
Chapter 17
The Long Way to the
Statistical Bootstrap Model: 1994

Rolf Hagedorn

Abstract I describe the long way from the first theoretical ideas about multiple
particle production up to the situation in which constructing of a statistical model
of strong interactions seemed natural. I begin in 1936, and argue that the statistical
method came to be from a large network of observations and theoretical ideas. I shall
pick up only a few primary lines, chosen for their common end point: the statistical
bootstrap model of 1964/65.

It is the nature of a hypothesis when once a man has conceived it, that it assimilates
everything to itself, as proper nourishment; and, from the first moment of your begetting
it, it generally grows the stronger by everything you see, hear, read or understand. This is of
great use. [1]

17.1 Introduction

The Statistical Bootstrap Model (SBM) is a statistical model of strong interactions
based on the observation that hadrons not only form bound and resonance states
but also decay statistically into such states if they are heavy enough. This leads to
the concept of a possibly unlimited sequence of heavier and heavier bound and
resonance states, each being a possible constituent of a still heavier resonance,
while at the same time being itself composed of lighter ones. We call these states
clusters (in the older literature heavier clusters are called fireballs; the pion is the
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lightest ‘one-particle-cluster’) and label them by their masses. Let �.m/dm be the
number of such states in the mass interval fm; dmg; we call �.m/ the ‘SBM mass
spectrum’. Bound and resonance states are due to strong interactions; if introduced
as new, independent particles in a statistical model, they also simulate the strong
interactions to which they owe their existence. To simulate all attractive strong
interactions we need all of them (including the not yet discovered ones), that is,
we need the complete mass spectrum �.m/. To simulate repulsive forces we may
use proper cluster volumes à la van der Waals. In order to obtain the full mass
spectrum, we require that the above picture, namely that a cluster is composed of
clusters, be self-consistent. This leads to the ‘bootstrap condition and/or bootstrap
equation’ for the mass spectrum �.m/. The bootstrap equation (BE) is an integral
equation embracing all hadrons of all masses. It can be solved analytically with
the result that the mass spectrum �.m/ has to grow exponentially. Consequently,
any thermodynamics employing this mass spectrum has a singular temperature T0
generated by the asymptotic mass spectrum �.m/ � exp.m=T0/. Today this singular
temperature is interpreted as the temperature where (for baryon chemical potential
zero) the phase transition hadron gas ! quark-gluon plasma occurs.

The main power of the SBM derives from the postulate that the strong
interaction—as far as needed in statistical thermodynamical models—is completely
simulated by the presence of clusters with an exponential mass spectrum and
with mass-proportional proper volumes. This postulate implies that in SBM the
strongly interacting hadron gas is formally replaced by a non-interacting (i.e.,
ideal) infinite-component cluster gas with van der Waals volume corrections and
exponential mass spectrum, which can be handled analytically without recourse to
perturbative methods.

The story of how this model was first conceived in the language of the
grand canonical ensemble, reached maturity in the language of the microcanonical
ensemble (i.e., phase space), and was finally equipped with finite particle volumes in
order to become applicable to heavy-ion collisions and to the question of the phase
transition is presented in Chapter 25 [2].

Here I describe the long way from the first theoretical ideas about multiple
particle production up to the situation in which constructing SBM seemed natural.
The story starts in 1936, and in my record I omit everything that did not lie on or near
the way leading to SBM. What I wish to show is that SBM did not suddenly appear
in 1965 as a deus ex machina, but was rather the logical consequence of a history of
almost 30 years. Thus, from a large network of observations and theoretical ideas, I
shall pick up only a few lines, chosen for their common end point: SBM. A complete
and impartial picture of this history up to 1972 is presented by E.L. Feinberg in his
exhaustive and instructive report [3], which is an indispensable complement to the
present biased lecture.

I will try to be as non-technical as possible. Formulae are meant merely as
illustrations (often oversimplified); for hard information the reader should consult
the quoted literature. Units are „ D c D k (Boltzmann) = 1; energy in MeV or GeV.
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17.2 From 1936 to 1965

We list here experimental facts and theoretical concepts which were important and
instrumental to the construction of SBM.

Fireballs

How did we come to believe that ‘fireballs’—the things called ‘clusters’ in SBM—
exist?

Multiple Production: Heisenberg (1936)

Before Yukawa’s paper postulating the pion [4], one tended to believe that the
particles produced in cosmic ray events were electron–positron pairs. The only
field theory then known, quantum electrodynamics (as yet without a consistent
renormalization scheme), suggested that events with many secondaries should have
vanishingly small cross-sections [proportional to .e2/n]. This led many theoreticians
to the interpretation that such events must be the result of many interactions with
different nucleons in the same heavy nucleus, each single interaction producing
just one pair, a point of view [5–7] persisting even after the advent of meson
theory and in spite of growing experimental evidence in favour of multiple
production. Heisenberg—still unaware of Yukawa’s paper—was the first to claim
that, in a single elementary interaction, many secondaries might be produced [8],
which at that time was a heretical idea—the pion was discovered 11 years later!
Heisenberg followed this idea through many years (until �1955) and devised
different theoretical approaches to it, all invoking strong non-linearities and/or
diverging field theories. The final, irrevocable decision between his views and his
opponents’ only came with the first hydrogen bubble chamber pictures: Heisen-
berg’s revolutionary idea had been right.1 We summarize this line of thought in
‘Lesson 1’:

Lesson One (L1). In a single elementary hadron–hadron
collision, many secondaries can be produced.

Today this is so obvious that calling it a ‘lesson’ seems ridiculous, but seen in a
historical perspective, it challenged a strong prejudice.

1Although the various theoretical models he constructed, and which he himself considered as
preliminary, did not give final answers to the why’s and how’s.
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Dulles–Walker Variables (1954)

Assume a source of particles (a ‘fireball’) moving with velocity ˇ [Lorentz factor
� D .1 � ˇ2/�1=2] as seen from the lab and assume further that this source emits
particles with velocities ˇ0

i isotropically in its own rest frame. We put the z-axis
in the direction of motion and call �i the polar angle under which particle i is
emitted. Quantities in the fireball’s rest frame are primed, those in the lab frame
are not. In any book on relativistic kinematics, one finds the formula for the angle
transformation:

tan �i D 1

�

sin � 0
i

cos � 0
i C ˇˇ0

i

� 1

�
tan

� 0
i

2
; (17.1)

where the last approximation is true when ˇ and ˇ0
i are both near 1, which will be

assumed from now on.
The fraction F of particles emitted inside a cone of polar angle � 0 is, from

elementary geometry, in the fireball’s frame:

F D 1

2
.1 � cos � 0/ D sin2

� 0

2
; (17.2)

while in the lab the same particles—and the same fraction F—will be found inside
the cone of angle [see Eq. (17.1)]

tan � Š 1

�
tan.� 0=2/ (17.3)

so that in the assumed approximation

�2 tan2 � Š F

1 � F
: (17.4)

Hence

log
F

1 � F
Š 2 log � C 2 log tan � : (17.5)

We note in passing that, with F D 1=2, we find the angle �1=2 of the cone into which
half of the particles fall:

tan �1=2 D 1

�
: (17.6)

Now define for each particle i the fraction Fi of particles falling inside the cone of
polar angle �i (i.e., those having an angle smaller than or equal to that of particle i)
and plot the points yi D log Fi=.1 � Fi/ versus xi D log tan �i. These points will—
under the supposed conditions ˇ1ˇ0

i � 1 and isotropy—scatter about the straight
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Fig. 17.1 Relativistic
particles .ˇ0

i � 1/ emitted
isotropically in the ‘fireball’
frame, which itself moves
with ˇ � 1 as seen from the
lab, will scatter about a
straight line with slope 2 and
y intercept 2 log � when
plotted with Dulles–Walker
variables

2 log γ

log tan θ 

log F
1-F

line given by Eq. (17.5) with slope 2 and intercepts

x.y D 0/ D � log � ; y.x D 0/ D 2 log � ; (17.7)

as depicted in Fig. 17.1.
The discovery of these variables by Dulles and Walker [9] proved of great

importance for the analysis of cosmic ray events: if the points are plotted according
to the above rule, then if anything similar to a straight line emerged, an isotropically
emitting centre had to be conjectured and its Lorentz factor � could be read off.
Although things were not that simple, the method revealed a lot of information, as
we shall soon see.

‘Constant’ Mean Transverse Momentum (1956)

The invariance of the transverse momenta (of the produced particles) under a
Lorentz boost in the z-direction made them interesting from the beginning. The
amazement was therefore great when it gradually turned out that their average hp?i
seemed to be practically independent of the primary energy of the collision from
which they emerged. This was reported in so many papers over so many years that
I cannot quote all of them. Probably J. Nishimura was the first to have pointed it
out [10]. The result was by 1958 rather well confirmed [11] and remained so until
the ‘large transverse momenta’ were discovered in 1973 [12], which—important as
they were—corrected this result only slightly. We write down ‘Lesson 2’:

Lesson Two (L2). Secondaries emerging from high-energy hadron
collisions have mean transverse momenta of order hp?i � 500 MeV/c,
rather independently of the collision energy.
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The Two-Centre Model (1958)

The most prominent qualitative feature of the particle tracks in emulsions and/or
cloud chambers was that they were arranged in two cones: a wide one and,
inside it, a narrow one. No measurements were needed to see this and to guess a
simple mechanism that would produce it: two ‘centres’, one moving slowly and
another moving fast2 along the collision line, both emitting particles isotropically
and with rather small, energy-independent momenta [Lesson 2] in their respective
rest frames. I do not know whether one could say that a particular physicist had
this idea first (it might have been Takagi [13], but I am not sure): it must have
appeared obvious to anyone who saw pictures of these events. It was another
thing to analyse such pictures quantitatively. The pioneers were the Cracow–Czech
collaboration [14] and Cocconi [11]. They exploited the powers of the Dulles–
Walker representation.

The story went like this: one applied the Dulles–Walker plot to the available
events [11, 14] and, instead of finding the points representing the tracks scattering
about a straight line—as expected for a single ‘fireball’—one found something very
different. The result is show in Figs. 17.2 and 17.3 which I copy from Cocconi’s
paper [11]. The spirit of Cocconi’s paper is so well concentrated in a few original
passages that I repeat them here. Cocconi says:

It is evident from an examination of Fig. 2 [our Fig. 17.2] that in most cases the relativistic
secondaries are separated into two groups as if they were emitted, in the CM centre of the
collision, not by a single centre but by two bodies, as described in Section II(d).3 The
evidence is so striking that we are going to analyse these events in a slightly different
manner, more adjusted to the model.
Instead of considering all the relativistic particles produced in the collision together, let us
divide them into two groups: the forward group, b1 , and the backward group, b2 (the narrow
and wide cones).
Let n1 and n2 be the number of particles falling in each group and let us analyse them in
terms of log tan � versus logŒF1=.1 � F1/� and versus logŒF2=.1 � F2/�. The results are
plotted in Fig. 3 [our Fig. 17.3].

Figures 17.2 and 17.3 and Cocconi’s remarks need no further comment. It should be
noted, however, that he is aware of the possibility of other interpretations, in which
not individual ‘fireballs’, but a two-jet structure produces much the same effect.

The two-centre model was popular for a long time, as witnessed by the review
paper written by Gierula [15] in 1963, 5 years later, and based on more than 100
events with Elab & 103 GeV. If I remember well from those years, the model did
not always work—sometimes three or more fireballs had to be invoked—but on
the whole it was rather successful. That it seems never to have been disproved
came perhaps from the shift of interest to other questions arising from working with
accelerators, where single events were analysed mostly in the hope of discovering

2In the lab; in the CM frame, one forward, one backward.
3Cocconi proposes a two-centre model in Section II(d) of his paper (with two ‘leading nucleons’
not contained in the ‘fireballs’).
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Fig. 17.2 Experimental data plotted in Dulles–Walker variables
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new particles, but not to prove or disprove a two-centre model. The famous ‘flat
rapidity plateau’ was, of course, no argument against a two- (or few-) centre model,
as it arose from averaging over the impact parameter in many collisions contributing
to the measured inclusive distributions. We thus draw ‘Lesson 3’:

Lesson Three (L3). Secondaries produced in elementary hadron
collisions seem to be emitted from few (�2) ‘fireballs’ rather
isotropically with small momenta in the fireball’s rest frame.

Conclusion: Fireballs with Limited hpi Exist

We conclude that ‘fireballs’, decaying with limited momenta, do exist. In other
words, lumps of highly excited hadronic matter keep together for a very short time
before they decay in a very specific and—on this level—not yet understood way.

Statistical and Thermodynamical Methods

Having collected, in the previous section, the arguments in favour of the existence
of ‘fireballs’, we now turn to their description. The methods and the models used
eventually for this description were developed long before the existence of their final
objects was established. In fact, the story goes back to two early theoretical ideas:

• the compound nucleus of Bohr in 1936,
• the incorporation of interaction in statistical thermodynamics via scattering phase

shifts by Beth and Uhlenbeck in 1937.

Bohr’s Compound Nucleus (1936)

Bohr [16] proposed the following picture for a certain class of nuclear reactions:
if a heavy nucleus is hit by a nuclear particle, then the strong interaction among
the constituents and with the projectile can often lead to a complete dissipation of
the available energy, so that no single nucleon gets enough of it to escape at once.
This excited ‘compound nucleus’ will then live a rather long time before it decays by
emitting nucleons which accidentally obtained sufficient kinetic energy to overcome
the binding force. Of course, this picture cries out for a statistical description.

The Weisskopf Evaporation Model (1937)

We did not have to wait long for it. Weisskopf [17] writes, in his famous paper on
nuclear evaporation:
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Qualitative statistical conclusions about the energy exchange between the nuclear con-
stituents in the compound state have led to simple explanations of many characteristic
features of nuclear reactions. In particular the use of thermodynamical analogies has proved
very convenient for describing the general trend of nuclear processes. The energy stored in
the compound nucleus can in fact be compared with the heat energy of a solid body or a
liquid, and, as first emphasized by Frenkel [18],4 the subsequent expulsion of particles is
analogous to an evaporation process.

Weisskopf is cautious. He does not claim right away that thermodynamics is
applicable to nuclei; he rather derives first from elementary quantum mechanics a
formula for the emission of a neutron by the excited nucleus A, leaving another
excited nucleus B behind. For this he uses the principle of detailed balance by
considering the inverse reaction BC n! A, of which the cross-section is supposed
to be known. From this, the emission probability can be calculated; it is a very
simple expression containing the above cross-section, the level densities !A.EA/

and !B.EB/ of nuclei A and B, at their respective energies, and the phase space
available for a neutron of given kinetic energy �. Then he introduces quite formally
an ‘entropy’, viz.,

S.E/ D ln!.E/ ; (17.8)

and a ‘temperature’, viz.,

T.E/ D .dS=dE/�1 : (17.9)

In these variables, the derived formula for the emission probability assumes the
usual form of an evaporation probability with a Boltzmann spectrum:

W.�/d� � � exp.��=T/d� : (17.10)

The rest of the paper discusses when the formula is valid and what corrections are
necessary. What interests us here is that this is (to my knowledge) the first time that
it was shown quantitatively that thermodynamics might be applied to such a tiny
system as a nucleus. The reason is the enormous level density of heavy nuclei at
high excitation energy. Note also that the formula was derived for the emission of a
single neutron with only a few degrees of freedom (phase space). We conclude with
‘Lesson 4’:

Lesson Four (L4). Thermodynamics and/or statistics might be
(cautiously!) applied to very small systems, provided these have
a very large level density (whatever that means).

4Our list of references.
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When Weisskopf wrote his paper, not much was known about the level densities of
nuclei, and he proposed to learn about them from the observed emission spectra,
taking his formulae for granted.

Koppe’s Attempt and the Fermi Statistical Model (1948/1950)

Although traditionally all credit for the invention of a statistical model for particle
production goes to Fermi (see below), it was actually H. Koppe who proposed, in
fact 2 years earlier, the essence of such a model. He wrote [19]

In a recent paper [20],5 a simple method has been given for the calculation of the yield
of mesons produced by the interaction of light nuclei. It was based on the assumption of
strong interaction between mesons and nucleons which should make it possible to treat a
nucleus as a ‘black body’ with regard to meson radiation and to calculate the probability for
emission of a meson by statistical methods.

At that time, available energies were not high (Berkeley: ˛-particles of�380 MeV)
and consequently the temperatures remained small (�15 MeV), well below the pion
rest mass. Yet the model did not work too badly. Note that (for him) the high
level density justifying the treatment was located not in the meson field but in the
interacting nuclei (‘black body’).

Fermi [21] then takes the important step of considering the pion field itself as
the thermal (or better, statistical) system without the need for a background ‘black
body’ à la Koppe. Thus he claims that, e.g., a proton–proton collision could be
treated statistically. He writes [21]:

When two nucleons collide with very great energy in their CM system, this energy will
be suddenly released in a small volume surrounding the two nucleons. We may think
pictorially of the event as of a collision in which the nucleons with their surrounding
retinue of pions hit against each other so that all the portion of space occupied by
the nucleons and by their surrounding pion field will be suddenly loaded with a very
great amount of energy. Since the interactions of the pion field are strong, we may
expect that rapidly this energy will be distributed among the various degrees of freedom
present in this volume according to statistical laws. One can then compute statistically
the probability that in this volume a certain number of pions will be created with a
given energy distribution. It is then assumed that the concentration of energy will rapidly
dissolve and that the particles into which the energy has been converted will fly out in all
directions.

After some further discussion he writes down his basic formula for the production
of n pions (in modern notation):

S.n/ D 1

nŠ

�
V0
.2�/3

�n Z
ı

�
E �

nX

iD1
Ei

� nY

iD1
4�p2i dpi ; Ei D

q
p2i C m2 ;

(17.11)

5Our reference; the paper is written in German.
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where V0 is the ‘interaction volume’ [order .4�=3/m�3
� and Lorentz-contracted or

not, according to taste], E the total centre-of-mass (CM) energy, and m the pion
mass (or that of another species if considered).

The rest of his paper discusses applications at low, medium, and very high
energies; in the latter case a thermodynamic formulation is proposed, where the
temperature is proportional to E1=4—that is, a Stefan–Boltzmann gas of (massless)
pions is assumed. The way to this is already prepared when he discusses medium
energies, where a good number of pions are produced: in order to use the only
existing analytical expressions for n-body momentum space (namely for m D 0

and/or for m ! 1), he treats pions as massless and nucleons as non-relativistic.
At this time (1950), these assumptions were reasonable. The discovery of ‘limited
transverse momenta’ [10], which of course would invalidate them, was to come
only 6 years later. He also mentions angular momentum conservation, but only to
argue that it is unimportant; he soon comes back to this question in an attempt
to explain the observed anisotropy in CM [22], which failed. We pass over these
details.

What is important for us is that Fermi actually tries to describe the disintegration
of what we called above ‘fireballs’—8 years before they were discovered experi-
mentally [11, 14].

While the model fails quantitatively (Heisenberg [23] quotes a measured event
with an estimated primary energy of 40 GeV, where about 27 pions were actually
produced, in contrast to 2.7 predicted by Fermi in the thermodynamic version), it is
nevertheless the starting point for the development leading to the SBM.

Looking back we see a line of thought that leads from the Bohr compound
nucleus directly to the theoretical concept of a hadronic fireball and its statistical
(thermodynamical) description.

Beth–Uhlenbeck, Belenkij (1937/1956)

At the beginning of this section two main theoretical ideas were said to be essential
for a statistical description of fireballs. One was the Bohr compound nucleus,
leading directly to the Fermi model. The second is found in a paper by Beth and
Uhlenbeck [24]. The authors incorporate interaction in statistical thermodynamics
quantum mechanically via scattering phase shifts. We shall only sketch the idea.
Details may be found in [25, 26].

Suppose you have an ideal gas consisting of N non-interacting particles with
masses m1;m2; : : : ;mN at total energy E enclosed in a volume V . Let the level
density of this gas be N.E;V;m1; : : : ;mN). If a force acts between particles
numbered 1 and 2, they may form a bound state m12, and (if nothing else
happens) the level density of this new system becomes N�1.E;V;m12;m3; : : : ;mN).
The interaction has changed the level density and the system with interaction
would be described as a mixture of two ideal gases with and without bound
states.
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Beth and Uhlenbeck extend this argument to the case where the interaction leads
not to a bound state but only to scattering. Single out from our gas two particles
that are to scatter on each other, and take as normalization volume a sphere of
radius R centred at the point of impact of the two particles. The density of states
of this two-particle subsystem will be affected by the scattering process in that
the ` th partial wave of the common wave function of our two particles will be,
asymptotically:

 `.r; p/ � 1

pr
sin

�
pr � `�

2
C �`.p/

�
; (17.12)

where p is their relative momentum, r their distance, and �`.p/ the scattering phase
shift. The wave function should vanish at r D R :

pR � `�
2
C �`.p/ D n� ; n D 0; 1; 2; : : : : (17.13)

Thus n labels the allowed (discrete in R) two-body momentum states fp0; p1; : : :g.
For a fixed p0, there are n.p0/ states below p0, the density of states near p0 is

dn

dp0 D
R

�
C 1

�

d

dp0�`.p
0/ : (17.14)

Without interaction, �`.p/ 	 0. Hence, the interaction changes the two-particle
density of states by .1=�/d�`=dp. Of course this argument has to be repeated for
all partial waves and all particle pairs with the final result that the sum over ` gives
a contribution to the partition function containing the derivative of the scattering
amplitude [25, 27]. The formal extension of this method to include all interactions
is due to Bernstein et al. [28].

For the following argument of Belenkij [29], the simple equation Eq. (17.14) is
most illustrative. Let the two-body subsystem have a sharp resonance at relative
momentum p�. Then the phase shift rises there by � within a short interval, so that
.1=�/d�`.p/=dp � ı.p � p�/. Such a ı-function appearing in the density of states
is equivalent to introducing an additional particle with mass m� D m.m1;m2; p�/
into the system, very much as a bound state would be introduced. The actual proof
is somewhat complicated due to the switching between different sets of momenta.
Belenkij does this in detail. We state ‘Lesson 5’:

Lesson Five (L5). If in a statistical–thermodynamical system two-
body bound and resonance states occur, then they should be treated
as new, independent particles. Thereby a corresponding part of the
interaction is taken into account.

Note that after doing so, the system is still formally an ‘ideal gas’, but now with
some additional species of particles (simulating part of the interaction).
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Belenkij’s motivation for his work had been the known fact that Fermi’s model
gave wrong multiplicities: “This discrepancy may be as high as 20 times.” He had
hoped that his new remedy [expressed by (L5)] would cure the disease of the Fermi
model; it did so only partially, for reasons to become clear soon.

When we adopted Belenkij’s argument for including resonances, we did so
because it was intuitively obvious that resonances should be included even when
the formal derivation could not be directly invoked, as for instance in a process
A C B ! resonance ! n particles, where a phase shift increasing by � is not
defined. Incorporating resonances quite generally was later justified by Sertorio via
the S-matrix approach to statistical bootstrap in an important paper [30].

The CERN Statistical Model (1958–1962)

When in 1957 the CERN PS was near completion, planning of secondary beam
installations required estimates of particle production yields and momentum spectra.
Bruno Ferretti, our division leader at that time, asked Frans Cerulus and me to do
some calculations with the Fermi model (“just a fortnight of easy work : : :”, he
said), not surmising that by that request he triggered a new development. In fact, we
soon found out that the Fermi model, as it was, could not be used:

1. In the fireball rest frame, neither were pions ultrarelativistic nor nucleons non-
relativistic; indeed Lesson 2 (limited transverse momenta) excluded this, so
there were no analytic formulae available to calculate momentum space integrals
[Eq. (17.11)].

2. Interaction between the produced particles might be important; the ideal gas
approximation could lead to large errors.

For the second problem Belenkij had already given the solution: include all known
particles and resonances (Lesson 5). For the rest, we were confident: fireballs
seemed to exist (Lesson 3 was known to us by hearsay) and their statistical
description in principle possible (Lesson 4). We earnestly hoped that an improved
Fermi model would do. Problem 2 being trivial (thanks to Belenkij), once problem 1
was overcome, we concentrated on the calculation of momentum space integrals.
Cerulus had the idea to use the Monte Carlo method and we worked it out. At that
time this was a new method, not familiar to physicists; moreover the first CERN
computer was only to come in a year or so. So we had tried our new methods
[31] with the help of the Institute of Applied Mathematics at Darmstadt, where
an IBM computer was available (not very powerful in 1958!) and we had found
that momentum space integrals with up to �15 particles could be computed in
reasonable time and reliably with prescribable error (5–10 %).

I then took it over to write a program (my first!) for the expected CERN computer,
a Ferranti Mercury. It was an adventure: I had to learn to program a non-existing
machine, still under development, with no possibility of checking written parts of
the program. Everything was to be expressed in machine code—a simple addition
required four lines of code and all store addresses were absolute. One had to keep
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account of where each number (including intermediary results) was stored—and
there were thousands of them (momentum spectra of some 15 species of particles).

After half a year I had finished the program (so I thought) and went to Saclay
in France to test it on the first delivered Mercury machine. It failed beyond all
expectation. Correcting was even more tricky than writing the program (which
consisted of thousands of lines of numbers—no letters, no symbols; find the error!).
It even required manual skill: input and output was via punched paper tape and one
had to find the erroneous part (reading the tape by eye had to be learned, too), cut
it out, and replace it carefully by the corrected piece, gluing everything together
properly in case the teletape reader refused it or tore it to pieces.

In short, it was a mess, but finally it came to work, and in hundreds of hours we
produced kilometers of tape with our precious results: the first accurate evaluations
of the Fermi model including some interaction (all known particles plus some
resonances) at several primary energies from 2 to 30 GeV (lab) and for pp and
 p collisions. Cerulus [32] had used a very elegant group theoretical method to
solve the problem of charge distribution, and then employed the same method to
implement angular momentum conservation in phase space [33], in the hope of
reproducing the known anisotropy. It failed (because it required more computing
than was then possible and also) because the process was not so statistical as we
had hoped: angular momentum conservation could not produce the pronounced
anisotropy found in cosmic ray events and well accounted for by two-centre models
[11, 14]—a fact strongly suggesting that phase relations between partial waves
survived the statistical mixing assumed in the Fermi model. In principle we had the
tools to build and correctly evaluate a two-centre model, but it would have required
at least ten times more computing (summing over impact parameters with varying
fireball energies), which was impossible (we had already spent several years to do
all the computing for single fireballs). Thus the angular distribution could not be
described adequately.

But we had a more important success [34]: from the calculated momentum
spectra it followed that the mean kinetic energy of all particles was practically
independent of the primary lab energy (6–30 GeV). Thus the model more or less cor-
rectly produced the empirical fact stated in Lesson 2 (limited transverse momenta).
However, this was only a numerical result, due to the large number of species of
particles entering our calculations: counting spin, isospin, and antiparticles of the
included ones ( , ρ, ω, K, N, �, Λ, Σ, Ξ), we came to 83 different particle states,
equivalent to 83 species. This proved important in the following development, where
it was the key opening the door to the statistical bootstrap model, when we tried to
understand this mechanism analytically.

We state ‘Lesson 6’:

Lesson Six (L6). A properly evaluated Fermi model with some
interaction (resonances; L5) produces, in a limited interval of
primary energy, practically constant mean kinetic energies of
secondaries and reasonable multiplicities.

A review of our work is given in [34]. See also [35].
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The Decisive Turn of the Screw: Large-Angle Elastic Scattering

Early in 1964 evidence was growing that the elastic pp cross-section around
90ı (CM) decreased exponentially with the total CM energy, at least in the then
known region 10 � E � 30GeV of primary energies (lab). Many experiments
contributed to this, and we cannot list them all here. The situation—theoretical and
experimental—is well described in a paper by Cocconi [36], where references to the
original experiments are given.

One can include angles a little below and above 90ı by using transverse
momentum p? D p sin � . Orear [37] obtained in this way an impressive fit to large-
angle elastic scattering (in what follows, E is always the total CM energy and d! is
the solid angle, frequently denoted d˝):

E2
d

d!

ˇ̌
ˇ̌
e`

D const: 
 exp
�
� p?
0:158

�
; (17.15)

which is shown in Fig. 17.4. The cross-section follows this empirical formula over
nine orders of magnitude in the interval 1:7 � p0 � 31:8GeV/c (primary lab
momentum). Moreover, the reaction pCp!  Cd, as well as  p elastic scattering,
showed the same behaviour. In particular the exponential decrease had the same
slope as in pp elastic scattering [37].

It is tempting to interpret Eq. (17.15) as a thermal Boltzmann spectrum. In
that case 0.158 GeV would be the ‘temperature’ at which the two nucleons were
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 C d, showing the exponential decrease with the same slope
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emitted.6 It thus seemed that there was something statistical, a suspicion strangely
corroborated by the observation that the same law (with slightly different ‘tem-
perature’) was obeyed by secondaries in inelastic processes [36]. Almost 2 years
before the Orear plot was published, L.W. Jones had already proposed a statistical
interpretation: the two colliding particles would sometimes form a fireball—in
analogy to the compound nucleus—which would decay into many channels, among
them the two-body channel containing the original particles. This two-body decay
could only be observed far outside the diffraction peak, that is, at large angles. He
asked me whether such a picture could be described quantitatively by our statistical
model.

Statistical Model Description of Large-Angle Elastic Scattering

For some obscure reasons, we had archived all results obtained since 1958,7 and
even included the two-body channel. It was simple to analyse them again and to
find the amazing result

E2
de`

d!

ˇ̌
ˇ̌
90ı

� E2
P0P
b Pb
Š const: 
 E exp.�3:17E/ ; (17.16)

where P0 is the probability of the two-body channel and ˙Pb the sum over the
probabilities of all channels. P0 and all the Pb were numerical results from hundreds
of phase-space calculations as described above. When we established Eq. (17.16),
no free parameters were available, everything was in our archived data. This result
[38] agreed reasonably well with early experimental data [36], but when the Orear
fit [37] was published, the agreement became perfect: the number 3.17 in the
exponent of Eq. (17.16) corresponds to a temperature T D 0:158 if E D 2p? (at
90ı) is inserted; then Eq. (17.15) results (the factor E in front of the exponential is
negligible).

Thus L.W. Jones’ proposal was immensely successful. An independent confir-
mation by the observation of Ericson fluctuations [39] would have been desirable,
but I do not know if it was ever tried. It was probably too difficult.

Thermal Description

Our results were so convincing to me (unfortunately not to most others; among
the few exceptions was G. Cocconi) that I firmly believed that in Eq. (17.16) we

6If E is used at 90ı instead of p? Š E=2, the exponent becomes �E=0:31, which was sometimes
misinterpreted as T � 0:3GeV.
7Several people had contributed to the accumulation of statistical model results: J. von Behr, F.
Cerulus, H. Faissner, G. Fast, K.H. Michel, J. Soln, and myself.
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really had an exponential function and not something approximately exponential.
This belief (which was directly leading to the statistical bootstrap model) had to be
justified better than by Eq. (17.16), which was merely a numerical result established
in a rather small range of energy� 2:4 � E � 6:8GeV.

However, the belief was seriously challenged by Białas and Weisskopf [40] who
had given a thermodynamical description based on assumptions that I considered
unsuitable, but which nevertheless also gave a good fit to the data. What were these
assumptions? Mainly these:

• The compound system is a hot gas.
• As constituents only pions are considered. K mesons and resonances are assumed

to be unimportant.
• Pions are taken as massless.

These were exactly the assumptions that Fermi [21] had already made and that had
led to wrong multiplicity estimates [23, 29].

From the above assumptions, it follows immediately that the gas is at the black-
body temperature (Stefan–Boltzmann law)

T.E/ D const: 
 E1=4 : (17.17)

Therefore a Boltzmann spectrum for elastic scattering at 90ı would be of the form

exp

�
� p?

T.E/

�
D exp.�const: 
 E3=4/ ; (17.18)

instead of our result � exp.�const: 
 E/ as given in Eq. (17.16). For .d=d!/90ı ,
the authors derive an expression that contains Eq. (17.18) as the essential part, the
rest being algebraic factors.

The difference is in principle fundamental, but it is numerically insignificant in
the range of energies then available. Apparently the Orear plot [37], which might
have pleaded in favour of a pure exponential, was not yet available to the authors
(as seen from the dates of reception of the two papers).

Exponential or Not?

This question was so important that I wish to formulate it in two different ways:

1. Our result was [see Eq. (17.16)] that ˙Pb grows exponentially with E (the other
factors being algebraic). Now, a given phase-space integral for b particles is the
density of states of the b-particle system at energy E; thus˙Pb is the total density
of states of the ‘fireball’ at energy E. If our result Eq. (17.16) were true, it would
mean that the density of states of hadronic fireballs would grow exponentially
with their mass .D E/ up to at least m = 8 GeV.
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2. The second formulation is a consequence of the first. The entropy is the logarithm
of the density of states, hence the entropy of a fireball would be

S.E/ D const: 
 E (17.19)

and therefore its ‘internal temperature’ would be

T D .dS=dE/�1 D const: (17.20)

In words, if our result Eq. (17.16) were true, it would mean that the internal
temperature of hadronic fireballs would be independent of their mass .M 	 E/.

This would also explain (in a thermodynamic language) why our phase-space
calculations had given ‘constant’ mean kinetic energies [Lesson 6]: particles were
emitted with a Boltzmann spectrum at an energy-independent temperature. We had
suspected that this behaviour was due to our including interaction by admitting all
relevant species of particles and resonances known to us, but that had remained a
speculation up to then.

Cocconi had clearly seen what was going on. He writes [36]:

If the dependence of S on E is of the form S D aEn, it follows that d=d! D const: �
exp.�aEn/ and that the temperature of the compound system is T D .naEn�1/�1. The
value of n characterizes the ‘gas’ of the compound system [: : :]; n D 1 corresponds to
the case of a system in which, for E increasing, the number of possible kinds of particles
increases so as to keep the energy per particle, and hence the temperature, constant.8

Commenting on our phase-space results [34], he wrote:

This model produces an essentially ‘constant temperature’ because, in the compound
system, beside the nucleons and mesons, also the known excited states are counted
separately.

All this can be conveniently summarized in Lesson 7:

Lesson Seven (L7). The exponential decrease in the elastic pp
cross-section at large angles up to a CM energy of about 8 GeV
had empirically established the existence of ‘fireballs’ (clusters;
compound states) up to at least m D 8GeV. Moreover, their density
of states had to grow exponentially as a function of their mass up
to at least m D 8GeV, which means that, if the level density is
interpreted as a mass spectrum, there were an unexpectedly large
number of resonance-like states above those few then explicitly
known.

The question now was: could a reasonable analytical model for fireballs be
constructed, which would lead to an exponentially growing density of states and,
consequently, to an energy-independent temperature?

8The italics are mine.
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Asymptotics of Momentum Space

The question just formulated was in the mind of several people who therefore
investigated the asymptotic behaviour of momentum space integrals for E ! 1
[41–43]. They all consider essentially a pion gas and show that for E ! 1 the
masses become negligible and that the asymptotics can be evaluated there. All
authors agree that (in general) the density of states for E ! 1 then grows like
exp.const: 
 E3=4/, just as for a gas of particles with m D 0. Vandermeulen as well
as Auberson and Escoubès consider also the pathological case where the usual factor
1=nŠ in front of the phase-space integral is omitted. They discover the amazing fact
that, if the factor 1=nŠ in front of the phase-space integral is omitted, then the density
of states for E ! 1 grows like exp.const: 
 E/. I give here a simple derivation of
this result, taking all masses m D 0 from the outset and passing over subtleties such
as the difference between hEi and E in thermodynamics.

For zero masses, the particle energies equal their momenta and the n-body phase-
space integral (= n-body density of states at energy E) with spatial volume V
becomes

n.E;V/ D 1

nŠ

�
V

.2�/3

�n Z
ı

�
E �

nX

iD1
pi

� nY

iD1
4�p2i dpi : (17.21)

The n-body partition function is then the Laplace transform of  :

Zn.T;V/ D
Z 1

0

n.E;V/e�ˇEdE D 1

nŠ

�
V

8�3

�n �Z 1

0

e�ˇp4�p2dp

�n

;

(17.22)

where ˇ D 1=T (we use ˇ and T for convenience). The last integral equals 8�T3,
so that

Zn.T;V/ D 1

nŠ

�
VT3

�2

�n

D 1

nŠ
Z1.T;V/

n : (17.23)

Summing over n gives the partition function for our gas with particle number not
fixed:

Z.T;V/ D ˙Zn.T;V/ D exp


Z1.T;V/

�
;

ln Z.T;V/ D Z1.T;V/ D VT3

�2
D �F

T
D � 1

T
.E � TS/ D S � ˇE ;

(17.24)

where F is the free energy and S the entropy. It follows that

E D � d

dˇ
ln Z D 3VT4

�2
; (17.25)
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which is the Stefan–Boltzmann law for Boltzmann statistics. Further

S D ˇE C ln Z D 4VT3

�2
: (17.26)

If S is expressed as a function of E (as it should be), we have

S D
�
256V

27�2

�1=4
E3=4 ; (17.27)

and the density of states becomes, as derived more rigorously in the above papers,

.E;V/ D eS D exp.const: 
 E3=4/ : (17.28)

But the situation changes drastically if the factor 1=nŠ is omitted. Go back to
Eqs. (17.23) and (17.24) and drop 1=nŠ there. The sum now gives

Z.T;V/ D 1

1 � Z1
D 1

1 � VT3=�2
D T30

T30 � T3
; T0 D .�2=V/1=3 :

(17.29)

For T ! T0 the partition function diverges. Hence T0 is a singular temperature for
this gas.

Now the miracle happens. Assume V to be the usual ‘interaction volume’ of
strong interactions [21] (without Lorentz contraction):

V � 4�

3
m�3
� gives T0 Š

�
3�

4

�1=3
m� Š 0:184 GeV : (17.30)

This is almost the mysterious ‘constant’ temperature so often encountered in this
report. Following the standard procedure, we calculate the energy and entropy. Both
become simple for T ! T0 :

E � 3T40
T30 � T3

; S � E

T0
C ln

E

3T0
: (17.31)

The energy diverges for T ! T0 (therefore T0 is the maximum temperature for this
gas). For the level density, we obtain

.E;V/ D eS Š E

3T0
exp

E

T0
; (17.32)

that is, omitting the factor 1=nŠ leads to a maximum temperature and to an
exponentially growing density of states. Equation (17.31) implies that, for E �
10T0, one always finds a temperature 0:9T0 � T < T0, hence practically constant.
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This result brought me—me, but nobody else—to a state of obsession. Did it not
explain one of the most intriguing features of strong interaction processes? And was
it not obviously wrong because of its unrealistic assumptions? Yet, there was an
interpretation that opened the way to a better model.

Interpretation: Distinguishable Particles and Pomeranchuk’s Ansatz

The factor 1=nŠ in front of the phase-space integral Eq. (17.21) serves to compensate
for ‘double’ counting: given a set of fixed momenta fp1; p2; : : : ; png, all nŠ
permutations of this set occur during the integration over p1; p2; : : : ; pn. If the
particles are indistinguishable, one has therefore to divide by nŠ. If all n particles
are different from each other, one should not divide. This was exactly the point: in
our statistical model calculations we had used �80 different particle states and had
therefore to replace

1

nŠ
! 1

˘nkŠ
; k D 1; : : : ; 80 ; (17.33)

in front of the phase-space integrals. However, since the number of produced secon-
daries remained far below 80, the values nk remained, for all essentially contributing
phase-space integrals, either 0 or 1. Hence, practically all nkŠ D 1, and 1=nŠ was
effectively replaced by 1. If this situation was to be simulated analytically by a
solvable model [namely all masses = 0 (for E!1/�, then in order to come near to
reality, the factor nŠ should be dropped, as if the particles were distinguishable.

This argument led Auberson and Escoubès to look at the case where 1=nŠ is
dropped. They also considered a scenario corresponding to Eq. (17.33), namely
where there are r different species of particles, while inside each species, particles
are indistinguishable. They are cautious in the interpretation of their results [41]:

If it is probable that the discernibility hypothesis is the most realistic at low energies, one
cannot very well locate the energy at which this hypothesis must be abandoned (if at all).

And later:

Clearly r could be larger than 3, to take into account the resonances at high energies.9 (If,
however, in reality the strongly interacting particles should have an infinity of excited states
[: : :] we fall back essentially on discernible particles.)

They leave the question open.
In the present context, a paper by Pomeranchuk [44] must be mentioned. He

proposes to improve the Fermi model by admitting that real pions are not pointlike.
Therefore n pions would not find room in a volume V0 .� 4�m�3

� =3/, but need
at least a volume nV0. Thus the space volume factor in front of the integral

9r is the above number of different species of particles, roughly 80 in our old phase-space
calculations.



160 R. Hagedorn

in Eq. (17.21) would be ŒnV0=8�3�n instead of the one appearing in Eq. (17.21).
However, for large n,

nŠ � p2�n nne�n ; (17.34)

the factor nn arising from the corrected volume will essentially cancel the factor
1=nŠ, and one thus arrives effectively at a model with ‘distinguishable’ particles in
a volume eV0. In this way, Pomeranchuk also obtains a maximal temperature of
the order of m� , that is, a practically constant temperature. His paper came about
13 years too early—or at least five, since the constant mean transverse momenta
became popular only after 1956 [10] (the decisive large-angle scattering took shape
around 1964).

While the model of distinguishable particles was useful because it produced the
surprise that motivated the investigations described in the following section, it was
clear that all further efforts had to be made on the realistic basis of massive particles
with Bose and/or Fermi statistics. The principal lesson to be kept in mind was that
there should be many, many different species of particles.

17.3 The Statistical Bootstrap Model (SBM)

Up to here we have collected everything that helped to motivate the construction of
SBM. We now describe this construction. For what follows, a few formulae need to
be recalled; although everybody knows them, it is necessary to have them ready
at hand in order not to interrupt the argument. We use Boltzmann statistics for
simplicity (the first paper on SBM used correct statistics [45]).

A Few Well-Known Formulae

We go back to Eq. (17.21), rewrite it for relativistic massive particles, and follow the
same derivations as there. The density of states of n particles of mass m enclosed in
a volume V at energy E is then

n.E;V;m/ D 1

nŠ

�
V

.2�/3

�n Z
ı

�
E �

nX

iD1
Ei

� nY

iD1
4�p2i dpi ; Ei D

q
p2i C m2 :

(17.35)

Its Laplace transform is the n-particle partition function:

Zn.T;V;m/ D 1

nŠ

�
V

.2�/3

�n �
4�

Z
e�ˇ
p

p2Cm2p2dp

�n

; (17.36)
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and the integral is

Z
e�ˇ
p

p2Cm2p2dp D m2TK2.m=T/ ; (17.37)

where K2 is the second modified Hankel function [which for m � T goes as
.�T=2m/1=2 exp.�m=T/ and for m� T as .T=m/2].

We obtain

Zn.T;V;m/ D 1

nŠ

�
V

.2�/
m2K2.m=T/

�n

D Z1.T;V;m/
n=nŠ ; (17.38)

by which the ‘one-particle partition function’ Z1 is defined. Summing over n gives
the (grand canonical) partition function for an unfixed particle number:

Z.T;V;m/ D
1X

nD0

1

nŠ
Zn
1 D exp

�
VT

2�2
m2K2

�m

T

��
: (17.39)

For a mixture of two gases with particles of masses m1 and m2, respectively, we
have Z.T;V;m1;m2/ D Z.T;V;m1/Z.T;V;m2/. We generalize this to a mixture of
gases of many different sorts of particles by introducing the (as yet unknown) mass
spectrum �.m/:

�.m/dm D number of different species of particles in fm; dmg ; (17.40)

and obtain

Z.�/.T;V/ D exp

�
VT

2�2

Z 1

0

m2K2
�m

T

�
�.m/dm

�
: (17.41)

On the other hand, any Z.T;V/ can be written as

Z.T;V/ D
Z 1

0

.E;V/ exp

�
�E

T

�
dE : (17.42)

Given Z.T;V/, the energy spectrum (density of states) .E;V/ can be calculated,
and vice versa.

Doing the same steps, i.e., summing over n and introducing a mass spectrum
without, however, executing the Laplace transformations, yields the phase-space
analogue of Eqs. (17.41) and (17.42):

.�/.M;V/ D
1X

nD0

1

nŠ

�
V

.2�/3

�n Z
ı

�
M �

nX

iD1
Ei

� nY

iD1
4�p2i �.mi/dpidmi ;

(17.43)
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where Ei D .p2i C m2
i /
1=2. Note the enormous difference between the two densities

of states, �.m/ and .M;V/. Suppose there is a single species with mass m0; then
�.m/ D ı.m�m0/ is zero everywhere except at m D m0, while .M;V/ grows (for
M� m0/ as exp.const: 
M3=4/ as shown in Eq. (17.28).

Introducing the Statistical Bootstrap Hypothesis

From an article that does not otherwise concern our subject, R. Carreras [46] picked
up a bon mot which may serve very well as a motto for this section:

[: : :] all of these arguments can be questioned, even when they are based on facts that are
not controversial.

Here are these arguments:

• If anything deserves the name ‘fireball’, then it is the lump of hadronic matter in
the state just before it decays isotropically into a two-body final state, as observed
in large-angle elastic [pCp! pCp,  Cp.n/!  Cp.n/� or two-body inelastic
scattering [pC p!  C C d].

• This fireball answers, within experimental accuracy, to the description by an
improved Fermi statistical model, as witnessed by the agreement of our phase-
space results with the Orear plot (Fig. 17.4).

• We therefore postulate that fireballs describable by statistical models do exist,
provided that in such models interaction is taken into account by including known
particles and resonances (Lessons 5, 6, and 7).

• While practically a limited number of sorts of particles and resonances was
already sufficient to describe, within experimental accuracy, fireballs up to a mass
of 8 GeV, we should in principle include all of them with the help of an as yet
unknown mass spectrum �.m/.

• Recalling Eqs. (17.41)–(17.43), we observe that there are two mass spectra
appearing in the statistical description:

1. .M;V0/dM is the number of states (of species) of fireballs (volume V0) in
the mass interval fM; dMg.

2. �.m/dm is the number of species of possible constituents (of such fireballs)
having a mass in fm; dmg.

• A glance at the Review of Particle Properties [47] informs us, under the headings
Partial Decay Modes that heavy resonances [to be counted in �.m/] have many
decay channels, some of them containing resonances once again. Thus, heavy
resonances ‘consist’ (statistically) of particles and lighter resonances—just as
fireballs do.

• Therefore there is no principal difference between resonances and fireballs: the
states counted in .M;V0/ should also be admitted as possible constituents of
fireballs of larger mass—that is, they should be counted in �.m/.

• We conclude that �.m/ and .m;V0/ count essentially the same set of hadronic
masses and that therefore they must be—up to details—the ‘same’ function.
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• They cannot be exactly equal, because �.m/ starts with a number of ı-functions
(�; K; p; : : :) while .m;V0/ is continuous above 2m� .

• Leaving the door open for such differences and others, we postulate only that the
corresponding entropies should become asymptotically equal:

log .m;V0/

log �.m/
�!

m!1 1 : (17.44)

We call this the ‘bootstrap condition’ [45], which is a very strong requirement in
view of the great difference between � and  in ‘ordinary’ thermodynamics (see
the remark at the end of the last section).

The Solution

The rest is mathematics (and the above motto no longer applies). It could be
shown [45] that � and  have to grow asymptotically like const: 
 m�˛ exp.m=T0/,
while possible solutions growing faster than exponentially are inadmissible in
statistical thermodynamics. Nahm [48] proved that, by adding certain refinements,
the condition Eq. (17.44) could be sharpened and that the power of the prefactor is
then ˛ D 3. He also derived sum rules, which allowed him to estimate T0 to lie in the
region of 140–160 MeV, results which agreed with Frautschi’s (and collaborators)
numerical results [49]. Thus the question put after Lesson 7 had been answered in
the affirmative: SBM was born.

It is a self-consistent scheme in which the ‘particles’—i.e., clusters or resonances
or fireballs, call them what you like—are at the same time:

• the object being described,
• the constituents of this object,
• the generators of the interaction which keeps the object together.

Thus it is a ‘statistical bootstrap’ [49] embracing all hadrons.

Further Developments

Everything that happened to SBM after its birth is reported in some detail, and with
all references known to me, in the review Chapter 25 [2], which I shall not try to
sum up here.

Even so, a few more important steps must be mentioned:

• The thermodynamic description of fireballs is so simple that it can be combined
with collective motions (as in two-centre models [11]) and summed over impact
parameters. Leading particles and conservation laws are easily taken care of. In
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this way, Ranft and myself constructed the so-called ‘thermodynamical model’,
which proved useful for predicting particle momentum spectra [50].

• Frautschi, in a most important paper [49], had written down and solved the first
phase-space formulation of SBM. His work triggered an avalanche of further
papers reviewed in Chapter 25 [2], see also Chapter 22, leading to a new
development. His ‘bootstrap equation’ (BE) is much stronger and more elegant
than our above ‘bootstrap condition’ Eq. (17.44). Later it was put in a manifestly
Lorentz invariant form and analytically solved by Yellin [51]. This formulation
has become standard. The Laplace-transformed BE is a functional equation for
the Laplace transform of the mass spectrum. This equation was already known10

in 1870 [52] and independently rediscovered by Yellin. All this was so important
that I cannot resist illustrating it with the help of a simple toy model, in which
clusters are composed of clusters with vanishing kinetic energy. In this limit the
Frautschi–Yellin BE reads

�.m/ D ı.m� m0/C
1X

nD2

1

nŠ

Z
ı

 
m �

nX

iD1
mi

!
nY

iD1
�.mi/dmi : (17.45)

In words, the cluster with mass m is either the ‘input particle’ with mass m0

or else it is composed of any number of clusters of any masses mi such that
˙mi D m. We Laplace-transform Eq. (17.45):

Z
�.m/ exp.�ˇm/dm D exp.�ˇm0/C

1X

nD2

1

nŠ

nY

iD1

Z
exp.�ˇmi/�.mi/dmi :

(17.46)

Define

z.ˇ/ WD exp.�ˇm0/ ; G.z/ WD
Z

exp.�ˇm/�.m/dm : (17.47)

Thus Eq. (17.46) becomes G.z/ D zC expŒG.z/� �G.z/ � 1 or

z D 2G.z/� expŒG.z/�C 1 ; (17.48)

which is the above-mentioned functional equation for the function G.z/, the
Laplace transform of the mass spectrum. This function proved most important
in all further development. For instance, the coefficients of its power expansion
in z are directly related to the multiplicity distribution of the final particles in
the decay of a fireball [53]. It is most remarkable that the ‘Laplace-transformed
BE’ Eq. (17.48) is ‘universal’ in the sense that it is not restricted to the above

10In another context, as one might guess.
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Fig. 17.5 (a) z.G/ according to Eq. (17.48). (b) G.z/, the graphical solution of Eq. (17.48)

toy model, but turns out to be the same in all (non-cutoff) realistic SBM cases
[49, 51]. Moreover, it is independent of:

– the number of space-time dimensions [54],
– the number of ‘input particles’ (z becomes a sum over modified Hankel

functions of input masses),
– Abelian or non-Abelian symmetry constraints [55].

What is wanted is of course G.z/, given implicitly by Eq. (17.48). Solutions
are reviewed in Chapter 25 [2]. Simplest is its graphic solution: we draw
z.G/ according to Eq. (17.48) and exchange the axes (see Fig. 17.5). One sees
immediately that (universally!)

zmax.G/ DW z0 D ln 4 � 1 D 0:3863 : : : ; G0 D G.z0/ D ln 2 :

The parabola-like maximum of z.G/ implies a square root singularity of G.z/ at
z0, first remarked by Nahm [48]. Upon inverse Laplace transformation, this leads
to �.m/ � m�3 exp.ˇ0m/ where (in our present case, not universally!):

ˇ0 D � 1

m0

ln z0 D 0:95

m0

Œsee Eq. (17.47)� : (17.49)

Putting m0 D m , we find a reasonable value for T0 D ˇ�1
0 :

T0.toy model/ D 0:145 GeV : (17.50)

Thermodynamics of a gas of the above clusters Eq. (17.45) has T0 as a singular
temperature. Thus, the simple toy model already yields all essential features of
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SBM. For a very short representation of the more realistic case of pion clustering
in full relativistic momentum space, see [53, Sect. 2].

• Much work was done by groups in Bielefeld, Kiev, Leipzig, Paris, and Turin to
clear up the relation of SBM to other trends in strong interaction physics (Regge,
Veneziano, etc.) and to the theory of phase transitions; this is reviewed in Chapter
25 [2].

• In the mid-1970s J. Rafelski arrived at CERN and immediately began pushing
me: SBM should be polished up to become applicable to heavy-ion collisions.
There were two problems: baryon-number (and, eventually, strangeness)
conservation and proper particle volumes—pointlike heavy ions would be
nonsense. Thus we introduced baryon (strangeness) chemical potential and—
less trivially—proper particle volumes, first in the BE [56], then in the ensuing
thermodynamics [57]. We found that particle volumes had to be proportional
to particle masses with a universal proportionality constant. The argument was
the following. Let a cluster (fireball) of mass m and volume V be composed of
constituents with masses mi and volumes Vi. In contrast to standard assumptions
in thermodynamics, the cluster is not confined to an externally imposed volume;
rather it carries its volume with it (as already stressed by Nahm [48]), and so
does each of its constituents. Let any one of them have four-momentum p�i . Then
its volume moves with four-velocity p�i =mi. With Touschek [58], we define a
‘four-volume’

V�
i D

Vi

mi
p�i : (17.51)

The constituents’ volumes have to add up to the total cluster volume and their
momenta to the total momentum:

V

m
p� D

nX

iD1

Vi

mi
p�i ; p� D

nX

iD1
p�i : (17.52)

This is possible for arbitrary n and p�i if and only if

V

m
D Vi

mi
D const: D 4B ; (17.53)

where the proportionality constant is written 4B in order to emphasize the
similarity to MIT bags [59], which have the same mass-volume relation.
Moreover, as the energy spectrum of SBM clusters and MIT bags is the same
even in the detail [60, 61], one is led to consider these two objects to be the same,
at least in the sense that statistical thermodynamics of MIT bags is identical to
that of SBM clusters. This ‘identity’ is interesting, because MIT bags ‘consist
of’ quarks and gluons, SBM clusters of hadrons: it suggests a phase transition
from one to the other.
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• The thermodynamics of clusters with proper volumes still had a singularity at
T0, but a weaker one: while in the old (point-particle) version of SBM the energy
density diverged at T0 (thus making T0 an ‘ultimate’ temperature), the energy
density was now finite at T0, making a phase transition (already anticipated by
Cabibbo and Parisi [62]) to a quark-gluon plasma possible [57, 63, 64].

• Technical problems in handling the particle volumes explicitly could be elegantly
solved [65–69] by using the ‘pressure (or isobaric) partition function’ invented
by Guggenheim [70]. This technique allows one to treat the thermodynamics
of bags with an exponential mass spectrum (pioneered by Baacke [71]) in a
beautiful way: Letessier and Tounsi [72–74] succeeded, following the methods
of the Kiev group [65–69], in describing with a single partition function the
hadron gas, the quark-gluon plasma, and the phase transition between the two in
a realistic case. This opens the way to solving a number of problems connected
with proving (or disproving?) the actual presence of a quark-gluon phase in the
first stage of relativistic heavy-ion collisions.

17.4 Some Further Remarks

The Difficulty in Killing an Exponential Spectrum

The most prominent feature of SBM is its exponentially increasing mass spectrum.
Many objections to it were put forward: symmetry constraints would forbid a
number of the states counted in it; correct Bose–Einstein and Fermi–Dirac statistics
would also reduce the number of states; and in composing clusters of clusters and
so on, one should take into account the Pauli principle, which again might eliminate
many states. Furthermore, the original argument for including resonances was based
on the Beth–Uhlenbeck method [see Eq. (17.14) and Lesson 5], which invokes phase
shifts and their sudden rise by � when going through a resonance. But then the
phase shifts should go to zero for infinite momentum and the Levinson theorem
states that ı`.0/ � ı`.1/ D N`� , with N` D number of bound states with angular
momentum `. Therefore phase shifts cannot go on increasing by � for each of our
(exponentially growing number of) resonances—they must decrease again. That is,
each and every one of the masses added somewhere to the mass spectrum must be
(smoothly) subtracted later on. How then can an exponential mass spectrum survive?

All these objections turn out to leave the mass spectrum intact, because the
exponential function is extremely resistant to manipulations: multiplication by
a polynomial of any (positive or negative) order, squaring, differentiating, or
integrating it will not do much harm (consider the leading term of its logarithm!)—at
most change its exponential parameter .T0 ! T 0

0/.
Therefore, once our self-consistency requirement—crude as it may be—has led

to this particular mass spectrum, it is difficult to get rid of it. Incidentally, in the first
paper on SBM [45], correct Bose–Einstein/Fermi–Dirac statistics was employed
(easy in the grand canonical formulation, awful in phase space [75–79]) and the
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result was that the mass spectrum �.m/ D �Bose.m/ C �Fermi.m/ had to grow
exponentially. The role of conservation laws has been dealt with in the literature
(see references in Chapter 25 [2]). None of these explicit attacks killed the leading
exponential part of the mass spectrum.

It remains, as an illustration of the resistance of �.m/, to assume that, for
whatever reason, every mass once added to it, has to be eliminated again. (I do
not know of any serious argument which would require this. The Levinson theorem
derived in non-relativistic potential scattering [80] cannot be invoked in a situation
where all kinds of reactions between constituents take place—but assume it had to
be so.) Then, arriving at mass m, we subtract everything that had been added at
m ��m, whence

�.m/ �! �.m/� �.m ��m/ � eˇ0m


1� e�ˇ0�m

�
;

and the leading exponential remains untouched (a kind of differentiation).

What is the Value of T0?

The most fundamental constant of SBM, namely T0, escapes precise determination.
There are several ways to try to fix T0:

1. Theoretically,

(a) inside SBM,
(b) from lattice QCD.

2. Empirically,

(a) from the mass spectrum,
(b) from the transverse momentum distribution,
(c) from production rates of heavy antiparticles (He3, d),
(d) from the phase transition to the quark-gluon phase.

We obtain the following.

1a. T0 from Inside SBM
The crude model of Eq. (17.45) yields with pions only T0 � 0.145 GeV
If K and N were added to the input T0 � 0.135 GeV

The unrealistic model of distinguishable, massless particles
as described by Eq. (17.31) gives T0 � 0.184 GeV

A more realistic model (pions + invariant phase space)
yields [81] T0 � 0.152 GeV
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Table 17.1 T0 from lattice QCD

nf T0 from
p
 T0 from m� Tc from mN

0 239 ˙ 13 239 ˙ 23 225 ˙ 30

2 – 145 ˙ 7 113 ˙ 9

4 160 ˙ 22 130 ˙ 7 105 ˙ 9

T0 � 0:145 or 0.130 GeV.
p
 D 0:42˙ 0:02GeV is the string tension and nf the number of light

flavors, nf = 2 or 4 being the most physical choice. Taken from [83], for contemporary results see
Chaps. 7, 10, 14, and 21.

Hamer and Frautschi [82] solve their BE by numerical
iteration and read off T0 � 0.140 GeV

Nahm derives a sum rule from which he found, under different
assumptions (which particles are admitted?) [48]: T0 � 0.154 GeV

or 0.142 GeV

1b. T0 from Lattice QCD The determination of T0 from lattice QCD is still ham-
pered with difficulties. First estimates using pure gauge gave rather high T0, while
the introduction of quarks pose their own problems. Nevertheless compromises have
been devised which circumvent these problems and provide a way of dealing with
quarks (but paying a price depending on what one is after). Table 17.1 is taken from
a review article by F. Karsch, where the methods are described and references to
original work are given [83, Table 2] (see also [84]).

It is believed that the value ‘T0 from m�’ is the most realistic. It agrees rather
well with the above-listed estimates of T0 from inside SBM [except the one for
distinguishable massless particles which—accidentally?—lies nearer to the pure
gauge (nf = 0) value].

2a. From the Mass Spectrum Here the difficulty is that approximate completeness
of the empirical mass spectrum ends somewhere around 1.5 GeV, because the
density of mass states increases and the production rate decreases (both exponen-
tially, as predicted by SBM), and the identification of all masses rapidly becomes
impossible. On the other hand, we know only the asymptotic form of the mass
spectrum � m�3 exp.m=T0/ and have to guess an extrapolation towards lower
masses, which does not diverge for m! 0. Various attempts (after 1970):

Hagedorn and Ranft [85] obtain, with large uncertainties T0 Š 0:148GeV

Letessier and Tounsi [86] find T0 Š 0.155 GeV

See also [87] T0 Š 0:158GeV

2b. From the p? Spectrum

Large-angle elastic scattering. Orear [37] finds an
apparent temperature T = 0.158 GeV, which should
lie near to T0. Hence T0 & 0.158 GeV



170 R. Hagedorn

Folklore has it that the p? distribution in the soft region
is exp.�6p?/. The exact formula for the distribution is
[88] quite different from exp.�p?=T/, but for p? � m 

one might generously accept exp.�6p?/. Then T � T0 Š 0:167GeV

A serious attempt to fix T0 from the p? distribution is
reported in [89]. In a region where pk is very small (no
integration over pk), the authors fit the p? distribution
to a Bose–Einstein formula and obtain the surprisingly
low result T0 > T � 0:117GeV

They give reasons why they identify this with T0, although the primary momentum
is only 28.5 GeV (Brookhaven), so that T0 could still lie somewhat higher (as I
believe).

Remark The determination of T from p? suffers from a number of perturbing
effects, which have been discussed in detail in [88]: resonance .ρ; �; : : :/ decay,
leakage of ‘large p?’ down to the soft region, etc. It seems that none of these effects
influence the two-body large-angle scattering, so that the value found by Orear [37]
might be more trustworthy than the values obtained by fitting the soft p? distribution
by various formulae (partly not well justified).

2c. From Production Ratios of Heavy Antiparticles Production rates of anti-3He,
antitritium .t/, antideuteron .d/, and of many other particles have been measured
[90].11 By taking ratios we avoid (at least in part) problems coming from the pion
production rate, not well known theoretically, and from (not very) different momenta
and target materials. From the quoted paper [90], we take ratios 3He=d and t=d and
average the values [all around (0.8 to 2) 
10�4]. We find

�
3He or t

d


D .1:4˙ 0:7/ 
 10�4 : (17.54)

From SBM—taking into account the fact that, for each produced antibaryon, another
baryon must be produced along with it—one easily works out (spin, etc., factors
included)

�
3He or t

d


D V

�
3

2

�3=2 �mNT

2�

�3=2
8

3
exp.�2mN=T/ : (17.55)

The exponential is easily understood: 3He or t require production of six nucleon
masses, while d requires 4, and in the ratio, four of the six cancel out.

11I am grateful to P. Sonderegger (CERN) for making me aware of this work.
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Putting in numbers, one finds that the experimental values 17.54
are obtained with a temperature between 0.15 and 0.16 GeV
when for V we assume the usual 4�=3m3

� . Hence (at a
primary momentum of �200 GeV/c) T0 & 0:155GeV

2d. From the Phase Transition to the Quark-Gluon Phase As the existence of
the quark-gluon phase is still hypothetical, no direct measurement is available. A
theoretical estimate was proposed by Letessier and Tounsi [91]: they require that
the curves P D 0 for an SBM hadron gas and for a quark-gluon phase coincide “as
well as can be achieved”. They find T0 � 0.170 GeV

Remark 1 The collective motions expected in the expansion and decay of the
‘fireballs’ produced in relativistic heavy-ion collisions will ‘Doppler-shift’ the tem-
peratures read off from transverse momentum distributions. Too high temperatures
will result if the collective transverse motion is not corrected for. Thus in our
early work on heavy-ion collisions [92], we (erroneously?) assumed a value T0 �
0.19 GeV, which does not seem, in view of all the other estimates, to be realistic.

Remark 2 While no precise value can yet be assigned to T0, it is satisfying that so
many different methods yield values which differ typically by less than 20 %. An
average over all values listed above gives12: T0 D 0:150˙ 0:011GeV

Where Is Landau, Where Are the Californian Bootstrappers?

History as told above makes it evident that Landau’s model [93] is orthogonal
to our approach and did not influence its development. There was, however, one
moment after the formulation of SBM, namely when we tried to combine it with
collective motions to obtain momentum spectra of produced particles, when we
considered a combination of Landau’s hydrodynamical approach with SBM—only
to discard it almost immediately. Landau dealt with ‘prematter’ expanding after a
central collision, while we needed the evolution of hadron matter after collisions
averaged over impact parameter. We had to take into account various sorts of final
particles ( , K, N, hyperons, and antiparticles) obeying conservation laws (baryon
number and strangeness). We had to care for leading particles, etc. All that forced
us to pursue the semi-empirical ‘thermodynamical model’ [50] whose aim was not
theoretical understanding, but practical predictions for use in the laboratory.

Moreover there was a psychological obstacle which I never overcame: namely
the Lorentz-contracted volume from which everything was supposed to start. True,
when two nucleons hit head on, then just before the impact they are Lorentz-

12The two extreme values 0.117 and 0.184 were omitted; the error quoted is the mean standard
error arising from the listed values (without taking their individual errors into account).
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contracted (seen from the CM); then they collide, heat up, and come to rest. When
they start to expand, they are at rest and hence no longer Lorentz-contracted. On
the other hand, one can conceive that the mechanical shock has indeed compressed
them. But into what state would be another complicated hydro-thermodynamical
problem in which their viscosity, compressibility, specific heat, and what-not would
enter.13 Why should this state of compression, which constitutes the initial condition
for the following expansion, be exactly equal to the Lorentz ‘compression’ before
the shock? Since nobody among the people working on this model shared my
uneasiness, I guessed it was my fault—but it somehow prevented me from ever
becoming enthusiastic about the Landau model.

This is the place to mention another Russian physicist whose work would have
inspired us, had we been aware of it. In 1960, 5 years before SBM, Yu.B. Rumer
[94] wrote an article with the title Negative and Limiting Temperatures, in which
he states the necessary and sufficient conditions for the existence of a limiting
temperature—namely an exponential spectrum—and gives an example: an ideal gas
in an external logarithmic potential. Unfortunately, he remained essentially on the
formal side of the problem and did not connect it with particle production in strong
interactions. Otherwise, who knows?

Now for the Californian bootstrappers. Even a most modest account of what has
been done in the heroic effort of a great number of theoreticians on the program
of ‘Hadron Bootstrap’ or ‘Analytic S-Matrix’ would fill a whole book. For me
the question is: did it in any way help the conception of SBM in 1964? And the
answer is negative. To realize that, one only has to remember the above-reported
history up to 1964 and hold it against the best non-technical expositions of the basic
ideas and the general philosophy of ‘Hadron Bootstrap’, namely, the two articles
by G.F. Chew: ‘Bootstrap’: A scientific idea? [95] and Hadron bootstrap: Triumph
or frustration? [96]. After 1964, however, the influence was enormous, although
not technically. But it was of great value for all those who worked on SBM to see
their philosophical basis shared with others. Most influential, of course, was that
S. Frautschi, one of the leading Californian bootstrappers, joined our efforts, not
only lending his prestige, but indeed giving SBM a turn that upgraded it (he also
coined its name ‘statistical bootstrap’) and made it acceptable to particle physicists:
the phase-space formulation and its numerous consequences.

The Californian bootstrappers credo was the analytic S-matrix: Poincaré invari-
ant, unitary, maximally analytic (with crossing, pole-particle correspondence),
which was believed—or hoped—to be uniquely fixed by these requirements.
Another aspect was that it should generate the whole hadron spectrum, where each
hadron “plays three different roles: it may be a ‘constituent’, it may be ‘exchanged’
between constituents and thereby constitute part of the force holding the structure
together, and it may be itself the entire composite” [95].

13These are problems now occupying theoreticians working on relativistic heavy-ion collisions—
could these problems be trivial? See, however, the Post Scriptum at the end of this paper.
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I know of only two realizations of this aspect: the �–� system [97, 98] and
SBM—both remaining infinitely far behind the ambitious bootstrap program. In
spite of a large number of other achievements obtained in and around the program
(dispersion relations, Regge poles, Veneziano model, even string theories), one sees
today a strong resurrection of Lagrangian field theories, which have now taken
the lead in the race toward a ‘theory of everything’. I believe that the bootstrap
philosophy and the Lagrangian fundamentalism must complement each other. Each
one alone will never obtain complete success.

17.5 Conclusion

Had I been asked to speak only 5 min, my review might have been much better. Here
it is. On the long way to SBM, we stopped at a few milestones:

• The realization that in a single hadron–hadron collision, many secondaries can
be produced (1936).

• The discovery of limited hp?i (1956).
• The discovery that fireballs exist and that a typical collision seems to produce

just two of them (1954–1958).
• The concept of the compound nucleus and its thermal behaviour (1936–1937).
• The construction of simple statistical/thermodynamical models for particle pro-

duction in analogy to compound nuclei (1948–1950).
• The introduction of interaction into such models via phase shifts at resonance

(1937, 1956).
• The discovery that large-angle elastic cross-sections decrease exponentially with

CM energy (1963).
• The discovery that a parameter-free and numerically correct description of this

exponential decrease existed already, buried in archived Monte Carlo phase-
space results (1963).

The birth of SBM in 1964 was but the logical consequence of all this. Between 1971
and 1973 the child SBM became a promising youngster, when it was reformulated
and solved in phase space. It became adult in 1978–1980, when it acquired finite
particle volumes. Today, another 14 years later, it shows signs of age and is ready
for retirement: in not too long a time, all of its detailed results will have been derived
from QCD, maybe from ‘statistical QCD’.

So then, was that all? I believe that something remains: SBM has opened a (one-
sided but) intuitive view of strong interactions, revealing:

• their ‘thermal behaviour’ and thus their accessibility to statistical thermodynam-
ical descriptions,14

14Many-body systems can often be described statistically, with final states emerging from single
two-body collisions only in strong interactions.
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• the existence of clusters (fireballs),
• the production rates of particles and their typical multiplicity distributions,
• large-angle elastic scattering,

• the ‘universal’ soft-p? distribution (plotted against
q

p2? C m2, please!), and
• the existence of a singular temperature T0 where a phase transition takes place.

In fact, all these are nothing else than obvious (and calculable) manifestations of
one single, fundamental property of strong interactions, namely the fact that they
possess an exponential mass spectrum �.m/ / exp.m=T0/.

And most remarkably, the constant T0 is roughly equal to the lowest hadron
mass, m� . I believe the simple interpretation to be that strong interactions are as
strong as they can possibly be, before becoming too strong. Too strong, that is,
if they caused the mass spectrum to grow only a little faster than exponentially,15

say, �.m/ � exp


.m=m0/

1C˛�, ˛ > 0, the ‘entropy’ of its clusters would be
Sc � ln � � .m=m0/

1C˛. Then clusters would swallow each other up (if in reach) to
become giant superclusters—a sort of hadronic black holes—which could not live
in thermal equilibrium with each other while they remained cold inside:

Tinterior.m/ D
�

dS

dm

��1
D const: 


�m0

m

�˛ �!
m!1 0 :

Maybe, even, the combined forces of gravitation and superstrong interactions might
have stopped the expansion of the Universe at some early state. Anyway, we can
save the effort of working out all the consequences of superstrong interactions: the
state of the world seems not to favour such a hypothesis.

Don’t ask me why strong interactions are actually as strong as permissible—this
will have to be answered by some future unified theory (maybe the only possible
one?) not yet known (to me). In the meantime, I would like to know the reaction
of a physicist who, in 50 years, comes accidentally upon this review and takes the
trouble to read it. He might quote [99]

How finely we argue upon mistaken facts!
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wish to thank him for this opportunity to deliver a paper which otherwise would not have been
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infinite patience with it (and with me).

15In view of the ‘stability’ of the exponential function (Sect. 17.4), this might require a superstrong
interaction which could be much stronger than the actual one.
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Fig. 17.6 Poster of the Divonne 1994 meeting where this lecture was presented

Post Scriptum

As kindly pointed out to me by E.L. Feinberg, my uneasiness about Lorentz
contracted interaction volumes mentioned under the leading Where Is Landau and
. . . is indeed due to my fault, or rather to my ignorance about some fundamental
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ingredients of Landau’s model. The relevant points are put forward in E.L.
Feinberg’s beautiful paper Can the relativistic change in the scales of length and
time be considered the result of action of certain forces? [100]. I wish to thank him
for bringing it to my attention.
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