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      Development of a New In Vivo Optical Probe 
for Biological Diagnosis and Therapy                     

       Michitaka     Ozaki      ,     Takeaki     Ozawa    , and     Yuma     Yamada   

    Abstract     Real-time imaging of the specifi c markers of lesions in the living body 
will provide valuable information in various physiopathological situations. 
Clinically, real-time imaging will defi nitely aid accurate diagnosis and rational 
 therapy, especially in the surgical fi eld. 

 In this chapter, we describe some unique optical probes for “biological imaging” 
and our recent challenge in undertaking development of a new type of in vivo probe. 
The reduction-oxidation-sensitive green fl uorescent protein (roGFP) and biolumi-
nescent luciferase probe for caspase-3 activity have been useful for understanding 
of the dynamic changes of liver redox states and apoptotic cell death. To overcome 
the diffi culty of imaging in deeper lesions by optical probes, we newly developed a 
far-red bioluminescent probe. Lastly, we have undertaken the challenge to develop 
an innovative optical probe that switches “on” only when the probe recognizes a 
target molecule to reduce non-specifi c signals in vivo. The project of developing 
this unique probe is still underway. 

 Regarding a carrying system of the probe into cells in vivo, we have developed a 
liposome with cell-penetrating octa-arginine peptides (R8) and a pH-sensitive fuso-
genic peptide (GALA), which delivers the functional proteins into cells effi ciently 
and rapidly in vivo. 

 We believe that these optical probes will provide a new avenue toward new 
 diagnosis and therapy to come in the future.  
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  Abbreviations 

   Ad pcFluc     Adenovirus vector encoding  pcFluc-DEVD    
  Dlk1    Human Delta-like protein   
  AP-1    Activator protein 1   
  ATP    Adenosine triphosphate   
  BG    Benzylguanine   
  BRET    Bioluminescence resonance energy transfer   
  CLuc    Cypridina luciferase   
  DEVD    Asp-Glu-Val-Asp (a substrate sequence of caspase-3)   
  FBP    Far-red bioluminescent protein   
  FLuc    Firefl y luciferase   
  FlucC-SNAP    C-terminal fragment of luciferase conjugated with SNAP   
  FlucN-SNAP    N-terminal fragment of luciferase conjugated with SNAP   
  H/R    Hypoxia and reoxygenation   
  I/R    Ischemia and reperfusion   
  MAPK    Mitogen-activated Protein Kinase   
  MEND    Multi-functional envelope-type nano device   
  NF-kB    Nuclear factor-kappa B   
  OS    Oxidative stress   
  pc Fluc-DEVD     Cyclic luciferase refl ecting caspase-3 activity   
  PET    Positron emission tomography   
  roGFP    Reduction-oxidation sensitive green fl uorescent protein   
  ROS    Reactive oxygen species   
  R8    Octa-arginine peptide   
  SNAP    A 182 residues polypeptide that can be fused to any protein of 

interest   

          Introduction 

 Real-time monitoring of molecular markers of lesions in the living body will  provide 
valuable information on various physiopathological phenomena. This will aid 
understanding of lesions qualitatively as well as quantitatively. Clinically, this will 
lead to more accurate diagnosis and rational therapy. Especially in the surgical fi eld, 
this kind of technology will enable us to “see” the biological characteristics (and 
potential pathological/progressive behavior) of the lesions during operation as well 
as its location, size, and expansion, which will defi nitely help the surgeon select the 
best surgical procedure for the patient. 

 The conventional imaging technologies commonly used in clinical practice 
include CT, PET-CT, and MRI. These technologies provide useful and geographical 
information about the location, size, shape, and expansion (including distant metas-
tasis), and aid accurate clinical diagnosis and pre-operative staging. However, they 
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do not show the biological characteristics of the lesion, nor its exact location during 
the operation. In addition, they require a lot of space and much expense for 
installation. 

 On the other hand, optical imaging by fl uorescence or bioluminescence will pro-
vide biological information with sophisticated probes at low cost and in a small 
space. Disadvantages of optical imaging are that it requires a customized probe 
(fl uorescence or bioluminescence) and has diffi culty in imaging deeper lesions. In 
addition, signals from optical probes are relative, not absolute (Table  1 ).

       An Optical Probe for In Vivo Imaging of Caspase-3 Activity 

 Many optical probes have been developed to visualize protease activities for 
 biological in vivo imaging [ 1 – 7 ]. They have been used to analyze the dynamic 
changes in the cell and organ stresses and injuries, including hypoxia and reoxygen-
ation (H/R) and ischemia and reperfusion (I/R) of cells and organs, respectively. 
I/R- induced injury is an important concern in various clinical situations, including 
surgical resection of organs, transplantation of organs and cells, and myocardial/
cerebral/intestinal infarction. In these clinical situations, prolonged ischemia 
 followed by reperfusion results in extended organ injury caused by apoptosis, 
necrosis, and organ failure [ 8 ]. Although the mechanisms of I/R-induced injury are 
complex, post-ischemic apoptotic and/or necrotic injury play a pivotal role in sub-
sequent organ failure [ 9 ,  10 ]. Therefore, noninvasive monitoring of cell and organ 
injury (e.g., caspase activity) in vivo is defi nitely benefi cial and is able to provide 
important clues for treatment. 

 We previously developed a novel probe of cyclic luciferase refl ecting caspase-3 
activity (pc Fluc-DEVD ) [ 2 ]. Two fragments of DnaE inteins are fused with neigh-
boring N-terminal and C-terminal ends of fi refl y luciferase, which are connected 

   Table 1    Comparison between conventional imaging technology and optical imaging   

 Type of imaging  Advantages  Disadvantages 

  Conventional 
imaging 
technology  (CT/
PET-CT/MRI) 

 (1) Can image exact size of lesions 
macroscopically 

 (1) Does not provide information 
on biological features of lesions 

 (2) Can image whole body  (2) Does not show exact locations 
during operation 

 (3) Enables preoperative diagnosis 
and clinical staging 

 (3) High cost and space 
occupying 

  Optical imaging  
(fl uorescence/
bioluminescence) 

 (1) Can image molecules/cells of 
interest; enables biological imaging 
of lesions 

 (1) Not good at examining deep 
lesions 

 (2) Low cost and space saving; 
enables intra- operative real-time 
imaging 

 (2) Needs fl uorescent/
bioluminescent reagents for 
imaging 
 (3) Relative estimation 

An In Vivo Optical Probe For Biological Imaging



268

with DEVD (Asp–Glu–Val–Asp [a substrate sequence of caspase-3]). After transla-
tion into a single polypeptide, the N-terminal and C-terminal ends of the luciferase 
are ligated by protein splicing, producing a closed circular polypeptide chain. The 
cyclic luciferase structure is distorted and therefore almost loses its bioluminescent 
activity. When caspase-3 is activated in cells, the DEVD chain is cleaved, which 
restores fi refl y luciferase (Fluc) luminescent activity by returning to the original 
structure (Fig.  1 ) [ 11 ].

   This cyclic luciferase was fi rst applied for quantitative measurement of caspase-3 
activity in living cells. HeLa cells transfected with this probe were stimulated with 
staurosporine, an inducer of apoptosis. This bioluminescent probe based on cyclic 
luciferase allowed precise and quantitative measurements of caspase-3 activity in 
living cells. Moreover, the response of this cyclic luciferase to caspase-3 activation 
was rapid and paralleled biochemically assessed apoptosis. 

 This imaging technology by cyclic luciferase could be applied for in vivo real- 
time imaging of caspase-3 activity in living mice. We successfully imaged the cas-
pase- 3 activity in post-ischemic liver using our caspase-3 probe (Fig.  2 ). By 
transfecting the adenovirus vector encoding  pcFluc-DEVD  (Ad pcFluc ), we investi-
gated whether or not this probe could monitor caspase-3 dependent apoptosis in the 
mouse liver during I/R (Fig.  2 ) [ 11 ]. We confi rmed the effi cacy of the probe in 
detecting apoptotic liver injury in a mouse model, which showed the potency for 
future clinical application.

Luciferase
(circular, closed)

4

544

Caspase
cleavage site

(DEVD)

Luciferase inactive Luciferase active

Luciferase
(open)

bioluminescent probe for Caspase-3 activity
-distorted circular luciferase senses caspase-3 activity -

  Fig. 1    Bioluminescent probe for caspase-3 activity. The principle for monitoring activity of cas-
pase- 3 is based on cyclic fi refl y luciferase (Modifi ed from Ozaki et al. [ 11 ], with permission)       
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       An Optical Probe for In Vivo Imaging of the Hepatic 
Redox State  

 Reactive oxygen species (ROS) generated during I/R of organs certainly play a 
pivotal role in I/R-induced organ injury and failure [ 12 ]. Hepatic I/R results in mas-
sive cell death (a) through apoptosis and necrosis mediated by excessive generation 
of ROS in hepatocytes early after I/R [ 13 ]; and (b) through necrosis caused by neu-
trophilic infi ltration in the later phase [ 14 ]. According to the numerous studies on 
liver I/R in mice, organ injury in the early post-I/R period is defi nitely mediated by 
generation of ROS in hepatocytes [ 15 ,  16 ]. Excessive ROS directly exert deleterious 
effects on cells and tissues through lipid peroxidation, protein degradation, and 
DNA damage. In addition, redox-sensitive molecules, such as nuclear factor- kappa 
B (NF-κB), activator protein 1 (AP-1), and some mitogen-activated protein kinases 
(MAPKs), are potentially activated under these oxidative conditions and play 
 pivotal roles in I/R-induced injury [ 17 ]. Therefore, monitoring cellular redox states 
by visualizing cellular ROS in post-I/R tissue has been one of the possible strategies 
for forecasting I/R-induced injury and failure [ 18 ]. These considerations suggest 
that the post-I/R redox state may be a good prognostic indicator of liver injury and 
function after liver surgery and transplantation, implying that in vivo monitoring 
may provide more diagnostic and therapeutic options in clinical liver surgery and 
transplantation. 

 For in vivo assays of tissue oxidative stress (OS), tissues are usually  homogenized 
and subsequently assayed, either with redox-sensing electrodes or by measuring the 
ratios of the reduced and oxidized forms of glutathione and ascorbate. Recently, the 
redox states of tissues have also become assessable by using the dyes 5- (and 6-) 
carboxy-2,7-dichlorodihydrofl uorescein diacetate [ 19 ] and dihydrofl uorescein diace-
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  Fig. 2    In vivo imaging of caspase-3 activity by the optical probe. An ischemic insult to the liver 
induced caspase-3 activation (Modifi ed from Ozaki et al. [ 11 ], with permission)       
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tate [ 20 ]. Although such approaches allow evaluation of the sum of the oxidized and 
reduced species present, and thereby estimation of the overall redox state of the 
tissue, these techniques do not allow measurement of redox potentials in real time. 
More importantly, homogenization of tissues precludes the possibility of monitor-
ing dynamic changes in OS in the same animal and organ. 

 A newly developed reduction-oxidation-sensitive green fl uorescent protein 
(roGFP) probe (GFP with mutations of C48S, S147C, Q204C, and S65T) [ 1 ] could 
be applied for in vivo imaging. Use of the roGFP probe enables evaluation of cell 
and organ redox states non-invasively and continuously. Adenovirally transduced 
roGFP in the mouse liver was shown to act as a good indicator of pre- and post- 
ischemic liver redox states (Fig.  3 ) [ 10 ]. Through use of this roGFP probe, post- 
operative liver injury may be predicted by real-time monitoring of liver redox states.

       Optical Imaging of Deeper Lesions in the Living Body 

 An increasing number of antibodies have been applied for targeting antigens on the 
surface of cancer cells for clinical diagnosis and therapy, on the basis of the fact that 
some specifi c antigens expressed on the cancer cell surface refl ect malignant 
 behaviors including invasion, metastasis, and neo-vascularization [ 21 – 23 ]. Real-
time visualization of tumor-specifi c antigens in the living body will enable timely 
understanding of cancer expansion and its biological behaviors, and prediction of 
the patient’s prognosis in the near future. 

In vivo imaging of I/R-induced oxidative stress of mouse liver
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  Fig. 3    In vivo imaging of I/R-induced oxidative stress of the mouse liver. The roGFP probe 
showed dynamic changes in liver redox states. The  left panel  depicts representative images of the 
dynamic changes after 60 min of ischemia, followed by reperfusion (oxidation,  green to blue ; 
reduction,  orange to red ) (Modifi ed from Haga et al. [ 10 ], with permission)       
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 Fluorescence and bioluminescence imaging technologies have played important 
roles in molecular imaging in cells and small animals [ 24 – 26 ]. Photon detection is 
easy to use, cost saving, and space saving, compared with radioisotope imaging. 
Basically, bioluminescence imaging is achieved with a luciferin–luciferase reaction 
in the presence of suffi cient amounts of molecular oxygen and adenosine triphos-
phate (ATP). However, most bioluminescence spectra are observed in the visible 
region, which overlaps with the absorption spectra of hemoglobin and tissue con-
stituents, therefore attenuating the bioluminescence intensity in living animals. 

 Recently, a self-illuminating quantum dot probe was developed to improve the 
light penetration based on bioluminescence resonance energy transfer (BRET) 
between the bioluminescence of  Renilla  luciferase and quantum dots [ 27 ]. The mul-
tivalent conjugation of  Renilla  luciferase to single dots allowed for highly effi cient 
BRET between luciferase and quantum dots. However, the large size of the conju-
gate caused problems in metabolism and localization in vivo [ 28 ]. Several far-red 
fl uorescent protein variants showing maximal emission at around 650 nm have been 
developed for in vivo imaging [ 29 ], but are not well characterized as energy 
 acceptors for BRET systems. On the other hand, the organic dye indocyanine and its 
derivatives have molecular weights of less than 1,200 Da; they produce far-red 
 fl uorescence and have been widely used for in vivo imaging [ 30 ]. 

 Luciferase conjugated to such organic dyes is expected to create new possibili-
ties for in vivo application.  Cypridina  luciferase (CLuc) catalyzes the oxidation of 
 Cypridina  luciferin to yield light emission peaking at 460 nm [ 31 ]. 

 The luciferase genes from both  Cypridina hilgendorfi i  and  C. noctiluca  have 
been cloned [ 32 ], the latter of which we used. This self-secretory CLuc of 62 kDa 
has some unique properties as a bioluminescent enzyme [ 33 ]. The secreted protein 
contains 17 disulfi de bond pairs and is highly stable under physiological conditions. 
Its turnover rate (1400 luciferin molecules per minute) is the highest among known 
luciferases [ 34 ]. We have expressed recombinant CLuc in yeast and applied it to 
ELISA. We conjugated a far-red fl uorescent indocyanine derivative to biotinylated 
CLuc via glycol chains and named this far-red bioluminescent protein (FBP). 

 A monoclonal antibody against human Delta-like protein (anti-Dlk1), one of the 
embryonic antigens expressed on the surface of many cancer cells, including hepa-
tocellular carcinoma, was then produced. Using anti-Dlk1 monoclonal antibody 
linked to FBP via biotin–avidin interaction, we achieved bioluminescence imaging 
of cancer cells in vivo in mice (Fig.  4 ).

   However, very unfortunately, there were some non-specifi c signals from the tis-
sues that did not express Dlk-1, though the tumor implanted into the liver itself was 
imaged clearly by this probe. This may have been because excessive and unbound 
antibodies circulating in the blood or captured in tissues emitted signals when the 
substrate was injected. In order to apply this probe to clinical application, non- 
specifi c signals must be reduced as much as possible. So, we have launched the 
following new project.  
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    Development of an In Vivo Optical Probe for Antigen-Specifi c 
Imaging Inside/Outside Cells 

 For accurate biological diagnosis and rational therapy in clinical practice, we need 
to know the biological features of the lesion as well as its size, shape, and extent. 
For this purpose, we plan to develop a new optical probe, which will image the 
 target molecules only after binding to the antigen. This does not allow unbound 
antibody to emit light signals, and therefore it will lead to the reduction of non-
specifi c signals in vivo. Additionally, the probe should be applied to targets inside 
as well as outside cells in vivo, because there are lots of diagnostic and therapeutic 
targets inside as well as outside cells. In order to create a new type of in vivo optical 
probe, the following two technologies have to be developed (Fig.  5 ).

    (A)    Development of an Optical Probe Activated Only When it Binds to the Target 
Molecule    

  In order to develop a probe activated after binding to the target antigen in vivo, 
we have designed a new type of luciferase–antibody conjugated probe. We planned 
to prepare split fi refl y luciferases, the N-terminal and C-terminal fragments of lucif-
erase conjugated with SNAP (a 182-residue polypeptide that can be fused to any 

liver tumor

Image was obtained 24 hr after Luciferin adm (iv)

(400mg/200ml i.v.)

Non-UV irradiated /Luciferin-induced image

tumor

liver tumor

In vivo  imaging by a new optic probe for deeper lesions in mouse

tumor

  Fig. 4    In vivo imaging by a new optical probe for deeper lesions in the mouse. A liver tumor of 
the mouse was imaged, but some non-specifi c signals were observed, probably because of exces-
sive and unbound antibodies       

 

M. Ozaki et al.



273

protein of interest)—FlucN-SNAP and FlucC-SNAP, respectively—and to prepare 
a polyclonal antibody covalently connected with benzylguanine (Ab-BG). When 
the antibodies with FlucN and FlucC recognize and bind to the close epitopes of the 
same antigen, split luciferase fragments will be reconstituted and activated (Fig.  6 ). 
Theoretically, the probe should enable us to see the target molecule in tissues and 
cells only when it exists.

   We plan fi rst to express FlucN-SNAP and FlucC-SNAP proteins by  Escherichia 
coli , and then to bind benzylguanine (BG) with polyclonal Ab. Lastly, we will con-
jugate these proteins (Fig.  7 ).

   To date, we have succeeded in obtaining suffi cient amounts of FlucN-SNAP and 
FlucC-SNAP proteins by the  E. coli  expression system, and we have confi rmed the 
good binding capacity of FlucN-SNAP and FlucC-SNAP proteins to BG. So, we 
have bound BG with polyclonal Ab, and performed conjugation with Fluc-SNAPs. 
We are now examining the probe function in our in vitro system.

    (B)    Development of a Safe and Stable System for Delivery of Optical Probes into 
Cells    

  In order to develop a new system to deliver suffi cient amounts of optical probe safely 
into cells in vivo, we are now developing a new liposome-based delivery system. 

 There seem to be two important processes for developing an effective and rapid 
delivery system (Fig.  8 ). First, the carrier including probes in it should be 

  Fig. 5    Strategy for antigen-specifi c imaging in vivo       
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  Fig. 6    Concept for an antigen-dependent optical probe. When the probes with C-/N-terminal 
 fragments of luciferase recognize the antigen, luciferase is reconstructed and activated       

  Fig. 7    Procedure for making a probe: (1) expression of FlucN-SNAP and FlucC-SNAP; (2) bind-
ing BG (ligand) to polyclonal Ab; (3) conjugation of Fluc fragments and antibodies by SNAP-BG 
binding       
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 incorporated into cells suffi ciently and rapidly. Second, the incorporated probe 
should be released from the lysosome into the cytosol. These processes should not 
be harmful to the cells and the probes.

   We have already made a prototype liposome-based carrier for effi cient drug 
delivery in vivo. We further added a cell-permeable octa-arginine peptide (R8) to 
the liposome, expecting better incorporation into cells (Fig.  9 ). In the in vitro exper-
iments, the R8 liposome successfully delivered the “antibody” into the cells much 
better than the liposome without R8. The R8 liposome, however, failed to escape the 
“antibody” from the endosome into the cytosol.

   Next, we applied GALA to make the probe release rapidly and effi ciently from 
the endosome into the cytosol (Fig.  10 ). GALA is a 30-amino-acid peptide with a 
glutamic acid–alanine–leucine–alanine repeat that contains a histidine and tryptophan 
residue. GALA changes its conformation from a random coil to an amphipathic 
alpha-helix when pH values are between 7.0 and 5.0. At neutral pH, GALA is water 
soluble, while at acidic pH, GALA binds to bilayer membranes. So it is expected to 
promote rapid fusion of the liposome with the endosomal membrane in the cell. The 
fusogenic liposome was modifi ed with a cell-penetrating R8 and also GALA.

  Fig. 8    Two important processes for effi cient cellular delivery of probes: (1) incorporation into 
cells by endocytosis (a liposome–cell interaction); (2) escape from the endosome into the cytosol 
(a liposome–endosome interaction)       
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Kogure et al. [35, 36]
Nakamura et al. [37]

  Fig. 9    Concept of a multifunctional envelope-type nano device ( MEND ). Octa-arginine (R8) is 
bound to the liposome surface (R8 liposome)       

  Fig. 10    The GALA pH-sensitive fusogenic peptide changes its conformation depending on pH 
values and is expected to promote lipid-membrane fusion       
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   The presence of R8 enhanced the cellular uptake of antibodies, while the 
 mounting of GALA reduced the endosomal entrapment, resulting in release of the 
antibody into the cytosol within 30 min in in vitro experiments. Moreover, com-
pared with the commercially available reagents for protein delivery, the R8/GALA- 
modifi ed liposome was superior in terms of both cellular uptake and transport into 
the cytosol. The specifi c antibody delivered by the R8/GALA liposome was detected 
by its epitope, which indicated that the R8/GALA liposome basically did not dete-
riorate the protein function.  

    Conclusion 

 In this chapter, we have described possible application of an optical probe for “bio-
logical imaging” and our recent challenge in undertaking development of a new 
type of in vivo probe. 

 In the mouse liver I/R model, the fl uorescent probe, roGFP, and bioluminescent 
luciferase probe, pc Fluc-DEVD,  were useful in understanding the dynamic changes 
of liver redox states and apoptotic cell death. We could understand the pathological 
signifi cance of OS and apoptosis in I/R-induced liver injury. Because of the  diffi culty 
of imaging of deeper lesions by optical probes, we developed a unique probe loaded 
on an antibody. This probe successfully imaged a target molecule in deeper regions 
in mice, but also revealed another problem—an in vivo non-specifi c signal from 
excessive and unbound antibodies. Lastly, we undertook the challenge to develop an 
innovative optical probe which switches “on” only when the probe recognizes a 
target molecule. The project of developing this unique probe is still underway but 
seems very promising at this time. 

 Regarding a carrying system of the probe to target molecules in vivo, we developed 
a liposome bound with a cell-penetrating R8 and GALA. The R8/GALA liposome 
delivered the “antibody” to the cells and also the cytosol effi ciently and rapidly in vivo. 

 In the future, we plan to prove the effi cacy of the new probe carried by the R8/
GALA liposome in in vivo experiments.     

Open Access This chapter is distributed under the terms of the Creative Commons Attribution 
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in 
any medium, provided the original author(s) and source are credited.

   References 

     1.    Dooley CT, Dore TM, Hanson GT et al (2004) Imaging dynamic redox changes in mammalian 
cells with green fl uorescent protein indicators. J Biol Chem 279:22284–22293  

    2.    Kanno A, Yamanaka Y, Hirano H et al (2007) Cyclic luciferase for real-time sensing of cas-
pase- 3 activities in living mammals. Angew Chem Int Ed 46:7595–7599  

   3.    Zhu L, Xie J, Swierczewska M et al (2011) Real-time video imaging of protease expression 
in vivo. Theranostics 1:18–27  

An In Vivo Optical Probe For Biological Imaging



278

   4.    Lexman B, Hall DE, Bhojani MS et al (2002) Noninvasive real-time imaging of apoptosis. 
Proc Natl Acad Sci U S A 99:16551–16555  

   5.    Ray P, De A, Patel M et al (2008) Monitoring caspase-3 activation with a multimodality 
 imaging sensor in living subjects. Clin Cancer Res 14:5801–5809  

   6.    Yhee JY, Kim SA, Koo H et al (2012) Optical imaging of cancer-related proteases using near- 
infrared fl uorescence matrix metalloproteinase-sensitive and cathepsin B-sensitive probes. 
Theranostics 2:e0017  

    7.    Kim GB, Kim Y-P (2012) Analysis of protease activity using quantum dots. Theranostics 
2:e0004  

    8.    Ozaki M, Deshpande SS, Angkeow P et al (2000) Inhibition of the Rac1 GTPase protects 
against nonlethal ischemia/reperfusion-induced necrosis and apoptosis in vivo. FASEB J 
14:418–429  

    9.    Lucchesi BR (1993) Complement activation, neutrophils, and oxygen radicals in reperfusion 
injury. Stroke 24:I41–I47  

      10.    Haga S, Remington S, Morita N et al (2009) Hepatic ischemia induced immediate oxidative 
stress after reperfusion and determined the severity of the reperfusion-induced damage. 
Antioxid Redox Signal 11(10):2563–2572  

       11.    Ozaki M, Haga S, Ozawa T (2012) In vivo monitoring of liver damage by caspase-3 probe. 
Theranostics 2(2):207–214  

    12.    Robin E, Guzy RD, Loor G et al (2007) Oxidant stress during simulated ischemia primes car-
diomyocytes for cell death during reperfusion. J Biol Chem 282:19133–19143  

    13.    Tsung A, Kaizu T, Nakao A et al (2005) Ethyl pyruvate ameliorates liver ischemia-reperfusion 
injury by decreasing hepatic necrosis and apoptosis. Transplantation 79:196–204  

    14.    Montalvo-Jave EE, Escalante-Tattersfi eld T, Ortega-Salgado JA et al (2008) Factors in the 
pathophysiology of the liver ischemia-reperfusion injury. J Surg Res 147:153–159  

    15.    Haga S, Terui K, Fukai M et al (2008) Preventing hypoxia/reoxygenation damage to hepato-
cytes by p66(shc) ablation: up-regulation of anti-oxidant and anti-apoptotic proteins. J Hepatol 
48:422–432  

    16.    Terui K, Enosawa S, Haga S et al (2004) Stat3 confers resistance against hypoxia/
reoxygenation- induced oxidative injury in hepatocytes through upregulation of Mn-SOD. J 
Hepatol 41:957–965  

    17.    Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol 
Lung Cell Mol Physiol 279:L1005–L1028  

    18.    Guo L, Haga S, Enosawa S et al (2004) Improved hepatic regeneration with reduced injury by 
redox factor-1 in a rat small-sized liver transplant model. Am J Transplant 4:879–887  

    19.    Jiang J, Kini V, Belikova N et al (2004) Cytochrome c release is required for phosphatidylser-
ine peroxidation during Fas-triggered apoptosis in lung epithelial A549 cells. Lipids 
39:1133–1142  

    20.    Jones MA, Raymond MJ, Yang Z et al (2007) NADPH oxidase-dependent reactive oxygen 
species formation required for root hair growth depends on ROP GTPase. J Exp Bot 
58:126–127  

    21.    Adams R, Meade A, Wasan H et al (2008) Cetuximab therapy in fi rst-line metastatic colorectal 
cancer and intermittent palliative chemotherapy: review of the COIN trial. Expert Rev 
Anticancer Ther 8:1237–1245  

   22.    Boltze J, Förschler A, Nitzsche B et al (2008) Permanent middle cerebral artery occlusion in 
sheep: a novel large animal model of focal cerebral ischemia. J Cereb Blood Flow Metab 
28:1951–1964  

    23.    Ilowite NT (2008) Update on biologics in juvenile idiopathic arthritis. Curr Opin Rheumatol 
20:613–618  

    24.    Contag PR, Olomu IN, Stevenson DK et al (1998) Bioluminescent indicators in living mam-
mals. Nat Med 4:245–247  

   25.    Hoffman RM, Yang M (2005) Dual-color, whole-body imaging in mice. Nat Biotechnol 
23:790  

M. Ozaki et al.



279

    26.    Ntziachristos V, Ripoll J, Wang LV et al (2005) Looking and listening to light: the evolution of 
whole-body photonic imaging. Nat Biotechnol 23:313–320  

    27.    So MK, Xu C, Loening AM et al (2006) Self-illuminating quantum dot conjugates for in vivo 
imaging. Nat Biotechnol 24:339–343  

    28.    Frangioni JV (2006) Self-illuminating quantum dots light the way. Nat Biotechnol 
24:326–328  

    29.    Shcherbo D, Merzlyak EM, Chepurnykh TV et al (2007) Bright far-red fl uorescent protein for 
whole-body imaging. Nat Methods 4:741–746  

    30.    Frangioni JV (2003) In vivo near-infrared fl uorescence imaging. Curr Opin Chem Biol 
7:626–634  

    31.    Shimomura O, Johnson FH (1971) Mechanism of the luminescent oxidation of Cypridina 
luciferin. Biochem Biophys Res Commun 44:340–346  

    32.    Thompson EM, Nagata S, Tsuji FI (1989) Cloning and expression of cDNA for the luciferase 
from the marine ostracod Vargula hilgendorfi i. Proc Natl Acad Sci U S A 86:6567–6571  

    33.    Shimomura O, Johnson FH, Saiga Y (1961) Purifi cation and properties of Cypridina lucifer-
ase. J Cell Comp Physiol 58:113–123  

    34.    Shimomura O, Johnson FH, Masugi T (1969) Cypridina bioluminescence: light-emitting 
oxyluciferin- luciferase complex. Science 164:1299–1300    

An In Vivo Optical Probe For Biological Imaging


