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Abstract We give an overview of completeness and incompleteness results within
proof-theoretic semantics. Completeness of intuitionistic first-order logic for certain
notions of validity in proof-theoretic semantics has been conjectured by Prawitz.
For the kind of semantics proposed by him, this conjecture is still undecided. For
certain variants of proof-theoretic semantics the completeness question is settled,
including a positive result for classical logic. For intuitionistic logic there are positive
as well as negative completeness results, depending on which variant of semantics
is considered. Further results have been obtained for certain fragments of first-order
languages.

Keywords Completeness · Proof-theoretic validity · Intuitionistic logic · Classical
logic · Atomic systems

1 Introduction

In proof-theoretic semantics (see Schroeder-Heister [34]; cf. Wansing [36]) for log-
ical constants several related notions of validity have been proposed. We men-
tion Kreisel (cf. Gabbay [6]), Prawitz [18–22], Dummett [3] and Sandqvist [26].
Overviews and discussions of such proof-theoretic notions of validity can be found
in Schroeder-Heister [31] and Read [24].

What these notions of validity have in common is that the validity of an atomic
formula, or atom, is defined in terms of the derivability of that atom in a given system
of atomic rules, that is, of ruleswhich can only contain atoms. Leta, b, . . . , a1, a2, . . .
be atoms. Then

a b
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c

T. Piecha (B)
Department of Computer Science, University of Tübingen, Tübingen, Germany
e-mail: thomas.piecha@uni-tuebingen.de

© The Author(s) 2016
T. Piecha and P. Schroeder-Heister (eds.), Advances in Proof-Theoretic Semantics,
Trends in Logic 43, DOI 10.1007/978-3-319-22686-6_15

231



232 T. Piecha

is an example of a system S of atomic rules (the first two having the form of atomic
axioms), in which c is derivable by

a b
c

and therefore valid with respect to S. Atomic rules are also called boundary rules
(cf. Dummett [3]) or production rules. Atomic systems S are also called bases; they
can have the form of Post systems, definite Horn clause logic programs etc.

The validity of complex formulas A, B, . . . , A1, A2, . . . (constructed as usual
from atoms with logical constants) with respect to an atomic system S can then be
defined inductively by giving semantic clauses for the logical constants. The validity
of implications A → B with respect to an atomic system S is usually defined by
taking into account arbitrary atomic extensions S′ of S. Let �S stand for ‘valid with
respect to S’; then the semantic clause for implication has the form

�S A → B :⇐⇒ ∀S′ ⊇ S : (�S′ A =⇒ �S′ B)

where in the definiens all extensions S′ of S have to be considered. This ensures that
implications A → B cannot become valid with respect to S just because some atom
on which the validity of A depends is not derivable in S. Considering extensions thus
guarantees monotonicity for validity with respect to S.

It was conjectured by Prawitz [19, 22] that intuitionistic first-order logic is com-
plete with respect to certain notions of validity for inference rules. This conjecture is
still undecided. There are, however, several negative as well as positive results about
completeness for certain plausible variants of this notion of validity, formulated not
for inference rules but for formulas. One kind of variants considers only certain frag-
ments of first-order languages. Other variants are based on different kinds of atomic
systems which allow for atomic rules of a more general form than production rules
only. Further variants are given through different treatments of negation or absurdity,
and by different notions of what an extension of an atomic system is.

In the following, we present several of these variants together with their respective
completeness or incompleteness results.

2 Prawitz’s Conjecture

Prawitz has given several definitions of proof-theoretic validity (see Prawitz [18–
22]), and he has conjectured completeness of intuitionistic first-order logic for some
of them. We here present a formulation for the fragment {→,∨,∧} as given by
Schroeder-Heister [33], which captures the main ideas underlying Prawitz’s defini-
tions. The restriction to the fragment {→,∨,∧} is only made to keep the exposition
simple; the definitions can be extended to the first-order case in a more or less
straightforward way.
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We first define some preliminary notions:

Definition 1 A (first-level) atomic system S is a (possibly empty) set of atomic rules
of the form

a1 . . . an

b

where the ai and b are atoms. The set of premises {a1, . . . , an} in a rule can be empty;
in this case the rule is an atomic axiom and of level 0. First-level atomic systems that
do not contain atomic axioms are called proper first-level atomic systems.

Definition 2 An arbitrary inference rule has the form

[A11, . . . , A1m1 ]
B1 . . .

[An1, . . . , Anmn ]
Bn

C

The notation is the same as the one used for the logical rules of natural deduction
(see Gentzen [7]). That is, rules of this form allow one to conclude C from the set
of premises {B1, . . . , Bn} and to discharge any of the assumptions Ai j , written in
square brackets [ ], on which premises Bi might depend.

Definition 3 A derivation structure is a derivation tree composed of arbitrary infer-
ence rules. (Derivation structures correspond to what Prawitz calls ‘(argument or
proof) schemata’ or ‘(argument or proof) skeletons’.)

The notions open/closed and canonical/non-canonical as used for derivations
in natural deduction are carried over to derivation structures. That is, a derivation
structure with no open assumptions is closed, otherwise open. It is canonical, if it
ends with one of the introduction rules

[A]
B

A → B
Ai

(i = 1 or 2)
A1 ∨ A2

A B
A ∧ B

It is non-canonical, if it does not.

Definition 4 A reduction procedure transforms a given derivation structure into
another derivation structure.

A justification J of an arbitrary inference rule R, excluding introduction rules, is
a set of reduction procedures which transform derivation structures D ending with
an application of R into another derivation structure with the same end formula as
D and having no more open assumptions than D (see Prawitz [22]).

Now validity with respect to atomic systems S and justifications J (short: (S, J )-
validity) can be defined as follows:
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Definition 5 (i) Every closed derivation in an atomic system S is (S, J )-valid (for
every justification J ).

(ii) A closed canonical derivation structure is (S, J )-valid, if all its immediate
substructures are (S, J )-valid.

(iii) A closed non-canonical derivation structure is (S, J )-valid, if it reduces, with
respect to J , to a canonical derivation structure, which is (S, J )-valid.

(iv) An open derivation structure

A1 . . . An

D
B

where all open assumptions of D are in {A1, . . . , An}, is (S, J )-valid, if for
every extension S′ of S and every extension J ′ of J , and for every list of

closed derivation structures
Di

Ai
(for 1 ≤ i ≤ n) which are (S′, J ′)-valid, the

derivation structure

D1

A1 . . .

Dn

An

D
B

is (S′, J ′)-valid.

Extensions S′ of S and J ′ of J are here understood in the set-theoretic sense as
S′ ⊇ S and J ′ ⊇ J . Taking extensions into account ensures that (S, J )-validity
of derivation structures is monotone with respect to extensions of S and J . This is
an important constraint, if atomic systems S and justifications J are understood to
represent, for example, states of knowledge.

In [18, Appendix A.1], Prawitz gave a definition of ‘valid derivation’, which
makes use of extensions of atomic systems. However, in definitions of the more
general notion of ‘valid derivation structure’ (i.e., of ‘valid argument schema’ or
‘valid argument’) he uses (consistent) extensions of justifications, but no extensions
of atomic systems. Completeness of minimal logic for one such notion was conjec-
tured in Prawitz [19]. A completeness conjecture for intuitionistic logic and a similar
notion of validity is made in Prawitz [22]:

Conjecture 1 (Prawitz [22, p. 274]) Every valid inference rule that can be for-
mulated within first-order languages holds as a derivable inference rule within the
system of natural deduction for intuitionistic logic.

Prawitz’s motivation for considering proof-theoretic notions of validity is to give
an answer to the question of whether the elimination rules of Gentzen’s intuitionistic
system of natural deduction are the strongest possible ones justifiable in terms of the
introduction rules of that system. Gentzen’s idea that the introduction rules define
the logical constants and that the elimination rules have to be justified on the basis of
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the introduction rules (see Gentzen [7]; cf. [1]) is reflected in the notion of validity
by the fact that priority is given to canonical derivation structures, that is, to deriva-
tion structures ending with an introduction rule, to which non-canonical derivation
structures have to be reduced. The (as yet unsettled) completeness conjecture implies
a positive answer to that question.

In [22], Prawitz also gives a further modification of the notion of validity with
respect to the role played by justifications.Wewill not discuss this modification here.
Moreover, in what follows we will focus on proof-theoretic notions of validity for
formulas instead of validity for derivation structures or inference rules. This approach
has the advantage that justifications J (i.e., sets of reduction procedures for derivation
structures) do not need to be considered at all. We here only mention that certain
notions of validity for inference rules were given in Schroeder-Heister [28, 30], and
that intuitionistic logic was claimed to be complete with respect to them there.

3 Failure of Completeness for Intuitionistic Logic

Our first example of a notion of validity for formulas is due to Kreisel [10]. We
follow the expositions given by Gabbay in [5] and [6, Chap. 13], adjust the notation
and speak of ‘Kreisel validity’.

Let A be a fixed alphabet and S a Post system on A . If a word w over A is
derivable in S, we write �S w. Let h be any function which assigns words over A
to all variables x, y, x1, x2, . . . and relation symbols R of a first-order language, and
let h1 =x h2 := h1(y) = h2(y) for all y �= x .

Definition 6 Kreisel S-validity (�h
S) and Kreisel validity (�) are defined as follows:

(K1) �h
S R(x1, . . . , xn) :⇐⇒ �S h(R)h(x1) . . . h(xn) (where R(x1, . . . , xn)

is an atom),
(K2) �h

S A → B :⇐⇒ ∀S′ ⊇ S : (�h
S′ A =⇒ �h

S′ B),
(K3) �h

S A ∨ B :⇐⇒ �h
S A or �h

S B,
(K4) �h

S A ∧ B :⇐⇒ �h
S A and �h

S B,
(K5) �h

S ¬A :⇐⇒ for all consistent S′ ⊇ S : �
h
S′ A (where S′ is consistent

iff �S′ w for some word w),
(K6) �h

S ∃x A(x) :⇐⇒ for some h1 =x h : �h1
S A(x),

(K7) �h
S ∀x A(x) :⇐⇒ for all h1 =x h : �h1

S A(x),
(K8) � A :⇐⇒ ∀A, S, h : �h

S A.
(K9) A is substitution-Kreisel-valid :⇐⇒ all substitution instances of A are

Kreisel valid (where substitutions are uniform substitutions of formulas for
atoms in A).

Note that clause (K5) for negation is restricted to consistent extensions, and that
extensions S′ ⊇ S are understood in the normal set-theoretic sense, that is, the Post
system S′ contains at least all the rules of the Post system S. Alternatively, extensions
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S′ of S can be understood to mean that the implication �S w =⇒ �S′ w holds for
all words w over A . In this latter case, Gabbay speaks of weak validity.

Intuitionistic first-order logic is neither complete for weak validity nor for Kreisel
validity.Completeness already fails in the propositional case for both notions (wenow
consider weak validity and Kreisel validity restricted to the propositional fragment):

Theorem 1 (Gabbay [6, p. 224]) Intuitionistic propositional logic is not complete
for weak validity. The formula ((¬¬A → A) → (¬A ∨ ¬¬A)) → (¬A ∨ ¬¬A) is
a counterexample.

Theorem 2 (Gabbay [6, p. 225]) Intuitionistic propositional logic is not complete
for Kreisel validity. The set of Kreisel valid sentences is not closed under substitution.
The formula (a → (b ∨ c)) → ((a → b) ∨ (a → c)), for propositional atoms a, b, c,
is a counterexample.

Considering only the propositional fragment, completeness has been conjectured for
substitution-Kreisel-validity:

Conjecture 2 (Gabbay [6, p. 226]) Intuitionistic propositional logic is complete for
substitution-Kreisel-validity (restricted to the propositional fragment).

4 Goldfarb’s Account of Dummett’s Approach

Dummett [3, Chaps. 11–13] made an approach to proof-theoretic validity for infer-
ence rules (or arguments) which is similar to Prawitz’s (cf. Sect. 2). It is supposed
to yield a justification of intuitionistic first-order logic. Goldfarb [8] (this volume)
has given an analysis of the propositional part of Dummett’s approach, resulting in
a notion of validity for formulas (instead of inference rules).

Goldfarb first gives a formulation for atomic systems of axioms only, that is, for
sets of atoms. It is presumed that there are infinitely many atoms available and that
only finite sets of atoms α, β are ever considered. We follow his notation in writing
α, β for such sets but adjust it to ours otherwise:

Definition 7

(G1) α � a :⇐⇒ a ∈ α,
(G2) α � A → B :⇐⇒ ∀β ⊇ α : (β � A =⇒ β � B),
(G3) α � A ∨ B :⇐⇒ α � A or α � B,
(G4) α � A ∧ B :⇐⇒ α � A and α � B,
(G5) There is no α such that α � ⊥.

This notion of validity (�) can be discarded right away, since it validates formulas
which are not even derivable in classical logic (see Goldfarb [8]):
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Lemma 1 (i) Suppose A does not contain ⊥. Then α � (A → ⊥) → ⊥.
(ii) Let a and b be two distinct atoms. Then α � (a → b) → b.

Goldfarb then modifies this notion of validity by relativizing the relation � to
proper first-level atomic systems S (i.e., in Dummett’s terminology, to sets of bound-
ary rules) as in Dummett’s approach. He points out that in order to avoid cases like
Lemma1 (i), atomic ruleswith conclusion⊥ have to be allowed aswell. Themodified
notion can be given by rewriting clauses (G1)–(G5) with �S instead of �, together
with the condition that sets α, β have now to be closed under the rules in S and do
not contain ⊥:

Definition 8 Let S be a proper first-level atomic system. Let the sets α, β be closed
under the rules in S, and ⊥ /∈ α, β.

(G1′) α �S a :⇐⇒ a ∈ α,
(G2′) α �S A → B :⇐⇒ ∀β ⊇ α : (β �S A =⇒ β �S B),
(G3′) α �S A ∨ B :⇐⇒ α �S A or α �S B,
(G4′) α �S A ∧ B :⇐⇒ α �S A and α �S B,
(G5′) There is no α such that α �S ⊥.

According to Goldfarb, this notion of validity is a revision of Dummett’s approach
in that it considers in principle all atomic systems S instead of only a fixed one.

For this revised notion of validity all valid formulas are classically valid. Com-
pleteness for intuitionistic logic does not hold (see Goldfarb [8]):

Lemma 2 (i) Every valid formula is derivable in classical logic.
(ii) The formula (a → (B ∨ C)) → ((a → B) ∨ (a → C)) is valid for any atom a

and any formulas B and C, but it is not intuitionistically derivable for all B, C.

The counterexamples to completeness given in Lemmas 1 and 2 are not schematic
in the sense that all substitution instances of the valid formulas presented there are
valid too. Goldfarb introduces the relation of schematic validity, which holds for a
formula A if and only if all instances of A resulting from uniform substitutions of
formulas for atoms in A are valid (cp. substitution-Kreisel-validity). He shows that
the intuitionistically non-derivable formula ¬A ∨ ¬¬A is schematically valid for
atomic systems which do only contain atoms (i.e., for atomic systems of level 0). In
other words:

Theorem 3 (Goldfarb [8]) Intuitionistic logic is not complete for schematic validity
for sets of atoms α (i.e., for the notion of schematic validity based on validity (�)
according to Definition 7).

However, for the schematically understood revised notion of validity the following
completeness result holds:

Theorem 4 (Goldfarb [8]) Intuitionistic propositional logic is complete for sche-
matic validity based on the revised notion of validity (i.e., for the notion of schematic
validity based on validity (�S) according to Definition 8).



238 T. Piecha

We note that this completeness result depends on the restriction to consistent sets
of atoms α, β in the sense that ⊥ /∈ α, β. A restriction to consistent extensions is
also made in Definition 6 of (substitution-) Kreisel validity, namely in clause (K5)
for negation. If negation is understood as ¬A := A → ⊥, and ⊥ is explained by
α �S ⊥ :⇐⇒ ∀a : α �S a, then

α �S ¬A ⇐⇒ ∀β ⊇ α : β �S A.

Since α, β are consistent, this is equivalent to clause (K5), where ⊥ is a word w such
that �S′ w. However, in the case of (substitution-) Kreisel validity this is the only
clause where a restriction to consistent atomic systems (resp. Post systems) S, S′ is
made, whereas such a restriction applies in general in the case of (schematic) validity
according to Definition 8. Assuming consistent extensions in general also in the case
of Kreisel validity implies completeness for substitution-Kreisel-validity. That is,
Conjecture 2 is decided positively in this case.

5 Proof-Theoretic Validity for Generalized Atomic Systems

We now consider atomic systems which are not restricted to first-level atomic rules
but which can contain atomic rules that can also discharge assumptions of a certain
kind. One can show that intuitionistic logic is not complete for a notion of proof-
theoretic validity based on such generalized atomic systems (see [16]).

Tomotivate such a generalization onemight argue that since the device of assump-
tion discharge is available at the level of logical rules (e.g., in the rules of implication
introduction and disjunction elimination of natural deduction), it should be available
at the level of atomic rules, too. However, from the point of view of attempting a
justification of a certain logic by giving a semantics based on atomic systems, such
a generalization might be conceived as being counterproductive, as it introduces a
feature of implication already at the level of atomic rules.

5.1 Generalized Atomic Systems

We generalize the notion of first-level atomic system to higher-level atomic systems
by allowing for atomic rules that can discharge atomic assumptions (cf. [16]).

Definition 9 A second-level atomic system S is a (possibly empty) set of atomic
rules of the form

[Γ1]
a1 . . .

[Γn]
an

b
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where the ai and b are atoms, and the Γi are finite sets of atoms. The sets Γi may be
empty, in which case the rule is a first-level rule. The set of premises {a1, . . . , an}
can be empty as well; in this case the rule is an axiom.

Such a rule can be applied as follows: If the premises a1, . . . , an have been derived in
S from certain assumptions, then onemay conclude b, where, for each i , in the branch
of the subderivation leading to ai assumptions belonging to Γi may be discharged.

Second-level atomic systems are now further generalized to the higher-level case
by allowing for atomic rules which can discharge not only atoms but atomic rules
as assumptions (see Schroeder-Heister [29, 32] and Olkhovikov and Schroeder-
Heister [15]; cf. [16]). We use the following linear notation for atomic higher-level
rules:

Definition 10 (i) Every atom a is a rule of level 0.
(ii) If R1, . . . , Rn are rules (n ≥ 1), whose maximal level is �, and a is an atom,

then (R1, . . . , Rn � a) is a rule of level � + 1.

Definition 11 A higher-level atomic system S is a (possibly empty) set of atomic
rules of the form

[Γ1]
a1 . . .

[Γn]
an

b

(in linear notation: (Γ1 � a1), . . . , (Γn � an) � b), where the ai and b are atoms,
and the Γi are now finite sets {Ri

1, . . . , Ri
k} of rules, which may be empty. The set of

premises {a1, . . . , an} of such a rule can also be empty, in which case the rule is an
axiom.

In the higher-level case atomic rules can be used as (dischargeable) assumptions,
whereas in the second-level case only atoms could be used in thatway. This difference
requires a definition of the notion of derivation of an atom a from rules R1, . . . , Rn :

Definition 12 For a level-0 rule a,

a
a

is a derivation of a from {a}.
Now consider a level-(�+ 1) rule (Γ1 � a1), . . . , (Γn � an)� b. Suppose that for

each i (1 ≤ i ≤ n) a derivation

Σi ∪ Γi

Di
ai
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of ai from Σi ∪ Γi is given. Then

Σ1

D1
a1 . . .

Σn

Dn
an

(Γ1 � a1), . . . , (Γn � an) � b
b

is a derivation of b from Σ1 ∪ . . . ∪ Σn ∪ {(Γ1 � a1), . . . , (Γn � an) � b}.
An atom b is derivable from Σ in a higher-level atomic system S, symbolically

Σ �S b, if there is a derivation of b from Σ ∪ S.

As an example, consider the atomic system S = {((b�e)� f ), (((a�b)�c)�e)}
and the set of assumptionsΣ = {((a�b)�d), ((b, d)�c)}. The following derivation
shows that Σ �S f :

[b]3b

[a]1a [a � b]2b
1 (a � b) � d

d b, d � c
c

2 〈((a � b) � c) � e〉
e

3 〈(b � e) � f 〉
f

Angle brackets 〈 〉 are used to indicate the rules of S, and square brackets [ ] with
numerals indicate the discharge of assumptions.

5.2 Proof-Theoretic Validity

We now consider a notion of validity for intuitionistic propositional logic (see [16]),
which will be based on the following clauses for the fragment {→,∨,∧}. Absurdity
⊥ is taken as a distinguished atom. Extensions S′ of atomic systems S are again
understood in the set-theoretic sense: An atomic system S′ is an extension of an
atomic system S (written S′ ⊇ S), if S′ results from adding a (possibly empty) set
of atomic rules to S.

Definition 13 S-validity (�S) and validity (�) are defined as follows:

(S1) �S a :⇐⇒ �S a,
(S2) �S A → B :⇐⇒ A �S B,
(S3) Γ �S A :⇐⇒ ∀S′ ⊇ S : (�S′ Γ =⇒ �S′ A), where Γ is a set of

formulas, and where �S′ Γ stands for {�S′ Ai | Ai ∈ Γ },
(S4) �S A ∨ B :⇐⇒ �S A or �S B,
(S5) �S A ∧ B :⇐⇒ �S A and �S B,
(S6) Γ � A :⇐⇒ ∀S : Γ �S A.

Since only the logical constants of the fragment {→,∨,∧} are considered, and
⊥ is just an atom, one could also speak of minimal validity or validity for minimal
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logic here. This notion is very similar to the ‘minimal part’ of Kreisel validity, given
by clauses (K1)–(K4) and (K8) of Definition 6, when restricted to a propositional
language and for words w identified with atoms a.

In analogy to substitution-Kreisel-validity, we define in addition validity under
substitution as validity for all substitution instances (resulting from uniform sub-
stitutions of formulas for atoms). Thus validity under substitution is by definition
closed under substitution.

Definition 14 S-validity under substitution (�S) and validity under substitution (�)
are defined as follows:

(i) Γ �S A :⇐⇒ for each substitution instance Γ ′, A′ of Γ, A: Γ ′ �S A′.
(ii) Γ � A :⇐⇒ for each substitution instance Γ ′, A′ of Γ, A: Γ ′ � A′.

These notions of validity are now extended for intuitionistic propositional logic:

Definition 15 Intuitionistic S-validity (�i
S) is defined as follows. Let (⊥) stand for

the set of rules
{ ⊥

a

∣
∣
∣ a atomic

}
. Then Γ �i

S A :⇐⇒ Γ �S∪(⊥) A.

Correspondingly, Γ �i A, Γ �i
S A and Γ �i A are defined as Γ �(⊥) A,

Γ �S∪(⊥) A and Γ �(⊥) A, respectively.

The treatment of absurdity ⊥, and therefore of negation if understood as ¬A :=
A → ⊥, differs from the one given by clause (K5) of Kreisel validity and from the
one given by clauses (G5) or (G5′). If ⊥ were defined as a non-atomic constant by a
semantical clause which says that there is no atomic system S such that �S ⊥, then
�S ¬¬a would hold for any atom a; this is the case, since �S′ ¬a for any S′ ⊇ S,
as �S′′ a for some S′′ ⊇ S′.

We note the following properties of S-validity:

Lemma 3

(i) �S is a consequence relation, that is,

(1) A �S A,
(2) Γ �S A =⇒ Γ,Δ �S A,
(3) (Γ �S A and Δ, A �S B) =⇒ Γ,Δ �S B.

(ii) �S is monotone with respect to S, that is, Γ �S A =⇒ ∀S′ ⊇ S : Γ �S′ A.
(iii) Γ �S A → B ⇐⇒ Γ, A �S B.

For intuitionistic S-validity (i.e., for �S replaced with �i
S) these properties hold as

well.

Atomic rules can be represented by formulas and vice versa (for details see [16]).
Let Σ∗ stand for the set of formulas representing a finite set Σ of atomic rules. The
following completeness and soundness result holds:

Lemma 4 Σ∗ �S a ⇐⇒ Σ∗ �S a.
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5.3 Failure of Strong Completeness

We now consider the system NI of natural deduction for intuitionistic propositional
logic, for which one can show that it is not complete for validity.

Definition 16 Derivability of a formula A from a (possibly empty) set of assump-
tions Γ in NI is written Γ � A.

Definition 17 (i) Soundness of NI means: Γ � A =⇒ Γ �i A.
(ii) Strong completeness of NI means: Γ �i A =⇒ Γ � A.
(iii) Completeness (simpliciter) of NI means: Γ �i A =⇒ Γ � A.

Soundness holds. Since derivability Γ � A in NI is closed under substitution,
this implies Γ �i A, that is, intuitionistic validity under substitution. The distinction
between strong completeness and completeness (simpliciter) is useful, because one
can show that validity is not closed under substitution; the given semantics validates
a formula which is not derivable in NI . Thus strong completeness does not hold:

Theorem 5 NI is not strongly complete. The set of valid formulas is not closed under
substitution.

Three proofs of this result are discussed in [16]. Here we only mention the coun-
terexample (cf. also Goldfarb [8] and Sect. 4)

a → (b ∨ c) � (a → b) ∨ (a → c)

which is already a counterexample for strong completeness of minimal logic, and
henceofNI . This counterexample is independent of the level of atomic systems.There
are other counterexamples, for which this is not the case. For example, ¬¬a �i a
holds for first-level atomic systems, but fails for atomic systems of levels higher
than 1. Thus certain counterexamples in the realm of first-level atomic systems can be
avoided by allowing for higher-level atomic systems.What the given counterexample
therefore also shows is that strong completeness already fails for the (more standard)
notion of validity based on first-level atomic systems.

5.4 Strong Completeness Results

Strong completeness holds for the fragment of disjunction-free formulas and for the
fragment of arbitrary negative formulas ¬A (see [16]):

Lemma 5 Let Γ and A be disjunction-free. Then Γ �i A ⇐⇒ Γ � A.

Lemma 6 Let Γ and A be disjunction-free. Then Γ � A ⇐⇒ Γ �m A,
where �m denotes derivability in minimal logic. In other words, strong completeness
holds for the {→,∧}-fragment of minimal (and intuitionistic) logic (see Schroeder-
Heister [33]).
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Lemma 7 For any formula of the form ¬A it holds that �i ¬A ⇐⇒ � ¬A.

These results depend on higher-level atomic systems, for which Lemma 4 holds.

5.5 Failure of Completeness

Theorem 6 Intuitionistic logic is not complete with respect to the semantics based
on higher-level atomic systems.

This has been proved in [16] by showing that the intuitionistically non-derivable
Harrop or Kreisel–Putnam formula (see Harrop [9], Kreisel and Putnam [11]) is
intuitionistically valid under substitution, that is, that

�i (¬A → (B ∨ C)) → ((¬A → B) ∨ (¬A → C))

holds. We emphasize that the given proof of this theorem depends on the fact that
the considered semantics is based on higher-level atomic systems.

Since higher-level rules can be reduced to second-level rules by an appropri-
ate coding (see Sandqvist [27]), it follows that intuitionistic logic is incomplete
for S-validity based on second-level atomic systems. Whether intuitionistic logic
is complete (simpliciter) for validity based on first-level atomic systems is an open
problem.

Similarly to Gabbay’s completeness conjecture for substitution-Kreisel-validity,
the following conjecture can be made for intuitionistic validity under substitution:

Conjecture 3 Intuitionistic propositional logic is complete (simpliciter) for intu-
itionistic validity based on first-level atomic systems. That is, Γ �i A =⇒ Γ � A,
for first-level atomic systems only.

5.6 Comparison with Kripke Semantics

Proof-theoretic validity shares some similarities with the notion of validity in Kripke
semantics, which is sound and complete for intuitionistic logic (see Kripke [12];
cf. Moschovakis [14]). We mention that the semantical clauses for conjunction and
disjunction have the same form in both cases, and that the clauses for implication are
similar in that they depend on the idea of extensions. In Kripke semantics the clause
for implication is

k forces A → B :⇐⇒ ∀k′ ≥ k : (k′ forces A =⇒ k′ forces B)

for nodes k, k′ and partial orders ≥. The forcing relation for atoms a and nodes k is
given by truth-value assignments v(k, a), which obey the monotonicity requirement
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that if k′ ≥ k and v(k, a) = true, then v(k′, a) = true. Thus k′ is an extension of
k in the sense that {a | k′ forces a} ⊇ {a | k forces a}, just like S′ ⊇ S for atomic
systems S, S′ of level 0 in the case of proof-theoretic validity.

Besides these similarities, there are the following main differences to Kripke
semantics. In proof-theoretic validity, the S-validity of atoms is given by their deriv-
ability in S, whereas in Kripke semantics the validity (resp. the forcing relation) for
nodes k and atoms a is given by truth-value assignments v(k, a).

In S-validity, atomic systems S are not only sets of atoms (which in Kripke
semanticswould be assigned to nodes k by v) but sets of atomic rules. This alsomeans
that S′ ⊃ S can be the case, although {a | �S′ a} = {a | �S a} (and consequently
{a | �S′ a} = {a | �S a}), simply because S′ might contain inapplicable additional
rules besides the ones in S, which therefore do not enlarge the set of atoms derivable

in S′. For example, let S contain only the axiom a and let S′ = S ∪
{

b
c

}
; then

S′ ⊃ S, while both in S′ and S only a is derivable. A notion like weak validity (see
Sect. 3), where

S′ is an extension of S :⇐⇒ ∀a : (�S a =⇒ �S′ a),

is in this respect closer to the notion of validity in Kripke semantics than to S-validity.
In Kripke semantics, a formula has to be forced by every node in every Kripke

structure in order to be Kripke valid. Besides different sets of nodes k and differ-
ent truth-value assignments v(k, a), one therefore has to consider different partial
orders ≥, whereas in proof-theoretic validity only one kind of structure is taken into
account (cf. Goldfarb [8]; see also [16]), namely the one where the partial order is
set inclusion ⊇ for atomic systems S.

Furthermore, inconsistent extensions are possible in the case of S-validity, since
absurdity ⊥ could be added as an axiom to atomic systems S. This is not the case in
Kripke semantics, where the forcing relation is consistent in the sense that a node k
cannot force both A and ¬A (cp., however, the modified Kripke models of Veldman
[35]).

5.7 A Completeness Result for Intuitionistic Logic

A completeness result for intuitionistic propositional logic is available for the fol-
lowing notion of validity, which is given for second-level atomic systems S (see
Sandqvist [27]; we adjust it to our notation):

Definition 18

(T1) �S a :⇐⇒ �S a,
(T2) �S A → B :⇐⇒ A �S B,
(T3) Γ �S A :⇐⇒ ∀S′ ⊇ S : (�S′ Γ =⇒ �S′ A), where Γ is a set of

formulas, and where �S′ Γ stands for {�S′ Ai | Ai ∈ Γ },
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(T4) �S A ∨ B :⇐⇒ ∀S′ ⊇ S and ∀c : (A �S′ c and B �S′ c =⇒ �S′ c),
(T5) �S A ∧ B :⇐⇒ �S A and �S B,
(T6) �S ⊥ :⇐⇒ ∀a : �S a,
(T7) Γ � A :⇐⇒ ∀S : Γ �S A.

Compared to S-validity (see Definition 13) there are two differences (besides the
restriction to second-level atomic systems S):

(i) Clause (T4) for disjunction replaces (S4). It resembles the natural deduction
elimination rule for disjunction. Note that the definiens is restricted to extensions
S′ ⊇ S, and that propositional quantification is made use of in the universal
quantification over all atoms c (not over all formulas; cf. Ferreira [4]).

(ii) Absurdity ⊥ is not an atom but a logical constant, whose meaning is given by
clause (T6). This clause is based on Dummett’s introduction rule for ⊥ (cf.
Dummett [3, Chap. 13]).

Theorem 7 (Sandqvist [27]) Intuitionistic propositional logic is sound and complete
for this semantics, that is, Γ � A ⇐⇒ Γ � A.

6 Completeness Results for Classical Logic

So far, we have only discussed notions of proof-theoretic validity intended for intu-
itionistic logic or for certain fragments thereof. Now we will discuss a notion of
proof-theoretic validity for classical logic.

Sandqvist [26] gives a semantics for the fragment {→,⊥,∀} of the language of
first-order logic. He considers basic sequents of the form (Γ : a), which are relations
between finite sets Γ of basic sentences and basic sentences a. Basic sentences are
closed atomic formulas, that is, formulas containing neither logical constants nor free
variables. Sets of basic sequents are called ‘bases’. In our terminology, basic sequents
are first-level rules, and bases are first-level atomic systems S. Sandqvist shows that
minimal logic can be justified and that the law of double negation elimination is
valid for the fragment {→,⊥,∀}. The other logical constants can then be defined,
and a justification of classical logic is achieved without making use of the principle
of bivalence. That classical logic is sound and complete for the given semantics is
surprising, since this semantics is very similar to semantics proposed for intuitionistic
logic. Discussions of these results can be found in Makinson [13] and in [2].

Sandqvist’s semantics is the following (again, we use our notation):

Definition 19

(C1) For closed atoms a: �S a :⇐⇒ every set of closed atoms which is
closed under S contains a.

(C2) For non-empty Γ : Γ �S A :⇐⇒ �S A for every S′ ⊇ S such that �S′ B
for every B ∈ Γ .

(C3) �S A → B :⇐⇒ A �S B.
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(C4) �S ⊥ :⇐⇒ �S a for every closed atom a.
(C5) �S ∀x A(x) :⇐⇒ �S A(x)[x/t] for every closed term t .
(C6) Γ � A :⇐⇒ ∀S : Γ �S A.
(C7) Γ �∗ A :⇐⇒ Γ σ � Aσ for all ground substitutions σ .

Note that the definiens in clause (C1) could be expressed equivalently as �S a.
Another (equivalent) formulation has been given by Makinson [13], where S(Δ)

is written for the closure of a set Δ of closed atoms under the rules in S. That
is, S(Δ) is the intersection of all sets Λ of closed atoms such that Δ ⊆ Λ, and if
a1 . . . an

b
∈ S with {a1, . . . , an} ⊆ Λ, then b ∈ Λ. Clauses (C1) and (C4)

can then be written as follows:

(C1′) For closed atoms a: �S a :⇐⇒ a ∈ S(∅).
(C4′) �S ⊥ :⇐⇒ a ∈ S(∅) for every closed atom a.

We point out that⊥ is not an atom here. In clause (C5), the notation A(x)[x/t]means
that each occurrence of x in A is replaced by the term t . The relation Γ �∗ A defined
in clause (C7) deals with open formulas; a ground substitution is a substitution of
variable-free terms for variables. The setsΓ of formulas are finite, but inDefinition 19
infinite sets Γ could be allowed as well. The relation �S is called ‘valid inferability’
by Sandqvist; by ‘validity’ we refer to the relation � defined in clause (C6).

The given semantics validates minimal logic (see Sandqvist [26, Lemma 3]).
Furthermore, Sandqvist [26, Lemma 4] shows that the law of double negation elim-
ination holds: (A → ⊥) → ⊥ �∗ A. Since minimal logic plus double negation
elimination amounts to classical logic, the following soundness and completeness
result for classical first-order logic holds:

Theorem 8 (Sandqvist [25, 26]) Γ � A ⇐⇒ Γ � A in classical first-order logic.

The theorem is proved constructively by Sandqvist. An alternative proof is given by
Makinson [13], who uses classical meta-reasoning.

Sandqvist [26] refers to the implication from right to left as soundness, whereas
Makinson [13] takes the opposite perspective, in which the implication from right
to left expresses that Sandqvist’s semantics is complete with respect to the usual
model-theoretic semantics of classical logic. The implication from left to right, that
is, completeness in the sense that Sandqvist validity (Γ � A) implies classical
derivability, or equivalently classical validity, holds as well.

6.1 Other Logical Constants

Sandqvist’s semantics contains clauses only for the logical constants of the fragment
{→,⊥,∀}. A clause for conjunction ∧ like (S5)

�S A ∧ B :⇐⇒ �S A and �S B
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could be added without causing any problems with respect to completeness (cf.
Makinson [13]). However, as noted by Sandqvist [26], if a clause for disjunction ∨
like (S4)

�S A ∨ B :⇐⇒ �S A or �S B

were added, then Theorem 8 would no longer hold. For example, the law of double
negation elimination (A → ⊥) → ⊥ � A does then not hold for each substitution
instance anymore; a counterexample is A := B ∨ (B → ⊥) (cf. [2]). In other words,
validity fails to be closed under substitution, if disjunction is taken as primitive and
understood according to the given semantical clause. This is also the case for the
following stricter disjunction clauses (see Makinson [13]):

�S A ∨ B :⇐⇒ ∀S′ ⊇ S : (�S′ A or �S′ B),

and

�S A ∨ B :⇐⇒ ∀S′ ⊇ S : �S′ A or ∀S′ ⊇ S : �S′ B.

Similar observations can be made for the existential quantifier.
Makinson also gives an alternative clause for disjunction (see [13, p. 149]), which

does not affect completeness. However, this clause is modeled on the definition
A ∨ B := (A →⊥)→ B, which represents a classical understanding of disjunction,
whereas by clause (S4) disjunction is given its intuitionistic meaning.

6.2 Remarks

Theorem 8 still holds if atomic rules of S are allowed to have empty conclusions,
and the closure S(Δ) of a set Δ of closed atoms under the rules in S is understood
as follows (see [13, p. 152]): S(Δ) is the intersection of all sets Λ of closed atoms
such that

(i) Δ ⊆ Λ, and if
a1 . . . an

b
∈ S with {a1, . . . , an} ⊆ Λ, then b ∈ Λ,

and

(ii) if
a1 . . . an

∅ ∈ S with {a1, . . . , an} ⊆ Λ, then b ∈ Λ for every closed
atom b (where again ⊥ is not an atom).

This generalization introduces a kind of negation at the level of atomic rules. In logic
programming terms, this is a generalization of definite Horn clauses to Horn clauses.

Theorem 8 fails, however, if second-level rules are allowed in S. For example,
consider the atomic system S which contains only the second-level rule

[a]
b
a
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Then �S (a → b) → a, but �S a, since �S a. Thus � ((a → b) → a) → a, that is,
Peirce’s law is no longer valid, and soundness fails.

We already remarked that absurdity ⊥ is not an atom here. Furthermore, it is
essential that there are infinitelymany atoms in the language; otherwise completeness
would be lost, since for finite sets of n atoms the classically non-derivable formula
a1 → (. . . → (an → ⊥) . . .) becomes valid (see Makinson [13]). Soundness would
fail if instead of clause (C4) the clause

There is no S such that �S ⊥

were used (cf. [2, 13]). The use of a semantical clause for ⊥ could also be avoided.
Instead of showing the validity of the law of double negation, which depends both
on clause (C3) for → and on clause (C4) for ⊥, one can show the validity of Peirce’s
law, which does not depend on clause (C4) at all (cf. [2, 26]).

Sandqvist’s result is remarkable, since it shows that the intuitionistically accept-
able semantics given by Definition 19 allows for a justification of classical logic, as
long as disjunction is understood classically.

The fact that the semantics is given for only a fragment of the language of first-
order logicmight be seen as a critical point. This leads to the question ofwhether such
a semantics fulfills the requirements of proof-theoretic semantics for a justification
of a logic. Makinson [13] argues that one might require to treat every logical constant
used in informal mathematical discourse as a primitive in the formal language of the
semantics and to give adequate semantical clauses for each of them. But, as he points
out, such a requirement would be difficult to fulfill since it is too vague.

From the point of view of the formal systems used to represent logical reasoning
in mathematical discourse one could argue that it is sufficient to have semantical
clauses only for the standard logical constants present in the respective formal sys-
tems, such as the set {→,∨,∧,⊥,∀, ∃} of logical constants in natural deduction
for intuitionistic or classical logic. In the case of classical logic the restriction to a
semantics for a fragment like {→,⊥,∀}, which is sufficient to define all the standard
logical constants, should then be acceptable for the purpose of giving a justification
for the whole logic.

7 Conclusion

We saw that within proof-theoretic semantics several similar notions of validity
have been proposed. For some of these notions completeness results are available
for certain fragments of intuitionistic (propositional) logic or for full intuitionistic
(propositional) logic. In other cases, such as validity based on higher-level atomic
systems, completeness for minimal and intuitionistic logic does not hold. For yet
another notion a completeness result holds for classical logic, provided that disjunc-
tion is understood classically.
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The considered notions of validity have in common that they are not closed under
substitution. As derivability in intuitionistic or classical logic is closed under substi-
tution, it seems questionable to even consider these notions as candidates for com-
pleteness. Indeed, for intuitionistic logic the failure of completeness with respect to
validity based on first- or higher-level atomic systems could be proved by showing
the validity of instances of classical laws which are not valid as a schema. For a
notion of validity based on atomic systems of level 0, that is, for sets of atoms alone,
there are counterexamples of not even classically derivable valid formulas.

As a way out, strengthened notions of validity have been proposed, which are
by definition closed under substitution. Thus a formula can now only be valid (in
the strengthened sense), if each of its substitution instances, resulting from uniform
substitutions of arbitrary formulas for atoms, is valid (in the sense of the underlying,
non-strengthened notion of validity). Intuitionistic propositional logic is complete
with respect to two of these strengthened notions considered here. In the case of
Goldfarb’s account, it is essential for completeness (Theorem 4) that only consistent
extensions of atomic systems are taken into account. In the case of Sandqvist’s com-
pleteness result for intuitionistic propositional logic and validity based on second-
level atomic systems (Theorem 7) it is crucial that disjunction is explained by the
given clause (T4), and not by a more standard clause like (S4).

An essential component of all the considered notions of validity is their depen-
dency on atomic systems. In each notion the validity of atoms a with respect to an
atomic system S is defined by derivability of a in S (or as membership in a set of
atoms closed under the rules of S), and the validity of implications (or of logical
consequences Γ �S A) with respect to atomic systems S is defined by making use
of extensions S′ of S. Using extensions guarantees that validity is monotone with
respect to atomic systems S. Whether extensions of atomic systems should be an
integral part of any proof-theoretic notion of validity cannot be discussed here; we
just point out that, for example, Prawitz has given up to consider extensions of atomic
systems from the mid-1970s on and now emphasizes that this is not an intrinsic part
of his analysis [personal communication]. His main argument is that atomic systems
should not be looked at as descriptions of one’s knowledge but as rules defining the
meaning of atomic propositions (cf. Prawitz [22, 23]), which would be changed by
considering extensions (see [17] for a critical discussion).

With respect to completeness, the choice of the kind of atomic systems can be
critical. For example, certain counterexamples to completeness of intuitionistic logic,
namely examples of valid classically derivable formulas, can be prevented, if one
allows for second-level instead of only first-level atomic systems. With regard to the
completeness result for classical logic (Theorem 8) this means that the choice of
first-level atomic systems is essential, since completeness does no longer hold for
second-level atomic systems. Other results, such as strong completeness for certain
fragments of intuitionistic logic, depend on the availability of arbitrary higher-level
atomic systems.

For the philosophical endeavor of justifying a certain logic one might want to
restrict oneself to first-level atomic systems in the first place, since higher-level
systems alreadypresuppose a feature of implication at the atomic level by allowing for
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the discharge of atomic assumptions. This presuppositionmight be deemed too strong
for any adequate justification. For a justification of intuitionistic logic one would
therefore prefer a proof-theoretic semantics which is restricted to first-level atomic
systems, possibly allowing for inconsistent extensions. The question of whether
intuitionistic logic is complete for such a semantics is still open.
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