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      Inhibitory Immunoreceptors on Mast Cells 
in Allergy and Infl ammation                     

       Akira     Shibuya     ,     Chigusa     Nakahashi-Oda    , and     Satoko     Tahara-Hanaoka   

    Abstract     Activation of immune cells is regulated by positive and negative signals 
triggered by activating and inhibitory cell surface immunoreceptors, respectively. 
Inhibitory receptors are characterized by the immunoreceptor tyrosine-based 
inhibition motif (ITIM) in their cytoplasmic domains and play an important role in 
immune regulation by both lymphoid and myeloid cells. Mast cells express the 
high-affi nity receptor for IgE (FcεRI) and toll-like receptors (TLR) on the cell surface, 
and play a central role in allergic and non-allergic infl ammations. We identifi ed 
novel inhibitory immunoglobulin-like receptors, Allergin-1 and CD300a, which are 
expressed on mast cells. Allergin-1 inhibits mast cell degranulation via suppression 
of FcεRI-mediated signaling. Allergin-1-defi cient mice showed signifi cantly exac-
erbated IgE-associated type 1 immediate hypersensitivity reactions. On the other 
hand, CD300a recognizes phosphatidylserine exposed on the plasma membrane of 
apoptotic cells and inhibits production of chemoattractants from mast cells in 
response to LPS stimulation. CD300a-defi cient mice showed signifi cantly prolonged 
survival after cecum ligation and puncture (CLP). Together, our results  suggest that 
Allergin-1 and CD300a may be candidates as molecular targets for the treatment of 
mast cell-dependent infl ammatory diseases.  
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        Introduction 

 Activation of immune cells is regulated by positive and negative signals triggered 
by activating and inhibitory cell surface immunoreceptors, respectively. These [ 1 ] 
immunoreceptors play important roles in regulation of immune responses [ 2 ,  3 ]. 
Inhibitory receptors are characterized by the immunoreceptor tyrosine-based 
inhibition motif (ITIM) in their cytoplasmic domains. The prototype 6–amino acid 
sequence for ITIM is (I/V/L/S)-x-Y-x-x-(L/V) (x denotes any amino acid), whose 
tyrosine is phosphorylated upon ligand binding, providing a docking site for the 
recruitment of Src homology 2 (SH2)-containing cytoplasmic phosphatases [ 4 ,  5 ] 
and shutting down activation signals by dephosphorylating intracellular substrates 
at the earliest steps of the activation response. The ITIM-bearing cell surface immu-
noreceptors, including certain NK receptors, Fc receptors (FcγRIIb), and others, 
play a central role in mediating negative signals in both lymphoid and myeloid 
cells [ 6 ]. 

 Mast cells express the high-affi nity receptor for IgE (FcεRI) on the cell surface, 
and play a central role in IgE-associated allergic responses [ 7 ,  8 ]. Crosslinking of 
FcεRI-bound IgE with multivalent antigen initiates the activation of mast cells by 
promoting the aggregation of FcεRI. This process results in the degranulation of 
mast cells, with the concomitant secretion of chemical mediators, such as histamine, 
tryptase, carboxypeptidase A, and proteoglycans, which are stored in the cytoplasmic 
granules, the de novo synthesis of pro-infl ammatory lipid mediators, such as pros-
taglandins and leukotrienes, and platelet-activating factor (PAF) in the early phase 
(5–30 min after exposure to antigen), and the synthesis and secretion of cytokines 
and chemokines in the late phase (2–6 h after exposure to antigen) [ 9 ]. 

 FcεRI-mediated mast cell activation is modulated by several cell surface inhibi-
tory receptors [ 10 ], including FcγRIIB [ 4 ], paired Ig-like receptor (PIR)-B [ 11 ,  12 ], 
gp49B1 [ 13 ], mast-cell function-associated antigen (MAFA) [ 14 ,  15 ], and signal 
regulatory protein (SIRP)-α [ 16 ]. The cytoplasmic portion of these inhibitory recep-
tors commonly contains the ITIM. When these inhibitory receptors are co-ligated 
with FcεRI, the tyrosine residue in the ITIM is phosphorylated and recruits  src  
homology 2 (SH2) domain–containing protein tyrosine phosphatase (SHP)-1, SHP- 2, 
and/or SH2 domain–containing inositol 5-phosphatase (SHIP), thereby blocking 
the early step in the activation signal mediated by FcεRI. The regulatory mecha-
nisms of FcεRI-mediated mast cell activation have not been completely elucidated, 
and a molecular target that controls allergic and infl ammatory responses has not 
been identifi ed. 

 We identifi ed Allergin-1 and CD300a, which are novel inhibitory immunoglobulin- 
like receptors expressed on mast cells. In this chapter, we describe the molecular 
and functional characteristics of these receptors and discuss the possibility of these 
molecules as molecular targets for the therapy of allergy and infl ammation.  
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    Allergin-1 

    Identifi cation of Allergin-1 

 By using the signal sequence trap method [ 17 ], we identifi ed a cDNA ( MILR1 ) 
encoding an Ig-like receptor, designated Allergin-1, which consists of a 19–amino 
acid (aa) leader sequence, a 208-aa extracellular region composed of two Ig-like 
domains, a 21-aa transmembrane domain, and a 95-aa cytoplasmic domain (Fig.  1 ) 
[ 18 ]. We also identifi ed two cDNAs encoding Allergin-1 isoforms, which lacked the 
fi rst or second Ig-like domain in the extracellular portion and were designated 
Allergin-1 short form 1 (Allergin-1S1) and Allergin-1 short form 2 (Allergin-1S2), 
respectively (Fig.  1 ). The extracellular portions of mouse Allergin-1 and human 
Allergin-1L, and those of human Allergin-1S1 and Allergin-1S2, contained six and 
three potential N-linked glycosylation sites, respectively. Genomic DNA database 
analyses demonstrated that  MILR1  consists of ten exons. The genes encoding 
Allergin-1 ( MILR1 and milr1)  are located on chromosome 17q23.3 in humans and 
chromosome 11E1 in mice, near  CD300  (or  Cd300 ) family genes that encode 
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  Fig. 1    Schematic diagram of mouse and human Allergin-1 and CD300a proteins. The transmem-
brane domain (TM) and the potential N-linked glycosylation sites are indicated. The amino 
acid (aa)  sequence of the fi rst Ig-like domain ( blue ) in human Allergin-1-L is 50 % identical to the 
Ig-like domain in mouse Allergin-1. The aa sequences of the fi rst ( blue ) and second ( red lined ) 
Ig-like domain in human Allergin-1-L are identical to those of Allergin-1-S1 and Allergin-1-S2. 
The amino acid sequence of the Ig-like domain in human CD300a is 57 % identical to the Ig-like 
domain in mouse CD300a. DC (dendritc cell), MΦ (macrophage), Gr (neutrophil)       
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Ig-like receptors mediating positive or negative signals in myeloid cells [ 19 ,  20 ]. 
 MILR1 and milr1  were also close to the gene, which encodes PECAM-1 (CD31 or 
Cd31), an ITIM-bearing Ig-like receptor expressed on myeloid cells and platelets.

       Expression of Allergin-1 

 Flow cytometry analyses of spleen cells demonstrated that Allergin-1 is expressed 
on dendritic cells, macrophages and neutrophils, but not on T, B, or natural killer 
(NK) cells in mice. However, Allergin-1 was most strongly expressed on mast cells 
in the peritoneal cavity. In contrast, Allergin-1 was not detected on basophils in the 
bone marrow. In agreement with mouse Allergin-1, human Allergin-1L and/or 
Allergin-1S1 were also expressed in myeloid cell lineages, including monocytes, 
neutrophils, and dendritic cells, in the peripheral blood. It was noted that, unlike 
mouse Allergin-1, human Allergin-1L and/or Allergin-1S1 were considerably 
expressed on peripheral blood basophiles [ 18 ]. 

 Anti-human Allergin-1 monoclonal antibodies (mAbs) EX32 and EX33 recog-
nize an epitope of the fi rst and the second Ig-like domain of Allergin-1L, respec-
tively. By using these mAbs simultaneously together with mAbs against the lineage 
markers (CD3, CD19, CD56, CD11b, and CD11c), c-Kit and FcεRIα, we developed 
a multi-color fl ow cytometric method to characterize the human primary mast cells 
in the bronchial alveolar lavage fl uid (BALF). Mast cells were defi ned as 
PI − CD45 + Lin − c-Kit + FcεRIα + cells, which comprised 0.153 % ± 0.041 % ( n  = 28) of 
the total cell population in BALF. We found diverse expression profi les of Allergin-1 
isoform on BAL mast cells among donors; however, Allergin-1S1 was dominantly 
expressed on BAL-MC, compared with Allergin-1L1 or Allergin-1S2 (Fig.  2 ) [ 21 ].

       Function of Allergin-1 

    In Vitro Analyses of Allergin-1 

 Allergin-1 contains immunoreceptor tyrosine-based inhibitory motif (ITIM)-like 
sequences in the cytoplasmic portion, suggesting that Allergin-1 is tyrosine phos-
phorylated and recruits the SH2-containing phosphatases, such as SHP-1, SHP-2, or 
SHIP. Because Allergin-1 is strongly expressed on mast cells, we examined whether 
mouse Allergin-1 mediates an inhibitory signal against FcεRI-mediated degranulation, 
by using a rat basophil leukemia cell line, RBL-2H3. Co-ligation of Allergin-1 with 
FcεRI signifi cantly decreased degranulation, as determined by β-hexosaminidase 
release from the transfectants, when compared with FcεRI stimulation alone, suggesting 
that mouse Allergin-1 inhibits IgE-mediated degranulation of mast cells (Fig.  3 ).

   Because an insuffi cient number of human primary mast cells can be obtained 
to conduct the ELISA assay for chemical mediators such as histamine 
or β-hexosaminidase released from mast cells of BALF samples, we performed an 
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activation assay by utilizing a multicolor fl ow cytometry to detect cell surface 
CD107a as a marker of mast cell degranulation. We detected mast cells derived 
from the culture of cord blood and peripheral blood stem cells that turned out to be 
positive for CD107a expression on the cell surface when the mast cells were stimu-
lated with anti-TNP IgE followed by TNP-conjugated control mAb. However, 
CD107a +  cells were signifi cantly decreased when FcεRIα was colligated with 
Allergin-1 with anti-TNP IgE and TNP-conjugated anti-Allergin-1 mAb [ 21 ]. We 
then examined the inhibitory function of Allergin-1 on mast cells in BALF. BALF 
cells were also stimulated and then stained with anti-CD107a and mAbs for 
the identifi cation of BAL mast cells, as described above, and analyzed by using 
multi- color fl ow cytometry. We detected a subpopulation of BAL mast cells that was 
positive for CD107a when the BALF cells were stimulated with anti-TNP IgE 
followed by TNP-conjugated control mAb. However, the population of CD107a +  
mast cells was signifi cantly decreased when BAL mast cells were stimulated via 
anti-TNP IgE and TNP-conjugated anti-Allergin-1 mAb [ 21 ]. Since BAL mast cells 
also preferentially express Allergin-1S1 rather than Allergin-1L or Allergin-1S2, 
these results indicated that Allergin-1S1 inhibits the IgE-mediated activation of 
BAL mast cells.  
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  Fig. 2    Expression of Allergin-1 isoforms on human mast cells in bronchial alveolar lavage fl uid 
(BALF). Cells obtained from the BALF of patients with pulmonary diseases ( n  = 14) were stained 
with PI, anti-CD45, lineage mAb cocktail containing anti-CD3, anti-CD19, anti-CD56, anti- 
CD11b, and anti-CD11c mAbs, anti-FcεRIα, and anti-c-Kit mAbs together with isotype control, 
and EX32 and/or EX29 mAb, and the BAL-MC were analyzed by using fl ow cytometry. 
Representative results are shown in the  upper panel . “Combinations” indicates mast cells in the 
 upper right quadrant  that express either L + S1, L + S2, L + S1 + S2, or S1 + S2       
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    In Vivo Analyses of Allergin-1 

 Since Allergin-1 inhibited FcεRI-mediated degranulation of mast cells in vitro, we 
next examined whether Allergin-1 was involved in passive systemic and cutaneous 
anaphylaxises (PSA), an IgE-mediated type 1 immediate hypersensitivity reaction. 
WT and Allergin-1-defi cient mice were passively sensitized with anti-TNP IgE 
mAb and then intravenously injected with ovalbumin (OVA) or TNP-conjugated OVA 
(TNP-OVA). WT mice challenged with TNP-OVA showed a progressive decrease in 
rectal temperature to 4 °C below the basal temperature by 18 min after injection 
(Fig.  4 ). Allergin-1-defi cient mice challenged with TNP-OVA showed signifi cantly 
lower rectal temperatures than the corresponding WT mice (Fig.  4 ) [ 18 ].

   WT and Allergin-1-defi cient mice were also passively sensitized by intravenous 
injection of anti-dinitrophenol (DNP) IgE mAb and then challenged with epicutane-
ous application of dinitrofl uorobenzene (DNFB) in acetone/olive oil in the left ear 
and acetone/olive oil alone in the right ear. The ear swelling in Allergin-1-defi cient 
mice was signifi cantly greater than the ear swelling in WT mice during the entire 50 h 
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  Fig. 3    Schematic model of Allergin-1 and CD300a-mediated inhibition of FcεRI signaling in 
mast cells. Allergin-1 and CD300a recruit tyrosine phosphatases such as SHP-1 and SHP-2 to the 
ITIM in the cytoplasmic region. The activated tyrosine phosphatases then dephosphorylate tyro-
sine phosphorylated FcεRIγ-mediated signaling molecules and shut down FcεRI-mediated mast 
cell activation       
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observation period after the antigen challenge [ 18 ]. Taken together, these results 
suggest that Allergin-1 negatively regulates IgE-mediated mast cell activation 
in vivo and suppresses the type 1 immediate hypersensitivity reactions.    

    CD300a 

    Identifi cation and Expression of CD300a 

 To identify novel genes involved in immune responses by myeloid cells, we per-
formed representative differential analysis (RDA), which is a PCR-based subtrac-
tive hybridization, using day 14 fetal livers from PU.1 −/−  mice lacking myeloid cells 
and control littermates, followed by screening of a macrophage cDNA library. We 
cloned a cDNA encoding a type-1 transmembrane protein with one Ig-like domain 
in the extracellular portion, indicating that the protein, designated myeloid- 
associated immunoglobulin-like receptor (MAIR)-I (CD300a), is a member of the 
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  Fig. 4    Enhanced systemic anaphylaxis in Allergin-1-defi cient mice. ( a )  Allergin-1  +/+  mice (WT) 
and  Allergin-1  −/−  (KO) mice were intravenously injected with 20 μg of anti-TNP mouse IgE 
mAb. ( b )  After 24 h, mice were challenged with 1 mg of OVA or TNP 6 -conjugated OVA, and 
rectal temperatures were measured every 6 min. The data are the mean ± SEM ( n  = 3). * P  < 0.05, 
** P  < 0.01, *** P  < 0.005 for the comparison of WT versus KO mice challenged with TNP-OVA       
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Ig superfamily (Fig.  1 ). The cytoplasmic region contains the consensus sequence 
for ITIMs, and the ITIM-like sequences. The CD300a gene is located in the proximal 
region of the E2 band of mouse chromosome 11 and consists of six exons, as 
determined by fl uorescence in situ hybridization (FISH) and a genomic DNA 
sequence database. Biochemical analyses demonstrated that the molecular weight 
of CD300a is ~50 KDa protein when analyzed under both reducing and non-reducing 
conditions [ 22 ]. 

 CD300a is expressed on the majority of myeloid cells, including macrophages, 
dendritic cells, granulocytes, and bone-marrow-derived cultured mast cells, and a 
subset of B cells, but neither on T nor on NK cells.  

    Identifi cation of a Ligand for CD300a 

 To identify the ligand for CD300a, we generated a chimeric fusion protein of the 
extracellular portion of CD300a with the Fc portion of human IgG (CD300a-Fc) 
(Fig.  5a ). Although the CD300a-Fc did not stain any viable cells tested, we found that 
CD300a-Fc bound apoptotic cells (Fig.  5b ). A neutralizing monoclonal antibody (mAb) 
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  Fig. 5    CD300a-Fc binds phosphatidylserine on apoptotic cells. ( a ,  b ) Dexamethasone-treated 
mouse thymocytes were stained with APC-conjugated annexin V and mouse CD300a-Fc followed 
by an FITC-conjugated antibody against human IgG and PI in the presence of CaCl 2  and analyzed 
by fl ow cytometry. ( c ) Microtiter plates coated with PS were incubated with increasing concentra-
tions of CD300a-Fc, control protein-Fc, or human IgG, and PS binding was analysed by ELISA. 
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against mouse CD300a (TX41) specifi cally inhibited the CD300a-Fc binding to 
apoptotic cells. Solid-phase ELISA confi rmed that CD300a directly bound PS in a 
CD300a dose-dependent manner (Fig.  5c ). These results suggested that CD300a is 
a PS receptor [ 23 ].

       Function of CD300a 

    In Vitro Analyses of CD300a 

 Several receptors for PS are expressed on phagocytes and are involved in clearing 
apoptotic cells in physiological and pathological settings [ 24 – 29 ]. However, we 
found that CD300a does not mediate phagocytosis of apoptotic cells by macro-
phages [ 23 ]. 

 CD300a was tyrosine phosphorylated and co-immunoprecipitated with SHP-1, 
SHP-2, and SHIP after stimulation with pervanadate in the RBL-2H3 transfectant 
upon stimulation with pervanadate. We demonstrated that cross-linking CD300a 
and FcεRI with anti-CD300a mAb and IgE antibody, followed by co-ligation with a 
common secondary antibody, induced inhibition of IgE-mediated degranulation 
from RBL-2H3 transfectant expressing CD300a and BM-derived cultured mast 
cells [ 30 ]. 

 To address whether apoptotic cells affect mast cell activation via CD300a, we 
generated bone marrow (BM)-derived mast cells (BMMCs) from CD300a-defi cient 
or WT mice. WT or CD300a-defi cient BMMCs were cocultured with apoptotic 
cells in the presence of LPS. Although we did not detect any cytokines or chemo-
kines in the culture supernatants in the absence of stimuli, stimulation with LPS 
induced both WT and CD300a-defi cient BMMCs to produce TNF-α, IL-13, and 
MCP-1; however, CD300a-defi cient BMMCs produced them at signifi cantly higher 
concentrations, suggesting that CD300a-PS interaction inhibits these cytokines and 
chemokines production from BMMCs [ 23 ].  

    In Vivo Analyses of CD300a 

 TNF-α, IL-13, and MCP-1 produced by mast cells are chemoattractants for neutro-
phils and play an important role in bacterial clearance in a CLP peritonitis model in 
mice [ 31 – 34 ]. Therefore, we hypothesized that CD300a affects immune regulation 
by mast cells at the site of peritonitis, where large numbers of cells undergo apopto-
sis in the peritoneal cavity [ 35 ]. In fact, we observed that more than 10 % of cells in 
the peritoneal cavity 4 h after CLP were apoptotic cells, as determined by staining 
with annexin V. To test the hypothesis, we subjected WT and CD300a-defi cient 
mice to CLP and observed that  Cd300 a −/−  mice survived signifi cantly longer than 
did WT mice after CLP [ 23 ]. 
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 In the early phase of CLP peritonitis model, mast cells play an important role in 
recruitment of neutrophils into the peritoneal cavity by secretion of chemoattractants 
for neutrophils such as TNF-α and prolong the survival [ 32 ,  36 ]. We demonstrated 
that CD300a-defi cient BMMCs produced a greater amount of chemoattractants for 
neutrophils than did WT BMMCs in the peritoneal cavity after CLP by transfer 
experiments into  Kit   W−sh / W−sh   mice, which are defi cient in mast cells, before CLP [ 23 ]. 
Our results suggested that CD300a on mast cells was primarily responsible for the 
phenotype of prolonged survival of CD300a-defi cient mice after CLP (Fig.  6 ).

       Blockade of CD300a-PS Interaction Prolonged Survival of Mice After CLP 

 Because CD300a-defi cient mice survived longer after CLP, we examined whether 
an antibody against mouse CD300a (TX41) could have a prophylactic effect on 
CLP-induced sepsis. TX41 does not deplete myeloid cells, including mast cells. 
Intraperitoneal injection of mice with TX41 1 h before and 18 h after CLP signifi -
cantly increased neutrophil numbers in the peritoneal cavity, improved bacterial 
clearance 4 h after CLP [ 23 ], and prolonged survival compared with treatment with 
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  Fig. 6    CD300a inhibits the TLR4-mediated signal for production of chemoattractants for neutro-
phils. Upon binding to phosphatidylserine (PS) on apoptotic cells, CD300a mediates an inhibitory 
signal, resulting in the suppression of the TLR4-mediated signal for production of chemoattrac-
tants, including TNF-α, IL-13, and MCP-1, for neutrophils, which are involved in phagocytosis of 
Gram-negative bacteria       
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a control antibody (Fig.  7 ). Similarly, intraperitoneal injection with mutated milk fat 
globule EGF factor 8 at residue 89 (D89E MFG-E8), which is able to block the 
interaction between PS and CD300a, also prolonged survival of WT mice compared 
with treatment with PBS. Moreover, D89E MFG-E8 improved bacterial clearance 
of WT mice [ 23 ]. These results provided the formal evidence that PS on apoptotic 
cells affected the bacterial clearance. Thus, blocking the interaction between PS 
and its receptor CD300a is potentially a useful therapy for prophylaxis against 
 peritonitis- induced sepsis.

         Conclusion 

 Mast cells express pathogen-associated molecular patterns (PAMPs) as well as 
FcεRI, which mediate activation signal in mast cells, resulting in various chemo-
kines’ and cytokines’ secretion and degranulation from mast cells. Thereby, they are 
involved in a variety of allergic and non-allergic infl ammatory diseases. Here, we 
have described molecular and functional characteristic of Allergin-1 and CD300a, 
which are expressed on mast cells and inhibit activating signals mediated by FcεRI 
and TLR-4 in vitro and in vivo. Thus, these inhibitory immunoreceptors play an 
important role in regulation of mast cell-dependent infl ammatory responses. In fact, 
we showed that anti-CD300a neutralizing antibody prolonged survival in a sepsis 
mouse model. Further studies on regulation of mast cell activation by using these 
inhibitory immunoreceptor as targets for the therapy for allergy and infl ammation 
might be promising.     
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