mathematical relationships within the
context of teacher-developed and teacher-supported tasks in the Logo programming
environment.

2.1.3 Concluding Remarks: Early Algebra Research
in Years Leading up to Early 2000s

At the ICME-8 conference in Sevilla in 1996, Kieran (1996) proposed a model of
algebraic activity that served a few years later as the basis for a definition of
algebraic thinking in the early grades—a definition that did not hinge on the use of
the letter-symbolic (Kieran 2004):

Algebraic thinking in the early grades involves the development of ways of thinking within
activities for which the letter-symbolic could be used as a tool, or alternatively within
activities that could be engaged in without using the letter-symbolic at all, for example,
analyzing relationships among quantities, noticing structure, studying change, generalizing,
problem solving, modeling, justifying, proving, and predicting. (p. 149).

This characterization of algebraic thinking in the early grades synthesized the
main thrusts of the various early algebra studies up to the early 2000s, research that
was underpinned by and involved the analysis of relationships among quantities,
the development of awareness of numerical structure and properties, the study of
change in functional situations, generalizing and justifying, and the solving of
problems with a focus on relations.

As will be seen in the subsequent sections of this survey chapter, the research
that was to develop over the following decade would yield a more cohesive picture
of the area of early algebra, as well as a deeper understanding of algebraic thinking,
how it develops, and how its development can be supported at the elementary and
early middle school levels.
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2.2 Recent Research on Early Algebra Learning
and Further Evolution of the Field

This second section of the topical survey deals with research on early algebra
learning from the early 2000s onward. As will be seen from the various studies
exemplified herein, the field of early algebra has gradually come to be more clearly
delineated since the 2000s, bringing with it more comprehensive views and theo-
retical framings of algebraic thinking. At the core of this recent research has been a
focus on mathematical relations, patterns, and arithmetical structures, with detailed
attention to the reasoning processes used by young students, aged from about
6 to 12 years, as they come to construct these relations, patterns, and structures—
processes such as noticing, conjecturing, generalizing, representing, and justifying.
Intertwined with the study of the ways in which these processes are engaged in are
the two main mathematical content areas of generalized arithmetic (i.e., number/
quantity, operations, properties) and functions. Both of these content areas have
their proper concepts and objects, including equality/equivalence, co-variation,
variable/quasi-variable, expression, equation, diagrams, tables, graphs, and sym-
bols. In sum, over the past 10–15 years, our view of the field of early algebra
research is one that has come to be more explicitly characterizable with respect to
its central focus, its reasoning processes, its content areas, and its concepts and
objects. In line with this evolution, this section of the topical survey is structured
according to the following subsections: the nature of early algebraic thinking, its
processes, its mathematical content areas, and brief concluding remarks that include
implications for future research. Space restrictions limit severely the number of
examples that can be presented herein; thus, overall trends are the main focus (see
also, e.g., Cai and Knuth 2011; Carraher and Schliemann 2007; Kieran 2011).

2.2.1 The Nature of Early Algebraic Thinking

Blanton et al. (2011) argue that mathematical structure and relationships are central
to the practice of early algebra. For Britt and Irwin (2011), early algebraic thinking
involves coming to use numbers and words to express arithmetic transformations in
general terms. Carraher and Schliemann (2015) characterize early algebraic
thinking in terms of basic forms of reasoning that express relations among number
or quantities, in particular, functional relations. In these studies and others, math-
ematical relations, patterns, and arithmetical structures are deemed to be at the heart
of early algebraic thinking.

In the development of early algebraic thinking, the role of natural language is of
paramount importance (Cusi et al. 2011; Malara and Navarra 2003). Radford’s
(2011b) detailed analyses of 2nd graders’ algebraic thinking take into account not
only their use of natural language, but also their spatial descriptions and gestures.
Radford (2006) argues further that “using letters does not amount to doing algebra”
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(p. 3). He insists that, fundamentally, algebraic thinking is a particular form of
reflecting mathematically and that the use of alphanumeric symbols is not neces-
sary; other semiotic representations may also be used.

To conclude this first subsection on the nature of algebraic thinking, we point to
Radford’s (2014) recent development of a framework for characterizing algebraic
thinking, one that involves the following three key notions: (a) indeterminacy:
unknown numbers are involved in the given problem, (b) denotation: the indeter-
minate numbers are named or symbolized in various ways such as with gestures,
words, alphanumeric signs, or some combination of these, and (c) analyticity: the
indeterminate quantities are treated as if they were known numbers.

2.2.2 Processes of Early Algebraic Thinking

Blanton et al. (2011) focus on the processes of generalizing, representing, justi-
fying, and reasoning with mathematical structure and relationships. Russell et al. (in
press) focus on noticing, articulating, representing, justifying, and contrasting.
Cusi et al. (2011) focus on verbalizing, translating, arguing, interpreting, pre-
dicting, and communicating. However, the bulk of the research on the development
of early algebraic thinking focuses on the process of generalizing—a process
inherent to all early algebraic activity, just as it is to all mathematical activity
(Mason 2005)—with a whole subcategory of the generalizing-oriented research
being related to numeric and geometric pattern generalization (e.g., Cooper and
Warren 2011; Moss and London McNab 2011).

In line with the significance given to generalization in early algebraic thinking,
Kaput et al. (2008a) emphasize that one critical aspect that makes an activity
algebraic is deliberate generalization. Even the use of numbers can be qualified as
algebraic in so far as its purpose is not on calculation per se but on the represen-
tation of a generic example. For instance, when asked to find the number of squares
in ‘big’ figures in the activity of geometric pattern generalization, second graders
were able to generate calculation methods or rules across specific instances by using
numbers in a general way (Radford 2011b).

Based on his several earlier studies involving patterning activities, Radford
(2003) has theorized three layers in students’ generalizing activity: (a) factual
generalization which employs concrete-level actions usually associated with ges-
tures, words, and perceptual activity, (b) contextual generalization which rests on
situated descriptions of the objects and their naming (such as, referring to the
“figure” and the “next figure”; however, these generalizations are not considered
algebraic by Radford because algebraic generalizations comprise objects that are
non-situated and non-temporal, with no access to a point of reference that involves
seeing the objects), and (c) symbolic generalization which uses symbols or signs to
express the generalization. In 2006, Radford recast his earlier “layers of algebraic
generality” into the following definition of algebraic pattern generalization:
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“Generalizing a pattern algebraically rests on the capability of grasping a com-
monality noticed on some elements of a sequence S, being aware that this com-
monality applies to all the terms of S, and being able to use it to provide a direct
expression of whatever term of S” (Radford 2006, p. 5).

Rivera (2013) has observed that the process of pattern generalization is not
linear, hierarchical, and transitional. Instead it is multidimensional, dynamic, and
emergent in character, influenced by cognitive, sociocultural, and other factors.
These characteristics are reflected in his theory of graded representations in pattern
generalization in which various coordinations and connections among different
layers (i.e., input, relation, representation, hidden, and output) shape pattern gen-
eralization processing. This theory is unique in that it explains both individual
differences in performing pattern generalization and continuously evolving char-
acteristics based on learning and experience.

2.2.3 Mathematical Content Areas of Early
Algebraic Thinking

Kaput (2008) has stated that three content strands involve algebraic thinking:
algebra as the study of structures and relations arising in arithmetic, algebra as the
study of functions, and algebra as a cluster of modeling languages. In that most of
the early algebra research integrates the third strand within the other two by means
of various problem contexts, the main focus here is the first two of Kaput’s content
strands. It is noted that Kaput’s first strand, that of the study of structures and
relations arising in arithmetic, has at times been referred to recently as generalized
arithmetic. In the past, the term generalized arithmetic was synonymous with
letter-symbolic algebra, with its equations and unknowns. However, within the
context of early algebra, generalized arithmetic has acquired a much broader sense
in that the relations and properties inherent to arithmetical operations are explored
and seen by students as being generalizable, without necessarily involving
alphanumeric symbols. As will be seen, some of the recent research in early algebra
learning that adopts a generalized arithmetic perspective includes work with
alphanumeric symbols and some of it does not. Other studies adopt a functional
perspective, and yet others combine both perspectives. Section 2.3 of the chapter
revisits these first two of Kaput’s content strands of early algebra, providing a
detailed scenario of each.

2.2.3.1 A Generalized Arithmetic Perspective on Content

In early algebra, generalized arithmetic not only includes number/quantity, opera-
tions, properties, equality, and related representations and diagrams, but also can
include variables, expressions, and equations—depending on whether or not
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alphanumeric symbols have been integrated into the learning environment. Some of
the recent research in this content area is situated in young students’ arithmetic
work with number and addition and subtractions operations (e.g., Blanton et al.
2015b), and is extended to include experimentation with students’ use of variables
to represent unknown quantities. For example, Blanton and her colleagues con-
ducted a teaching experiment in this content area and found that nearly 75 % of the
3rd grade students participating in the intervention program learned to represent
unknown quantities with variable notation, even though they had assigned a
specific numerical value to the unknown at the outset of the study.

Other studies have been carried out that have probed children’s understanding of
the equal sign, expressions, and equations. For instance, Matthews et al.
(2012) developed a construct map for students’ various facets of knowledge of the
equal sign in terms of four levels (i.e., rigid operational, flexible operational, basic
relational, and comparative relational). They designed a comprehensive set of
tasks with four types of items to assess students’ understanding of the equal sign
and ultimately of mathematical equality. The tasks were given to 224 students in
Grades 2–6. Results indicated that students were sensitive to the equation formats as
well as the location of the operations. Providing verbal explanations for the
advanced relational reasoning items remained challenging even for upper grade
students. A noticeable result was that the children with advanced understanding of
the equal sign tended to solve difficult equations, which suggests a direct link
between knowledge of the equal sign and algebraic thinking.

In a New Zealand project involving an intervention program promoting early
algebraic thinking and that included comparative studies with students in a typical
arithmetic-based curriculum, Britt and Irwin (2011) found that students using the
new curriculum developed by the project were more successful than their coun-
terparts using the conventional curriculum in solving test items—items that inclu-
ded not only simple compensation in addition but also complex equivalence with
fractional values. With an additional longitudinal study including students aged 12–
14, the researchers demonstrated that early and sustained exposure to algebraic
thinking in elementary school leads to more sophisticated generalization involving
the alphanumeric symbols of algebra in intermediate school.

2.2.3.2 A Functional Perspective on Content

Within a functional perspective on the mathematical content of early algebra, the
concept of co-variation and its related notion of change are central, as are repre-
sentations such as tables, graphs, and other such function-oriented diagrams. The
objects of variable, expression, and equation are also involved, but with a different
interpretation from that held within the perspective of generalized arithmetic.
Blanton et al. (2011) argue that functional thinking entails “generalizing relation-
ships between co-varying quantities, expressing those relationships in words,
symbols, tables, or graphs, and reasoning with these various representations to
analyze function behavior” (p. 13).
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A large number of past studies of students’ functional thinking have focused on
the upper primary and middle school grade students (e.g., Ellis 2007). However,
some researchers investigating students’ understanding of functional relationships
suggest that even younger children, with age-appropriate pedagogical support, are
able to engage in co-variational thinking and can represent how two varying
quantities correspond in multiple ways, including with letters as variables. Moss and
London McNab (2011) have reported that second graders could figure out a general
function rule by focusing on the relation between the position number and the
number of blocks in geometric growing pattern activities. The students were also
able to develop a robust understanding of two-part function rules (i.e., y = ax + b) by
noticing the constant in visual arrays and representing it in their natural language.

Blanton et al. (2015a) have emphasized that even some of the first graders in
their study were able to generalize various functional relationships between
co-varying quantities and that their initial levels of understanding could become
further sophisticated with the support of well-designed instruction. Within that
same study, Blanton and her colleagues developed a learning trajectory to describe
first-grade children’s (6-year-olds) thinking about generalizing functional relation-
ships. The trajectory, which can serve as a framework for related work on the
development of young children’s functional thinking, involves different levels of
sophistication in generalizing functional relationships by specifying whether chil-
dren can (a) notice mathematical features in a task, (b) understand the relationships
between quantities through recursive thinking or functional thinking, (c) observe
the regularity within particular instances or otherwise across all instances, (d) de-
scribe a functional relationship in a generalized form, (e) elaborate on two quantities
being compared and the functional relationship between them, and (f) deal with
function as an object while understanding the boundaries of the generality.
Understanding the characteristics of such levels is significant because it sheds light
on how sophisticatedly young children condense the functional relationships.

From their longitudinal studies of 3rd to 5th graders, Carraher and Schliemann
(2015) have found that students as young as 8–9 years of age can use relations to
derive other relations. For example, with the statement, “Tom is 4 inches taller than
Mary and Mary is 6 inches shorter than Leslie,” students were able to derive Tom’s
height from Mary’s and Leslie’s heights, to derive Mary’s height from Tom’s and
Leslie’s heights, and to derive Leslie’s height from Tom’s and Mary’s heights.
They learned to express this ternary relation on a number line with a “variable
origin N”—what the researchers termed the “N-number line,” and in which posi-
tions were denoted as N-2, N-1, N, N+1, N+2, and so on.

While some of the past research involving younger students’ algebraic thinking
has focused on the challenges of introducing functional ideas, such as for example,
shifting students’ focus from a recursive to an explicit functional perspective
(Warren and Cooper 2008), the more recent work suggests that students in the
lower primary grades, even in kindergarten, may be far more able to begin to think
algebraically than was previously imagined. But this does not occur spontaneously.
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It requires, in the words of Bass and Ball (2003), “supports for the mathematical
work of the teacher in pressing students, provoking, supporting, pointing, and
attending with care” (p. vii).

2.2.4 Implications for Future Research

We have attempted in this section of the chapter to illustrate the main trends in
research since the early 2000s on the development of algebraic thinking in early
algebra learners, and at the same time offer our perspective on how the field has come
to be more clearly delineated—in terms of the nature of algebraic thinking, its
reasoning processes, and its mathematical content areas. In these concluding
remarks, we wish to draw out a few implications for future research. Our first
comment concerns the developmental aspect of algebraic thinking. Some studies,
specifically those that compare an intervention group with a non-intervention group,
show clearly that algebraic thinking is not naturally developed through traditional
arithmetic-based instruction and curricula as students progress through elementary
and middle school. In order to develop algebraic thinking, essential ways of thinking
algebraically need to be intentionally fostered in instruction from the earliest grades.
There is a growing body of research that provides empirical evidence of how the
development of early algebraic thinking evolves into more sophisticated ways of
thinking. In turn, these more sophisticated ways of thinking serve to influence
subsequent learning of important algebraic concepts given longitudinal interven-
tions. Nevertheless, more systematic and long-term investigation is needed to show
the impact of early algebraic thinking on the later study of algebra.

Another area in need of further exploration and study is the development and use
of digital tools in early algebra research within the content area of number, oper-
ations, and properties. Much of the recent research integrating technology in the
learning of algebraic thinking has been conducted in the areas of pattern general-
ization and functional thinking, and with students in the 12- to 14-year-old age
range (e.g., Mavrikis et al. 2013; Roschelle et al. 2010). While there have been
some exceptions, such as the research of Hewitt (2014) with 9- and 10-year-olds in
the Grid Algebra environment, which has been shown to extend students’ under-
standing of numerical operations, few other digital environments have been
designed with the aim of developing primary school students’ algebraic thinking in
this area.

One final comment arising from our survey of recent studies—one that is
related to the previous remarks on the use of digital environments in early algebra
learning—concerns theoretical development. Much of the theory development that
has occurred has been in conjunction with empirical investigations focusing on
the areas of algebraic pattern generalization and functional thinking. However,
little theorization has taken place regarding the area of number, operations, and
properties, even though this area is one of the main critical routes to fostering early
algebraic thinking.
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2.3 Bringing Early Algebra into Elementary Classrooms

This third section of the chapter addresses the following questions: What is the
nature of early algebraic content in classroom contexts? What interactions among
teacher and students sustain students’ engagement with early algebra? What sup-
ports are necessary?

2.3.1 The Nature of Early Algebraic Content in Classroom
Contexts

To begin an examination of early algebra in classroom settings, consider two
scenes, the first involving algebra as the study of functions, the second, as the study
of structures arising in arithmetic and quantitative reasoning.

In the first scene, a fourth-grade Canadian class was presented with the following
situation: For his birthday, Marc received a piggy bank with one dollar. He saves 2
dollars each week. At the end of the first week he has 3 dollars; at the end of the
second week he has 5 dollars, and so on. Students were given red and blue chips to
model the situation for Weeks 1–5 and were asked to figure out how much Marc
would have after Weeks 10, 15, and 25. Krysta and Albert’s model for the first
5 weeks looks like the display in Fig. 2.2. (The top chip in each configuration is
blue; the rest are red.) Now they are discussing the amount of money saved after
10 weeks.

Krysta So we should do… That (pointing to the chips for week 5) times two.
So 11.

Albert 11 plus 11. 22.
Krysta 22.
Albert Well, wait. No. It would be 11 plus 10 because (pointing to the blue chip).

We always start with the [blue chip] (Radford and Roth 2011, p. 235).

Like much algebraic work in elementary classrooms, these students are engaged
in the study of functions (e.g., Blanton 2008; Carraher et al. 2006; Malara and
Navarra 2003; Moss and London McNab 2011)—the amount of money in Marc’s
piggy bank is a function of the number of weeks that have elapsed. We see two
students working together to find the value of the function at particular points.
Krysta has made a common error, assuming that the value at 10 weeks should be
double the value at 5 weeks. But with chips to represent Weeks 1–5 laid out before
them, Albert recognizes what is the same across the weeks and realizes that they
have to pay attention to that blue chip, which they always counted first.
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What is important in this lesson is not simply that the students extend the
sequence to answer the stated problems. Students could lay out chips and count the
number of chips without engaging in algebraic thinking. Nor is it about coming up
with a rule that defines the amount of money in a piggy bank as a function of week
number. Students might guess and check, testing a sequence of rules—n + 1, n + 2,
n + 3—until they find one that fits the values they have determined.

Rather, as we begin to see with Albert, it is recognizing what is general across
problems. The aim is for students to see their models not merely as a bunch of
chips, but as a collection that can be decomposed, to see how the term number is
related to the decomposed parts, and to see how the number of chips for each week
can be calculated from the term number (Radford and Roth 2011). The work of
noticing the underlying structure to generalize across specific instances is what
makes this an example of algebraic thinking.

In the second scene, a fourth-grade USA class is investigating what happens to
the product of a multiplication expression when one factor is increased by a given
amount. They have already discussed what happens when one factor is increased by
1 or by 5, and now they consider what happens when a factor increases by 2. Prior
to this lesson, students were shown pairs of equations such as those shown in
Fig. 2.3 and were given the prompt, “When I add 2 to a factor, then this happens to
the product.”

The lesson opens when the teacher presents four students’ statements.

1. When I add 2 to a factor, it changes by the number of groups.
2. For 7 × 3 = 21 and 9 × 3 = 27, the product changes by two 3s. And for

7 × 3 = 21 and 7 × 5 = 35, the product increases by two 7s.
3. When I add 2 to a factor, I take the other factor and multiply it by 2.
4. When I add 2 to a factor, the product increases by 2 groups of the other factor.

The class comments on each statement, working to understand its meaning.
During the discussion, the difference between 7 × 3 and 9 × 3 is illustrated by
drawings like those shown in Fig. 2.4.

Fig. 2.2 Krysta and Albert’s
model

7 × 3 = 21 7 × 3 = 21

7 × 5 = 35 9 × 3 = 27

Fig. 2.3 Related equations
prompt an examination of
structure
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Throughout the discussion, the teacher asks students to show how the repre-
sentations illustrate the expressions, describe the correspondences across repre-
sentations, and explain why their ideas work for any multiplication expression, not
just 7 × 3. Then she asks the class to extend their claim.

Teacher We’ve been talking about adding 2 to a factor, and last week we talked
about adding 5. Could we come up with a conjecture that would work
for any number added to a factor? Does it work only because we’re
adding 2?

Anita If you add any number to one of the factors, then the other factor
increases by that number.

Several students disagree with Anita’s statement.
Teacher Let me write it so we can see if we all agree or disagree.
Anita If any number gets added to one of the factors, then the product gets

increased by the other factor times the number that was added to the
factor.

Kevin This should be our class conjecture.
Teacher Megan, you want to add on to that or say something different?
Megan It’s kind of the same, sort of like Lila’s up there. When I add any number

to a factor, I take the other factor and multiply it by the number that I
added onto one of the factors (Russell et al. in press).

These students are engaged in algebra as the study of structures in arithmetic
and quantitative reasoning (e.g., Britt and Irwin 2011; Russell et al. 2011; Schifter
et al. 2008a). In different studies, researchers use various strategies to focus students
on structures of the operations. Carpenter et al. (2003) ask students to evaluate
number sentences as true or false to bring their attention to structure. In the
Davydov-based Measure Up curriculum (Dougherty 2008), students compare
continuous quantities—area, length, volume, or mass—without reference to num-
bers. In the scene above, students look for patterns in related equations. In each of
these settings, students learn to notice regularity, to articulate generalizations, and to
explain or prove their conjectures.

Among the goals of these lessons is that students learn the language of gener-
alization. Yet, in the classroom presented above, the objective is not to provide
students with the most precise statement of the distributive property. Rather, stu-
dents use their own language and work together to create a statement that is clear
enough for someone outside the class to understand. This is one phase of what the

Fig. 2.4 Representations to compare 7 × 3 and 9 × 3
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Italian researchers Malara and Navarra (2003) call “algebraic babbling.” Analogous
to the way children learn natural language, students learn to communicate in
algebraic language by starting from its meaning, and through collective discussion,
verbalization, and argumentation, gradually become proficient in syntax. These
fourth-graders will go on to represent the phenomenon they are articulating with
story contexts, diagrams, and pictures of groups in order to make the case for their
conjecture.

The study of the behavior of the operations helps students come to see an
operation not exclusively as a process or algorithm, but also as a mathematical
object in its own right (Sfard 1991; Slavit 1999). However, Russell and her col-
leagues found that, once students noticed regularity in calculations and articulated
conjectures, many assumed that same regularity applied to all operations (Russell
et al. 2011). For example, students may be explicit about a rule for creating
equivalent addition expressions—if you add some amount to one addend and
subtract that same amount from the other, the sum remains the same—and believe
that the same pattern applies to subtraction or multiplication. At the end of a
sequence of lessons that explored equivalent addition expressions and equivalent
subtraction expressions, as the class reflected on their work, one third-grader said,
“When we got the idea of seeing if our addition rule works for subtraction, I was
like, of course it works. And then it was like uh-oh, it doesn’t work, and I lost all
hope. I’m happy we found a very close but different rule” (Russell et al. in press).
For this reason, it is important that students contrast the behavior of different
operations.

Although the two scenes presented above illustrate different aspects of algebra,
there is much in common. Most prominently, students are thinking analytically
about indeterminate numbers (Radford 2014). They are looking for structure,
whether in a function or in the behavior of an operation, the key to algebraic
reasoning.

In both cases, students link spatial and numerical representations of structure. In
the language of Radford (2011a), “the awareness of these structures and their
coordination entail a complex relationship between speech, forms of visualization
and imagination, gesture, and activity on signs (e.g., number and proto-algebraic
notations)” (p. 23). Warren and Cooper (2009) hypothesize that “abstraction is
facilitated by comparing different representations of the same mental model to
identify commonalities that encompass the kernel of the mental model” (p. 90).
Moss and London McNab (2011) theorize that “the merging of the numerical and
the visual provides the students with a new set of powerful insights that can
underpin not only the early learning of a new mathematical domain but subsequent
learning as well” (p. 280).

In neither of these lessons are students engaged in algebraic notation. Although
different researchers emphasize conventional notation to different degrees, they
converge on the notion that algebraic notation does not necessarily indicate alge-
braic thinking, and algebraic thinking does not necessarily entail conventional use
of letters (Britt and Irwin 2011; Radford 2011a, 2014). Students might use pictures,
gestures, or natural language to communicate a generalization. They might point to
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a stack of cubes and say, “This can be any number.” At times, they might com-
municate their generalization with the use of specific numbers—“These are equal
groups and they could each be a million; if you add 1 to a factor, you add another
group, and the product goes up by a million”—what Mason (1996) calls “seeing the
general through the particular.”

2.3.2 Roles of Students and Teachers in Classrooms

The goal of early algebra is to promote a way of thinking—the habit of looking for
regularity, and articulating, testing, and proving rules or conjectures for an infinite
class of numbers. This is achieved through classroom interaction around ideas,
sometimes in pairs and small groups, but largely through class discussion in which
students elaborate their own thinking and engage with their classmates’ ideas.
Together they consider, evaluate, challenge, and justify hypotheses. Students
contribute different pieces of information and build upon others’ explanations to
jointly create a complete idea or solution. Over the last two decades, there has been
a growing body of work to study the impact of such discussion on learning out-
comes. Empirical findings support the hypothesized benefits of active student
participation in discussion (Webb et al. 2014).

In order to establish a setting in which students engage in this manner, a teacher
must first set the expectation that students support their ideas with explanations and
probe and challenge each other’s ideas to make sure they follow classmates’ rea-
soning (Blanton and Kaput 2008). Teachers ask probing and clarifying questions to
help students make the details of their thinking explicit. They acknowledge and
validate students’ proposals to encourage sustained discussion and help students
confront discrepancies in their thinking. At times, the teacher may offer suggestions
to help students consider and develop new options. The teacher directs the dis-
cussion, filtering students’ ideas to draw their attention to what the teacher deter-
mines is pertinent and meaningful (see e.g., Cusi et al. 2011; Kazemi and Stipek
2001).

Teachers attend to correct and well-formulated ideas as well as ideas that are in
development or even incorrect. For example, in the first scene above, Krysta’s
incorrect idea—double the amount of money after 5 weeks to find the amount of
money after 10 weeks—is worthy of attention. The teacher can help Krysta, and
perhaps the whole class, examine the result of doubling the components of the
problem to understand why her strategy does not work for this function. In the
second scene, it would have been useful to discuss the error in Anita’s first state-
ment had she not changed it.

Although many of these aspects of classroom interaction may be relevant to any
topic of discussion, especially applicable to early algebra is to involve students in
metacognitive acts (Cusi et al. 2011), to reflect on their own observations to move
to a level of generalization and argument. In the language of Malara and Navarra
(2003), students “substitute the act of calculating with looking at oneself while
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calculating” (p. 9). Franke et al. (2008) note that instead of asking, “How did you
solve the problem?” (which teachers often ask when the class is working on cal-
culation or solving story problems), in an early algebra lesson teachers ask, “How
did you know that?” “Will that work for all numbers?” or even, “What is it that will
work for all numbers?”

The teachers in Russell et al.’s (in press) project reported that, when working on
early algebraic topics, they noticed a feature of their teaching that they named
productive lingering (Russell 2015). When the topic of discussion is complex and
abstract with the opportunity to make many connections, even after an idea has
been clearly stated and the class seems to be in agreement, if the teacher asks
another question, the class continues to engage, offering new insights, taking the
discussion deeper. A glimpse of productive lingering is offered in Scene 2. Anita
has offered a correct statement, which Kevin declares could be the class conjecture,
but the teacher provides space for further discussion. Megan offers a different
formulation, taking on one of her classmates’ statements from the beginning of the
lesson, but changing the language just enough to extend it from adding 2 to a factor
to adding any number to a factor. However Megan’s formulation is not complete.
There is still more for the class to consider.

2.3.3 What Can Happen in Classrooms in General?

Several longitudinal studies have demonstrated positive learning outcomes from
early algebra instruction (Blanton et al. 2015b; Radford 2014; Warren and Cooper
2009). However, in most of these studies—the New Zealand Numeracy Project
(Britt and Irwin 2011) and the Italian ArAl project (Malara and Navarra 2003; Cusi
and Malara 2013) are among the few exceptions—lessons were taught or co-taught
by researchers. The next question is, what supports are needed to bring early
algebra into classes taught by elementary teachers?

Teachers need curricular materials. Over the last fifteen years, a number of
curricular programs have intentionally infused early algebra throughout the grades
(Britt and Irwin 2011; Dougherty 2008; Goldenberg and Shteingold 2008; Schifter
et al. 2008b). Some researchers have described how early algebra appears in the
Japanese (Watanabe 2011) and Singaporean and Chinese (Cai et al. 2011) curricula.
Other projects have published materials for teachers to supplement their regular
programs (Carpenter et al. 2003; Russell et al. in press).

However, research on teaching and curriculum has revealed that there is a
substantial difference between curriculum as written and curriculum as enacted in
the classroom. Among the factors that transform written curriculum into enacted
curriculum are teachers’ beliefs and knowledge, their orientation to the curriculum,
their own professional identities, and the school and classroom culture (Stein et al.
2007). Given these factors, prepared curricula may have limited impact on what
happens in the classroom. Movement of early algebra into elementary classrooms
requires professional development (Blanton and Kaput 2008; Dougherty 2008).
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Professional development programs in early algebra share a number of features.
First, teachers must learn the content they intend to teach. If teachers understand
mathematics as procedures for calculating and solving problems, they must widen
their view to include looking for and examining structure. They must understand
that this is not a body of content “to master,” but that they and their students will
continue to discover new connections through the act of teaching (Blanton and
Kaput 2008; Dougherty 2008; Franke et al. 2008; Schifter et al. 2008a).

Second, especially if teachers have had no experience in systematically exam-
ining student thinking, they must reorient their practice to develop the disposition of
listening for students’ mathematical ideas and learn to situate those ideas in relation
to the content on which the class is working.

Third, teachers must learn how to lead discussions. They must learn how to
analyze their students’ ideas in the moment and to make judgments about which
ideas to pick up on. They must learn types of questions and responses that will draw
students’ attention to the content to be explored and help them make new
connections.

Several early algebra professional development programs report anecdotal evi-
dence of success (Blanton 2008; Cusi et al. 2011; Dougherty 2008; Franke et al.
2008; Schifter et al. 2008a). Britt and Irwin (2011) and Russell et al. (submitted)
offer quantitative results of student learning.

2.3.4 Conclusion

As illustrated by the research described in this third section of the topical survey
chapter, early algebra offers the promise of not only preparing students for their
algebra courses to come, but also deepening their understanding of the properties of
the number systems in which they are learning to calculate and instilling habits of
such mathematical practices as looking for structure and expressing regularity.
Research has demonstrated that, with teachers who are prepared in terms of content
and pedagogical practice, young students engage with this content in the context of
their classrooms, resulting in positive achievement outcomes. However, to enact
early algebra programs on a large scale requires investment in both curriculum
materials and long-term professional development.

2.4 A Neurocognitive Perspective on Early Algebra

In this fourth section of the chapter, we highlight recent research in mathematics
educational neuroscience that is directly related to algebraic thinking—research that
offers new insights into the representations and solving methods associated with
algebraic activity and which can thereby serve to inform the field of early algebra
research.
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Research shows that many Singapore secondary students, instead of using
letter-symbolic algebra to solve the algebra word problems found in secondary
texts, continue to use the problem solving method of drawing a diagram, known
locally as the model method (Khng and Lee 2009). A possible reason for this
behavior is that algebra is perceived to be the more abstract of the two methods.
Findings from two neuroimaging studies using functional Magnetic Resonance
Imaging (fMRI) provided evidence to support this perception. A theoretical
framework is used to hypothesize why this is so. Drawing from cross-sectional and
developmental work in arithmetic, we caution against using data with adult par-
ticipants to generalize on how primary pupils’ brains may respond and on how they
learn to use the model method to (a) represent quantitative information and
(b) solve arithmetic word problems and algebraic word problems found in primary
texts. Researchers need to be cognizant of developmental issues related to how
knowledge of the model method can support algebra novices in learning to use
formal algebra to solve the algebra word problems that are found in secondary texts.
Neuroimaging work with arithmetic could serve as a signpost to guide future
research in algebraic reasoning.

2.4.1 Singapore Model Method to Solve Arithmetic
and Algebra Problems

Although many problem solving heuristics are taught at primary level (Curriculum
Planning and Development Division 2006), the model method (Ng and Lee 2009)
has the greatest currency. The affordance of the model method means it can be used
to solve arithmetic problems (top third of Fig. 2.5) and algebra word problems
(middle third of Fig. 2.5) that normally require the construction of linear equations
up to two unknowns (the algebraic method being shown in the bottom third of
Fig. 2.5). The arithmetic word problem that is illustrated in the figure is: Mary has
12 red counters and 4 times as many blue counters. How many counters has Mary
altogether? The algebra word problem that is illustrated in the same figure is: A
school bought some mathematics books and four times as many science books. The
cost of a mathematics book was $12 while a science book cost $8. Altogether the
school spent $528. How many science books did the school buy?

2.4.2 Different Methods Used to Solve Secondary Algebra
Word Problems

Although it is acceptable to use alternative methods to solve algebra word prob-
lems, students’ continued use of these alternative problem-solving strategies may
not serve them well in the long term. It is vital for students to acquire a sound
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knowledge of algebra and the related procedures and skills should they wish to
engage in higher mathematics and other disciplines such as the sciences and eco-
nomics. In Singapore, many secondary students continue to use problem-solving
heuristics, in particular the model method to solve algebra word problems, which
can create difficulties for them as they try to coordinate their old method with the
new one being taught (Khng and Lee 2009). In one study (Ng 2012), 124
Secondary 2 (14+) students from five schools participated; they were given an hour
to respond to 10 algebra word problems. Solutions to two problems are discussed
here (see Table 2.1 and Fig. 2.6).

Figure 2.6 shows how (a) the algebraic method, (b) a semi-algebraic method, and
(c) the problem solving heuristics taught in Singaporean primary school were used

Let be the number of mathematics textbooks and the number of science books. 

Fig. 2.5 An arithmetic word problem and an algebra word problem, both solved by means of the
model method, followed by the algebraic method for the algebra problem
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to solve these problems. Any of the unknowns or generators can be used to solve an
algebra word problem. The algebra solution to the Parade Problem was found by
using the number of children as the generator and representing this unknown with
the letter x. The semi-algebraic method involved a combination of the model
method and algebra. The letter x in each rectangle suggests that the student knew
that the rectangle represented the unknown x, but “doing-undoing” was used to find
its value. Perhaps the student thought that the solution was algebraic because the
letter x was used to announce the answer. The solution illustrated in the far right
panel shows how the model method was used. In both of the latter two methods, the
unknown number of women was the generator.

The model drawing for the Spending Problem correctly depicted the amount
held by Ahmad and Betty. Instead of constructing a system of equivalent equations
to find the value of x, the amount of money held by Ahmad was found by a series of
doing-undoing processes. To the left of the model drawing, the letter x was used in
representing the amount of money held by each friend; however, it was never
featured again in the solving process.

2.4.3 Neuroimaging, the Model Method, and Algebra

Two studies investigated the nature of brain responses when young adult partici-
pants were asked to use the model method or algebra to represent and then to solve
algebra word problems. Lee et al. (2007) focused on the initial stages of problem
solving: that of translating textual information into either a model representation or
an algebraic equation. Eighteen adults who were proficient and competent users of
both the algebraic and the model methods were presented with algebra word
problems. They were then asked to represent the textual information either as
algebraic equations or model representations and then validated whether the

Table 2.1 Word problems presented to secondary 2 students and the related success rates as a
function of algebra (A) versus the model method (MM)

The algebra word problems A (C) A (IC) MM (C) MM (IC)

1 Parade problem: There are 900 people at a
parade. There are 40 more men than
women. There are twice as many children
as there are men. How many children are
there?

39
52a

36
48

11
26

32
74

4 Spending problem: Ahmad has four times
as much money as Betty. After Ahmad
spent $160 and Betty spent $40, they each
had equal amounts of money. How much
money did Ahmad have at first?

59
81

14
19

13
30

30
70

Note C and IC represent correct and incorrect responses respectively.
aRepresents percent who used the method. The total is not 100 % because not all methods are
recorded. Problems are named to facilitate discussion.
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presented solutions matched their representations. In a later study, Lee et al.
(2010) focused on the solution phase of the problem solving chain. Here 17 young
adult participants were asked to find the value of the unknown when the infor-
mation was presented either as a model representation or as an algebraic equation.
Although both studies showed that the two representations were comparable in
terms of area of brain activation in that both activated areas linked to working
memory and quantitative processing, algebra imposed greater attentional demands.
Evaluating for the unknown using the algebraic equations required “greater general
cognitive and numeric processing resources” (Lee et al. 2010, p. 591). For ethical
reasons no studies were conducted with Singapore primary school children. The
assumption was that children and adults may share similar responses.

2.4.4 Why Algebra May Be the More Resource Intensive
of the Two Methods

The following theoretical framework (Ng 2012) constitutes a basis for under-
standing why algebra could be more resource intensive than the model method.
With the model method, the value represented by the rectangle that stands for the
unknown can be found by applying the doing and undoing process. With algebra,
information in the text is translated into an algebraic equation. The value of the
unknown is evaluated by the construction of a series of equivalent equations. Thus
the transition from the model method to algebra requires that students know that the
role of the rectangle is taken over by the letter.

2.4.4.1 The Transition to Letters as Unknowns Requires an Expansion
of the Knowledge Related to the Use of Letters

Letters have different meanings in different situations (e.g., Booth 1984; Kieran
1989; Küchemann 1981; Usiskin 1988). Solving for the unknown x in any equation
may require first simplifying the algebraic expressions on either side of the equal
sign and then transforming the equations containing these simplified expressions
into simpler equivalent equations. Such knowledge construction is no mean feat as
it requires developing new cognitive structures and connections associated with
operating on letters.

2.4.4.2 Algebraic Expressions Are Legitimate Forms of Answers

When the model method is used to solve algebraic word problems, the information
captured by the model is translated into arithmetic expressions, which can be
evaluated and a single numerical answer results from operating on the arithmetic
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expression. For example, the number of children participating in the parade was
found by first writing down this arithmetic expression: ð195� 2Þþ 40þ 40 whose
resulting sum is 470. With algebra, however, students must be able to accept
algebraic expressions as legitimate answers (Collis 1975; Davis 1975). The alge-
braic expression xþ x=2þðx=2�40Þ actually represents the number of children at
the parade. Because the operators are still visible, many novice learners of algebra
experience a product-process dilemma (Davis 1975); they do not treat this algebraic
expression as a legitimate answer. Students have to learn to accept that the algebraic
expression xþ x=2þðx=2�40Þ does represent the number of children at the parade,
and that this expression is a single entity. Early work in algebra begins with
students being able to accept that there is a lack of closure in algebraic forms (Collis
1975).

2.4.4.3 Algebraic Representations no Longer Adhere to the Same Set
of Conventions Underpinning the Use of Numbers

In arithmetic, operating on whole numbers can be expressed as a single entity as
illustrated by this arithmetic equation: 195� 2ð Þþ 40þ 40 ¼ 470. To complicate
matters further, the sum of two fractions can be expressed as the concatenation of
two numbers. For example, the sum of 2þ 1

3 can be written side by side: 2 1
3. There

is no one-to-one correspondence between how numbers can be expressed and how
algebraic expressions can be simplified. For example, with algebra, xþ x

2 cannot be
simplified to x x

2. Thus the shift from the model method to algebra as a problem
solving tool requires construction of new knowledge, namely that algebraic rep-
resentations no longer adhere to the same set of conventions underpinning the use
of numbers (Kieran 1989).

2.4.4.4 Knowledge of Equality-Equivalence of Algebraic
Expressions Is Crucial

The shift from the model approach to the use of algebra as a problem solving tool
requires construction of knowledge that an algebraic equation is (a) a structure
that links two different algebraic expressions and (b) that two or more different
algebraic expressions can be constructed to represent the same situation. This
equality-equivalence aspect of algebra (see Kieran 1989, 1997) requires sound
knowledge of the properties of equality: the reflexive (the same is equal to the
same), the symmetric (equality of the left and right sides of each equation), and the
transitive (if a = b and b = c, then a = c).

In arithmetic, the equal sign tends to be treated as a procedural symbol that
announces the answer after a series of operations has been conducted (Kieran 1981;
MacGregor and Stacey 1999; Stacey and MacGregor 1997). For example, when the
model method was used to solve for the amount of money held by Ahmad, the
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equal sign at the end of the arithmetic expression $160–$40 was used to announce
the answer (i.e., the difference of $160 and $40 is $120). Contrast that meaning of
the equal sign with the one required when algebra is used to solve the same
problem. Research (Kieran 1997; Sfard and Linchevski 1994) shows that there are
two main sets of conceptual demands associated with solving equations: simpli-
fying expressions and working with equality-equivalence. The cognitive demands
needed to simplify expressions have already been discussed in relation to the
acceptance of algebraic expressions as legitimate answers; therefore, the focus here
is the requirement that solving algebraic equations involves two significantly dif-
ferent conceptualizations of equality-equivalence (Kieran 1997).

Reflexive-equivalence (equality of the left and right sides of each equation): In a
conditional equation, for a specific value of x, the resulting values of the expres-
sions on either side of the equal sign are the same. For example, in the Spending
Problem the equation 4x� 160 ¼ x� 40, the expression 4x – 160 is equal to the
expression x� 40 when x has the value of 40.

Equivalence of successive equations in the system of equations constructed to
solve the problem: To solve a given equation, the conventional procedure is to
construct the vertical chain of equivalent equations that will result in the resolution
of the unknown value. The equivalence is achieved in one of two ways. First,
equivalence is maintained by replacing an expression with an equivalent expression.
In the Parade Problem, the expression xþ x

2 þ x
2� 40
� �

in the equation
xþ x

2 þ x
2� 40
� � ¼ 900 was transformed into the expression ð4x�80Þ=2 and was

replaced by the latter to yield the subsequent equation 4x�80
2 ¼ 900 in the equation

solving chain. Second, equivalence is achieved by replacing an equation with an
equivalent equation (i.e., one having the same solution as the previous equation in
the chain) without having to replace the preceding expression with another equiv-
alent expression. The equation 4x�80

2 ¼ 900 is equivalent to the equation 4x�80
2

� ��
2 ¼ 900� 2: In this case equivalence of the previous equation is maintained by
multiplying both sides of the equation by the same amount. The expression 4x�80

2

� �
is

not replaced by any other expression.
Comparing and contrasting the solution of the Parade Problem using algebra

against the model method suggests that major cognitive adjustments—‘accommo-
dations’ rather than assimilations—are needed to solve algebraic equations. Such
major accommodations may help explain why neuroimaging studies have found
that, of the two methods, algebra tended to activate the procedural part of the brain
and it required more attentional resources. In order to maintain equality-equivalence
of the series of equations in the equation solving chain, appropriate rules and
procedures specific to operating on letters were operationalized. These rules and
procedures were no longer identical to those used to operate on numbers. With the
model method, solving for the unknown values involved working only with
numbers; thus there was no conflict in the conventions used and hence may have
been less procedurally driven. In the model method, solving for the unknown
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involves the processes of doing and undoing. With algebra, solving for the
unknown requires using forward operations and mandates the maintenance of
equivalence of each single algebraic equation.

2.4.5 Competent Adults and Children Process Arithmetic
Information Differently

Competency in arithmetic is fundamental to work related to algebraic reasoning
(English and Warren 1998; Lannin et al. 2006). Development of arithmetic skills
relies on cognitive processes such as working memory, memory encoding and
retrieval, decision-making, and retrieval. The development of such processes is
complex and significant changes occur in developing children’s brains (e.g., Kwon
et al. 2002), thereby making available additional processing resources that enable
the more efficient processing of complex cognitive operations (Kail and Park 1994).

Neuroimaging studies conducted with adults, and cross-sectional studies with
adults and children in America who were asked to solve simple arithmetic tasks,
suggest that it is best not to assume that adults’ and children’s brains exhibit similar
activations when they are asked to perform similar tasks. Studies with adults found
that retrieval versus procedural counting activated different parts of the brain (e.g.,
Grabner et al. 2009). Other studies that explored brain responses of adults who
learned how to solve multi-digit arithmetic problems showed that increased profi-
ciency with recently learned arithmetic facts showed reduced activity in certain
parts of the brain and increased activity in other parts of the brain (e.g., Ischebeck
et al. 2007). Cross-sectional neuroimaging studies show that children rely on dif-
ferent parts of the brain to solve arithmetic problems of the canonical form
aþ b ¼ ?, where a and b are single digits. Although both groups may choose to use
the same strategies to solve the same problems, the strategies may be more effortful
for children than for adults (Rivera et al. 2005).

Research shows that young children use one of four strategies to add canonical
number sentences such as 8þ 5 ¼ ?, moving from the more effortful strategy of
counting procedures, such as counting fingers, to verbal counting, to the more
efficient memory-based retrieval of number facts or decomposition (e.g., 8 + 2 + 3).
It cannot be assumed that learning in adults or contrasts between children and adults
is comparable to learning in the developing brain (Karmiloff-Smith 2010).

Because almost nothing is known about brain changes that accompany the
transition from the use of procedural counting to direct retrieval, which is a critical
aspect of children’s early arithmetic development, Cho et al. (2011) examined how
103 children in northern California (age range from 7.0 to 9.9 years, 54 girls) used
strategies to solve canonical addition problems. This choice of participants was
strategic because children within this narrow age group begin to develop efficient
problem solving strategies, in this case the use of retrieval strategies to solve
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canonical arithmetic sentences. Their neuroimaging studies demonstrated that
retrieval and counting strategies during the developmental phase of learning are
characterized by distinct patterns of activity in a distributed network of brain
regions involved in arithmetic problem solving and controlled retrieval of arith-
metic facts. The findings suggest that the reorganization and refinement of neural
activity patterns in multiple brain regions plays a dominant role in the transition to
memory-based arithmetic problem solving. Cho et al.’s work emphasizes that
developmental changes cannot be inferred from, or characterized by, a gross
comparison between adults and children or by examining the effects of training on
novel problems in adults.

The plastic nature of the brain offers pedagogical opportunities whereby teachers
can teach for the development of memory-based knowledge. Teaching children to
use efficient strategies to perform mental operations increases performance of both
normal performing children and those who may have difficulties recalling number
facts. When children are able to perform arithmetic operations accurately and with
automaticity, they have greater opportunities to perform more complex mathe-
matical tasks (Menon 2010), such as exploring relationships between numbers and
identifying patterns underpinning number sequences. Such developmental work
with arithmetic cautions against extrapolating from Lee et al.’s (2007, 2010) work
with proficient adults to children. These studies do, nonetheless, suggest some very
interesting and important questions. How do children’s brains (age 9–10 years)
respond when they first learn to use the model method to represent quantitative
information of canonical arithmetic expressions? Will their brains respond differ-
ently to the same sets of problems when they can use the model method compe-
tently? How will the brains of these two groups of children (the beginners and the
competent users) respond when they first learn to use the model method to solve
algebraic word problems and again when they use formal algebra to solve the same
sets of problems?

2.5 Concluding Remarks

We have provided in this topical survey chapter some examples of the existing
research in the learning and teaching of early algebra, as well as a sketch of the
history and evolution of this field. We have described the current state of research
with respect to the nature of early algebraic thinking, its processes, and its math-
ematical content areas. This research has yielded insights into approaches for
developing students’ early algebraic thinking, but has also signalled the need for
teacher support in this area. It has produced theoretical frames for characterizing
algebraic thinking, pattern generalization, and functional thinking, but more
remains to be done, especially with respect to theorizing the algebraic aspects of
students’ work with number, operations, and properties. The development and use
of digital tool environments that can encourage the growth of early algebraic
thinking in the young learner is another underdeveloped area in this field. Current
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research has also alerted us, by means of its neurocognitive studies, to the different
attentional demands made by the diagrammatic model method versus the
alphanumeric algebraic method of problem representation and solution. We close
with the comment that the field of early algebra research is a relatively young one, a
field where new and exciting work is currently taking place and which offers the
promise of equally interesting and informative results in the years to come.
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