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Abstract There are two camps in the theory of meaning: the referentialist one in-
cludingDavidson, and the inferentialist one includingDummett andBrandom. Proof-
theoretic semantics is a semantic enterprise to articulate an inferentialist account of
the meaning of logical constants and inferences within the proof-theoretic tradition
of Gentzen, Prawitz, andMartin-Löf, replacingDavidson’s path “from truth tomean-
ing” by another path “from proof tomeaning”. The present paper aims at contributing
to developments of categorical proof-theoretic semantics, proposing the principle of
categorical harmony, and thereby shedding structural light on Prior’s “tonk” and
related paradoxical logical constants. Categorical harmony builds upon Lawvere’s
conception of logical constants as adjoint functors, which amount to double-line rules
of certain form in inferential terms. Conceptually, categorical harmony supports the
iterative conception of logic. According to categorical harmony, there are intensional
degrees of paradoxicality of logical constants; in the light of the intensional distinc-
tion, Russell-type paradoxical constants are maximally paradoxical, and tonk is less
paradoxical. The categorical diagnosis of the tonk problem is that tonk mixes up
the binary truth and falsity constants, equating truth with falsity; hence Prior’s tonk
paradox is caused by equivocation, whereas Russell’s paradox is not. This tells us
Prior’s tonk-type paradoxes can be resolved via disambiguation while Russell-type
paradoxes cannot. Categorical harmony thus allows us to demarcate a border between
tonk-type pseudo-paradoxes and Russell-type genuine paradoxes. I finally argue that
categorical semantics based on the methods of categorical logic might even pave the
way for reconciling and uniting the two camps.
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1 Introduction

Broadly speaking, there are two conceptions of meaning: the referentialist one based
on truth conditions as advocated by Davidson [7], and the inferentialist one based on
verification or use conditions as advocated by Dummett [10] or more recent Bran-
dom [5]. Along the latter strand of the theory of meaning, proof-theoretic semantics
undertakes the enterprise of accounting for the meaning of logical constants and
inferences in terms of proof rather than truth, thus replacing Davidson’s path “from
truth to meaning” by another Dummettian path “from proof to meaning”; the term
“proof-theoretic semantics” was coined by Schroeder-Heister (for a gentle intro-
duction, see Schroeder-Heister [21]; he also coined the term “substructural logic”
with Došen). It builds upon the proof-theoretic tradition of Gentzen, Prawitz, and
Martin-Löf, tightly intertwined with developments of Brouwer’s intuitionism and
varieties of constructive mathematics, especially the Brouwer-Heyting-Kolmogorov
interpretation, and its younger relative, the Curry-Howard correspondence between
logic and type theory, or rather the Curry-Howard-Lambek correspondence between
logic, type theory, and category theory (see, e.g., Lambek and Scott [12]). Note how-
ever that Brouwer himself objected to the very idea of formal logic, claiming the
priority of mathematics to logic (cf. Hilbert’s Kantian argument in [11] concluding:
“Mathematics, therefore, can never be grounded solely on logic”). “Harmony” in
Dummett’s terms and the justification of logical laws have been central issues in
proof-theoretic semantics (see, e.g., Dummett [10] and Martin-Löf [14]).

Combiningproof-theoretic semanticswith category theory (see, e.g.,Awodey [2]),
the present paper aims at laying down a foundation for categorical proof-theoretic
semantics, proposing the principle of categorical harmony, and thereby shedding
structural light on Prior’s “tonk” and related paradoxical logical constants. Prior’s
invention of a weird logical connective “tonk” in his seminal paper [18] compelled
philosophical logicians to articulate the concept of logical constants, followed by
developments of the notion of harmony. In a way harmony prescribes the condition
of possibility for logical connectives or their defining rules to bemeaning-conferring,
and as such, it works as a conceptual criterion to demarcate pseudo-logical constants
from genuine logical constants. Let us recall the definition of Prior’s tonk. Tonk can
be defined, for example, by the following rules of inference as in the system of natural
deduction:

ξ � ϕ

ξ � ϕ tonkψ
(tonk-intro.)

ξ � ϕ tonkψ

ξ � ψ
(tonk-elim.)

(1)

In any standard logical system (other than peculiar systems as in Cook [6]), adding
tonk makes (the deductive relation of) the system trivial, and thus we presumably
ought not to accept tonk as a genuine logical constant. In order to address the tonk
problem, different principles of harmony have been proposed and discussed by Bel-
nap [3], Prawitz [17], Dummett [10], and many others. From such a point of view,
harmony is endorsed to ban tonk-like pathological connectives on the ground that
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their defining rules violate the principle of harmony, and are not meaning-conferring
as a consequence of the violation of harmony. They cannot be justified after all.

In the present paper, we revisit the tonk problem, a sort of demarcation problem in
philosophy of logic, from a novel perspective based on category theory. In his seminal
paper [13], Lawvere presented a category-theoretical account of logical constants in
terms of adjoint functors, eventually giving rise to the entirely new discipline of cat-
egorical logic (see, e.g., Lambek and Scott [12]) including categorical proof theory.
Note that “categorical logic” is sometimes called “categorial logic” in philosophy
to avoid confusion with the philosopher’s sense of “categorical” (like “categorical
judgements”); especially, Došen, a leading researcher in the field, uses “categorial
logic”, even though “categorical logic” is widely used in the category theory com-
munity. Categorical logic is relevant to proof-theoretic semantics in various respects,
as explicated in this paper as well. Among other things, a fundamental feature of
the link between categorical logic and proof theory is that categorical adjunctions
amount to bi-directional inferential rules (aka double-line rules) of certain specific
form in terms of proof theory; by this link, categorical terms can be translated into
proof-theoretic ones. Building upon Lawvere’s understanding of logical constants,
in this paper, I formulate the adjointness-based principle of categorical harmony, and
compare it with other notions of harmony and related principles, including Belnap’s
harmony [3], Došen’s idea of logical constants as punctuation marks [8, 9], and the
reflection principle and definitional equations by Sambin et al. [19]. And the final
aim of the present paper is to shed new light on the tonk problem from the perspective
of categorical harmony.

In comparison with other concepts of harmony, there is a sharp contrast between
categorical harmony and Belnap’s harmony in terms of conservativity; at the same
time, however, uniqueness is a compelling consequence of categorical harmony, and
so both endorse uniqueness, yet for different reasons. The principle of categorical
harmony looks quite similar to Došen’s theory of logical constants as punctuation
marks, and also to the theory of the reflection principle and definitional equations
by Sambin et al. It nevertheless turns out that there are striking differences: some
logical constants are definable in Sambin’s or Došen’s framework, but not definable
according to categorical harmony, as we shall see below. It is not obvious at all
whether this is an advantage of categorical harmony or not. It depends upon whether
those logical constants ought to count as genuine logical constants, and thus upon our
very conception of logical constants; especially, what is at stake is the logical status
of substructural connectives (aka multiplicative connectives; in categorical terms,
monoidal connectives).

Finally, several remarks would better be made in order to alleviate common
misunderstandings on categorical semantics. The Curry-Howard correspondence
is often featured with the functional programmer’s dictum “propositions-as-types,
proofs-as-programs”. Likewise, the Curry-Howard-Lambek correspondence may be
characterised by the categorical logician’s dictum “propositions-as-objects, proofs-
as-morphisms.” One has to be careful of categorical semantics, though. For the
Curry-Howard-Lambek correspondence does not hold in some well-known categor-
ical semantics. The correspondence surely holds in the cartesian (bi)closed category
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semantics for propositional intuitionistic logic, yet at the same time, it is not true at
all in the topos semantics for higher-order intuitionistic logic (or intuitionistic ZF
set theory), and it does not even hold in the logos (aka Heyting category) seman-
tics for first-order intuitionistic logic. For the very facts, the latter two semantics
are called proof-irrelevant: they only allow for completeness with respect to the
identity of propositions, and does not yield what is called full completeness, i.e.,
completeness with regard to the identity of proofs. Some category theorists who do
not care about the proof-relevance of semantics tend to say that the topos semantics
is a generalisation of the cartesian (bi)closed category semantics; however, the claim
is only justified in view of the identity of propositions, and it is indeed wrong in
light of the identity of proofs, which is not accounted for in the topos semantics
at all. Note that locally cartesian closed categories yield proof-relevant semantics
for Martin-Löf’s dependent type theory, and toposes are locally cartesian closed. If
we see toposes as semantics for dependent type theory, then the topos semantics is
proof-relevant; yet, this is an unusual way to interpret the term “topos semantics”.
The Curry-Howard-Lambek correspondence is now available for a broad variety of
logical systems including substructural logics as well as intuitionistic logic, yet with
the possible exception of classical logic. Although quite some efforts have beenmade
towards semantics of proofs for classical logic, there is so far no received view on
it, and there are impossibility theorems on semantics of classical proofs, including
the categorical Joyal lemma. For classical linear logic, nonetheless, we have fully
complete semantics in terms of so-called ∗-autotonomous categories.

The rest of the paper is organised as follows. In Sect. 2, we review Lawvere’s cat-
egorical account of logical constants, and then formulate the principle of categorical
harmony. There are several subtleties on how to formulate it, and naïve formulations
cannot properly ban tonk-type or Russell-type logical constants. Comparison with
Došen’s theory is given as well. In Sect. 3, we further compare the principle of cate-
gorical harmonywith Belnap’s harmony conditions and Sambin’s reflection principle
and definitional equations. The logical status of multiplicative (monoidal) connec-
tives is discussed as well, and three possible accounts (i.e., epistemic, informational,
and physical accounts) are given. In Sect. 4, we look at tonk and other paradoxical
logical constants on the basis of categorical harmony, thus exposing different degrees
of paradoxicality among them. Especially, what is wrong with tonk turns out to be
equivocation. The paper is then concluded with prospects on the broader significance
of categorical logic in view of the theory of meaning. Little substantial knowledge
on category theory is assumed throughout the paper.

2 The Principle of Categorical Harmony

In this section, we first see how logical constants can be regarded as adjoint functors,
and finally lead to the principle of categorical harmony. Although I do not explain
the concept of categories from the scratch, from a logical point of view, you may
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conceive of a category as a sort of proof-theoretic consequence relation: suppose we
have the following concepts given.

• The concept of formulae ϕ.
• The concept of hypothetical proofs (or deductions) from formulae ϕ to ψ . For any
formula ϕ there must be an identity proof idϕ from ϕ to ϕ.

• The concept of proof-decorated relation �p:

ϕ �p ψ (2)

where p is a proof from ϕ to ψ .
• The concept of sequential composition ◦ of proofs: composing ϕ �p ψ and ψ �q

ξ , we obtain
ϕ �q◦p ξ. (3)

If we think of a monodical category for substructural logic, we additionally have
parallel composition ⊗:

ϕ ⊗ ϕ′ �p⊗p′ ψ ⊗ ψ ′ (4)

where ϕ �p ψ and ϕ′ �p′ ψ ′.
• The concept of reduction of proofs such that the identity proofs may be canceled
out (i.e., idϕ◦p equals pmodulo reducibility;q◦idϕ equalsq modulo reducibility),
and proofs may locally be reduced in any order (i.e., (p ◦ q) ◦ r equals p ◦ (q ◦ r)

modulo reducibility). Moreover, reduction must respect composition (i.e., if p
equals q and r equals s modulo reducibility, p ◦ q must equal r ◦ s modulo
reducibility).

The concept of a proof-theoretic consequence relation (resp. with parallel composi-
tion) thus defined is basically the same as the concept of a category (resp. monoidal
category): a formula corresponds to an object in a category, and a proof to amorphism
in it. To be precise, a proof-theoretic consequence relation is a way of presenting a
category rather than category per se. Inmost parts of the article, however, full-fledged
category theory shall not be used, for simplicity and readability, and it suffices for the
reader to know some basic logic and order theory, apart from occasional exceptions.

From the perspective of Schroeder-Heister [23], categorical logic (or categorial
logic to avoid confusion) places primary emphasis onhypothetical judgements,which
are concerned with the question “what follows from what?”, rather than categorical
judgements in the philosopher’s sense, which are concerned with the question “what
holds on their own?”. In the traditional accounts of both model-theoretic and proof-
theoretic semantics, the categorical is prior to the hypothetical, and the hypothetical is
reduced to the categorical via the so-called transmission view of logical consequence.
These are called dogmas of standard semantics, whether model-theoretic or proof-
theoretic, in Schroeder-Heister [23]. His theory takes the hypothetical to precede
the categorical, and it is in good harmony with the idea of categorical logic, in
which the hypothetical, i.e., the concept of morphisms, is conceptually prior to the
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categorical, i.e., the concept of morphismswith their domains being a terminal object
(or monoidal unit in the case of substructural logic).

Some authors have discussed how logical constants can be derived from logi-
cal consequence relations (see, e.g., Westerståhl [25]). To that end, category theory
allows us to derive logical constants from abstract proof-theoretic consequence rela-
tions (i.e., categories) through the concept of adjunctions, which even give us infer-
ential rules for the derived logical constants, and hence a proof system as a whole (in
the case of intuitionistic logic, for example, the proof system thus obtained is indeed
equivalent to standard ones, such as NJ and LJ). Given a category (abstract proof-
theoretic consequence relation), we can always mine logical constants (if any) in the
category via the generic criteria of adjunctions. In such a way, category-theoretical
logic elucidates a generic link between logical constants and logical consequence,
without focusing on a particular system of logic.

In the following, let us review the concept of adjoint functors in the simple case
of preorders, which is basically enough for us, apart from occasional exceptions. A
preorder

(L ,�L) (5)

consists of a set P with a reflexive and transitive relation �L on L . Especially,
the deductive relations of most logical systems form preorders; note that reflexivity
and transitivity amount to identity and cut in logical terms. It is well known that a
preorder can be seen as a category in which the number of morphisms between fixed
two objects in it are at most one. Then, a functor F : L → L ′ between preorders L
and L ′ is just a monotone map: i.e., ϕ �L ψ implies F(ϕ) �L ′ F(ψ). Now, a functor

F : L → L ′ (6)

is called left adjoint to
G : L ′ → L (7)

(or G is right adjoint to F) if and only if

F(ϕ) �L ′ ψ ⇔ ϕ �L G(ψ) (8)

for any ϕ ∈ L and ψ ∈ L ′. This situation of adjunction is denoted by F 
 G. Note
that a left or right adjoint of a given functor does not necessarily exist.

In this formulation, it would already be evident that an adjunction F 
 G is
equivalent to a sort of bi-directional inferential rule:

F(ϕ) �L ′ ψ

ϕ �L G(ψ) (9)

where the double line means that we can infer the above “sequent” from the one
below, and vice versa.
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Let us look at several examples to illustrate how logical constants are characterised
by adjunctions, and to articulate the inferential nature of them. Suppose that L is
intuitionistic logic. We define the diagonal functor Δ : L → L × L by

Δ(ϕ) = (ϕ, ϕ) (10)

where × denotes binary product on categories (in this case just preorders) or in
the category of (small) categories. Then, the right adjoint of Δ is conjunction ∧ :
L × L → L:

Δ 
 ∧. (11)

The left adjoint of Δ is disjunction ∨ : L × L → L:

∨ 
 Δ. (12)

The associated bi-directional rule for ∧ turns out to be the following:

Δ(ϕ1) �L×L (ϕ2, ϕ3)

ϕ1 �L ϕ2 ∧ ϕ3 (13)

which, by the definition of product on categories, boils down to the following familiar
rule:

ϕ1 �L ϕ2 ϕ1 �L ϕ3

ϕ1 �L ϕ2 ∧ ϕ3 (14)

This is the inferential rule for conjunction ∧ that is packed in the adjunction Δ 
 ∧.
We omit the case of ∨. Now, implication ϕ → (-) : L → L for each ϕ is the right
adjoint of ϕ ∧ (-), where the expressions “ϕ → (-)” and “ϕ ∧ (-)” mean that ϕ is
fixed, and (-) is an argument:

ϕ ∧ (-) 
 ϕ → (-). (15)

The derived inferential rule is the following:

ϕ ∧ ξ � ψ

ξ � ϕ → ψ (16)

Note that we may replace∧ by comma in the format of sequent calculus. Quantifiers
can be treated in a similar (but more heavily categorical) way using indexed or fibra-
tional structures (LC )C∈C (intuitively, each objectC in a categoryC is a collection of
variables or a so-called context) rather than single L as in the above discussion (see,
e.g., Pitts [16] for the case of intuitionistic logic; for a general variety of substructural
logics over full Lambek calculus, categorical treatment of quantifiers is presented in
Maruyama [15]). The corresponding double-line rules are the following:
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ϕ � ψ

ϕ � ∀xψ

∃xϕ � ψ

ϕ � ψ (17)

with the obvious eigenvariable conditions (which naturally emerge from a categorical
setting). Categorical logicians say that ∀ is a right adjoint, and ∃ is a left adjoint of
substitution (or pullback in categorical terms). Finally, truth constants ⊥ and � are
left and right adjoints of the unique operation from L to the one-element set {∗}, with
the following double-line rules:

⊥ � ϕ

∗ � ∗
∗ � ∗
ϕ � � (18)

which come down to:
⊥ � ϕ ϕ � � (19)

All the double-line rules above yield a sound and complete axiomatisation of intu-
itionistic logic; equivalence with other standard systems can easily be verified.

Building upon these observations, we can articulate the categorical inferentialistic
process of introducing a logical constant in a meaning-conferring manner:

• At the beginning, there are universally definable operations, i.e., those operations
that are definable in the general language of category theory.

– We may replace “the general language of category theory” by “the general
language of monoidal category theory” if we want to account for substructural
logics as well as logics with unrestricted structural rules.

– For example, diagonalΔ above is a universally definable operation. As observed
in the above case of the double-line rule for ∧, the existence of Δ amounts to
our meta-theoretical capacity to handle multiple sequents at once (in particular,
ability to put two sequents in parallel in the case of ∧).

• Logical constants are introduced step by step, by requiring the existence of right or
left adjoints of existing operations, i.e., universally definable operations or already
introduced logical constants.

– In otherwords,we define logical constants by bi-directional inferential rules cor-
responding to adjunctions concerned. Thus, thismay be conceived of as a special
sort of inferentialistic process to confer meaning on connectives. The condition
of adjointness bans non-meaning-conferring rules like tonk’s (discussed later).

– For example, conjunction and disjunction above can be introduced as adjoints
of a universally definable operation (i.e., diagonal); after that, implication can
be introduced as an adjoint of an existing logical constant (i.e., conjunction).

• Genuine logical constants are those introduced according to the above principle,
namely the principle of categorical harmony. Others are pseudo-logical constants.

According to this view, logical constants in a logical systemmust be constructed step
by step, from old simple to new complex ones, based upon different adjunctions. This
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may be called the iterative conception of logic. The rôle of the powerset operation (or
making a set of already existing sets) in the iterative conception of sets is analogous
to the rôle of the operation of taking adjoint functors.

A remark on monoidal categories for substructural logics is that the language
of monoidal categories is more general than the language of (plain) categories in
the sense that monoidal products ⊗ encompass cartesian products ×. Formally, we
have the fact that a monoidal product ⊗ is a cartesian product if and only if there
are both diagonals δ : C → C ⊗ C and projections p1 : C ⊗ D → C and p2 :
C ⊗ D → D where ⊗ is assumed to be symmetric. The logical counterpart of this
fact is that multiplicative conjunction ⊗ is additive conjunction if and only if both
contraction and weakening hold where exchange is assumed. Since contraction may
be formulated as ϕ � ϕ ⊗ ϕ, and weakening as ϕ ⊗ ψ � ϕ and ϕ ⊗ ψ � ψ , it is
evident that diagonals correspond to contraction, and projections to weakening (this
correspondence can be given a precise meaning in terms of categorical semantics).

There are different conceptions of harmony in proof-theoretic semantics, dis-
cussed by different authors. In the present article, adjointness is conceived of as a
sort of proof-theoretic harmony, and it is somehow akin to Prawitz’s inversion prin-
ciple in that both put emphasis on (different sorts of) “invertibility” of rules; recall
that an adjunction amounts to the validity of a “bi-directional” rule of certain form.
Categorically speaking, adjointness exhibits harmony between two functors; logi-
cally speaking, adjointness tells us harmony between the upward and the downward
rules of the induced bi-directional rule. The precise procedure of introducing logical
constants according to categorical harmony has already been given above. Let us
summarise the main point of categorical harmony as follows.

• A logical constant must be introduced by (the double-line rule of) an adjunction
with respect to an existing operation.

As we observed above, standard logical constants can be characterised by adjunc-
tions or adjunction-induced double-line rules. The idea of capturing logicality by
double-line rules was pursued by Došen [8, 9]. It seems, however, that his focus was
not on harmony, but rather on logicality only (as pointed out by Schroeder-Heister
[21]), and moreover he did not really use adjointness as a criterion to ban patholog-
ical, non-meaning-conferring rules. Indeed, Bonnay and Simmenauer [4] show that
Došen’s theory of logicality cannot ban a weird connective “blonk”; nonetheless, the
adjointness harmony of the present paper is immune to blonk, since it is not definable
by an adjunction, even though it is defined by a double-line rule. The approach of this
paper takes adjointness as the primary constituent of harmony, analysing issues in
proof-theoretic semantics from that particular perspective. Although the double-line
and adjointness approaches are quite similar at first sight, however, they are consid-
erably different as a matter of fact, as seen in the case of Bonnay and Simmenauer’s
blonk. There are actually several subtleties lurking behind the formulation above:

• It turns out that definability via one adjunction is crucial, since tonk can be defined
via two adjunctions.

• A logical constant must be defined as an adjoint of an existing operation, since
Russell-type paradoxical constants can be defined as adjoints of themselves.
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These points shall be addressed later in detail. Before getting into those issues, in
the next section, we briefly compare and contrast categorical harmony with other
principles.

3 Categorical Harmony in Comparison with Other
Principles

Here we have a look at relationships with Belnap’s harmony and the so-called re-
flection principle and definitional equations by Sambin and his collaborators.

The categorical approach to harmony poses several questions to Belnap’s notion
of harmony. As we saw above, implication → in intuitionistic logic is right adjoint
to conjunction ∧. Suppose that we have a logical system L with logical constants ∧
and ∨ only, which are specified as the right and left adjoints of diagonal Δ as in the
above. And suppose wewant to add implication→ to L . Of course, this can naturally
be done by requiring the right adjoint of ∧. Now, Freyd’s adjoint functor theorem
tells us that any right adjoint functor preserves limits (e.g., products), and any left
adjoint functor preserves colimits (e.g., coproducts). This is a striking characteristic
of adjoint functors. In the present case, the theorem tells us that ∧ preserves ∨; in
other words,∧ distributes over∨. Thus, defining implication according to categorical
harmony is not conservative over the original system L , since the bi-directional rules
for ∧ and ∨ only never imply the distributive law. Note that sequent calculus for ∧
and ∨ allows us to derive the distributive law without any use of implication; yet the
bi-directional rules alone do not imply it.

Although proponents of Belnap’s harmonywould regard this as a strange (and per-
haps unacceptable) feature, nevertheless, this sort of non-conservativity is necessary
and natural from a category-theoretical point of view. Furthermore, conservativity
may be contested in some way or other. One way would be to advocate categorical
harmony against Belnap’s on the ground of the Quinean holistic theory of meaning,
which implies that the meaning of a single logical constant in a system, in principle,
can only be determined by reference to the global relationships with all the other log-
ical constants in the whole system. If the meaning of a logical constant depends on
the whole system, then adding a new logical constant may well change the meaning
of old ones. Non-conservativity on logical constants is arguably a consequence of
a form of holism on meaning, even though it violates Belnap’s harmony condition.
Anyway, we may at least say that the principle of categorical harmony, or Lawvere’s
idea of logical constants as adjoints, is in sharp conflict with Belnap’s notion of
harmony, in terms of the conservativity issue.

Another distinctive characteristic of adjoint functors is that any of a right adjoint
and a left adjoint of a functor is uniquely determined (up to isomorphism). By this
very fact, we are justified to define a concept via an adjunction. This actually implies
that Belnap’s uniqueness condition automatically holds ifwe define a logical constant
according to the principle of categorical harmony. Thus, uniqueness is not something
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postulated in the first place; rather, it is just a compelling consequence of categorical
harmony. However, it is not very obvious whether this is really a good feature or
not. As a matter of fact, for example, exponentials (!, ?) in linear logic do not enjoy
the uniqueness property (as noted in Pitts [16]; it is essentially because there can be
different (co)monad structures on a single category). At the same time, however, we
could doubt that exponentials are genuine logical constants. Indeed, it is sometimes
said that they were introduced by Girard himself not as proper logical constants
but as a kind of device to analyse structural rules. The rôle of exponentials is to
have control on resources in inference, and not to perform inference per se on their
own. It would thus be a possible view that exponentials are a sort of “computational
constants” discriminated from ordinary logical constants. This is an issue common
to both categorical harmony and Belnap’s harmony.

There are even more subtleties on uniqueness in categorical harmony, which in-
volve a tension between cartesian and monoidal structures in category theory. When
formulating the categorical procedure to introduce logical constants in the last sec-
tion, it was remarked that we may replace the language of (plain) category theory
with that of monoidal category theory if we want to treat substructural logics as well.
In such a case, we first have amonoidal product⊗ in our primitive language, and then
require, for example, a right adjoint of ⊗, which functions as multiplicative impli-
cation. Since any adjoint is unique, there appears to be no room for non-uniqueness.
However, the starting point ⊗ may not be unique if it cannot be characterised as an
adjoint functor, and you can indeed find many such cases in practice. The point is
that, in general, monoidal structures can only be given from “outside” categories, i.e.,
the same one category can have different monoidal structures on it. If we have both
⊗ and the corresponding implication →, then ⊗ is a left adjoint of →. However, if
we do not have implication, then ⊗ may not be characterised as an adjoint, and thus
may not be unique. This is the only room for non-uniqueness in categorical harmony,
since any other logical constant must be introduced as an adjoint in the first place.

From a proof-theoretic point of view, having a monoidal structure on a category
amounts to having the comma “,” as a punctuation mark in the meta-language of
sequent calculus. In sequent calculus, we are allowed to put sequents in parallel
(otherwise we could not express quite some rules of inference), and at the same time,
we are allowed to put formulae in parallel inside a sequent by means of commas. The
former capacity corresponds to the categorical capacity to have cartesian products,
and the latter corresponds to the capacity to have monoidal products. This seems
relevant to the following question. Why can monoidal structures ⊗ be allowed in
category theory in spite of the fact that in general they cannot be defined via universal
mapping properties? To put it in terms of categorical harmony, why can monoidal
structures⊗ be allowed as primitive vocabularies to generate logical constants? (And
why are others not allowed as primitive vocabularies?) This is a difficult question, and
there would be different possible accounts of it. One answer is that there is no such
reason, and ⊗ ought not to be accepted as primitive vocabularies in the principle of
categorical harmony. Yet I would like to seek some conceptual reasons for permitting
⊗ as primitive vocabularies in the following.
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For one thing, ⊗ is presumably grounded upon a sort of our epistemic capacity to
put symbols in parallel (inside and outside sequents) as discussed above. The epis-
temic capacity may be so fundamental that it plays fundamental rôles in symbolic
reasoning as well as many other cognitive practices; this will lead to a sort of epis-
temic account of admissibility of ⊗ in the principle of categorical harmony. Another
“informational” account of it seems possible as well. There are three fundamental
questions: What propositions hold? Why do they hold? How do they hold? The first
one is about truth and falsity, the second one about proofs, and the last one about the
mechanisms of proofs. An answer to the last question must presumably include an
account of the way how resources or assumptions for inference are used in proofs, or
how relevant inferential information is used in proofs. And⊗may be seen as ameans
to address that particular part of the third question. This is the informational account,
which has some affinities with the view of linear logic as the logic of resources.

Yet another “physical” account may be came up with. In recent developments of
categorical quantum mechanics by Abramsky and Coecke (see Abramsky [1] and
references therein), the capacities to put things in parallel as well as in sequence
play vital rôles in their so-called graphical calculus for quantum mechanics and
computation, where parallel composition represents the composition of quantum
systems (resp. processes), i.e., the tensor product ofHilbert spaces (resp.morphisms),
which is crucial in quantumphenomena involving entanglement, such as theEinstein-
Podolsky-Rosen paradox and the violation of the Bell inequality. In general, ⊗ lacks
diagonals and projections, unlike cartesian×, and this corresponds to theNo-Cloning
andNo-Deleting theorems in quantum computation stating that quantum information
can neither be copied nor deleted (note that diagonals Δ : X → X ⊗ X copy
information X , and projections p : X ⊗ Y → X delete information Y ). On the
other hand, classical information can be copied and deleted as you like. So, the
monoidal feature of ⊗ witnesses a crucial border between classical and quantum
information. To account for such quantum features of the microscopic world, we
do need ⊗ in the logic of quantum mechanics, and this would justify to add ⊗ to
primitive vocabularies.

The physical account seems relevant to the well-known question “Is logic em-
pirical?”, which was originally posed in the context of quantum logic, and has been
discussed by Quine, Putnam, Dummett, and actually Kripke (see Stairs [24]). The
need of multiplicative ⊗ in the “true” logic of quantum mechanics is quite a recent
issue which has not been addressed in the philosophy community yet, and this may
have some consequences to both the traditional question “Is logic empirical?” and the
present question “Why are substructural logical constants are so special?”, as partly
argued above. Amore detailed analysis of these issues will be given somewhere else.

Sambin et al. [19] present a novel method to introduce logical constants by what
they call the reflection principle and definitional equalities, some of which are as
follows:

• ϕ ∨ ψ � ξ iff ϕ � ξ and ψ � ξ .
• ϕ,ψ � ξ iff ϕ ⊗ ψ � ξ .
• Γ � ϕ → ψ iff Γ � (ϕ � ψ).
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As these cases show, definitional equalities are quite similar to adjointness con-
ditions in categorical harmony (when they are formulated as bi-directional rules),
even though Sambin et al. do not mention category theory at all. Especially, in the
case of additive connectives, their definitional equivalences are exactly the same as
the bi-directional rules induced by the corresponding adjunctions. There are crucial
differences, however. Among them, the following fact should be emphasised:

• Definitional equalities do not always imply adjointness, partly due to what they
call the “visibility” condition, which requires us to restrict context formulae in
sequent-style rules of inference (categorically, this amounts to restricting so-called
Frobenius reciprocity conditions).

– For example, implication is not necessarily a right adjoint of conjunction in the
system of “basic logic” derived via their guiding principles.

This deviation from adjointness actually seems to be inevitable for Sambin et al.,
because they want to include Birkhoff-von Neumann’s quantum logic with some
concept of implication as a structural extension of their basic logic; however, quan-
tum implication (if any) cannot be a right adjoint of conjunction, due to the non-
distributive nature of it, which is essential in Birkhoff-von Neumann’s quantum
logic to account for superposition states in quantum systems.

In contrast, categorical harmony cannot allow for any sort of non-adjoint impli-
cation. Is this a good feature or not? It depends on whether such implication counts
as genuine implication, and so on our very conception of logical constants. The
categorical logician’s answer would be no: for example, Abramsky [1] asserts that
Birkhoff-von Neumann’s quantum logic is considered to be “non-logic” because it
does not have any adequate concept of implication (on the other hand, categorical
quantum logic is said to be “hyper-logic”).

Finally, it should be noted that Schroeder-Heister [21] compares the framework of
Sambin et al. [19] with his framework of definitional reflection, and that Bonnay and
Simmenauer [4] proposes to exploit the idea of Sambin et al. [19] in order to remedy
the aforementioned defect (the “blonk” problem) of Došen’s double-line approach
in [8, 9].

4 Degrees of Paradoxicality of Logical Constants

In this section, we first discuss whether tonk is an adjoint functor or not, or whether
tonk counts as a genuine logical constant according to categorical harmony, and we
finally lead to the concept of intensional degrees of paradoxicality.

Let L be a (non-trivial) logical system with a deductive relation �L admitting
identity and cut. And suppose L contains truth constants⊥ and�, which are specified
by adjunction-induced rules⊥ � ϕ andϕ � �, respectively. The first straightforward
observation is that, if L has tonk, then tonk has both left and right adjoints, and thus
tonk is the left and right adjoint of two functors. Recall that the inferential rôle of



108 Y. Maruyama

tonk is given by:
ξ � ϕ

ξ � ϕ tonkψ

ξ � ϕ tonkψ

ξ � ψ (20)

which are equivalent to the following simpler rules in the presence of identity and
cut:

ϕ � ϕ tonkψ ϕ tonkψ � ψ (21)

We can see tonk as a functor from L × L to L . Now, define a “truth diagonal” functor
Δ� : L → L × L by

Δ�(ϕ) := (�,�) (22)

and also define a “falsity diagonal” functor Δ⊥ : L → L × L by

Δ⊥(ϕ) := (⊥,⊥). (23)

We can then prove that Δ⊥ is a left adjoint of tonk, and that Δ� is a right adjoint of
tonk. In other words, tonk is a right adjoint ofΔ⊥ and a left adjoint ofΔ�; therefore,
tonk is an adjoint functor in two senses (if L is already endowed with tonk).

At the same time, however, this does not mean that the principle of categorical
harmony cannot exclude tonk, a pathological connective we ought not to have in a
logical system. Indeed, it is a problem in the other way around: in order to define
tonk in a logical system, the principle of categorical harmony requires us to add it
as a right or left adjoint of some functor, or equivalently, via an adjunction-induced
bi-directional rule. Thus, when one attempts to define tonk in a logical system L
according to categorical harmony, the task is the following:

1. Specify a functor F : L → L × L that has a (right or left) adjoint.
2. Prove that tonk is a (left or right) adjoint of F , or that the rules for tonk are

derivable in the system L extended with the bi-directional rule that corresponds
to the adjunction.

As a matter of fact, however, this turns out to be impossible.
Let us give a brief proof. Suppose for contradiction that it is possible. Then we

have a functor F : L → L × L , and its right or left adjoint is tonk. Assume that tonk
is a left adjoint of F , whichmeans that F is right adjoint to tonk. It then follows that F
must be truth diagonalΔ� as defined above. The bi-directional rule that corresponds
to the adjunction tonk 
 F is actually equivalent to the following (by the property
of Δ�):

ϕ1 tonk ϕ2 �L ψ (24)

But this condition is not sufficient to make the rules for tonk derivable, thus the right
adjoint of F cannot be tonk, and hence a contradiction. Next, assume that tonk is a
right adjoint of F , i.e., F is a left adjoint of tonk. Then, F must be falsity diagonal
Δ⊥, and the rule of the adjunction F 
 tonk is equivalent to the following:
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ϕ �L ψ1 tonkψ2 (25)

This is not enough to derive the rules for tonk, and hence a contradiction. This
completes the proof.

It has thus been shown that:

• Tonk cannot be defined as an adjoint functor (of some functor) in a logical system
without tonk, even though tonk is an adjoint functor in a logical system that is
already equipped with tonk.

– This is a subtle phenomenon, and we have to be careful of what exactly the
question “Is tonk an adjoint functor?” means. Due to this, naïvely formulating
categorical harmony as “logical constants = adjoint functors” does not work.

• Consequently, tonk cannot be introduced in any way according to the principle of
categorical harmony.

Wemay then conclude that tonk is a pseudo-logical constant, and the rules for tonk are
not meaning-conferring, not because it is non-conservative (i.e., Belnap’s harmony
fails for tonk), but because it violates the principle of categorical harmony (which is
able to allow for non-conservativity as discussed above). Still, it is immediate to see
the following:

• Tonk can actually be defined as being right adjoint to falsity diagonal Δ⊥, and left
adjoint to truth diagonal Δ� at once. We may say that tonk is a “doubly adjoint”
functor.

• In categorical harmony, therefore, it is essential to allow for a single adjunction
only rather than multiple adjunctions, which are harmful in certain cases.

We again emphasise that tonk cannot be defined in a system without tonk by a single
adjunction (i.e., there is no functor F such that an adjoint of F is tonk); nevertheless
tonk can be defined by two adjunctions: Δ⊥ 
 tonk 
 Δ�, i.e., Δ⊥ is left adjoint
to tonk, and tonk is left adjoint to Δ�. Note that double adjointness itself is not
necessarily paradoxical.

What is then the conceptualmeaning of all this?After all, what iswrongwith tonk?
The right adjoint t of falsity diagonalΔ⊥ may be called the binary truth constant (the
ordinary truth constant � is nullary), because the double-line rule of this adjunction
boils down to ϕ �L ψ1 tψ2, which means that ψ1 tψ2 is implied by any formula
ϕ (for any ψ1, ψ2). Likewise, the left adjoint s of truth diagonal Δ� may be called
the “binary falsity constant”, because the double-line rule of this adjunction boils
down to ψ1 sψ2 �L ϕ, which means that ψ1 sψ2 implies any ϕ. Now, the rôle of
tonk is to make the two (binary) truth and falsity constants (t and s) collapse into the
same one constant, thus leading the logical system to inconsistency (or triviality);
obviously, truth and falsity cannot be the same. This confusion of truth and falsity is
the problem of tonk.

To put it differently, a right adjoint ofΔ⊥ and a left adjoint ofΔ� must be different,
nevertheless tonk requires the two adjoints to be the same; the one functor that are
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the two adjoints at once is tonk. The problem of tonk, therefore, lies in confusing two
essentially different adjoints as if they represented the same one logical constant. We
may thus conclude as follows:

• The problem of tonk is the problem of equivocation. The binary truth constant and
the binary falsity constant are clearly different logical constants, yet tonk mixes
them up, to be absurd.

This confusion of essentially different adjoints is at the root of the paradoxicality of
tonk. There is no problem at all if we add to a logical system the right adjoint of Δ⊥
and the left adjoint ofΔ� separately, anyofwhich is completely harmless.Unpleasant
phenomena only emerge if we add the two adjoints as just a single connective, that
is, we make the fallacy of equivocation.

Let us think of a slightly different sort of equivocation. As explained above, ∧
is right adjoint to diagonal Δ, and ∨ is left adjoint to it. What if we confuse these
two adjoints? By way of experiment, let us define “disconjunction” as the functor
that is right adjoint to diagonal, and left adjoint to it at the same time. Of course, a
logical system with disconjunction leads to inconsistency (or triviality). Needless to
say, the problem of disconjunction is the problem of equivocation: conjunction and
disjunction are different, yet disconjunction mixes them up.

Then, is the problem of disconjunction precisely the same as the problem of tonk?
This would be extensionally true, yet intensionally false. It is true in the sense that
both pseudo-logical constants fall into the fallacy of equivocation. Nonetheless, it is
false in the sense that the double adjointness condition of disconjunction is stronger
than the double adjointness condition of tonk.

What precisely makes the difference between tonk and disconjunction? Tonk is
a right adjoint of one functor, and at the same time a left adjoint of another functor.
In contrast to this, disconjunction is a right and left adjoint of just a single functor.
Disconjunction is, so to say, a uniformly doubly adjoint functor, as opposed to the
fact that tonk is merely a doubly adjoint functor. The difference between tonk and
disconjunction thus lies in uniformity. Hence:

• On the ground that uniform double adjointness is in general stronger than dou-
ble adjointness, we could say that disconjunction is more paradoxical than tonk,
endorsing a stronger sort of equivocation.

• We thereby lead to the concept of intensional degrees of paradoxicality of logical
constants. Degrees concerned here are degrees of uniformity of double adjointness
or equivocation.

What is then the strongest degree of paradoxicality in terms of adjointness? It is
self-adjointness, and it is at the source of Russell-type paradoxical constants. A self-
adjoint functor is a functor that is right and left adjoint to itself. This is the strongest
form of double adjointness. Now, let us think of a nullary paradoxical connective R
defined by the following double-line rule (this sort of paradoxical connectives has
been discussed in Schroeder-Heister [20, 22]):
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� ¬R

� R

Reformulating this, we obtain the following:

R �
� R

Wemay consider R as a unary constant connective R̃ : L → L defined by R̃(ϕ) = R.
Then, the double-line rule above shows that R is right and left adjoint to R, and
therefore the Russell-type paradoxical constant R is a self-adjoint functor.

In order to express double adjointness, we need two functors (i.e., Δ⊥ and Δ�)
in the case of tonk, one functor (i.e., Δ) in the case of disconjunction, and no func-
tor at all in the case of paradox R. These exhibit differences in the uniformity of
double adjointness. Tonk exemplifies the most general case of double adjointness
and exhibits the lowest degree of uniformity. On the other hand, paradox instanti-
ates the strongest double adjointness, and exhibits the highest degree of uniformity.
Disconjunction exemplifies the only possibility in between the two.

Wehave thus led to three intensional degrees of paradoxicality (double adjointness
< uniform double adjointness < self-adjointness):

Right adjoint to Left adjoint to
Genuine paradox R Itself R Itself R
Disconjunction Diagonal Δ Diagonal Δ
Tonk Truth diagonal Δ� Falsity diagonal Δ⊥

The last two are caused by equivocation according to the categorical account of
logical constants. In contrast, paradox R is not so for the reason that self-adjointness
can be given by a single adjunction: if a functor is right (resp. left) adjoint to itself,
it is left (resp. right) adjoint to itself. This is the reason why we call it “genuine
paradox” in the table above. More conceptually speaking:

• Pseudo-paradoxes due to equivocation can be resolved by giving different names
to right and left adjoints, respectively, which are indeed different logical constants,
and it is natural to do so.

– The paradoxicality of such pseudo-paradoxes is just in mixing up actually dif-
ferent logical constants which are harmless on their own.

• On the other hand, we cannot resolve genuine paradox in such a way: there are
no multiple meanings hidden in the Russell-type paradoxical constant, and there
is nothing to be decomposed in genuine paradox.

– Genuine paradox is a truly single constant, and the paradoxicality of genuine
paradox is not caused by equivocation, unlike tonk or disconjunction.
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If we admit any sort of adjoint functors as logical constants, then we cannot
really ban genuine paradox, which is surely an adjoint functor. A naïve formulation
of Lawvere’s idea of logical constants as adjoint functors, like “logical constants
= adjoint functors”, does not work here again (recall that we encountered another
case of this in the analysis of tonk). This is the reason why we have adopted the
iterative conception of logic in our formulation of categorical harmony. In that view,
logical constants must be constructed step by step, from old to new ones, via ad-
junctions. Since genuine paradox emerges via self-adjointness, however, there is no
“old” operation that is able to give rise to genuine paradox via adjunction. In this
way, categorical harmony based upon the iterative conception of logic allows us to
avoid genuine paradox.

5 Concluding Remarks: From Semantic Dualism to Duality

Let us finally address further potential implications of categorical logic to the theory
of meaning. The dualism between the referentialist and inferentialist conceptions
of meaning may be called the semantic dualism. Categorical logic may (hopefully)
yield a new insight into the semantic dualism, as argued in the following.

From a categorical point of view, “duality” may be discriminated from “dualism”.
Dualism is a sort of dichotomy between two concepts. Duality goes beyond dualism,
showing that the two concepts involved are actually two sides of the same coin, just as
two categories turn out to be equivalent by taking themirror image of each other in the
theoryof categorical dualities.Duality in this general sense seems towitness universal
features of category theory. Indeed, the classic dualismbetweengeometry and algebra
breaks down in category theory. For example, the categorical concept of algebras of
monads encompasses topological spaces in addition to algebraic structures. Category
theory may be algebraic at first sight (indeed, categories are many-sorted algebras),
yet it is now used to formulate geometric concepts in broad fields of geometry,
ranging from algebraic and arithmetic geometry to knot theory and low-dimensional
topology. It is also a vital method in representation theory and mathematical physics.
Technically, there are a great number of categorical dualities between algebraic and
geometric structures (e.g., the Gelfand duality and the Stone duality). It may thus be
said that the concept of categories somehow captures both algebraic and geometric
facets of mathematics at a deeper level, and so there is duality, rather than dualism,
between algebra and geometry.

Just as in this sense category theory questions the dualism between algebra and
geometry, categorical logic opaques the generally received, orthodox distinction be-
tween model theory and proof theory, and presumably even the semantic dualism
above, suggesting that they are merely instances of the one concept of categori-
cal logic. For example, the Tarski semantics and the Kripke semantics, which are
two major instances of set-theoretic semantics, amount to interpreting logic in the
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category of sets and the category of (pre)sheaves, respectively (from a fibrational,
or in Lawvere’s terms hyperdoctrinal, point of view, we conceive of topos-induced
subobject fibrations rather than toposes themselves). On the other hand, proof sys-
tems or type theories give rise to what are called syntactic categories, and their
proof-theoretic properties are encapsulated in those syntactic categories. For exam-
ple, cartesian biclosed categories and ∗-autonomous categories give fully complete
semantics of intuitionistic logic and classical linear logic, respectively, in the sense
that the identity of proofs exactly corresponds to the identity of morphisms (note also
that the possibility of proof normalisation is implicitly built-in to categorical seman-
tics; if normalisation is not well behaved, syntactic categories are not well defined).
There is thus no dualism between model-theoretic and proof-theoretic semantics in
categorical semantics. That is, there is just the one concept of categorical semantics
that can transform into either of the two semantics by choosing a suitable category
(fibration, hyperdoctrine) for interpretation. Put another way, we can make a proof
system out of a given structured category (which is called the internal logic of the
category; some conditions are of course required to guarantee desirable properties
of the proof system), and at the same time, we can also model-theoretically interpret
logic in that category. This feature of categorical logic allows us to incorporate both
model-theoretic and proof-theoretic aspects of logic into the one concept. In a nut-
shell, categorical semantics has both proof-theoretic and model-theoretic semantics
inherent in it, and from this perspective, there is no dualism, but duality between
proof-theoretic and model-theoretic semantics, which may be called the semantic
duality.

Wemust, however, be careful ofwhether this sort of unificationmakes sense philo-
sophically as well as mathematically. There may indeed be some conceptual reasons
for arguing that we ought to keep model-theoretic and proof-theoretic semantics sep-
arate as usual. Yet we may at least say that categorical logic exposes some common
features of the two ways of accounting for the meaning of logical constants; at a
level of abstraction, model-theoretic and proof-theoretic semantics become united as
particular instances of the one categorical semantics. The philosophical significance
of that level of abstraction is yet to be elucidated.
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