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      Clarity and Challenges in Tissue Fibrosis                     

       Scott     L.     Friedman     

    Abstract     The tremendous progress in understanding the mechanisms of tissue fi bro-
sis has led to realistic hopes for effective antifi brotic therapies in a range of diseases, 
including hepatic fi brosis, idiopathic pulmonary fi brosis, and renal  fi brosis, as well as 
fi brotic disorders of muscle, heart, skin and bone marrow. Common mechanisms 
across these different tissues have unearthed targets that may be  relevant to many 
organs. Best understood are pathways leading to hepatic fi brosis, which also predis-
pose to hepatocellular carcinoma. Hepatic stellate cells are the principal fi brogenic 
cells in the liver following their activation into myofi broblasts, and their detailed char-
acterization has unearthed many targets for therapy. Increasingly, investigators now 
rely on genetic mouse models to defi ne contributions of specifi c molecules, in hopes 
of antagonizing these molecules as therapeutic targets. Both genomic and molecular 
approaches are unveiling new patterns of gene expression and molecules. A robust 
framework for antifi brotic drug discovery has been developed, and many agents are in 
clinical trials. With iterative evaluation of drug candidates in both animal models and 
humans, accelerated progress in bringing these drugs to patients is anticipated.  

  Keywords     Hepatic fi brosis   •   Stellate cells   •   Antifi brotic   •   Cirrhosis   •   Pulmonary 
fi brosis   •   Autophagy   •   Fibrogenesis   •   Macrophages  

        Introduction 

 The topic of tissue fi brosis has become increasingly important in clinical medicine 
with the realization that up to 45 % of all deaths in the industrialized world are due 
to fi brotic diseases of various organs [ 1 ]. Great strides have been made in 
 understanding the cellular basis, molecular mechanisms, and both tissue specifi c 
and generalized features of fi brosis across organs. 

 Generally, fi brosis mechanisms are similar across different tissues, including the 
heart, lung, liver, pancreas, kidney, bone marrow, CNS, and skin, among others [ 2 ]. 
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In each case, common events include injury to epithelial tissues that leads to activation 
of resident mesenchymal cells, or myofi broblasts. While the mechanisms of fi bro-
genesis are similar, the likelihood of regeneration and regression varies widely 
across organs. Also highly variable is the underlying regenerative capacity of each 
organ, with the liver being most regenerative and the lung showing the least capacity 
for tissue regeneration. Ongoing epithelial injury typically tips the balance toward 
progressive fi brosis rather than regression, yet the factors underlying this critical 
balance are not well understood.  

    Liver Fibrosis 

    Mechanisms 

 In the liver, fi brosis is a common pathway among many different etiologies, 
 including viral hepatitis B and C, nonalcoholic steatohepatitis, and alcoholic liver 
disease, as well as inherited metabolic disorders, drug-induced liver injury, immune 
disorders, and neonatal cholestatic syndromes [ 3 ]. As noted above, the liver is 
 relatively unique in the long duration of fi brosis, such that, typically, chronic injury 
must persist for decades before advanced fi brosis, also known as cirrhosis,  develops. 
Once cirrhosis is present, however, the liver harbors a dramatically increased risk of 
hepatocellular carcinoma (HCC), which currently has the fastest rising tumor 
 incidence in the world [ 4 ]. Moreover, HCC is the second leading cause of cancer 
mortality worldwide, yet curative therapies are rarely available unless aggressive 
screening methods are used to detect small tumors that are resectable or amenable 
to local tissue ablation. 

 The mechanisms of fi brosis in the liver have been greatly clarifi ed thanks to the 
development decades ago of methods to isolate and grow the primary fi brogenic 
cells in the liver, the hepatic stellate cells. The cell type is a resident pericyte, which 
has the unusual feature of storing large amounts of vitamin A, or retinoids, in 
 perinuclear cytoplasmic droplets [ 5 ]. Thus, this cell type is the primary storage 
depot for retinoids in the body. Following injury, hepatic stellate cells undergo a 
very characteristic activation, or trans-differentiation, yielding a highly fi brogenic 
and contractile cell. During this process, they release retinoids and acquire more 
 prominent contractile fi laments, as well as a whole range of new features that 
 collectively can be considered a “conspiracy to make a scar”. This activation includes 
upregulation of energetic receptors, increased pro-infl ammatory and  profi brogenic 
cytokines, and increased signals that promote cell survival. 

 More recently, additional subtle features of stellate cell activation and liver 
 fi brosis have been uncovered. Prominent among these is an increasingly nuanced 
appreciation for infl ammatory cell subset composition that changes from normal to 
injured liver, including different types of NK cells, NKT cells, and other lymphocyte 
subsets, as well as alterations in macrophage composition [ 6 ,  7 ]. Additionally, 
there has been increasing appreciation for the contribution of adipokines to fi brosis 
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 progression and regression [ 8 ,  9 ]. In general, adiponectin is considered anti- 
infl ammatory and antifi brotic, whereas leptin is pro-infl ammatory and fi brogenic. 
Additional adipokines are under study, and their relevance to human disease has 
been heightened by the growing epidemic of nonalcoholic fatty liver disease, [ 10 ] 
which promises to dwarf the public health impact of viral hepatitis in the USA and 
Europe, and possibly Asia [ 11 ]. 

 Another important development has been the discovery that activated hepatic 
stellate cells can revert to an inactivated phenotype when liver injury resolves [ 12 –
 14 ]. Previously, apoptosis had been the major mechanism invoked to account for 
loss of activated stellate cells when fi brosis regresses [ 15 ]. However, now that 
 reversion to an inactivated state has been validated in animal models, this indicates 
that there is a reservoir of cells that can both activate and then de-activate. Moreover, 
the activated cells are distinct from truly quiescent stellate cells in their capacity to 
re- activate more briskly.  

    Role of Autophagy 

 Our studies have recently focused on a vital intracellular pathway known as 
 autophagy [ 16 ] and its contribution to hepatic stellate cell activation. The work was 
spurred by a seminal observation reported by Czaja and colleagues in 2009 [ 17 ], 
demonstrating that hepatocytes utilize autophagy to provide intracellular energy 
when stressed, through hydrolysis of intracellular lipids. This raised the interesting 
prospect that stellate cells, which are “professional” lipid-storing cells, might also 
exploit autophagy to metabolize intracellular lipids. We addressed this prospect by 
inhibiting autophagy either chemically or genetically in hepatic stellate cells to 
assess the impact on stellate cell activation [ 18 ]. Through a variety of methods, our 
data clearly indicated that autophagy of stellate cells is required to provide short- 
term but vital intracellular energy as the cell undergoes the highly energy intensive 
process of activation. Moreover, the block in stellate cell activation conferred by 
autophagy inhibition could be overcome if the cells were provided exogenous 
energy in the form of oleic acid, a monounsaturated omega-9 fatty acid. 

 Of broader signifi cance, our work demonstrated that autophagy is equally vital 
to fi brogenesis in mesenchymal cells from other tissues as well. Specifi cally, 
 embryonic fi broblasts from mice genetically lacking Atg5, a key autophagy 
 regulatory protein, have reduced expression of collagen I, beta-PDGF receptor, 
alpha smooth muscle actin, and matrix metalloproteinase-2 [ 18 ]. Similarly, block-
ing autophagy in mouse mesangial cells and human pulmonary fi broblasts yielded 
similar antagonism of fi brogenic properties. 

 Taken together, these fi ndings implicate autophagy in a new context in which the 
pathway is essential for energy production in cellular fi brosis. While a simplistic 
interpretation would be that autophagy blockade could lead to decreased fi brosis, in 
reality autophagy is an essential pathway for the homeostasis of epithelial cells, and 
many animal models demonstrate that blocking autophagy in these cells is 
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 deleterious to organ function. Therefore, any therapeutic exploitation of autophagy 
inhibition would need to be highly targeted only to fi brogenic cells and not affect 
surrounding epithelia or other cell types.  

    Genetic Models of Liver Fibrosis 

 In more recent studies, we have begun using genetic models to explore other  features 
of stellate cell activation and biology. We recently developed a mouse model in 
which stellate cells can be selectively ablated [ 19 ]. The model utilizes transgenic 
expression of the herpes simplex thymidylate kinase gene, which, when expressed 
in proliferating cells, renders them susceptible to killing by the antiviral drug 
 ganciclovir. To perform these studies, induction of liver injury was required in order 
to provoke stellate cell proliferation so they would be susceptible to killing. As 
expected, depletion of stellate cells led to reduced fi brosis and diminished expres-
sion of stellate cell activation markers, both following carbon tetrachloride or duct 
ligation models of injury and fi brosis. We also analyzed infl ammatory gene expres-
sion and specifi cally detected increased hepatic expression of interleukin-10 and 
interferon-gamma following depletion. These results reinforce the central role of 
stellate cells in liver fi brosis, but also highlight its contribution to modifying the 
infl ammatory milieu in liver injury.  

    Reversibility of Hepatic Fibrosis 

 Among the most exciting discoveries has been the recognition that hepatic fi brosis 
and even cirrhosis are reversible. While animal studies supported this conclusion for 
many years, there is now strong human evidence for fi brosis regression. The 
 evidence is clearest in patients who have either complete suppression of hepatitis B 
or cured hepatitis C [ 20 ,  21 ]. In each circumstance, removing active viral infection 
leads to substantial fi brosis regression and restoration of normal architecture, even 
in a majority of cirrhotic patients. 

 The mechanisms underlying fi brosis reversibility represent a fertile avenue for 
uncovering targets whose manipulation could accelerate fi brosis regression in 
human disease, even when the primary etiology is not controlled—for example, 
nonalcoholic steatohepatitis. In the liver, increasing evidence implicates subsets of 
hepatic ‘LY6C-lo’ macrophages as harboring a fi brolytic profi le that contributes to 
matrix degradation when liver injury subsides [ 22 ]. Therapeutic efforts to exploit 
this fi nding include cytokine therapies that could amplify subpopulations of fi bro-
lytic macrophages, or even ex vivo cell differentiation using genetic techniques, 
followed by re-infusion of fi brolytic cells. There are, however, other pathways of 
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matrix degradation, whose quantitative contribution to fi brosis regression in vivo 
are not completely clarifi ed. For example, dendritic cells secrete MMP-9 [ 23 ], 
whereas neutrophils secrete MMP-8. Further clarifi cation of the mechanisms 
 underlying fi brosis regression are likely to emerge with continued use of more 
refi ned genetic mouse models, combined with the ability to analyze in detail the 
features of fi brosis regression in human liver disease [ 24 ]. The latter prospect is 
especially attractive with the availability of direct-acting antivirals for hepatitis C, 
which promise to cure disease in greater than 90 % of patients with fewer side 
effects then previous interferon-based therapies [ 25 ,  26 ]. Thus, with more patients 
who have advanced fi brosis achieving an HCV cure, it will be highly informative to 
analyze liver tissues in order to characterize those features that contribute to fi brosis 
regression in human disease.   

    Genomics of Fibrosis 

 With the era of “big data” upon us, we are now using genomic methods to evaluate 
large data sets in hopes of uncovering unique and important antifi brotic drug targets. 
Several databases exist in which gene expression patterns in response to known 
drugs can be interrogated for different cell types, including mesenchymal cells [ 27 ]. 
Using this approach, we seek to identify stellate cell-specifi c genes whose antago-
nism could yield an antifi brotic effect. Antagonism could be achieved using either 
neutralizing antibodies, siRNAs, or small molecules. The regulatory paths for 
approval for such agents are yet to be clarifi ed, but there is intense activity in the 
drug development world, in partnership with the FDA, to accelerate the develop-
ment of clinical trial designs that can shorten drug testing and bring effective thera-
pies to patients with fi brotic diseases more quickly. 

 From a clinical perspective, there are important lessons about development and 
testing of antifi brotic drugs acquired from years of testing agents for idiopathic 
pulmonary fi brosis [ 2 ,  28 ,  29 ]. The contrast to hepatic fi brosis is interesting, in that 
pulmonary fi brosis is a catastrophic illness with a median survival of 3 years, in 
contrast to the slow progress of hepatic fi brosis. In part, this poor prognosis has 
driven more aggressive efforts to test and approve antifi brotic drugs faster. Partly as 
a result of this more extensive trial experience, pulmonary fi brosis trials are now 
underpinned by well-validated functional tests, whose improvement is acceptable to 
regulatory agencies as an indication of drug effi cacy. Moreover, methods have been 
developed to sample bronchoalveolar lavage macrophages as biosensors of drug 
effi cacy and some specifi c trials have sought to antagonize TGF-beta activation. 
Studies of liver fi brosis will benefi t from lessons learned in the pulmonary fi eld, and 
drugs proven effective in the latter group may be equally valuable to patients with 
chronic liver disease who are at risk for cirrhosis.  
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    Framework for Antifi brotic Therapies 

 A framework for organizing our understanding of potential antifi brotic therapy 
delivery is well established. The fi rst principle is to determine if a particular  pathway 
or target is a “core” or “regulatory” one [ 30 ]. Core pathways are typically common 
to two or more tissues and species, are essential for fi brosis, and are presumed to 
have an earlier evolutionary role. In contrast, a regulatory pathway might be one that 
is more tissue specifi c and therefore less likely to elicit off-target effects following 
its antagonism in a clinical setting. A recent example of an ideal core pathway is 
alphaV integrin, based on studies by Henderson et al. [ 31 ], which demonstrated that 
this pathway is critical to driving fi brosis in several tissues. Moreover, development 
of small-molecule antagonists to this integrin are well underway and represent a 
drug development path that has already been well established for other disease 
 indications [ 32 ]. 

 The point of attack for fi brosis therapies and liver include: (1) reducing the 
 primary disease—for example, antivirals or abstinence from alcohol, among others; 
(2) reducing tissue injury and fostering epithelial repair through the use of epithelial 
protectants, anti-infl ammatory agents, or modulation of infl ammatory cell subsets, 
as described above; (3) blocking myofi broblast proliferation, angiogenesis, or 
 contractility, using specifi c cytokine receptor antagonists; (4) promoting apoptosis 
of activated myofi broblasts; (5) stimulating metalloproteinase activity, either 
through induction of these enzymes or through antagonism of their natural inhibitors— 
specifi cally, tissue inhibitors of metalloproteinases. A detailed description of the 
agents in these different categories is beyond the scope of this review, but the reader 
is referred to several articles [ 33 – 35 ].  

    Summary 

 There are four major conclusions of this work:

    1.    Tissue fi brosis mechanisms are suffi ciently clarifi ed to expect progress in devel-
oping and testing antifi brotic drugs.   

   2.    While most mechanisms of fi brosis are shared across organs, each site or tissue 
presents unique challenges to drug development and clinical trial design.   

   3.    Clinical trial development will require robust, validated endpoints that correlate 
with clinical outcomes.   

   4.    We are reaching a “tipping point” of interest and emerging clinical trials that will 
establish proof of principal for antifi brotic drugs.         
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