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Abstract Proof-theoretic semantics explainsmeaning in termsof proofs. Twodiffer-
ent concepts of proof are in question here. One has its roots in Heyting’s explanation
of a mathematical proposition as the expression of the intention of a construction,
and the other in Gentzen’s ideas about how the rules of Natural Deduction are jus-
tified in terms of the meaning of sentences. These two approaches to meaning give
rise to two different concepts of proof, which have been developed much further, but
the relation between them, the topic of this paper, has not been much studied so far.
The recursive definition of proof given by the so-called BHK-interpretation is here
used as an explication of Heyting’s idea. Gentzen’s approach has been developed as
ideas about what it is that makes a piece of reasoning valid. It has resulted in a notion
of valid argument, of which there are different variants. The differences turn out to
be crucial when comparing valid arguments and BHK-proofs. It will be seen that
for one variant, the existence of a valid argument can be proved to be extensionally
equivalent to the existence of a BHK-proof, while for other variants, attempts at
similar proofs break down at different points.
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1 Introduction

The term “proof-theoretic semantics” was introduced to stand for an approach to
meaning based on what it is to have a proof of a sentence. The idea was, at least
originally, that in contrast to a truth-conditional meaning theory, one should explain
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the meaning of a sentence in terms of what it is to know that the sentence is true,
which in mathematics amounts to having a proof of the sentence.1

There are in particular two different concepts of proof that have been used in
meaning theories of this kind, but the relation between them has not been paid much
attention to. They have their roots in ideas that were put forward by Arend Heyting
and Gerhard Gentzen in the first part of the 1930s. Their approaches to meaning are
quite different and result in different concepts of proof. Nevertheless there are clear
structural similarities between what they require of a proof. The aim of this paper
has been to compare the two approaches more precisely, in particular as to whether
the existence of proofs comes to the same.

I shall first retell briefly how Heyting and Gentzen formulated their ideas and
how others have taken them. In particular, I shall consider how the ideas have been
or can be developed so that they become sufficiently precise and general to allow a
meaningful comparison, which will then be the object of the second part of the paper.

2 Heyting’s Approach to Meaning

A mathematical proposition expresses according to Heyting the intention of a con-
struction that satisfies certain conditions. He explained the assertion of a proposition
to mean that the intended construction had been realized, and a proof of a proposi-
tion to consist in the realization of the intended construction (Heyting 1930 [5, pp.
958–959], 1931 [6, p. 247], 1934 [7, p. 14]). Thus, according to this explanation, to
assert a proposition is equivalent with declaring that there is proof of the proposition.
The notion of proof retains in this way its usual epistemic connotation: to have a
proof is exactly what one needs in order to be justified in asserting the proposition.

As an important example, Heyting explained the meaning of implication, saying
that “a ⊃ b means the intention of a construction that takes any proof of a to a proof
of b”.

There are several proposals for how to develop Heyting’s ideas more explicitly.
One early proposal due to Kreisel (1959, 1962) [10, 11] suggests quite straightfor-
wardly that the constructions intended by implications and universal quantifications
are constructive functionals of finite type satisfying the conditions stated byHeyting.2

The so-called BHK-interpretation stated by Troelstra and van Dalen (1988) [24],
which is less developed ontologically, defines recursively “what forms proofs of

1Schroeder-Heister (2006) [22], who coined the term and used it as the title of a conference that he
arranged at Tübingen in 1999, writes that proof-theoretic semantics “is based on the fundamental
assumption that the central notion in terms of which meanings can be assigned to expressions of
our language … is that of proof rather than truth”.
2Kreisel was interested in this interpretation as a technical tool for obtaining certain non-derivability
results. For a foundation of intuitionistic logic he suggested another interpretation that took a proof
of an implication to consist of a pair (α, β) where α is a construction satisfying the condition stated
by Heyting and β is a proof of the fact that α satisfies this condition (Kreisel 1962 [12]).
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logically compound statements take in terms of the proofs of the constituents”.3

What is here called a proof corresponds rather to what Heyting calls an intended
construction, but it has become common in intuitionism to speak about proofs in this
way, and I shall follow this way of speaking.

For my purpose here it is sufficient to stay roughly at the level of precision of the
BHK-interpretation. I assume that we are given a set P of proofs of atomic sentences
of a first order language and an individual domain D. What it is to be a proof over
P of a closed compound sentence A in that language is then defined by recursive
clauses like the ones below:

(1) α is a proof over P of A ⊃ B, if and only if, α is an effective operation such that
if β is any proof over P of A then α(β) is a proof over P of B.

(2) α is a proof over P of ∀x A(x), if and only if, α is an effective operation such
that for any element e in the individual domain D, α(e) is a proof over P of the
instance A(e).

Instead of speaking of proofs of open sentences A(x) under assignments of individ-
uals to variables, I have here assumed for convenience that each element e in the
individual domain D has a canonical name, and understand by A(e) the closed sen-
tence obtained by substituting in A(x) this canonical name of e for x . Furthermore, I
assume that if α is as stated in clause (2), then there is another effective operation α∗,
effectively obtained from α, such that for any closed term t , α∗(t) is a proof of A(t).

To distinguish proofs defined by recursive clauses of this kind, I shall sometimes
refer to them as BHK-proofs.

3 Gentzen’s Approach to Meaning

Gentzen’s approach to meaning is commonly described by saying that he had the
idea that the meaning of a logical constant is determined by its introduction rule in
Natural Deduction, or as he put it himself: “the introductions present, so to speak, the
‘definitions’ of the symbols concerned” (Gentzen 1934–35 [4, p. 189]). However,
this should not be confused with what has later become known as inferentialism, the
view that the meaning of a sentence is given by the inference rules concerning the
sentence that are in force, which was advocated by Carnap (1934) [1] at about the
same time. For Gentzen only some of the inference rules are meaning constitutive,
viz. the introduction rules. To indicate their special status, a proof or deduction
whose last step is an introduction is now commonly called canonical or is said to be
in canonical form.4

3BHK stands here for Brouwer-Heyting-Kolmogorov, but there is also another interpretation stated
by Troelstra (1977) [23] that is called the BHK-interpretation, where BHK stands for Brouwer-
Heyting-Kreisel. It is more akin to Kreisel’s second proposal mentioned in footnote 2.
4Prawitz (1974) [19]. The term “canonical proof”, which was used already by Brouwer in a different
context, was applied to normal proofs by Kreisel (1971) [13] and to proofs mentioned in the
intuitionistic meaning explanations (such as the BHK-interpretation) by Dummett (1975) [2].
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Besides introduction rules there are elimination rules and about them Gentzen
says “in an elimination we may use the constant only in the sense afforded to it by
the introduction of that symbol”. What is intended is clearly that we may use the
constant only in this sense, if we are to justify the elimination inference. Gentzen is
obviously concerned with what justifies inferences: the introductions stipulate what
the logical constants mean, and the eliminations are justified because they are in
accord with this meaning.

He clarifies how his ideas are to be understood by giving one example, saying that
given an implication A ⊃ B as premiss, “one can directly infer B when A has been
proved, because what A ⊃ B attests is just the existence of a proof of B from A”.5

Three important principles can be distinguished here. Firstly, what a sentence
“attests” is the existence of a canonical proof. An introduction is therefore immedi-
ately justified: given proofs of its premisses, the conclusion is warranted, since what
the conclusion attests is just that there is a canonical proof of it—the introductions
are self-justifying, as one says, when they are taken to be what gives the meanings
of the logical constants. Thus, in view of what a sentence attests, a canonical proof
is in order, or is valid, provided only that its immediate sub-proofs are.

Secondly, the justification of an elimination consists more precisely in the fact
that given that there are proofs of the premisses of the elimination and that the proof
of the major premiss is of the kind attested to exist, that is, is in canonical form, a
proof of the conclusion can be obtained from these proofs without the use of that
elimination. For instance, as Gentzen points out, a proof of the conclusion B of an
implication elimination can be obtained from proofs of the premisses if the proof of
the major premiss A ⊃ B is in canonical form, because then there is a proof of B
from A, and by replacing the assumption A in that proof by the proof of the minor
premiss A, one obtains a proof of B, as is illustrated by the following figure:

[A]
|
B

A ⊃ B
|
A

B

gives rise to (is reduced to)

|
[A]
|
B

[A] stands for the set of assumptions that are discharged by the exhibited
⊃-introduction in the first figure and become replaced by the proof of A in the
second figure. The operation by which the proof to the left is transformed to the one
to the right, that is, substituting in the proof of B from A the proof of the minor pre-
miss A for the occurrences of A that belong to [A], is what is called an ⊃-reduction.
These kinds of reductions, which were introduced explicitly in the proof of the nor-
malization theorem for natural deduction (Prawitz 1965 [16]), but which Gentzen
was already quite aware of,6 have in this way a semantic import in being what shows

5“kann man … aus einem bewiesenen A sofort B schließ[en]. Denn A ⊃ B dokumentiert ja das
Bestehen einer Herleitung von B aus A” (Gentzen 1934–35 [4, p. 189]).
6Although Gentzen never stated these reductions in any published work, it seemed clear already
from his example quoted here that he was aware of them. This was later verified when finding an
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the eliminations to be justified. By this way of reducing a proof that ends with an
elimination to another proof of the same conclusion, the conclusion of the elimination
becomes warranted, provided of course that this other proof is valid. Thus, proofs
that end with eliminations are valid, if the proofs that they reduce to by applying
certain reductions are valid.

Thirdly, when saying that we get a valid proof of B by making the substitution
just described, we are tacitly taking for granted that a valid proof from assumptions
remains valid when making such substitutions.

We can in this way extract from Gentzen’s example three principles about what
makes something a valid proof or a valid deduction, as I prefer to say (since when
the term proof is used, it is normally taken for granted that the reasoning is valid, a
convention not strictly adhered to inmy informal explanations above). The principles
are formulated more precisely below, where I have adopted the terminology that a
deduction is open when it depends on assumptions and closed when all assumptions
are discharged or bound.

Principle I. Introductions preserve validity: a closed deduction in canonical form
is valid, if its immediate sub-deductions are.

Principle II. Eliminations are justified by reductions: a closed deduction not in
canonical form is valid if it reduces to a valid deduction.

Principle III. An open deduction is valid, if all results of substituting closed valid
deductions for its free (undischarged) assumptions are valid.

Because of the fact that the premises of an introduction and the assumptions that
an introduction may bind are of lower complexity than that of the conclusion, these
principles can be taken as clauses of a generalized inductive definition of the notion of
valid deduction, relative to a basic clause stating what is counted as valid deductions
of atomic sentences. The effect of defining the notion inductively in this way is that
no deduction is valid if its validity does not follow from I–III and that the converses
of I–III hold true too.

When taking into account also inferences involving quantified sentences, we have
to reckon with inferences that bind free individual variables: for instance, an ∀I-
inference in which ∀x A(x) is inferred from A(a) is said to bind occurrences of the
variable a that are free in sentences of the deduction of A(a); the occurrences are said
to be bound in the deduction of ∀x A(x). A deduction is then said to be open/closed
if it contains either/neither occurrences of unbound assumptions or/nor occurrences
of unbound variables. Accordingly, in principle III the substitution referred to is also
to replace all free individual variables by closed individual terms. We then arrive at
a notion of validity for natural deductions in general.7

(Footnote 6 continued)
unpublished manuscript where Gentzen actually proved a normalization theorem for intuitionistic
natural deduction with these reductions (see von Plato 2008 [25]).
7What was called “validity based on the introduction rules” by Prawitz (1971) [17] differs
from the notion presented here in one substantial respect: in clauses corresponding to prin-
ciple III, extensions of the set of valid deductions for atomic sentences were considered
and it was required that substitutions preserved validity also relative to them; cf. footnote 12.
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Gentzen’s idea could be summarized by saying that the meaning of a sentence
is determined by what counts as a canonical proof of it, which is to say among
other things that non-canonical reasoning must be possible to transform to canonical
form in order to be acceptable—spelled out in full, the idea is that the meaning of
a sentence is determined by what is required from a valid deduction of it. Although
this way of formulating Gentzen’s ideas goes beyond what he said himself, the three
principles of validity formulated here are implicit in the example that he gave, as has
been shown above.

Closed valid deductionsmay be seen as representing proofs, and I shall sometimes
refer to them as Gentzen proofs.

4 A First Comparison Between Heyting’s and Gentzen’s
Approaches

Both Heyting and Gentzen approached questions of meaning in relation to what
it is to prove something, but as seen from the above, their approaches were still
very different. Gentzen was concerned with what justifies inferences and thereby
with what makes something a valid form of reasoning. These concerns were absent
from Heyting’s explanations of mathematical propositions and assertions. The con-
structions that Heyting refers to in his meaning explanations, called proofs in the
BHK-interpretation, are mathematical objects, naturally seen as belonging to a hier-
archy of effective operations as suggested by Kreisel. They are not proofs built up
from inferences. Nor does a proof in Heyting’s sense, the realization of an intended
construction, constitute a proof built up of inferences, although it does constitute
what is required to assert the proposition in question. As was later remarked by
Heyting (1958) [8], the steps taken in the realization of the intended construction, in
other words, in the construction of the intended object, can be seen as corresponding
to inference steps in a proof as traditionally conceived.

These differences between what I am calling BHK-proofs and Gentzen proofs
do not rule out the possibility that the existence of such proofs nevertheless comes
materially to the same. For instance, a BHK-proof of an implication A⊃ B is defined
as an operation that takes aBHK-proof of A into one of B, and a closedGentzen proof
of A ⊃ B affords similarly a construction that takes a Gentzen proof of A into one
of B; the latter holds because the validity of a closed deduction of A ⊃ B guarantees
a closed valid deduction in canonical form (by principle II when seen as a clause in
an inductive definition) containing a valid deduction of B from the assumption A
(principle I), which gives rise to a closed valid deduction of B when a closed valid

(Footnote 7 continued)
In addition to this notion, I also defined a notion of “validity used in proofs of normalizability”,
similar to Martin-Löf (1971) [14] notion of computability, but as pointed out by Schroeder-Heister
(2006) [22], this notion of validity is quite different and should not be counted as a semantic notion
explicating Gentzen’s idea of meaning, because normalizable deductions are defined outright as
computable although (if open) they may not be reducible to canonical form.
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deduction of A is substituted for the assumption (principle III). Such similarities may
make one expect that one can construct a BHK-proof given a Gentzen proof and vice
versa.

However, the ideas of Gentzen discussed above are confined to a specific formal
system with particular elimination rules associated with reductions, while there is
no comparable restriction of the effective operations that make up a BHK-proof. It
is easily seen that for each (valid) deduction in that system there is a corresponding
BHK-proof (provided that there are BHK-proofs corresponding to the deductions
of atomic sentences), but the converse does not hold. For instance, there is a BHK-
proof (over the set of proofs of arithmetical identities) of the conclusion obtained by
an application of mathematical induction if there are BHK-proofs of the premisses,
but there is no corresponding valid deduction unless we associate a reduction to
applications of mathematical induction. If Gentzen proofs are to match BHK-proofs,
Gentzen’s ideas have first to be generalized, making them free from any particular
formal system.

5 Further Development of Gentzen’s Ideas

The generalization to be considered in this section will retain Gentzen’s ideas of
explaining the meaning of sentences in terms of certain canonical forms of reasoning
and of connecting the meaning so explained with the justification of inferences. It
should be mentioned however that Gentzen’s and Heyting’s ideas have also been
developed in anotherway, resulting in a certain fusion of their ideas. The explanations
in the BHK-interpretation may be enriched by saying à la Gentzen how proofs of
sentences of various forms can be constructed. To Gentzen’s introduction rules there
then correspond canonical ways of forming BHK-proofs of compound sentences
fromBHK-proofs of the constituents, while to the elimination rules there correspond
operations on BHK-proofs to BHK-proofs defined in essentially the same way as the
reductions in natural deduction. These correspondences, which further develop the
Curry-Howard isomorphism (Howard 1980 [9]), constitute cornerstones of Martin-
Löf’s type theory (see especially Martin-Löf 1984 [15, p. 24]). In the other direction,
I have suggested that a legitimate inference is to be seen as involving not only a
transition from assertions to assertions but also an operation on grounds for the
premisses that yields a ground for the conclusion, where grounds are BHK-proofs
formed in the way just described (Prawitz 2015 [21]).

In this paper, I am not concerned with such fusions of Heyting’s and Gentzen’s
ideas, but want to compare BHK-proofs with forms of reasoning that appear as valid
in accordance with Gentzen’s ideas about the justification of inferences, sufficiently
generalized.

In outline the general idea is this: We consider pieces of reasoning, which will be
called argument structures, proceeding by arbitrary inferences, and possible justifi-
cations of these inferences in the form of a set of reductions. An argument structure
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paired with a set of reductions is called an argument, and we define what it is for an
argument to be valid by essentially the same three clauses that defined the notion of
valid deduction. I shall develop two new notions of validity, called weak and strong
validity. They are variants of notions of valid arguments that have been proposed
earlier,8 and will be shown to have distinct features that are especially important
when it comes to compare valid arguments and BHK-proofs.

At the end of the paper, I reflect upon the fact that all the variants of valid arguments
considered so far deviate in one important respect from the intuitions connected with
Gentzen’s approach as described above, and point to how the notion of justification
may be developed in another way that stays closer to the original ideas.

5.1 Argument Structures

In order to extend the notion of validity defined for deductions so that it can be applied
to reasoning in general that proceeds by making arbitrary inferences, I consider tree-
formed arrangements of sentences of the kind employed in natural deduction, except
that now the inference steps need not be instances of any fixed rules. They will be
described by using common terminology from natural deduction, and are what will
be called argument structures. A sentence standing at the top of the tree is to be seen
either as an assumption or as asserted (inferred from no premisses). An occurrence
of an assumption can be bound (discharged) by an inference further down in the tree.
Indications of which sentences in the tree are assumptions and where they are bound
(if they are bound) are to be ingredients of the argument structure.

An inference may also bind occurrences of a free variable (parameter) in sen-
tences above the conclusion. Again it has to be marked how variables are bound by
inferences. An argument structure is thus a tree of sentences with indications of these
kinds, and can also be seen as a tree-formed arrangement of inferences chained to
each other.

The notions of free assumption and free variable, of open and closed argument
structure, and of a sentence or argument structure depending on a free assumption
or parameter are carried over to the present context in the obvious way.

There are no restrictions on the argument structures except that an inference may
not bind a variable that occurs in an assumption that remains free after the inference,
that is, that the conclusion of the inference depends on (otherwise there would be a
clash with the idea that an occurrence of a free assumption is free for substitution of
closed argument structures, while bound variables are not free for substitution).

8In particular, I have in mind my original notion of valid argument (Prawitz 1973 [18]) and the
variants proposed by Michael Dummett (1991) [3] and Peter Schroeder-Heister (2006) [22] after
profound discussions of my notion. See further footnotes 10 and 12.
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An argument structure may for instance look as follows

A 1

Nt
A 2

A(0)

(1)

[A(a)]
A 3(a)

A(s(a))
(1) a

A(t)

where the exhibited inference binds assumptions in the part A 3 of the form A(a)

marked (1) as well as variables a that are free in A 3. The inference can be seen as
representing an application of mathematical induction, where N stands for ‘natural
number’ and s is the successor operation.

We keep open what forms of sentences are used in an argument structure in
order to make the notion sufficiently general. However, when making comparisons
with BHK-proofs of sentences in a first order language, we restrict ourselves to
such languages. It is assumed that for each form of compound sentences there are
associated inferences of a certain kind called introductions, for which we retain the
condition from natural deduction that for somemeasure of complexity, the premisses
of the inference and the assumptions bound by the inference are of lower complexity
than that of the conclusion. For instance, we could allow the pathological operator
tonk proposed by Prior and associate it with the introduction rule that he proposed.

We shall say that an argument structure is canonical or in canonical form if its
last inference is an introduction.

5.2 Arguments

The inferences of an argument structure that are not introductions should be justified
by reductions as in natural deduction. I shall now be following Schroeder-Heister
(2006) [22] partially by taking a justification to be simply a set of reductions9 and
a reduction to be a pair (A 1, A 2) of argument structures such that A 1 is not canon-
ical and A 2 ends with the same sentence as A 1 and depends at most on what A 1
depends on.

An argument is a pair (A, J ), where A is an argument structure and J is a justifi-
cation. An argument is said to be closed, open, or canonical (or in canonical form),
if the respective attribute is applicable to the argument structure.

A 1 is said to reduce immediately toA 2 with respect to J , if (A 1, A 2) belongs to J .
A reduction sequence with respect to the justification J is a sequenceA 1, A 2, . . . , A n

(n ≥ 1) such that for each i < n, either A i reduces immediately to A i+1 with
respect to J or A i+1 is obtained from A i by replacing an initial part A ′ of A i by
an argument structure A ′′ such that A ′ reduces immediately to A ′′ with respect to J .
An argument structure A is said to reduce to the argument structure A∗ with respect
to the justification J , if there is a reduction sequence with respect to J whose first
element is A and last element is A∗.

9I have dropped the requirement that the justifications should be closed under substitutions.
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Justifications of deductions as described above (Sect. 3) and of argument structures
as I originally defined themwere effective operations assigned to inference schemata
and differ in this respect from the notion that I am now adopting. Themain difference
is that the relation ‘to reduce immediately to’ becomes now one-many instead of
one-one. The present notion of justification is of particular interest when we come
to comparing valid arguments with BHK-proofs,10 but as we shall see it has some
unwanted consequences.

Schroeder-Heister remarks that to take justifications to be relations corresponds to
the idea that there can be “alternative justifications” of the same argument structure.
I think that this idea is somewhat doubtful; anyway, as we shall soon see, it can be
taken in many ways.

Since a justification is just a set of reductions, it may not “really” justify the
argument structure. We could say that what is called a justification is merely a pro-
posed or possible justification, a justification candidate. What is required of a “real”
justification gets expressed by the definition of what it is for an argument to be valid.

For instance, one can invent a justification of an argument structure using Prior’s
elimination rule for tonk by assigning some reductions to applications of the rule,
but this will never give rise to valid arguments that make creative uses of Prior’s rule.

An important example of justifications outside the standard ones for the elim-
ination rules in natural deduction is one that can be associated with the argument
structures exhibited in the preceding subsection as representing applications of math-
ematical induction. It consists of a pair (B 1, B 2) where thus B 1 is an argument
structure of this form. What B 2 is depends on the form of the first premiss of the last
inference, Nt , which may be called the major premiss of the inference. If the major
premiss has the form N0 and the conclusion accordingly has the form A(0), B 2 is
to be A 2, the argument structure for A(0) that represents the induction base. If it has
the form Ns(t) and stands as conclusion of an inference whose premiss is Nt , the
conclusion accordingly having the form A(s(t)), B 2 is to be argument structure

A 1

Nt
A 2

A(0)

(1)

[A(a)]
A 3(a)

A(s(a))
(1) a[A(t)]

A 3(t)
A(s(t))

10It also offers one way to avoid a problem connected with my earlier definition of justification.
When generalizing principle III in the definition of valid deduction to argument structures, the
substitutions of valid argument structures (A i , Ji ) in open arguments (A, J ) had to be restricted
to ones where Ji was consistent with J . The restriction is unwanted and may make the notion
of validity too weak (essential also when comparing with BHK-proofs). A possible alternative in
order to avoid this problem while keeping the relation ‘to reduce immediately to’ one-one is to
take reductions to be assignments of effective operations to occurrences of inferences (instead of
inference schemata or inferences).
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If the term t is a numeral n, the argument structure is finally transformed by successive
reductions of this kind to an argument structure consisting of the induction base A 2
followed by n applications A 3(0), A 3(1), . . . , A 3(n − 1) of the induction step on
top of each other. These reductions represent indeed the natural and commonly given
justification for inferences by mathematical induction.

5.3 Validity of Arguments

We can now define what it is for an argument to be valid by adopting three principles
analogous to the ones stated for valid deductions:

I. A closed canonical argument (A, J ) is valid, if for each immediate sub-argument
structure A∗of A , it holds that (A∗, J ) is valid.

II. A closed non-canonical argument (A, J ) is valid, if A reduces relative to J to
an argument structure A∗ such that (A∗, J ) is valid.

III. An open argument (A, J ) depending on the assumptions A1, A2, . . . , An is valid,
if all its substitution instances (A∗, J ∗) are valid, where A∗ is obtained by first
substituting any closed terms for free variables in sentences of A , resulting in an
argument structure A◦ depending on the assumptions A◦

1, A◦
2, . . . , A◦

n , and then
for any valid closed argument structures (A i , Ji ) for A◦

i , i ≤ n, substituting A i

for A◦
i in A◦, and where J ∗ = ⋃

i≤n Ji ∪ J .

Because of the assumed condition on the relative complexity of the ingredients of
an introduction inference, the principles I-III can again be taken as clauses of a
generalized inductive definition of the notion of valid argument relative to a base
B , which is to consist of a set of closed argument structures containing only atomic
sentences. If A is an argument structure of B , the argument (A,∅), where ∅ is the
empty justification, is counted as canonical and outright as valid relative to B . A base
is seen as determining the meanings of the atomic sentences. An argument that is
valid relative to any base can be said to be logically valid.

If A is an argument structure representing mathematical induction as exhibited in
Sect. 5.1, J is the justification associated with A as described in Sect. 5.2, and B is a
base for arithmetic, say corresponding to Peano’s first four axioms and the recursion
schemata for addition and multiplication, then the argument (A, J ) is valid relative
to B (as was in effect first noted in a different conceptual framework by Martin-Löf
(1971) [14]. This is an example of a valid argument that is not logically valid but
whose validity depends on the chosen base. However, I shall often leave implicit the
relativization of validity to a base.

Instead of saying that the argument (A, J ) is valid it is sometimes convenient to
say that the argument structure A is valid with respect to the justification J . But it is
argument structures paired with justifications that correspond to proofs and that will
be compared to BHK-proofs.
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6 Weak and Strong Validity and Their Features

6.1. As is easily seen, it comes to the same if we in clause II of the definition of
validity require instead that A reduces relative to J to a canonical argument structure
A∗ that is valid with respect to J .

An important question concerning valid arguments, especially crucial when com-
paring them with BHK-proofs, is whether this canonical argument A∗ required by
clause II can be found effectively.

6.1.1. If the definition of validity is read constructively, or in other words, if the
existential quantifier in clause II is understood intuitionistically, the answer is of
course yes, the canonical argument A∗ can be found effectively. If so, there is also
an effective operation denoted by ∗ that is defined for every valid closed argument
(A, J ) and yields a canonical argument structure A∗ such that A reduces to A∗with
respect to J and (A∗, J ) is valid.

6.1.2. Otherwise, if the definition is not taken in a constructive sense, it is not guar-
anteed that A∗ can be found effectively. Even if we require of a justification that
it should be possible to generate its reductions effectively, it is still not guaranteed
that A∗can be found effectively. It is true that when we are generating the reduction
sequences with respect to a justification J that start from a closed non-canonical
argument structure A that is valid with respect to J , we sooner or later hit upon
a canonical argument structure A∗ such that (A∗, J ) is valid. But since validity is
not a decidable property, we may not be able to tell which one(s) of the canonical
structures A∗ that we reach in this way is (are) the right one(s).

6.2. The situation was quite different when we were dealing with valid deductions
based on the standard reductions in natural deduction. Given a closed valid deduction
A , a valid canonical deduction A∗ as required by principle II can always be found
effectively because of two facts: firstly, as already noted, the justifications consist of
effective operations, which means that a deduction reduces immediately to at most
one other deduction; and secondly, it can be shown that, regardless of the order in
which the operations are applied, they will transform a closed deduction to a valid
canonical one. This second feature can be called strong validity,11 in analogy with
how in proof theory one says that a natural deduction is strongly normalizable if all
reduction sequences terminate in a normal deduction.

Similarly, we can speak of strong validity of arguments when the canonical argu-
ment A∗ is found regardless of the order in which the reductions are taken and
regardless of which reductions in J are employed. More precisely, a definition of an
argument structure (A, J ) being strongly valid (relative to a base B whose argument
structures are now counted outright as strongly valid) is obtained by clauses I∗-III∗,
where I∗ and III∗ are like I and III except that “valid” is replaced with “strongly
valid” and the second clause reads:

11I have previously used the expression strongly valid for deductions and arguments in another way
where it would be better to say strongly computable—cf. second part of footnote 7.
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II∗ A closed non-canonical argument (A, J ) is strongly valid, if each reduction
sequence relative to J starting from A can be prolonged to a reduction sequence
that contains a canonical argument structure A∗ such that (A∗, J ) is strongly
valid.

Henceforth, I shall refer to the notion of validity defined by I–III as weak validity.

6.3. Effectiveness is restored when going from weak validity to strong validity, in
spite of the justification still being a relation instead of a set of operations, provided
that we require that its reductions can be generated effectively. When we generate
in some arbitrarily chosen order the reduction sequences with respect to J that start
from a closed argument structure A that is a strongly valid with respect to J , the first
canonical argument A∗ that we find is guaranteed to be strongly valid with respect
to J ; to verify this fact, note that reductions obviously preserve strong validity: if A
reduces to A∗with respect to J and (A, J ) is strongly valid, then so is (A∗, J ).

6.3.1. That effectiveness is obtained can be seen as an aspect of the fact that strong
validity requires all so-called “alternative justifications” to be “real” justifications,
so to say—if a closed argument (A, J ) is strongly valid and the reductions (A 1, A 2)

and (A 1, A 3) both belong to J , clause II∗ requires that regardless of which one is
used in a reduction sequence, it takes A a step towards a valid canonical argument.
Clause II, in contrast, only requires that one of the reductions does so, which means
that the other reduction may lead astray and may have no significance for the validity
of the argument in question.

6.3.2. An aspect of the last feature is that weak validity is obviously monotone with
respect to justifications: if (A, J ) is weakly valid and J ⊆ J ∗, then (A∗, J ∗) is
weakly valid too—whatever reductions we add to J , the argument remains weakly
valid. In contrast, strong validity is not monotone with respect to justifications—
added “alternative justifications” must be “real”, if validity is to be preserved.

6.3.3. Yet another aspect of essentially the same feature is that the property of an
argument structure to be weakly valid with respect to some justification J is indeed
a very weak property. In fact, there is a justification J for a given language such
that any non-canonical argument structure A for a sentence A in that language is
weakly valid with respect to J , provided only that there exists a weakly valid closed
argument (A∗, J ∗) in that language forA .We can simply choose as J the universal set
of reductions in that language, call it UR . Since J ∗ ⊆ UR , the argument (A∗, UR )

is weakly valid by the monotonicity of weak validity, and since A reduces to A∗with
respect to UR , (A, J ) is weakly valid too in virtue of clause II.

It must be said that this argument (A, UR ) may be quite far from an intuitively
valid argument for A—the inferences in A may lack any significance for the validity
of the argument, and the only relevant property of UR for the validity is that the
reduction (A, A∗) is an element and that J ∗ is included.

6.4. It should be noted that strong validity does not entail weak validity; a strongly
valid argument for an implication A ⊃ B is also weakly valid if A does not contain
implication, but as soon as implication becomes nested in the antecedent, this may
cease to hold because of the third clause in the definitions of validity.
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The features discussed here of the two variants of validity are essential when we
are to compare the valid argument with the BHK-proofs, as will be seen in the next
section.12

7 Mappings of Valid Arguments on BHK-Proofs
and Vice Versa

After having now made Gentzen’s approach free from ties to a specific formal sys-
tem, we return to the question whether the two approaches come to the same thing
extensionally. Let us assume that P is a set of BHK-proofs of atomic sentences, that
B is a base of valid arguments for atomic sentences, and that they have been mapped
on each other. We shall try to extend these mappings to compound sentences.

In other words, we shall try to define one mapping called

Proof which applied to a valid closed argument relative to B for a sentence A gives
as value a BHK-proof of A over P ,

and a mapping in the other direction called

Arg which applied to a BHK-proof over P of a sentence A gives as value a valid
closed argument relative to B for A,

assuming as an induction assumption that we have been able to define such effective
mappings for all sentences of complexity less than that of A.

If α is a BHK-proof of a sentence A, Arg (α) has to be a pair, which will be written
(Arg1(α), Arg2(α)); thus, Arg1(α) is an argument structure for A and Arg2(α) is a
justification.

I restrict myself to the cases when A is an implication or a universal quantification,
and shall consider in parallel the problems that arise for different variants of validity
of arguments.

12As to the other variants of validity mentioned in footnote 8, Dummett defines validity directly for
argument structures, thus leaving the justifications implicit. I have commented on this difference
elsewhere [20], but then overlooked one important consequence of it, which is now taken up in
footnote 14.

Schroeder-Heister’s notion of validity differs from weak validity as defined here by following
my previous definition of valid deduction as regards extensions of the given base B (see footnote 7).
We get this notion by requiring in clause III that also for every extension B∗ of B , it holds that all
substitution instances (A∗, J ∗) are valid relative to B∗ where A∗ is obtained by substituting for A ◦

i
a closed argument structure A i such that (A i , Ji ) is valid relative to B∗.

To consider extensions of the given base in this way is natural when a base is seen as representing
a state of knowledge, but is in conflict with the view adopted here that a base is to be understood as
giving the meanings of the atomic sentences. For instance, the argument representing reasoning by
mathematical induction presented in Sect. 5.3 ceases to be valid relative to the arithmetical base B
if we require in clause III that validity be monotone with respect to the base.

Concerning my original notion of validity see remarks made in the text and in footnote 10.
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7.1 Extending the Mapping Proof to Arguments for A

7.1.1. Consider first the case when A is an implication B ⊃ C . Proof is then to be
defined for any valid closed argument (A, J ) for A, which is done by saying that
Proof(A, J ) is to be the operation α defined for BHK-proofs β of B such that

α(β) = Proof

⎛

⎜
⎜
⎝

Arg1(β)

[B]
A◦
C

, J ∪ Arg2(β)

⎞

⎟
⎟
⎠ (a)

I have to explain what operation A◦ is and show—under the assumptions that (A, J )

is a valid closed argument for A and that β is a BHK-proof of B and the induction
assumption—that:

(i) the operation A◦ is an effective procedure for finding an argument structure for
C , and

(ii) the pair to which Proof is applied above in (a) is effectively obtained from (A, J )

and β, and is a valid closed argument for C .

It then follows by the induction assumption that Proof is defined for this argument
and that α(β) as defined in (a) is a BHK-proof of C , which means that the operation
α is a BHK-proof of A.

If A is in canonical form, that is, has the form

(1)

[B]
A ′
C

(1)
B ⊃ C

we let A◦ be the immediate sub-structure A ′ of A , which is an argument structure
for C .13

If A is not in canonical form, we want A◦ to be the immediate sub-structure of
a closed canonical argument structure A∗ to which A reduces with respect to J and
that is valid with respect to J . Now it becomes important what kind of validity we are
dealing with. If the argument (A, J ) is strongly valid, then as noted in Sect. 6.3, there
is an effective procedure for finding such an argument structure A∗ that is strongly
valid with respect to J : Generating the reduction sequences with respect to J that

13Note the difference between the two notations below, commonly used in natural deduction:

A
A

A
A

The left one stands for the same argument structure as A and is used to indicate that the last sentence
of A is A. The right one stands for an argument structure formed by putting A under the structure
A (and it is left open what the last sentence of A is).
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start from A in some arbitrarily chosen order, we take the first canonical argument
structure A∗ that we find. We then let A◦ be its immediate sub-structure; that is, A◦
is again A ′ if A∗has the form shown above.

Note that if (A, J ) is weakly valid, the procedure described above may result in
an argument structure such that A∗ is not weakly valid with respect to J , and that if
(A, J ) is neither strongly nor weakly valid, the procedure may not give any result at
all. But when (A, J ) is strongly valid and closed, the operation A∗ is defined and is
an effective procedure. Hence, A◦ is an effective procedure for finding an argument
structure for C .

If (A, J ) is weakly valid and this is taken in a constructive sense, then as already
noted (Sect. 6.1.1), there is an effective procedure ∗ defined for all weakly valid
closed arguments (A, J ) which yields an argument structure A∗such that A reduces
to A∗ with respect to J and A∗ is weakly valid with respect to J . Letting A◦ be
the immediate substructure of A∗, we have again explained the operation A◦ as an
effective procedure for finding an argument structure for C .

Task (i) has thus been carried out for strong validity and for weak validity read
constructively, but not for weak validity read non-constructively. In the two suc-
cessful cases, task (ii) is now easy. That the pair to which Proof is applied in (a) is
effectively obtained follows from the induction assumption and the effectiveness of
the operation A◦. The demonstration of the fact that the pair is a strongly or weakly
valid closed argument for C follows the same pattern for the two cases of validity,
so we may let valid mean either weakly or strongly valid: That (A◦, J ) is a valid
argument for C follows from the validity of (A, J ) or of (A∗, J ), as the case may
be. By the induction assumption (Arg1(β), Arg2(β)) is a valid argument for B, and
from these two facts it follows by clause III∗ or III that the argument to which Proof
is applied in (a) is a closed valid argument for C , as was to be shown.

7.1.2. Let now A be the sentence ∀x B(x), and let (A, J ) be a closed argument for
∀x B(x) that is strongly valid or is weakly valid taken in a constructive sense.

As in Sect. 2, it is assumed that the elements in the individual domain D have
canonical names. I apply the conventions explained there, and define Proof(A, J ) to
be the operation α defined for the elements e in the individual domain D such that

α(e) = Proof(A◦(e), J ) (b)

The operation A◦ is explained analogously to how it was explained in the preceding
case. Thus, if A is in canonical form, A has the form

A ′(a)

B(a)

∀x B(x)

and we let A◦ be A ′(a), the immediate sub-structure of A . A◦(e) is then the result
of substituting for a in A◦(a) the canonical name for e.
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If A is not in canonical form, we find effectively as in the preceding case a closed
canonical argument structure A∗ to which A reduces with respect to J such that
(A∗, J ) has the same kind of validity as (A, J ). We let then A◦(a) be the immediate
substructure of A∗ and A◦(e) the result of substituting for a in A◦(a) the canonical
name for e.

Since by clauses I∗ and III∗ or by clauses I and III (A∗(e), J ) is a closed valid
argument for B(e), validity taken in one of the two forms here considered, it follows
by the induction assumption in question, that Proof is defined for this argument and
that α(e) as defined in (b) is a BHK-proof of B(e). Thus, α is a BHK-proof of A.

7.2 Extending the Mapping Arg to BHK-Proofs of A

7.2.1. Now I first consider the easiest case when A is a universal sentence ∀x B(x).
Let α be a BHK-proof of A. I define Arg (α) = (Arg1(α), Arg 2(α)) as follows:

Arg1(α) = B(a)

∀x B(x)
Arg2(α) =

⋃

t

Arg2(α
∗(t)) ∪ {(B(t), Arg1(α

∗(t)))}t

The line above the top sentence B(a) in the argument structure that Arg1(α)

assumes as value is meant to indicate that B(a) is not an assumption but is inferred
from zero premisses; thus, the parameter a does not occur in any assumption that
the sentence at the bottom depends on, and it becomes therefore bound by the ∀I-
inference as usual.

For the argument structure Arg1(α) to be valid with respect to a justification J , it
is necessary and sufficient that J contains a reduction such that any instance of the
argument structure B(a) reduces with respect to J to an argument structure A that is
valid with respect to J . The problem is that it is not sufficient to find, for each closed
term t , appropriate reductions for B(t).14 Instead we must find a set J of reductions
such that it can be shown that, for each term t , J contains appropriate reductions. I
succeed in showing this only for the case of weak validity. The set Arg2(α) defined
above will be shown to be such a justification in that case. The same result could be
obtained more easily by choosing the universal set of reductions for the language in
question, but it may be of some interest to see that this smaller set will do.

For the understanding of the definition of Arg2(α), recall that α∗ is the effective
operation assumed in Sect. 2 to be possible to obtain effectively from α such that
for each closed term t , α∗(t) is a BHK-proof of B(t). I also want to make clear
that Arg2(α) is the union of two sets (i) and (ii) where (i) is the union of all sets
Arg2(α

∗(t)) for closed terms t and (ii) is the set of all pairs (B(t), Arg1(α
∗(t)))

where t is a closed term. By the induction assumption, Arg1(α
∗(t)) and Arg2(α

∗(t))
are both defined.

14This is all that is required by Dummett’s notion of valid argument structure, which means that his
notion is quite obviously extensionally equivalent to the notion of BHK-proof.



22 D. Prawitz

In order to show that (Arg1(α), Arg2(α)) is a weakly valid argument for ∀x B(x),
we have to show in view of principles I and III and sinceArg1(α) is a closed argument
structure for ∀x B(x) in canonical form that the argument (B(t), Arg2(α)) is weakly
valid for each closed term t . To this end we must show in view of principle II that
B(t) for each closed term t reduces with respect to Arg2(α) to an argument structure
A such that (A, Arg2(α)) is weakly valid.

We shall now verify that for each closed term t , Arg1(α
∗(t)) is such an argument

structure A . Firstly note that it has been arranged so that B(t) reduces to Arg1(α
∗(t))

with respect to Arg2(α) for each closed term t by the defining Arg2(α) as a union
of two sets (i) and (ii) where (ii) is the set of all pairs (B(t), Arg1(α

∗(t))) for closed
terms t . Secondly, note that by the induction assumption, for each closed term t ,
(Arg1(α

∗(t)), Arg2(α
∗(t))) is a closed weakly valid argument for B(t), since α∗(t)

is a BHK-proof of B(t). Thirdly, we recognize that from the last fact follows the
wanted result that (Arg1(α

∗(t)), Arg2(α)) is weakly valid, because Arg2(α
∗(t)) is

a subset of Arg2(α) (in virtue of being a subset of the set (i) described above) and
weak validity is monotone with respect to justifications, as remarked in Sect. 6.3.2.

As seen the monotonicity of weak validity with respect to justifications is used in
establishing this mapping, and therefore a similar demonstration does not go through
for strong validity, not being monotone with respect to justifications.

7.2.2. Let now A be an implication B ⊃ C and let α be a BHK-proof of B ⊃ C . The
construction of Arg (α) is similar to the preceding case. Clearly, Arg1(α) is to be the
canonical argument structure

(1)

[B]
C

(1)
B ⊃ C

It is weakly valid with respect to Arg2(α), if and only if, for each weakly valid,
closed argument (A, J ) for B, the argument structure

A
B
C

(c)

reduces with respect to J ∪ Arg2(α) to an argument structure A◦ such that (A◦, J ∪
Arg2(α)) is weakly valid (as is seen by applying clauses I, III, and II in this order).
To guarantee that there is such an A◦ for each weakly valid closed argument (A, J ),
I define

Arg2(α) =
⋃

{Arg2(α(Proof(A, J ))) : (A, J ) is a weakly valid closed argument for B}
∪ {(A∗, A∗∗) : there is weakly valid closed argument (A, J ) for B

such that A∗ is of the form (c) and A∗∗ is Arg1(α(Proof(A, J )))}
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Assume now that (A, J ) is a closed argument for B that is weakly valid. We shall
verify that Arg1(α(Proof(A, J ))) is the wanted A◦. Firstly, note that the argument
structure (c) reduces with respect to J ∪ Arg2(α) to Arg1(α(Proof(A, J ))) in virtue
of the fact that the pair ((c), Arg1(α(Proof(A, J )))) is a member of the second set
in the union that by definition constitutes Arg2(α). Secondly, we note that by the
induction assumption, Proof(A, J ) is a BHK-proof of B. Hence α(Proof(A, J )) is
a BHK-proof of C . Therefore, by the induction assumption in the other direction,

(Arg1(α(Proof(A, J ))), Arg2(α(Proof(A, J )))) (d)

is a weakly valid argument for A. Thirdly, we recognize that from the weak validity
of the argument (d) follows the wanted result that the argument (Arg1(α(Proof(A,

J ))), J ∪ Arg2(α)) is weakly valid, because Arg2(ϕ(Proof(A, J ))) is a subset of
Arg2(ϕ) (in virtue of being a subset of the first set of the union that constitutes
Arg2(ϕ) by definition) and weak validity is monotone with respect to justifications.

The demonstrations in 7.2.1 and 7.2.2 have been entirely constructive and thus
show that the result that Arg (α) is a closed weakly valid argument for A when α

is a BHK-proof of A holds even when the notion of weak validity is understood
constructively.

8 Concluding Remarks

8.1.We have thus shown that the notion of aweak valid argument taken constructively
is extensionally equivalent with the notion of a BHK-proof.

Whenweak validity is taken non-constructively, I have not been able to construct a
BHK-proof of A from aweakly valid argument for A, but only in the other direction a
weakly valid argument for A fromaBHK-proof of A, given the induction assumption.

In contrast, from a strongly valid argument for A, I have constructed a BHK-proof
of A, given the induction assumption and the assumption that the reductions can be
generated effectively, but have not been able to construct in the other direction a
strongly valid argument for A from a BHK-proof of A.

Since the mentioned constructions depend on the assumption that there are map-
pings in both directions for sub-sentences, nothing has been established about the
relations between on the one hand BHK-proofs and on the other hand arguments that
are weakly valid understood in a non-constructive sense or are strongly valid.

8.2. As has been seen above, when the notion of valid deduction is generalized to
the notion of valid argument, the justifications come to play the major role and the
inferences of the argument structures a correspondingly minor role. Some of the
intuitions behind the notion of valid deduction are lost in this way. It would therefore
be interesting to investigate a more restricted notion of reductions than the one used
here in connection with arguments.
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The standard reductions in natural deduction are all transformations of a given
deduction by two kinds of very simple effective operations, possibly combined with
each other. One kind consists of operations ϕ such that ϕ(D) is a sub-deduction ofD.
The other kind consists of operations ϕ such that ϕ(D) is the result of substituting
in D an individual term occurring in a sentence of D for a free variable occurring
in a sentence of D or substituting in a sub-deduction of D for a free assumption (in
that sub-deduction) another sub-deduction of D. Also the reduction associated with
mathematical induction (Sect. 5.2) is a transformation built up of these two kinds of
operations.

By applying operations of these two kinds to a deduction or an argument structure
one obtains an argument structure that is contained in the given deduction or argument
structure; in case substitutions have been carried out, we should perhaps say that
the result is implicitly contained. A reduction of this kind associated to an inference
constitutes a justification of the inference in amuch stronger sense than the reductions
that have been considered in connection with argument structures: Given that the
arguments for the premisses are acceptable, there is an acceptable argument for the
conclusion, because an argument for the conclusion is already contained, at least
implicitly, in the arguments for the premisses taken together. This is actually the
kind of justification of Gentzen’s elimination rules that I have labelled the inversion
principle, using a term from Lorenzen, and have presented as the intuition behind
the normalization theorem for natural deductions [16].

An argument structure that is valid with respect to a justification that assigns
such operations to occurrences of inferences would in itself have an epistemic force.
Perhaps one could say that the function of the justifications would then be to verify
that they have such a force, whereas valid arguments as they have been defined here
often get their entire epistemic force from the justifications.

A notion of valid argument based on justifications of this kind would be a quite
different concept from the variants of valid argument that have been dealt with in
this paper. It would also be different from the notion of BHK-proof, it seems.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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