
Chapter 7
The Legacy of Rolf Hagedorn: Statistical
Bootstrap and Ultimate Temperature

Krzysztof Redlich and Helmut Satz

Abstract In the latter half of the last century, it became evident that there exists
an ever increasing number of different states of the so-called elementary particles.
The usual reductionist approach to this problem was to search for a simpler
infrastructure, culminating in the formulation of the quark model and quantum
chromodynamics. In a complementary, completely novel approach, Hagedorn
suggested that the mass distribution of the produced particles follows a self-similar
composition pattern, predicting an unbounded number of states of increasing mass.
He then concluded that such a growth would lead to a limiting temperature for
strongly interacting matter. We discuss the conceptual basis for this approach, its
relation to critical behavior, and its subsequent applications in different areas of
high energy physics.

A prophet is not without honour,
but in his own country.

The New Testament, Mark 6,4.

7.1 Rolf Hagedorn

The development of physics is the achievement of physicists, of humans, persisting
against often considerable odds. Even in physics, fashion rather than fact frequently
determines judgment and recognition.

When Rolf Hagedorn (Fig. 7.1) carried out his main work, now quite generally
recognized as truly pioneering, much of the theoretical community not only ignored
it, but even considered it to be nonsense. “Hagedorn ist ein Narr”, he is a fool,
was a summary of many leading German theorists of his time. When in the 1990s
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Fig. 7.1 Rolf Hagedorn (on right) in conversation with Helmut Satz (on left), 30 June 1994.
Hagedorn holds a birthday gift from Krzysztof Redlich. Image credit: CERN Image 1994-06-64-
022

the question was brought up whether he could be proposed for the Max Planck
Medal, the highest honor of the German physics community, even then, when his
achievements were already known world-wide, the answer was still “proposed,
yes. . . .”

At the time Hagedorn carried out his seminal research, much of theoretical
physics was ideologically fixed on “causality, unitarity, Poincaré invariance”: from
these three concepts, from axiomatic quantum field theory, all that is relevant to
physics must arise. Those who thought that science should progress instead by
comparison to experiment were derogated as “fitters and plotters”. Galileo was
almost forgotten. . . . Nevertheless, one of the great Austrian theorists of the time,
Walter Thirring, himself probably closer to the fundamentalists, noted: “If you want
to do something really new, you first have to have a new idea”. Hagedorn did.

He had a number of odds to overcome. He had studied physics in Göttingen under
Richard Becker, where he developed a life-long love for thermodynamics. When he
took a position at CERN, shortly after completing his doctorate, it was to perform
calculations for the planning and construction of the proton synchrotron. When that
was finished, he shifted to the study of multihadron production in proton-proton
collisions and to modeling the results of these reactions. It took a while before
various members of the community, including some of the CERN Theory Division,
were willing to accept the significance of his work. This was not made easier by
Hagedorn’s strongly focused region of interest, but eventually it became generally
recognized that here was someone who, in this perhaps similar to John Bell, was
developing truly novel ideas which at first sight seemed quite specific, but which
eventually turned out to have a lasting impact also on physics well outside its region
of origin.
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We find that Rolf Hagedorn’s work centers on two themes:

• the statistical bootstrap model, a self-similar scheme for the composition and
decay of hadrons and their resonances; for Hagedorn, these were the “fireballs”.

• the application of the resulting resonance spectrum in an ideal gas containing
all possible hadrons and hadron resonances, and to the construction of hadron
production models based on such a thermal input.

We will address these topics in the first two sections, and then turn to their roles
both in the thermodynamics of strongly interacting matter and in the description of
hadron production in elementary as well as nuclear collisions. Our aim here is to
provide a general overview of Hagedorn’s scientific achievements. Some of what
we will say transcends Hagedorn’s life. But then, to paraphrase Shakespeare, we
have come to praise Hagedorn, not to bury him; we want to show that his ideas are
still important and very much alive.

7.2 The Statistical Bootstrap

Around 1950, the physics world still seemed in order for those looking for the
ultimate constituents of matter in the universe. Dalton’s atoms had been found
to be not really atoms, indivisible; Rutherford’s model of the atom had made
them little planetary systems, with the nucleus as the sun and the electrons as
encircling planets. The nuclei in turn consisted of positively charged protons and
neutral neutrons as the essential mass carriers. With an equal number of protons
and electrons, the resulting atoms were electrically neutral, and the states obtained
by considering the different possible nucleus compositions reproduced the periodic
table of elements. So for a short time, the Greek dream of obtaining the entire
complex world by combining three simple elementary particles in different ways
seemed finally feasible: protons, neutrons and electrons were the building blocks of
our universe.

But there were those who rediscovered an old problem, first formulated by the
Roman philosopher Lucretius: if your elementary particles, in our case the protons
and neutrons, have a size and a mass, as both evidently did, it was natural to ask
what they are made of. An obvious way to find out is to hit them against each
other and look at the pieces. And it turned out that there were lots of fragments,
the more, the harder the collision. But they were not really pieces, since the debris
found after a proton-proton collision still also contained the two initial protons.
Moreover, the additional fragments, mesons and baryons, were in almost all ways
as elementary as protons and neutrons. The study of such collisions was taken up by
more and more laboratories and at ever higher collision energies. As a consequence,
the number of different “elementary” particles grew by leaps and bounds, from tens
to twenties to hundreds. The latest compilation of the Particle Data Group contains
over a thousand.



52 K. Redlich and H. Satz

Fig. 7.2 The Sierpinski triangle

Let us, however, return to the time when physics was confronted by all those
elementary particles, challenging its practitioners to find a way out. At this point, in
the mid 1960s, Rolf Hagedorn came up with a truly novel idea [1–6]. He was not so
much worried about the specific properties of the particles. He just imagined that a
heavy particle was somehow composed out of lighter ones, and these again in turn
of still lighter ones, and so on, until one reached the pion as the lightest hadron.
And by combining heavy ones, you would get still heavier ones, again: and so on.
The crucial input was that the composition law should be the same at each stage.
Today we call that self-similarity, and it had been around in various forms for many
years. A particularly elegant formulation was written a 100 years before Hagedorn
by the English mathematician Augustus de Morgan, the first president of the London
Mathematical Society:

Great fleas have little fleas upon their backs to bite’em,
and little fleas have lesser still, and so ad infinitum.

And the great fleas themselves, in turn, have greater fleas to go on,
while these again have greater still, and greater still, and so on.

Hagedorn proposed that “a fireball consists of fireballs, which in turn consist
of fireballs, and so on. . . .” The concept later reappeared in various forms in
geometry; in 1915, it led to the celebrated triangle, see Fig. 7.2 devised by the Polish
mathematician Wacław Sierpinski: “a triangle consists of triangles, which in turn
consist of triangles, and so on. . . ,” in the words of Hagedorn. Still later, shortly after
Hagedorn’s proposal, the French mathematician Benoit Mandelbroit initiated the
study of such fractal behavior as a new field of mathematics.

Hagedorn had recalled a similar problem in number theory: how many ways
are there of decomposing an integer into integers? This was something already
addressed in 1753 by Leonhard Euler, and more than a century later by the
mathematician E. Schröder in Germany. Finally G.H. Hardy and S. Ramanujan
in England provided an asymptotic solution [7]. Let us here, however, consider a
simplified, easily solvable version of the problem [8], in which we count all possible
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different ordered arrangements p.n/ of an integer n. So we have
1 D 1 p.1/ D 1 D 2n�1
2 D 2 ,1C 1 p.2/ D 2 D 2n�1
3 D 3, 2C 1, 1C 2, 1C 1C 1 p.3/ D 4 D 2n�1
4 D 4, 3 C 1, 1 C 3, 2 C 2, 2 C 1 C 1, 1 C 2 C 1, 1 C 1 C 2, 1 C 1 C 1C 1
p.4/ D 8 D 2n�1

and so on. In other words, there are

p.n/ D 2n�1 D 1

2
en ln 2 (7.1)

ways of partitioning an integer n into ordered partitions: p.n/ grows exponentially
in n. In this particular case, the solution could be found simply by induction. But
there is another way of reaching it, more in line with Hagedorn’s thinking: “large
integers consist of smaller integers, which in turn consist of still smaller integers,
and so on. . . .” This can be formulated as an equation,

�.n/ D ı.n�1/C
nX

kD2

1

kŠ

kY

iD1
�.ni/ ı.˙ini�n/: (7.2)

It is quite evident here that the form of the partition number �.n/ is determined by a
convolution of many similar partitions of smaller n. The solution of the equation is
in fact just the number of partitions of n that we had obtained above,

�.n/ D z p.n/ (7.3)

up to a normalization constant of order unity (for the present case, it turns out that
z ' 1:25). For Hagedorn, Eq. (7.2) expressed the idea that the structure of �.n/
was determined by the structure of �.n/—we now call this self-similar. He instead
thought of the legendary Baron von Münchhausen, who had extracted himself
from a swamp by pulling on his own bootstraps. So for him, Eq. (7.2) became his
bootstrap equation.

The problem Hagedorn had in mind was, of course, considerably more complex.
His heavy resonance was not simply a sum of lighter ones at rest, but it was a
system of lighter resonances in motion, with the requirement that the total energy of
this system added up to the mass of the heavy one. And similarly, the masses of the
lighter ones were the result of still lighter ones in motion. The bootstrap equation
for such a situation becomes

�.m;V0/ D ı.m�m0/C
X

N

1

NŠ

�
V0
.2�/3

�N�1Z NY

iD1
Œdmi �.mi/ d3pi� ı

4.˙ipi � p/;

(7.4)
where the first term corresponds to the case of just one lightest possible particle,
a “pion”. The factor V0, the so-called composition volume, specified the size of
the overall system, an intrinsic fireball size. Since the mass of any resonance in
the composition chain is thus determined by the sum over phase spaces containing



54 K. Redlich and H. Satz

lighter ones, whose mass is specified in the same way, Hagedorn called this form of
bootstrap “statistical”.

After a number of numerical attempts by others, W. Nahm [9] solved the
statistical bootstrap equation analytically, obtaining

�.m;V0/ D const: m�3 expfm=TH g: (7.5)

So even though the partitioning now was not just additive in masses, but included
the kinetic energy of the moving constituents, the increase was again exponential in
mass. The coefficient of the increase, TH

�1, is determined by the equation

V0TH
3

2�2
.m0=TH /

2K2.m0=TH / D 2 ln 2 � 1; (7.6)

in terms of two parameters V0 and m0. Hagedorn assumed that the composition
volume V0, specifying the intrinsic range of strong interactions, was determined
by the inverse pion mass as scale, V0 ' .4�=3/m�3

� . This leads to a scale factor
TH ' 150MeV. It should be emphasized, however, that this is just one possible
way to proceed. In the limit m0 ! 0, Eq. (7.6) gives

TH D Œ�2.2 ln 2 � 1/�1=3 V�1=3
0 ' 1=rh; (7.7)

where V0 D .4�=3/r3h and rh denotes the range of strong interactions. With rh '
1 fm, we thus have TH ' 200 MeV. From this it is evident that the exponential
increase persists also in the chiral limit m� ! 0 and is in fact only weakly dependent
on m0, provided the strong interaction scale V0 is kept fixed.

The weights �.m/ determine the composition as well as the decay of
“resonances”, of fireballs. The basis of the entire formalism, the self-similarity
postulate—here in the form of the statistical bootstrap condition—results in an
unending sequence of ever-heavier fireballs and in an exponentially growing number
of different states of a given mass m.

Before we turn to the implications of such a pattern in thermodynamics, we note
that not long after Hagedorn’s seminal paper, it was found that a rather different
approach, the dual resonance model [10–12], see Chap. 8, led to very much the
same exponential increase in the number of states. In this model, any scattering
amplitude, from an initial two to a final hadrons, was assumed to be determined by
the resonance poles in the different kinematic channels. This resulted structurally
again in a partition problem of the same type, and again the solution was that the
number of possible resonance states of mass m must grow exponentially in m, with
an inverse scale factor of the same size as obtained above, some 200 MeV. Needless
to say, this unexpected support from the forefront of theoretical hadron dynamics
considerably enhanced the interest in Hagedorn’s work.
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7.3 The Limiting Temperature of Hadronic Matter

Consider a relativistic ideal gas of identical neutral scalar particles of mass m0

contained in a box of volume V , assuming Boltzmann statistics. The grand canonical
partition function of this system is given by

Z .T;V/ D
X

N

1

NŠ

�
V

.2�/3

Z
d3p expf�

q
p2 C m2

0 =Tg
�N

; (7.8)

leading to

lnZ .T;V/ D VTm2
0

2�2
K2.m0=T/: (7.9)

For temperatures T � m0, the energy, and the particle density of the system become,
respectively

".T/ D � 1
V

@ ln Z .T;V/

@ .1=T/
' 3

�2
T4; n.T/ D @ ln Z .T;V/

@V
' 1

�2
T3;

(7.10)

and so the average energy per particle is given by

E

N
' 3 T: (7.11)

The important feature to learn from these relations is that, in the case of an ideal gas
of one species of elementary particles, an increase of the energy of the system has
three consequences. It leads to:

• a higher temperature,
• more constituents, and
• more energetic constituents.

If we now consider an interacting gas of such basic hadrons and postulate that the
essential form of the interaction is resonance formation, then we can approximate
the interacting medium as a non-interacting gas of all possible resonance species
[13, 14]. The partition function of this resonance gas is

lnZ .T;V/ D
X

i

VTm2
i

2�2
�.mi/ K2.mi=T/ (7.12)

where the sum begins with the stable ground state m0 and then includes the possible
resonances mi; i D 1; 2; : : : with weights �.mi/ relative to m0. Clearly the crucial
question here is how to specify �.mi/, that is how many states there are of mass
mi. It is only at this point that hadron dynamics enters, and it is here that Hagedorn
introduced the result obtained in his statistical bootstrap model.
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As we had seen above in Eq. (7.5), the density of states then increases expo-
nentially in m, with a coefficient TH

�1 determined by Eq. (7.6) in terms of two
parameters V0 and m0. If we replace the sum in the resonance gas partition function
Eq. (7.12) by an integral and insert the exponentially growing mass spectrum
Eqs. (7.5) and (7.12) becomes

lnZ .T;V/ ' VT

2�2

Z
dm m2�.mi/ K2.mi=T/ � V

�
T

2�

�3=2Z dm

m3=2
e�

h
m
T � m

TH

i

:

(7.13)

Evidently, the result is divergent for all T > TH : in other words, TH is the highest
possible temperature of hadronic matter. Moreover, if we compare such a system
with the ideal gas of only basic particles (a “pion” gas), we find:

pion gas resonance gas

n� � "3=4 nres � "
!� � "1=4 !res � const:

Here n denotes the average number density of constituents, ! the average energy of
a constituent. In contrast to the pion gas, an increase of energy now leads to

• a fixed temperature limit, T ! TH ,
• the momenta of the constituents do not continue to increase, and
• more and more species of ever heavier particles appear.

We thus obtain a new, non-kinetic way to use energy, increasing the number of
species and their masses, not the momentum per particle. Temperature is a measure
of the momentum of the constituents, and if that cannot continue to increase, there
is a highest possible, a “limiting” temperature for hadronic systems.

Hagedorn originally interpreted TH as the ultimate temperature of strongly
interacting matter. It is clear today that TH signals the transition from hadronic
matter to a quark-gluon plasma. Hadron physics alone can only specify its inherent
limit; to go beyond this limit, we need more information: we need QCD.

As seen in Eq. (7.5), the solution of the statistical bootstrap equation has the
general form

�.m;V0/ � m�a exp.m=TH /; (7.14)

with some constant a; the exact solution of Eq. (7.4) by Nahm gave a D 3. It
is possible, however, to consider variations of the bootstrap model which lead to
different a, but always retain the exponential increase in m. While the exponential
form makes TH the upper limit of permissible temperatures, the power law
coefficient a determines the behavior of the system at T D TH . For a D 3, the
partition function Eq. (7.13) itself exists at that point, while the energy density as
first derivative in temperature diverges there. This is what made Hagedorn conclude
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that TH is indeed the highest possible temperature of matter: it would require an
infinite energy to reach it.

Only a few years later it was, however, pointed out by N. Cabibbo and G. Parisi
[15] that larger a shifted the divergence at T D TH to ever higher derivatives. In
particular, for 4 > a > 3, the energy density would remain finite at that point,
shifting the divergence to the specific heat as next higher derivative. Such critical
behavior was in fact quite conventional in thermodynamics: it signaled a phase
transition leading to the onset of a new state of matter. By that time, the quark model
and quantum chromodynamics as fundamental theory of strong interactions had
appeared and suggested the existence of a quark-gluon plasma as the relevant state
of matter at extreme temperature or density. It was therefore natural to interpret the
Hagedorn temperature TH as the critical transition temperature from hadronic matter
to such a plasma. This interpretation is moreover corroborated by a calculation of
the critical exponents [16] governing the singular behavior of the resonance gas
thermodynamics based on a spectrum of the form Eq. (7.14).

It should be noted, however, that in some sense TH did remain the highest
possible temperature of matter as we know it. Our matter exists in the physical
vacuum and is constructed out of fundamental building blocks which in turn have
an independent existence in this vacuum. Our matter ultimately consists of and can
be broken up into nucleons; we can isolate and study a single nucleon. The quark-
gluon plasma, on the other hand, has its own ground state, distinct from the physical
vacuum, and its constituents can exist only in a dense medium of other quarks—we
can never isolate and study a single quark.

That does not mean, however, that quarks are eternally confined to a given part
of space. Let us start with atomic matter and compress that to form nuclear matter,
as it exists in heavy nuclei. At this stage, we have nucleons existing in the physical
vacuum. Each nucleon consists of three quarks, and they are confined to remain
close to each other; there is no way to break up a given nucleon into its quark
constituents. But if we continue to compress, then eventually the nucleons will
penetrate each other, until we reach a dense medium of quarks. Now each quark
finds in its immediate neighborhood many other quarks besides those which were
with it in the nucleon stage. It is therefore no longer possible to partition quarks
into nucleons; the medium consists of unbound quarks, whose interaction becomes
ever weaker with increasing density, approaching the limit of asymptotic freedom
predicted by QCD. Any quark can now move freely throughout the medium: we
have quark liberation through swarm formation. Wherever a quark goes, there
are many other quarks nearby. The transition from atomic to quark matter is
schematically illustrated in Fig. 7.3.

We have here considered quark matter formation through the compression of cold
nuclear matter. A similar effect is obtained if we heat a meson gas; with increasing
temperature, collisions and pair production lead to an ever denser medium of
mesons. And according to Hagedorn, also of ever heavier mesons of an increasing
degeneracy. For Hagedorn, the fireballs were point like, so that the overlap we had
just noted simply does not occur. In the real world, however, they do have hadronic
size, so that they will in fact interpenetrate and overlap before the divergence of
the Hagedorn resonance gas occurs [17]. Hence now again there will be a transition
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(a) (b) (c)

Fig. 7.3 Schematic view of matter for increasing density, from atomic (a) to nuclear (b) and then
to quark matter (c)

from resonance gas to a quark-gluon plasma, now formed by the liberation of the
quarks and gluons making up the resonances.

At this point, it seems worthwhile to note an even earlier approach leading to
a limiting temperature for hadronic matter. More than a decade before Hagedorn,
I.Ya. Pomeranchuk [18] pointed out that a crucial feature of hadrons is their size,
and hence the density of any hadronic medium is limited by volume restriction: each
hadron must have its own volume to exist, and once the density reaches the dense
packing limit, it’s the end for hadronic matter. This simply led to a temperature
limit, and for an ideal gas of pions of 1 fm radius, the resulting temperature was
again around 200 MeV. Nevertheless, these early results remained largely unnoticed
until the work of Hagedorn.

Such geometric considerations do, however, lead even further. If hadrons are
allowed to interpenetrate, to overlap, then percolation theory predicts two different
states of matter [19, 20]: hadronic matter, consisting of isolated hadrons or finite
hadronic clusters, and a medium formed as an infinite sized cluster of overlapping
hadrons. The transition from one to the other now becomes a genuine critical
phenomenon, occurring at a critical value of the hadron density.

We thus conclude that the pioneering work of Rolf Hagedorn opened up the field
of critical behavior in strong interaction physics, a field in which still today much is
determined by his ideas. On a more theoretical level, the continuation of such studies
was provided by finite temperature lattice QCD, and on the more experimental side,
by resonance gas analysis of the hadron abundances in high energy collisions. In
both cases, it was found that the observed behavior was essentially that predicted by
Hagedorn’s ideas.

7.4 Resonance Gas and QCD Thermodynamics

With the formulation of Quantum Chromodynamics (QCD) as a theoretical frame-
work for the strong interaction force among elementary particles it became clear
that the appearance of the ultimate Hagedorn’s temperature TH , signals indeed
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the transition from the hadronic phase to a new phase of strongly interacting
matter, the quark-gluon plasma (QGP) [21] (and reference therein). As QCD is
an asymptotically free theory, the interaction between quarks and gluons vanishes
logarithmically with increasing temperature, thus at very high temperatures the QGP
effectively behaves like an ideal gas of quarks and gluons.

Today we have detailed information, obtained from numerical calculations in the
framework of finite temperature lattice Quantum Chromodynamics [22, 23], about
the thermodynamics of hot and dense matter. We know the transition temperature to
the QGP and the temperature dependence of basic bulk thermodynamic observables
such as the energy density and the pressure [24, 25]. We also begin to have results
on fluctuations and correlations of conserved charges [26–28].

The recent increase in numerical accuracy of lattice QCD calculations and their
extrapolation to the continuum limit, makes it possible to confront the fundamental
results of QCD with Hagedorn’s concepts [2, 6], which provide a theoretical
scenario for the thermodynamics of strongly interacting hadronic matter [28–30].

In particular, the equation of state calculated on the lattice at vanishing and finite
chemical potential, and restricted to the confined hadronic phase, can be directly
compared to that obtained from the partition function Eq. (7.13) of the hadron
resonance gas, using the form Eq. (7.14) introduced by Hagedorn for a continuum
mass spectrum. Alternatively, as a first approximation, one can also consider a
discrete mass spectrum which accounts for all experimentally known hadrons and
resonances. In this case the continuum partition function of the Hagedorn model is
expressed by Eq. (7.12) with �.mi/ replaced by the spin degeneracy factor of the ith

hadron, with the summation taken over all known resonance species listed by the
Particle Data Group [31].

With the above assumption on the dynamics and the mass spectrum, the
resonance gas partition function introduced by Hagedorn [2, 6], can be calculated
exactly and expressed as a sum of one-particle partition functions Z1i of all hadrons
and resonances,

ln Z.T;V/ D
X

i

Z1i .T;V/: (7.15)

For particles of mass mi and spin degeneracy factor gi, the one-particle partition
function Z1i , in the Boltzmann approximation, reads

Z1i .T;V/ D gi
VTm2

i

2�2
K2.mi=T/: (7.16)

Due to the factorization of the partition function in Eq. (7.15), the energy density
and the pressure of the Hagedorn resonance gas with a discrete mass spectrum, can
also be expressed as a sum over single particle contributions

" D
X

i

"1i ; P D
X

i

P1i ; (7.17)
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Fig. 7.4 The normalized
pressure P.T/, the energy
density ".T/ and the entropy
density s.T/ obtained in
lattice QCD calculations as a
function of temperature. The
dark lines show predictions of
the Hagedorn resonance gas
for a discrete mass spectrum,
Eqs. (7.17)–(7.20). The lattice
results are from [25]

with

"1i
T4
D gi

2�2

�mi

T

�3 �3 K2.ˇmi/

ˇm
C K1.ˇmi/

�
(7.18)

P1i
T4
D gi

2�2

�mi

T

�3
K2.ˇmi/; (7.19)

where ˇ D 1=T and K1 and K2 are modified Bessel functions. At vanishing chemical
potentials and at finite temperature, the energy density ", the entropy density s and
the pressure P, are connected through the thermodynamic relation,

" D �PC sT: (7.20)

Summing up in Eq. (7.17), the contributions from experimentally known hadronic
states; constitute the resonance gas [2, 6] (for a review, see e.g. [32]) for the thermo-
dynamics of the hadronic phase of QCD. Taking e.g. contribution of all mesonic and
baryonic resonances with masses up to 1.8 GeV and 2.0 GeV, respectively, amounts
to 1,026 resonances.

The crucial question thus is, if the equation of state of hadronic matter introduced
by Hagedorn can describe the corresponding results obtained from QCD within
lattice approach.

In Fig. 7.4 we show the temperature dependence of the energy density, pressure
and the entropy density obtained recently in lattice QCD studies with physical
masses of up, down and strange quarks [25]. The bands in lattice QCD results
indicate error bars due to extrapolation to the continuum limit. The vertical band
marks the temperature, Tc D .154˙9/MeV, which within an error, is the crossover
temperature from a hadronic phase to a quark-gluon plasma [33]. These QCD results
are compared in Fig. 7.4 to the Hagedorn resonance gas model formulated for a
discrete mass spectrum in Eqs. (7.17) and (7.20).
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There is a clear coincidence of the Hagedorn resonance model results and the
lattice data on the equation of states. All bulk thermodynamical observables are very
strongly changing with temperature when approaching the deconfinement transition.
This behavior is well understood in the Hagedorn model as being due to the con-
tribution of resonances. Although Hagedorn’s model formulated for a discrete mass
spectrum does not exhibit a critical behavior, it nevertheless reproduces remarkably
well the lattice results in the hadronic phase. This agreement has now been extended
to an analysis of fluctuations and correlations of conserved charges as well.

In summary of this section we note that a remarkably good description of lattice
QCD results on the equation of states by the Hagedorn thermal model justifies, that
resonances are indeed the essential degrees of freedom near deconfinement. Thus,
on the thermodynamical level, modeling hadronic interactions by formation and
excitation of resonances, as introduced by Hagedorn, is an excellent approximation
of strong interactions.

7.5 Resonance Gas and Heavy Ion Collisions

Long before lattice QCD could provide a direct evidence that strong interaction
thermodynamics can be quantified by the resonance gas partition function, Hage-
dorn’s concept was verified phenomenologically by considering particle production
in elementary and heavy ion collisions [34–37] (for a review, see e.g. [32]). In
a strongly interacting medium, one includes the conservation of electric charge,
baryon number and strangeness. In this case, the partition function of Hagedorn’s
thermal model depends not only on temperature but also on chemical potential �,
which guarantees, that charges are conserved on an average. For a non vanishing �,
the partition function Eq. (7.15) is replaced by

ln Z.T;V;�/ D
X

i

Z1i .T;V;�/; (7.21)

with � D .�B; �S; �Q/, where �i are the chemical potentials related to the baryon
number, strangeness and electric charge conservation, respectively.

For particle i carrying strangeness Si, the baryon number Bi, the electric charge
Qi and the spin–isospin degeneracy factor gi, the one particle partition function,
reads

Z1i .T;V;�/ D
VgiTm2

i

2�2
K2.mi=T/ exp

�
Bi�B C Si�S C Qi�Q

T

�
: (7.22)

For � D 0 one recovers the result from Eq. (7.16).
The calculation of a density ni of particle i from the partition function Eq. (7.21)

is rather straightforward [46]. It amounts to the replacement Z1i ! �iZ1i in Eq. (7.21)
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Fig. 7.5 The ratio of the total
density of positively charged
pions, nR

�C from Eq. (7.24),
and the density of thermal
pions, nth

�C from Eq. (7.23).
The calculations are done in
the Hagedorn resonance gas
model for �B D250 MeV and
�B D550 MeV at different
temperatures

and taking a derivative with respect to the particle fugacity �i, as

ni D hNiith
V
D @ ln Z

@�i

ˇ̌
ˇ̌
�iD1

; (7.23)

consequently, ni D Z1i =V with Z1i as in Eq. (7.22).
The Hagedorn model, formulated in Eq. (7.21), describes bulk thermodynamic

properties and particle composition of a thermal fireball at finite temperature and
at non vanishing charge densities. If such a fireball is created in high energy heavy
ion collisions, then yields of different hadron species are fully quantified by thermal
parameters. However, following Hagedorn’s idea, the contribution of resonances
decaying into lighter particles, must be included [2, 6].

In Hagedorn’s thermal model, the average number hNii of particles i in volume
V and at temperature T that carries strangeness Si, the baryon number Bi, and the
electric charge Qi, is obtained from Eq. (7.21), see [2, 6]

hNii.T;�/ D hNiith.T;�/C
X

j
�j!ihNjith;R.T;�/: (7.24)

The first term in Eq. (7.24) describes the thermal average number of particles of
species i from Eq. (7.23) and the second term describes overall contribution from
resonances. This term is taken as a sum of all resonances that decay into particle i.
The �j!i is the corresponding decay branching ratio of j! i. The multiplicities of
resonances hNjith;R in Eq. (7.24), are obtained from Eq. (7.23).

The importance of resonance contributions to the total particle yield in Eq. (7.24)
is illustrated in Fig. 7.5 for charge pions. In Fig. 7.5 we show the ratio of the total
number of charge pions from Eq. (7.24) and the number of prompt pions from
Eq. (7.23). The ratio is strongly increasing with temperature and chemical potential.
This is due to an increasing contribution of mesonic and baryonic resonances. From
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Eq. (7.5) it is clear, that at high temperature and/or density, the overall multiplicity
of pions is mostly due to resonance decays.

The particle yields in Hagedorn’s model Eq. (7.24) depend, in general, on five
parameters. However, in high energy heavy ion collisions, only three parameters are
independent. In the initial state the isospin asymmetry, fixes the charge chemical
potential and the strangeness neutrality condition eliminates the strange chemical
potential. Thus, on the level of particle multiplicity, we are left with temperature T
and the baryon chemical potential �B as independent parameters, as well as, with
fireball volume as an overall normalization factor.

Hagedorn’s thermal model introduced in Eq. (7.24) was successfully applied to
describe particle yields measured in heavy ion collisions. The model was compared
with available experimental data obtained in a broad energy range from AGS up to
LHC. Hadron multiplicities ranging from pions to omega baryons and their ratios,
as well as composite objects like e.g. deuteron or alpha particles, were used to
verify if there was a set of thermal parameters .T; �B/ and V , which simultaneously
reproduces all measured yields.

The systematic studies of particle production extended over more than two
decades, using experimental results at different beam energies, have revealed a clear
justification, that in central heavy ion collisions particle yields are indeed consistent
with the expectation of the Hagedorn thermal model. There is also a clear pattern
of the energy,

p
s-dependence of thermal parameters. The temperature is increasing

with
p

s, and at the SPS energy essentially saturates at the value, which corresponds
to the transition temperature from a hadronic phase to a QGP, as obtained in LQCD.
The chemical potential, on the other hand, is gradually decreasing with

p
s and

almost vanishes at the LHC.
In Fig. 7.6 we show, as an illustration, a comparison of Hagedorn’s thermal

model and recent data on selected particle yields, obtained by ALICE collaboration
in central Pb–Pb collisions at midrapidity at the LHC energy [38]. At such high
collision energy, particle yields from Eq. (7.24) are quantified entirely by the

Fig. 7.6 Yields of several
different particle species per
unit rapidity normalized to
spin degeneracy factor as a
function of their mass. Data
are from ALICE
collaboration taken at the
LHC in central Pb–Pb
collisions. The line is the
Hagedorn thermal model
result, Eq. (7.25), see [38]

< N > / (2J +1)
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temperature and the fireball volume.1 Thus, there is transparent prediction of
Hagedorn’s model Eq. (7.24), that yields of heavier particles hNii with no resonance
decay contributions, normalized to their spin degeneracy factor gi D .2J C 1/,
should be quantified by

hNii
2J C 1 ' VT3

� mi

2�T

�3=2
exp.�mi=T/; (7.25)

where we have used Eq. (7.23) and the asymptotic expansion of the Bessel function,
K2.x/ � x�1=2 exp.�x/, valid for large x.

In Fig. 7.6 we show the yields of particles with no resonance contribution, like
	, ˝ , the deuteron ‘d’, 3He and the hypertriton 3


He, normalized to their spin
degeneracy factor, as a function of particle mass. Also shown in this figure is the
prediction from Eq. (7.25) at T ' 156 and for volume V ' 5;000 fm3 [38]. There is
a clear coincidence of data taken in Pb–Pb collisions at the LHC and predictions of
the Hagedorn model Eq. (7.25). Particles with no resonance contribution measured
by ALICE collaboration follow the Hagedorn’s expectations that they are produced
from a thermal fireball at common temperature. A similar agreement of Hagedorn’s
thermal concept and experimental data taken in central heavy ion collisions has been
found for different yields of measured particles and collision energies from AGS,
SPS, RHIC and LHC (for a review, see e.g. [32]).

7.6 Particle Yields and Canonical Charge Conservation

The Hagedorn thermodynamical model for particle production, was originally
applied to quantify and understand particle yields and spectra measured in elemen-
tary collisions—there were no data available from heavy ion collisions.

Initial work on particle production by Hagedorn began in 1957 in collaboration
with F. Cerulus when they applied the Fermi phase space model, see Sect. 25.2.
In this microcanonical approach, conservation laws of baryon number or electric
charge were implemented exactly. Almost 15 years later the production of complex
light antinuclei, such as anti-He3, preoccupied Hagedorn [2, 6]. He realized and
discussed clearly the need to find a path to enforce exact conservation of baryon
number to describe the anti-He3 production correctly within the canonical statistical
formulation.

Indeed, applying in pp reactions the thermal model without concern for conser-
vation of baryon number overestimates the production of anti-He3 in proton-proton
collisions by seven orders of magnitude [2, 4, 6]. The reason was that when the
number of particles in the interaction volume is small, one has to take into account
the fact that the production of anti-He3 must be accompanied by the production

1The chemical potential � in Eq. (7.24) vanishes, since at the LHC and at midrapidity particles and
their antiparticles are produced symmetrically.
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of another three nucleons with energy EN , in order to exactly conserve the baryon
number. Thus, in case the production of anti-He3 is not originating from reservoir
of many antiquarks or antinucleons already present in a large volume, but is
rather originating from some small volume Vpp that is present in pp collisions, the
abundance of anti-He3 will not be proportional to the single standard Boltzmann
factor, as in Eq. (7.25)

n
He

3 � exp
�
�m

He
3=T

�
; (7.26)

but is accompanied by additional Boltzmann factors that characterize the production
of the associated nucleons, needed in order to conserve baryon number [2, 6]

n
He

3 � exp
�
�m

He
3=T

� �
Vpp

Z
d3p

.2�/3
exp

�
�EN

T

��3
: (7.27)

This suppresses the rate and introduces a strong power-law dependence on volume
Vpp for the anti-He3 yield.

The problem of exact conservation of discrete quantum numbers in a thermal
model formulated in early 1970s by Hagedorn in the context of baryon number
conservation remained unsolved for a decade. When the heavy ion QGP research
program was approaching and strangeness emerged as a potential QGP signature,
Hagedorn pointed out the need to consider exact conservation of strangeness
(Rafelski, private communication). This is the reason that the old problem of
baryon number conservation was solved in the new context of strangeness con-
servation [39–41], see also Sect. 27.6. A more general solution, applicable to all
discrete conserved charges, abelian and non-abelian, was also introduced in [42]
and expanded in [43–48]. Recently, it has become clear that a similar treatment
should be followed not only for strangeness but also for charm abundance study in
high energy eCe� collisions [49, 50].

To summarize this section, we note that the usual form of the statistical model,
based on a grand canonical formulation of the conservation laws, cannot be used
when either the temperature or the volume or both are small. As a rough estimate,
one needs VT3 > 1 for a grand canonical description to hold [39, 46]. In the
opposite limit, a path was found within the canonical ensemble to enforce charge
conservations exactly.

The canonical approach has been shown to provide a consistent description of
particle production in high energy hadron-hadron, eCe� and peripheral heavy ion
collisions [32, 45, 49, 50]. As noted in the context of developing strangeness as
signature of QGP, see Sect. 27.6, such a model also provides, within the realm of
assumed strangeness chemical equilibrium, a description of an observed increase of
single- and multi-strange particle yields from pp, pA to AA collisions and its energy
dependence [40].
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7.7 Concluding Remarks

Rolf Hagedorn’s work, introducing concepts from statistical mechanics and from
the mathematics of self-similarity into the analysis of high energy multiparticle
production, started a new field of research, alive and active still today. On the theory
side, the limiting temperature of hadronic matter and the behavior of the Hagedorn
resonance gas approaching that limit were subsequently verified by first principle
calculations in finite temperature QCD. On the experimental side, particle yields
as well as, more recently, fluctuations of conserved quantities, were also found to
follow the pattern predicted by the Hagedorn resonance gas. Rarely has an idea in
physics risen from such humble and little appreciated beginnings to such a striking
vindication. So perhaps it is appropriate to close with a poetic summary one of us
(HS) formulated some 20 years ago for a Hagedorn-Fest, with a slight update.

HOT HADRONIC MATTER
(A Poetic Summary)

In days of old
a tale was told

of hadrons ever fatter.
Behold, my friends, said Hagedorn,

the ultimate of matter.

Then Muster Mark
called in the quarks,

to hadrons they were mated.
Of colors three, and never free,

all to confinement fated.

But in dense matter,
their bonds can shatter

and they freely move around.
Above TH, their colors shine

as the QGP is found.

Said Hagedorn,
when quarks were born

they had different advances.
Today they form, as we can see,

a gas of all their chances.
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