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Abstract The survey team collected information on the development and use of
curriculum from 11 diverse countries around the world. The data show that a
common set of mathematics learning goals are established in almost all countries.
However, only a few countries report a substantial role for research in designing
and monitoring the development of their curriculum. The data also suggest great
variation among countries at the implementation level.
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Introduction

This report is based on an analysis of responses to survey questions on curriculum
standards and goals from 11 countries: Australia, Brazil, Egypt, England, China,
Honduras, Indonesia, Japan, Namibia, Peru, and six states in the United States.1 The
paper is organized in five sections: standards/curricular goals; relation of standards
to the status quo, the role of textbooks in enacting the curriculum, the role of
technology in classrooms, and teacher support related to standards/curricular goals.2
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The intent of the report is to allow others to examine their standards/curriculum
goals relative to those of other countries across the world.

Standards/Curricular Goals

Who Is Responsible for the Development of Standards/
Curricular Goals?

In most countries the ministry of education establishes curricular standards. In the
United States, however, control of education is a state’s right, and in many states,
for example, Montana, state constitutions give control of education to local districts.
The federal government influences education through funding initiatives, such as
the No Child Left Behind Act in 2001. The 2010 Common Core State Standards
(CCSS) initiative is not a federal program but has been adopted and is being
implemented by 45 of the 50 states and the District of Columbia. China also does
not have a mandated national curriculum. China Mainland, including Shanghai, has
common standards; Hong Kong, Taiwan and Macau create their own standards/
curriculum goals.

In many countries, standards/curricular goals are set by historical tradition or
cultural norms. For example, Namibia used the Cambridge curriculum when they
became independent in 1990 and only recently has begun to develop their its own
standards. Brazil ‘s standards are attributed to the history of the discipline, the
prescribed curricula, and the comparative analysis among national documents from
different historical periods and national and international documents. Some coun-
tries base their standards and guidelines on those of countries with high achieve-
ment scores on recent international exams. For example, both England and the
United States cite countries such those from the Pacific Rim and Finland as
resources for their new standards. Peru noted that an analysis of documents from
other countries in South American and from TIMSS, Programme for International
Student Assessment (PISA), and National Council of Teachers of Mathematics
(NCTM) contributed to the development of their Diseño Curricular Nacional
(CND) (National Curricular Design) (2009).

Why Standards?

Over time, many countries have changed from local standards to national standards.
For example, Brazil found that the lack of national standards contributed to unequal
opportunity for education. For much the same reason, the documented difference in
the rigor and quality of individual state standards, the state governors in the United
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States supported the development and adoption of the CCSS. The new US stan-
dards are intended to be substantially more focused and coherent.

Standards are viewed as political: i.e., Brazil suggests that mathematics curric-
ular goals depend more on political timing, election campaigns and government
administrations, where “the logic of an education agenda that transcends govern-
ments and politicians’ mandates, set as a goal for a democratic and developed
society, is not the rule” (Response to ICME 12 Curriculum Survey 2011, p. 6). In
the United States the two major political parties have different views on education,
its funding and its goals. This has recently given rise to the creation of publicly
funded schools governed by a group or organization with a legislative contract or
charter from a state or jurisdiction that exempts the school from selected state or
local regulations in keeping with its charter. Hong Kong also reported that writing
standards seems to be more politically based than research based. Many of the
changes in England’s National Curriculum (NC) are the result of criticism from the
current government that the NC is over-prescriptive, includes non-essential mate-
rial, and specifies teaching method rather than content. In Peru each new curricular
proposal is viewed as an adjustment to the prior curriculum. In this process, radical
changes do occur, such as changing the curriculum by capabilities (CND 2005) to
the curriculum by competencies (CND 2008) in the secondary education level.
These decisions are often the result of a policy change with each new government.

In most countries surveyed, a diverse team, including mathematics education
researchers, ministry of education staff, curriculum supervisors, and representatives
of boards of education are responsible for developing the standards/goals. In some
countries (Japan, Australia) teachers are involved, but in others the design teams are
primarily experts from universities, teaching universities or the ministry of
education (Indonesia, Egypt). The design of the framework for the National
Curriculum in England is carried out by a panel of four, not necessarily mathematics
educators, charged to reflect the view of the broader mathematics education
community including teachers.

What Is the Role of Research?

Research has different interpretations and meanings in relation to the development
and implementation of standards or curricula guidelines. One common response in
the surveys was to cite as research the resources used in preparing standards (for
example, other countries’ standards). In addition, the degree to which research is
used in compiling the standards often depends on the vision, perspectives and
beliefs of the team responsible for the development.

The use of research related to student learning in developing standards/curricular
goals is not common among the countries surveyed. A typical description of the
process was given by Hong Kong, where the development team might do a liter-
ature review and refer to documents of other countries, but the process is not
necessarily well structured and often depends on the expertise of the team members.
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England, however, noted that the first version of their National Curriculum (NC)
was largely based on the Concepts in Secondary Mathematics and Science project,
(Hart 1981) that sought to formulate hierarchies of understanding in 10 mathe-
matical topics normally taught in British secondary schools based on the results of
testing 10,000 children in 1976 and 1977. The NC was also based on the ILEA
Checkpoints (1979) and the Graded Assessment in Mathematics (1988–1990)
projects. The original research-based design of the NC had many unintended
consequences. Although the attainment targets were intended to measure learning
outcomes on particular tasks, the levels were used to define the order in which
topics should be taught, rather than paying attention to the development of concepts
over time. The processes of mathematics, originally called “Using and applying
mathematics” were defined in a general way related to progressions and levels that
made interpretation difficult. As a consequence, the NC was revised several times
and as of summer 2012 was again in the process of revision.

After a 1996 survey showed that social segmentation in Brazil seemed to be an
obstacle to access to a quality education, research led to the development of the
National Curricular Parameters in Brazil (1997). The Board of National Standards
for Education (Badan Standar Nasional Pendidikan) in Indonesia examined the
national needs for education, the vision of the country, societal demands, challenges
for the future, and used their findings in developing the curriculum (Ministry of
National Education 2006).

What Is the Nature of Standards?

In Brazil, Indonesia, Namibia and Peru, the standards/curricular frameworks are
general and provide overarching guidelines for the development of discipline
specific content. In the United States, Australia, and Japan, the mathematical
standards essentially stand alone, although supporting documents may illustrate
how the maths standards fit into the larger national education philosophy and
perspective. Some standards include process goals. For example, Australia includes
standards for four proficiencies (understanding, fluency, problem solving and
reasoning) based on those described in Adding It Up (Kilpatrick et al. 2001). The
new Australian standards want students to see that mathematics is about creating
connections, developing strategies, and effective communication, as well as
following rules and procedures. The United States CCSS has mathematical practice
standards specifying eight “habits of mind” students should have when doing
mathematics. In Brazil ideas such as “learn to learn”, “promote independence”,
“learn to solve problems” are being incorporated into new curricula. In Peru and
Indonesia the emphasis is primarily on the processes of problem solving, reasoning
and proof, and mathematical communication.
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In some cases standards reinforce the role of education in responding to the
needs of the country. For example, the Curriculum for Basic Education (1st–9th
grade) in Honduras (Department of Education 2003) was developed under three
axes: personal, national and cultural identity, and democracy and work. The four
pillars of lifelong learning defined by Delors (1996) (personal fulfilment, active
citizenship, social inclusion and employability/adaptability) were used to define
the mathematical content and methodological guides with problem solving as the
central umbrella. Namibia’s National Curriculum for a Basic Education outlines
the aims of a basic education for the society of the future and specifies a few very
general learning outcomes for each educational level (Namibia MoE 2008).

Standards span different sets of school grades or levels and differ in generality.
Some countries have grade specific standards for what students should know
throughout their primary and secondary schooling (i.e., US, Japan). Australia
specifies a common curriculum for grades 1–10 and course options for students in
upper secondary. Egypt and Honduras have curricular goals for students in grades
1–9 (age 14). At the high school level, Honduras focuses on post high school
preparation with more than 53 career- focused schools for students.

The development of fractions in Australia by the Australian Curriculum and
Assessment Reporting Authority (ACARA 2011), the Japanese Ministry of
Education, Culture, Sports, Science and Technology (MEXT 2008), the Ministry of
Education in Namibia (MoE 2005, 2006), and the US (CCSS 2010) illustrates the
difference in standards across countries In grade 1, the standards/goals in the US,
Namibia and Australia introduce words such as half, quarter and whole; this
happens in grade 2 in Japan. Both US and Japan treat fraction as a number on the
number line beginning in grade 3, emphasize equal partitioning of a unit and
consider a fraction as composed of unit fractions: 4/3 = 4 units of 1/3. Australia
suggests relating fractions to a number line only for unit fractions in grade 3, while
Namibia does not mention fractions in relation to the number line. Equivalent
fractions are taught in grade 4 in US, Japan, and Australia and in grade 6 in
Namibia. Addition and subtraction of fractions with like denominators occurs in
grade 4 in Japan, with unlike denominators in grade 5 in the US and Japan, and
grade 7 in Namibia and Australia. Australia and Namibia have fractions as parts of
collections in grade 2 and again in grade 4 in Namibia, but fractions as subsets of a
collection are not mentioned in the standards/goals in the US and Japan. Students
are expected to multiply and divide fractions in grade 5 in the US (with the
exception of division of a fraction by a fraction, which happens in grade 6), in grade
6 in Japan, and in grade 7 in Australia and Namibia.

The next section describes what is taught in classrooms and how this relates to
the standards/curricular goals of the country.
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Examining the Status Quo

How Are Standards/Goals Related to the Implemented
Curriculum?

Standards play different roles in shaping curriculum. For example, as described
above, Peru does not have National Standards, but the mathematics learning goals
for students are set out in the Curriculum National Design. With this as a guide,
each of the country’s regions develops a regional curriculum that considers the
diversity of cultures and languages. Similarly, since 2005 Indonesia has National
Standards for Education, which include standards for content in each subject area
and curriculum structure. Based on these and competency standards, every school
develops their own curriculum considering the vision of the school, local culture
and students’ background. In many of the US states, for example Massachusetts,
standards provide a framework with the details of the curriculum, including the
materials used for teaching and learning established at the district and school level.
Japanese schools base their curricula on the national Course of Study (CS), a
“Teaching Guide,” resources and guidelines developed by local boards of education
in the prefecture, and planning guides from textbook companies. Adaptions are
sometimes made based on the situation of the school and its students. When the
prefectural or the municipal boards of education develop their own model plans,
such as the “nine year schooling system” (ShoChu-Ikkan-Kyoiku), the school in the
prefecture or the municipality follows those plans and makes revisions to the CS
accordingly.

In some instances, countries turn to other countries with more resources for
support in implementing the standards. For example, the Japan International
Cooperation Agency supported Honduras in developing curriculum and resources
for teachers. Macau uses resources from China Mainland, Hong Kong and Canada.

What Drives the Implemented Curriculum?

Standards, textbooks, or high-stakes examinations seem to drive what happens in
classrooms in the countries surveyed. While Hong Kong indicated that standards
play that role, teachers in Brazil, Taiwan, Egypt, Honduras, and Japan rely on
textbooks, and China mainland cited both textbooks and practice books.

In several countries high stakes examinations are significant in determining what
teachers actually teach. In the United States, with the exception of Montana, the
states surveyed indicated they followed the curriculum based on the state standards,
but in reality most teachers teach only to what they know from experience will be
tested (Au 2007). The implemented curriculum in England also seems to be shaped
by what is assessed, which determines the nature of the tasks students meet in
classrooms. The curriculum in Indonesia is determined both by textbooks and the
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national examination. Entrance examinations of leading universities impact the
curriculum in Brazil and Macau (95 % of the students in Macau attend private
schools to prepare for university).

How Do Countries Monitor Implementation
of the Curriculum?

Countries use several strategies for monitoring and evaluating the enacted curric-
ulum: large scale research studies conducted by the government or a private agency,
small focused research studies on what is being taught and learned, student
achievement on high stakes assessments, and approval of textbooks teachers use to
deliver the curriculum. Relatively large-scale research studies on students’
achievement are carried out in Honduras under the auspices of the Inter-American
Development Bank and USAID. The Ministry of Education in Brazil investigated
the incorporation of the National Curricular Parameters (PCN) into textbooks and
other materials supporting teachers’ work, but little research has been dedicated to
any of the various stages in the process of curriculum development including the
curriculum enacted in classrooms.

Japan administers national assessments on a regular basis in mathematics and
Japanese for students in the sixth year of elementary school and the third year of
lower secondary school. The results often reveal challenges in knowledge and skill
utilization, which lead to revisions in educational policies and classroom lesson
plans. These assessments are viewed as invaluable in monitoring and revising the
curriculum.

In the United States, perhaps the most significant change in the last decade has
been the increasing role of high stakes assessments measuring student achievement
in elementary/secondary education. Every year each state assesses each student in
grades 3–8 and assesses students once in grades 9–12 using a common state
assessment, typically consisting of multiple-choice procedural questions. The
results are used to evaluate teachers, administrators, and the curriculum. Little or no
evidence exists correlating success on these tests with curriculum (or any other
factor). This has not deterred federal and state levels policy makers from making
use of the assessment results in these ways. The emphasis on high stakes assess-
ment and accountability are seen in England as well, although it is not clear that the
results have contributed to changes in the curriculum or standards.

How Are Changes Made to the Standards/Curricular Goals?

Change occurs in different ways. In the US, the most recent change was brought
about by entities outside of the government and teachers. Japan bases changes in
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goals/standards on research examining student learning. Standards teams summa-
rize, examine, and investigate the results of research studies on what has been
achieved though the current Course of Study (CS) and the results of pilot trials of
new goals/standards in designated “research schools” (Kenkyu-Kaihatsu-Gakko).
They monitor emerging trends, societal needs and international assessments. For
example, the most recent revisions to the CS in Japan for elementary and lower
secondary schools were in March 2008 and for upper secondary and special needs
education in March 2009. In this CS, the aim of mathematics education stresses the
student’s abilities to express their thinking and utilize mathematics in daily social
life. In the CS for lower secondary schools, a new curricular strand “Use of Data”
was added to enrich the content of statistics in the compulsory education. Inter-
national mathematics assessments have helped statistics became a requirement in
upper secondary schools. Taiwan and Hong Kong use some research supported by
the government to construct and modify the curriculum as well as to inform teacher
professional development and resource materials.

The Role of Textbooks

Survey responses indicated commercial publishers, private organizations, and
government related organizations were involved in textbook development and
distribution but to different degrees. The use of supplementary materials or teacher
createdworksheets was common inmany of the countries.Many countries mentioned
national standards/curricular guidelines as tools used in textbook development.

What is the approval or vetting process for textbooks?
In most of the countries with the exception of England and some of the states in

the United States, some formal approval is necessary before texts can be used. For
example, in Japan, textbooks are edited for adherence to the national curriculum
and must be examined and authorized by MEXT. However, each textbook company
can design and develop a textbook series with a final draft submitted to MEXT for
examination and subsequent revision. During the development process, profes-
sionals (such as university researchers and teachers) play a large role in textbook
design and development.

Many countries (China, Indonesia, Australia) have multiple textbook options for
each grade level. Textbook adoption procedures vary, with decisions made at the
national level (Brazil), state level (North Carolina), district level (Japan for
elementary and lower secondary), school level (Japan for upper secondary) or even
at an individual level (Taiwan). For the most part, the content would be the same
across textbook options for each grade level since standards were the main drivers
of the textbook development. Textbooks differ in the extent to which the contents
are ordered and compiled but often have a similar style. Teachers in England make
less use of textbooks than many other countries, and there is no uniform adoption
procedure (Askew et al. 2010). In addition, public examination bodies produce
textbooks that contain exercises from compilations of past examination questions
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that are popular with British teachers who see them as preparation for high-stakes
assessment.

What Is the Role of Research in the Development
of Textbooks?

Most countries mentioned an indirect or no use of research in textbook development.
In the United States and England textbooks that are developed through large projects
typically involve some research. In the United States, some curriculum materials
(such as CMP 2012) are research based and developed with government or other
sources of funding. Designers study trialling in classrooms, identify issues that
emerge, what is working and not working to inform the next iteration of materials.
The cycle may have several iterations, depending on funding and on commercial
sales. (If the materials market poorly, the development is quickly terminated.)

Textbooks authored by individual teachers or commercial publishers did not
seem to be noticeably influenced by pilot studies, research or research related to
learning. In organizing textbook content, Japan makes use of research on high
stakes assessment (the National Assessment of Academic Ability and other
assessments implemented by local governments), the content and sequence of
the old textbooks, and information obtained from teachers on the usability of the
textbook and on the students’ responses to the textbook problems during the lesson.
In Brazil, some authors of mathematics textbooks use research, or rely on research
results, to develop books.

Focused research projects on aspects of the curriculum, supplements to illustrate
the standards, pilot studies of initiatives, action research and/or small seed projects are
common in Hong Kong and Japan. In the United States, research studies on student
learning typically focus on specific content areas or the development of a single
concept, such as understanding cardinality (i.e., Clements 2012) and have little direct
connection to the curriculum. Graduate students carry out many such projects in the
United States and in other countries such as Brazil, England and Australia.

The Role of Technology in the Curriculum

What Is the Relationship Between Standards/Curricular
Goals and Technology?

From a broad perspective, interacting with technology is seen in most countries as a
critical life skill. In Peru, for example, the aim is to develop students’ “skills and
attitudes that will enable them to use and benefit from ICT … thus enhancing the
autonomous learning throughout life” (MoE 2009, p. 17). The National Curricular
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Parameters (1997) in Brazil cite the value of technology as important for preparing
students for their work outside of school. Australia defines Information and
Communication Technology (ICT) as one of seven basic capabilities, i.e., the
“skills, behaviours and dispositions that, together with curriculum content in each
learning area and the cross curriculum priorities, will assist students to live and
work successfully in the twenty-first century” (ACARA 2012, p. 10) Namibia has
much the same statement in their National Curriculum for Basic Education
emphasizing creating and learning to use software such as Word or Excel. Hong
Kong’s Technology Learning Targets calls for technology to enhance learning and
teaching; provide platforms for discussions; help students construct knowledge; and
engage students in an active role in the learning process, understanding, visualizing
and exploring math, experiencing the excitement and joy of learning maths.

Some countries such as Namibia and Peru do not outline how technology should
be used in the mathematics curriculum. Others describe the use of technology in
mathematics classrooms in very general terms. Indonesia, for example, calls for the
use of technology to develop understanding of abstract ideas by simulation and
animation. In mainland China, the Nine Year Compulsory Education Mathematics
Curriculum Standards emphasized the use of technology to benefit student under-
standing of the nature of mathematics. In Macau the standards call for educators to
consider the impact of computers and calculators on the content and approaches
in mathematics teaching and learning. In Taiwan, technology should support
understanding, facilitate instruction, and enhance connections to the real world.
England’s curriculum documents are more specific, consistently encouraging the
use of appropriate ICT tools to solve numerical and graphical problems, to represent
and manipulate geometrical configurations and to present and analyse data.

The standards/curricular goals of some countries provide general goals for
incorporating technology into the curriculum and then describe specific instances.
For example, the United States Common Core State Standards (2010) for mathe-
matical practices call for students to visualize the results of varying assumptions,
exploring consequences, and comparing predictions; engage students in activities
that deepen understanding of concepts; create opportunities for and learning—
comparing and contrasting solutions and strategies, creating patterns, generating
simulations of problem situations. These generalizations are followed by statements
throughout, such as in grade 7, “Draw (freehand, with ruler and protractor, and with
technology) geometric shapes with given conditions” (p. 50) or in algebra, “find the
solutions approximately, e.g., using technology to graph the functions, make tables
of values, or find successive approximations” (p. 66). The new Australian Math-
ematics Curriculum specifically calls for the use of calculators to check solutions
beginning in grade 3 and, by year 10 includes general statements about the use
of technology, “Digital technologies, such as spreadsheets, dynamic geometry
software and computer algebra software, can engage students and promote under-
standing of key concepts (p. 11)”. The curriculum provides specific examples: i.e.,
students should “Solve linear simultaneous equations, using algebraic and graphical
techniques including using digital technology (p. 61).”
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Japan has explicit learning goals for the use of technology and its Course of
Study provides a guide for teachers that describes how calculators and computers
can be used, with specific grade level examples under three headings; (1) as tools
for calculation, (2) as teaching materials, and (3) as information/communication
networks.

How Is Technology Used in Classrooms?

Respondents cited general issues related to the use of ICT. In England, for example,
inspection reports based on evidence from 192 schools between 2005 and 2007
criticized schools’ use of ICT, finding effective usage was decreasing and the
potential of ICT to enhance the learning of mathematics rarely realized. In Brazil,
the number of schools equipped with technological resources is increasing; how-
ever, programs using the technology are still restricted to pilot projects.

In Japan a 2010 survey on ICT facilities found that computers (98.7 %), digital
cameras (98.1 %), and CD players (95.2 %) were used almost daily or at least two
to three times a week (MEXT 2011). Yet, results from international studies such as
TIMSS indicate little actual computer use in Japanese mathematics classrooms. At
least one computer is typically available in classrooms in Egypt, Peru, China
mainland and Macau but rarely used for mathematics instruction. Honduras has a
one laptop per child program, but the lack of suitable mathematics related activities
limits the use of laptops in classrooms. This was also identified as a problem in
England. Brazil reported that a preliminary analysis of research conducted in the
country suggests that technologies are used very little. Teachers are uncomfortable
with laptops and have few resources for using them.

The availability of technological tools for students varied among countries and
within countries. Some have class sets of calculators available; others expect
students to provide their own (China Mainland, Macau, Hong Kong). Some schools
have computer labs; some have class sets of laptops, while others use a single
computer with overheard display (common in China Mainland). Many schools in
England have a separate computer suite, where pupils learn to use ICT as a
mathematical tool, for example using spreadsheets to generate number patterns or
present statistical information but their use to enhance mathematics learning is
limited.

Some use computers to provide practice procedures and skills (England, Macau,
North Carolina). Some (China mainland, Taiwan, North Carolina) use technology
as a way to differentiate instruction. North Caroline describes using interactive sites
that allow the learner to manipulate data and objects and then provide immediate
feedback; video, games, and other learning activities for struggling students, and
providing advanced students with online activities that challenge and invite further
learning; real world math practice using tools like Google Earth for measurement,
stock market simulations, digital cameras for capturing real-life examples of
geometric figures, Skype or other conferencing tools to interact with scientists and
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mathematicians. Formative and summative assessment was also indicated as a way
of bringing technology into the classroom.

Interactive whiteboards are becoming increasingly common, although their role
in learning mathematics is not well documented. They are heavily used in Great
Britain (in about 75 % of schools) (Schachter 2010), and usage is growing in Japan
from 16,403 in 2009 to 60,474 in 2011 (MEXT 2011) and the United States with
51 % of classrooms (Gray 2010). According to England an advantages of inter-
active white boards include high-quality, diagrams and relevant software to support
learning through, for example, construction of graphs or visualization of transfor-
mations. A negative effect of interactive whiteboards seemed to be a reduction in
pupils’ use of concrete manipulatives.

Teacher Support

What Support Is Provided to Teachers to Help Them Know
the Curriculum?

The survey results from Brazil and Egypt indicated minimum support is provided to
teachers to help them learn about the curriculum. Brazil noted the materials are
distributed to teachers usually without any actions involving the teachers. The other
countries surveyed provide some form of support for teachers although the amount
and form as well as who was in charge of providing support differs. Some countries
(i.e., England, China, Japan) have ministry driven efforts to help teachers learn
about the curriculum. For example, in Japan, once a new course of study (CS) is
determined, the Ministry of Education, using a “trainer of trainers” process,
conducts “transmission lectures” (Dentatsu-Koshu) on the principles and content of
the new CS to superintendents on the prefectural boards of education who in turn
give lectures to the superintendents on the municipal boards of education. The local
superintendents then give lectures to all schoolteachers within a period of three
years. The Ministry makes information available to teachers by showing concrete
teaching examples, especially for large changes from an old to a new course of
study. A variety of research meetings and conferences as well as lectures and
symposiums are offered to educate teachers on the new CS.

A similar trainer of trainers process organized by the Ministry is also used in
Honduras and Peru, although in Peru, some question the effectiveness of the
process, given the results of five evaluations available on the web page of the
Ministry of Education. Since 2010 the Ministry of Education in Mainland China has
invested considerable resources to help teachers (over 1.1 million teachers at the
primary level) understand the basic ideas of the curriculum standards and main
content of the curriculum. The work is organized and financed by the Ministry but
carried out at the local level. In Hong Kong, the Ministry of Education organized a
professional development series, “Understanding the Curriculum”, to explain the
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breadth and width of the curriculum. Exemplars, usually a product of collaborative
research with schools, are used for illustration.

Other countries have a blend of ministry designed strategies and local initiatives.
In Indonesia, the local (district and province) as well as central governments
facilitate in-service training for teachers helping them to understand more about the
curriculum. District school supervisors, advisors and/or experts from universities do
the training and aim to improve the understanding of the Standards of Content,
Process and Evaluation. Workshops and sessions on the standards are often orga-
nized and provided at the local level by university educators, school districts,
curriculum consortia, and non-profit partners for all educators in a region of a state.
Web based resources are provided in several countries (Honduras, China Mainland,
Hong Kong, Japan). North Carolina provides webinars on the structure, organiza-
tion, and content of the state standards, and Ohio provides online resources and
disseminates curriculum models and other support documents to districts.

What Support Is Provided to Teachers to Help Them Enact
the Curriculum?

In some countries support for instruction related to curriculum comes from the
ministry of education (China Mainland, Hong King, England, Peru, some states in
the United States) and in others it is provided through a combination of ministry of
education and local initiatives or at the local level. Support primarily takes three
forms: resources, professional development and mentoring.

1. Resources: Supplemental resources, materials created by outside research-based
projects, and documents based on the state/national curriculum or standards are
often designed and delivered through university programs. In some areas in
Brazil, teachers are given written supporting material, videos, and learning
resources, and technical pedagogical teams often help teachers in the imple-
mentation of the curriculum.

2. Professional Development: A variety of forms of professional development were
also cited as ways to help teachers enact the curriculum. In Taiwan the cur-
riculum development council provides lectures at the school level, instruction
counselling groups and in-service workshops. Teacher training in Indonesia
helps teachers develop teaching plans and provides strategies, methods, and
approaches that have been adopted from the current research and theory.
Honduras uses a “learn by doing” model for in-service, and many districts in the
United States support mathematics “learning communities”. Some form of
collaborative lesson planning is typical in several of the countries (Japan,
Macau, some states in the United States). In many countries (i.e., Hong Kong,
United States) universities offer a variety of programs for in-service teacher
education; graduate programs are sites for teachers’ professional development.
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Publishers also organize and deliver professional development workshops
(China Mainland, United States).

Japan has a structured system of support. Local boards of education provide
training for beginning teachers and for those with five, 10 and 20 years of teaching
experiences as well as a variety of professional, non-mandatory training courses to
enhance teaching ability and skills; for example, the Tochigi prefectural board of
education offers 50 courses a year. Recently, a new teacher training/licensing
system has been employed. Ordinary and special licenses are valid for 10 years;
teachers need to renew their licenses by attending training courses every 10 years,
given by general universities and teacher-training universities. These training
courses are required to offer information based on the most recent research.

3. Mentoring: A third form of support in some countries is individualized, such as
the Strategic Program for Learning Achievements in Peru where, since 2010,
classroom teachers working with children up through the first two years of Basic
Education (grades 6–8) receive advice from a specialist teacher. In the United
States, many local districts have mathematics coaches who work with teachers,
particularly at the elementary level. Hong Kong has dedicated “research
schools” that mentor other schools in the implementation of the curriculum. A
slightly different strategy is used in Honduras where teachers travel to Japan to
see how the curriculum is enacted in classrooms and to learn about mathematics
education.

While some cite a research base for professional development, the connection to
research is often very limited (Hong Kong, Massachusetts and North Carolina in the
United States). England provided ministry organized teacher support designed with
a research perspective and later studies investigated the success of the implemen-
tation. The National Strategies (DFE 2011) were, from 1998 until 2011, the main
delivery vehicle for supporting teachers to understand and implement government
teaching and learning priorities. The programme, originally called the National
Numeracy Strategy (NNS), was aimed at primary education but was later expanded
to include secondary schools with the National Mathematics Strategy (NMS). The
National strategies conducted a massive professional development programme,
running courses and providing publications, advice and professional development
materials such as videos to schools. These also included guidance on course
planning, teaching and learning, assessment, subject leadership, inclusion, inter-
vention and mathematics specific content. Detailed assessment guidance, lesson
plans, and intervention programs were all provided (DFE 2011). An annotated
bibliography of research evidence claimed to underpin the National Strategies
(Reynolds and Muijs 1999). However, the research evidence was described as
ambivalent and relatively scarce (Brown et al. 2003).

Evaluations of the implementation of the NNS were carried out and indicated
some success, but this was contested by many who asserted the gains on National
Tests attributed to the programme may be attributed to a careful choice of statistical
baseline and to teachers’ increasing tendency to orient their teaching towards the
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tests. When alternative tests were used, smaller gains were noted. Teaching seemed
to have changed mainly in superficial ways, and some evidence suggested that in
almost no cases were there ‘deep’ changes. (Brown et al. 2003, p. 668). In 2008 an
inspection service found weaknesses in basic teaching skills and had difficultly
assessing which initiatives worked and which did not. The frequent introduction of
new initiatives, materials and guidance led to overload and diminished the potential
effectiveness of each individual initiative (Ofsted 2010). As of March 2012, the
Coalition Government abolished the National Strategies programme, and future
professional development is decentralized and in the hands of individual schools.

Concluding Remarks

The survey data shows us that a common set of mathematics learning goals are
established in almost all countries with a very minor role for research in designing
and monitoring the development of their curriculum. Standards, textbooks, or high-
stakes examinations seem to drive what happens in classrooms. Countries vary
greatly in the amount of support provided to teachers in learning about and
implementing the curriculum specified in their standards/goals.

Survey Responders

Australia: Peter Sullivan (Monash University)
Brazil: This report is a result of the collaboration between the Group of Studies
and Research on Mathematical Education and Education (USP) & Organization,
Curriculum Development and Teacher Education (PUCSP)

Vinício de Macedo Santos (University of Sao Paulo),
Célia Maria Carolino Pires (Pontifícia Universidade Católica de São Paulo),
Elenilton Vieira Godoy (Pontifícia Universidade Católica de São Paulo and
Centro Universitário Fundação Santo André),
João Acácio Busquini (Secretaria de Estado da Educação de São Paulo),
José Carlos Oliveira (Costa Centro Universitário Fundação Santo André).

China: China Mainland—Jiansheng Bao, Xuefen Gao, Likun Sun & Xiaoli Ju
(East China Normal University, Shanghai)

Taiwan—Hsin-Mei E. Huang (Taipei Municipal University of Education)
Hong Kong—Polly Lao (Hong Kong Bureau)
Macau—Chunlian Jiang (University of Macau)

Egypt: Fayez Mina (Ain Shams University)
Honduras: Libni Berenice Castellón (Universidad Pedagógica Nacional
Francisco Morazán.)
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Indonesia: Edy Tri Baskoro (Board of National Standard for Education)
Japan: Keiko Hino (Utsunomiya University)
Namibia: Karen D’Emiljo (Otjiwarongo Secondary School)
Peru: Martha Rosa Villavicencio Ubillus (National University San Marcos);
Olimpia Rosa Castro Mora (Ministry of Education)
United Kingdom, England: Malcolm Swan, Sheila Evans (University of
Nottingham)
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Background

Changing mathematics curricula and their emphases, lower numbers of student
enrolments in undergraduate mathematics programmes (Barton and Sheryn 2009;
and http://www.mathunion.org/icmi/other-activities/pipeline-project/) and changes
due to an enlarged tertiary entrant profile (Hockman 2005; Hoyles et al. 2001), have
provoked some international concern about the mathematical ability of students
entering university (PCAST 2012; Smith 2004) and the traumatic effect of the
transition on some of them (Engelbrecht 2010). Decreasing levels of mathematical
competency have been reported with regard to essential technical facility, analytical
powers, and perceptions of the place of precision and proof in mathematics
(Brandell et al. 2008; Hourigan and O’Donoghue 2007; Kajander and Lovric 2005;
Luk 2005; Selden 2005). The shifting profile of students who take service math-
ematics courses has produced a consequent decline in mathematical standards (Gill
et al. 2010; Jennings 2009). However, not all studies agree on the extent of the
problem (Engelbrecht and Harding 2008; Engelbrecht et al. 2005) and James et al.
(2008) found that standards had been maintained. The recent President’s Council of
Advisors on Science and Technology (PCAST) (2012) states that in the USA alone
there is a need to produce, over the next decade, around 1 million more college
graduates in Science, Technology, Engineering, and Mathematics (STEM) fields
than currently expected and recommends funding around 200 experiments at an
average level of $500,000 each to address mathematics preparation issues. This
helps to place the transition situation above in context and emphasises the impor-
tance of addressing the issues arising.

We found relatively few papers in the recent literature related directly with our
brief to consider the role of mathematical thinking and concepts related to transi-
tion. Hence we also reviewed literature analysing the learning of mathematics on
one or both sides of the transition boundary. To achieve this we formed the
somewhat arbitrary division of this mathematics into: calculus and analysis; abstract
algebra; linear algebra; reasoning, argumentation and proof; and modelling,
applications and applied mathematics, and report findings related to each of these
fields. We were aware that other fields such as geometry and statistics and prob-
ability should have been included, but were not able to do so.

The Survey

We considered it important to obtain data on transition from university mathematics
departments. We wanted to know what topics are taught and how, if the faculty
think the transition should be smooth, or not, their opinions on whether their
students are well prepared mathematically, and what university departments do to
assist those who are not. Hence, we constructed an anonymous questionnaire on
transition using an Adobe Acrobat pdf form and sent it internationally by email to
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members of mathematics departments. The 79 responses from 21 countries were
collected electronically. The sample comprised 56 males and 23 females with a
mean of 21.9 years of academic teaching. Of these 45 were at the level of associate
professor, reader or full professor, and 30 were assistant professors, lecturers or
senior lecturers. There were 5 or more responses from each of South Africa, USA,
New Zealand and Brazil.

Clearly the experience for beginning university students varies considerably
depending on the country and the university that they attend. For example, while the
majority teaches pre-calculus (53, 67.1 %), calculus (76, 96.2 %) and linear algebra
(49, 62 %) in their first year, minorities teach complex analysis (1), topology (3),
group theory (1), real analysis (5), number theory (9), graph theory (12), logic (15),
set theory (17) and geometry (18), among other topics. Further, in response to ‘Is the
approach in first year mathematics at your university: Symbolic, Procedural; Axi-
omatic, Formal; Either, depending on the course.’ 21 (26.6 %) answered that their
departments introduce symbolic and procedural approaches in first year mathematics
courses, while 6 replied that their departments adapt axiomatic formal approaches.
Most of the respondents (50, 63.3 %) replied that their approach depended on the
course.

When asked ‘Do you think students have any problems in moving from school
to university mathematics?’ 72 (91.1 %) responded “Yes” and 6 responded “No”.
One third of those who answered “Yes” described these problems as coming from a
lack of preparation in high school, supported by comments such as “They don’t
have a sufficiently good grasp of the expected school-mathematics skills that they
need.” Further, two thirds of those who answered “Yes” described the problems as
arising from the differences, such as class size and work load, between high school
classes and university, with many specifically citing the conceptual nature of uni-
versity mathematics as being different from the procedural nature of high school
mathematics. Comments here included “university is much more theoretical” and
“Move from procedural to formal and rigourous [sic], introduction to proof,
importance of definitions and conditions of theorems/rules/statements/formulas.”
There is also a need to “…deal with misconceptions which students developed in
secondary school…We also have to review secondary school concepts and pro-
cedures from an adequate mathematical point of view.” Other responses cited:
students’ weak algebra skills (12.5 %); that university classes are harder (5 %);
personal difficulties in adjusting (10 %); poor placement (3 %); and, poor teaching
at university (1 %).

Looking at specific mathematical knowledge, we enquired ‘How would you rate
first year students’ mathematical understanding of each of the following on entry to
university?’ With a maximum score of 5 for high, the mean scores of the responses
were algebra or generalised arithmetic (3.0), functions (2.8), real numbers (2.7),
differentiation (2.5), complex numbers (1.9), definitions (1.9), vectors (1.9),
sequences and series (1.9), Riemann integration (1.8), matrix algebra (1.7), limits
(1.7) and proof (1.6). The mathematicians were specifically asked whether students
were well prepared for calculus study. Those whose students did not study calculus
at school rated their students’ preparation for calculus at 2.1 out of 5. Those whose
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students did, rated secondary school calculus as preparation to study calculus at
university at 2.4, and as preparation to study analysis at university at 1.5. These
results suggest that there is some room for improvement in school preparation for
university study of calculus and analysis.

Since the view has been expressed (e.g., Clark and Lovric 2009) that, rather than
being ‘smooth’, the transition to university should require some measure of struggle
by students, we asked ‘Do you think the transition from secondary to university
education in mathematics should be smooth?’ Here, 54 (68.4 %) responded “Yes”
and 22 (27.8 %) responded “No”. Of those who responded “No”, many of the
comments were similar to the following, expressing the belief that change is a
necessary part of the transition: “Not necessarily smooth, because it is for most
students a huge change to become more independent as learners.” and “To learn
mathematics is sometimes hard.” Those who answered yes were then asked ‘what
could be done to make the transition from secondary to university education in
mathematics smoother?’ The majority of responses mentioned changes that could
be made at the high school level, such as: encourage students to think indepen-
dently and abstractly; change the secondary courses; have better trained secondary
teachers; and, have less focus in secondary school on standardised tests and pro-
cedures. A few mentioned changes that could be made at the university, such as:
better placement of students in classes; increasing the communication between
secondary and tertiary teachers; and, addressing student expectations at each level.
This lack of communication between the two sectors was highlighted as a major
area requiring attention by the two-year study led by Thomas (Hong et al. 2009).

Since one would expect that, seeing students with difficulties in transition,
universities would respond in an appropriate manner (see e.g. Hockman 2005), we
asked ‘Does your department periodically change the typical content of your first
year programme?’ 33 (41.8 %) responded “Yes” and 44 (55.7 %) “No”. The
responses to the question ‘How does your department decide on appropriate content
for the first year mathematics programme for students?’ by those who answered yes
to the previous question showed that departments change the content of the first
year programme based on the decision of committees on a university or department
level. Some respondents said that they change the course content for the first year
students based on a decision by an individual member of faculty who diagnoses
student needs and background. 15 of the 35 responded that their universities try to
integrate student, industry, and national needs into first year mathematics courses.
The follow-up question ‘How has the content of your first year mathematics courses
changed in the last 5 years?’ showed that 35 had changed their courses in the last
5 years, but 10 of these said that the change was not significant. 17 out of the
35 respondents reported that their departments changed first year mathematics
courses by removing complex topics, or by introducing practical mathematical
topics. In some of the courses, students were encouraged to use tools for calculation
and visualisation. In contrast, six departments increased the complexity and the
rigour of their first year mathematics courses.

The survey considered the notion of proof in several questions. In response to
‘How important do you think definitions are in first year mathematics?’ 52 (65.8 %)
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replied that definitions are important in first year mathematics, while 15 presented
their responses as neutral. Only 8 respondents replied that definitions are not
important in first year mathematics. Responses to the question ‘Do you have a
course that explicitly teaches methods of proof construction?’ were evenly split
with 49.4 % answering each of “Yes” and “No”. Of those who responded “Yes”,
15 (38.4 %) replied that they teach methods of proof construction during the first
year, 23 (58.9 %) during the second year and 5 (12.8 %) in either third or fourth
year. While some had separate courses (e.g. proof method and logic course) for
teaching methods of proofs, many departments teach methods of proofs tradition-
ally, by introducing examples of proof and exercises in mathematics class. Some
respondents replied that they teach methods of proof construction in interactive
contexts, citing having the course taught as a seminar, with students constructing
proofs, presenting them to the class, and discussing/critiquing them in small size
class. One respondent used the modified Moore method in interactive lectures.
Looking at some specific methods of introducing students to proof construction was
the question ‘How useful do you think that a course that includes assistance with
the following would be for students?’ Four possibilities were listed, with mean
levels of agreement out of 5 (high) being: Learning how to read a proof, 3.7;
Working on counterexamples, 3.8; Building conjectures, 3.7; Constructing defini-
tions, 3.6. These responses appear to show a good level of agreement with
employing the suggested approaches as components of a course on proof con-
struction. It may be that these are ideas that the 49.4 % of universities that currently
do not have a course explicitly teaching proof construction could consider imple-
menting as a way to assist transition.

Mathematical modelling in universities was another topic our survey addressed.
In response to the questions “Does your university have a mathematical course/
activity dedicated to mathematical modeling and applications?” and “Are mathe-
matical modelling and applications contents/activities integrated into other mathe-
matical courses?”, 44 replied that their departments offer dedicated courses for
modelling, while 41 said they integrate teaching of modelling into mathematics
courses such as calculus, differential equations, statistics, etc. and 7 answered that
their university does not offer mathematics courses for mathematical modelling and
applications. Reasons given for choosing dedicated courses include: the majority of
all mathematics students will end up doing something other than mathematics so
applications are far more important to them than are detailed theoretical develop-
ments; most of the mathematics teaching is service teaching for students not
majoring in mathematics so it is appropriate to provide a relevant course of mod-
elling and applications that meets the needs of the target audience; if modelling is
treated as an add-on then students may not learn mathematical modelling methods.
Those who chose integrated courses did so because students need to be equipped
with a wide array of mathematical techniques and solid knowledge base. Hence, it
is appropriate for earlier mathematics courses to contain some theory, proofs,
concepts and skills, as well as applications.

Considering what happens in upper secondary schools, 26 (33 %) reported that
secondary schools in their location have mathematical modelling and applications
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integrated into other mathematical courses, with only 4 having dedicated courses.
44 (56 %) said that there were no such modelling courses in their area. When asked
for their opinion on how modelling should be taught in schools, most of the answers
stated that it should be integrated into other mathematical courses. The main reasons
presented for this were: the many facets of mathematics; topics too specialised to
form dedicated courses; to allow cross flow of ideas, avoid compartmentalization;
and students need to see the connection between theory and practice, build meaning,
appropriate knowledge. The question ‘What do you see as the key differences
between the teaching and learning of modelling and applications in secondary
schools and university, if any?’ was answered by 33 (42 %) of respondents. The key
differences pointed out by those answering this question were: at school, modelling
is poor, too basic and mechanical, often close implementation of simple statistics
tests; students have less understanding of application areas; university students are
more independent; they have bigger range of mathematical tools, more techniques;
they are concerned with rigour and proof. Asked ‘What are the key difficulties for
student transition from secondary school to university in the field of mathematical
modelling and applications, if any?’ the 35 (44 %) university respondents cited: lack
of knowledge (mathematical theory, others subjects such as physics, chemistry,
biology, ecology); difficulties in formulating precise mathematical problems/
interpreting word problems/understanding processes, representations, use of
parameters; poor mathematical skills, lack of logical thinking; no experience from
secondary schools; and lack of support. One message for transition is to construct
more realistic modeling applications for students to study in schools.

In order to investigate how universities respond to assist students with transition
problems we enquired “Do you have any academic support structures to assist
students in the transition from school to university? (e.g., workshops, bridging
courses, mentoring, etc.).”, and 56 (71 %) replied ‘Yes’ and 22 ‘No’. Of those
saying yes, 34 % have a bridging course, 25 % some form of tutoring arrangement,
while 23 % mentioned mentoring, with one describing it as a “Personal academic
mentoring program throughout degree for all mathematics students” and another
saying “We tried a mentoring system once, but there was almost no uptake by
students.” Other support structures mentioned included ‘study skills courses’,
‘maths clinics’, ‘support workshops’, ‘pre-course’, ‘remedial mathematics unit’,
and a ‘Mathematics Learning Service (centrally situated), consulting & assignment
help room (School of Maths). The MLS has a drop-in help room, and runs a series
of seminars on Maths skills. These are also available to students on the web.’ Others
talked of small group peer study, assisted study sessions, individual consultations,
daily help sessions, orientation programmes and remedial courses. There is some
evidence that bridging courses can assist in transition (Varsavsky 2010), by
addressing skill deficiencies in basic mathematical topics (Tempelaar et al. 2012)
and building student confidence (Carmichael and Taylor 2005). Other successful
transition courses (e.g., Leviatan 2008) introduce students to the mathematical
“culture” and its typical activities (generalizations, deductions, definitions, proofs,
etc.), as well as central concepts and tools.
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Overall the survey confirmed that students do have some difficulties in transition
and these are occasionally related to a deficit in student preparation or mathematical
knowledge. However, there are also a number of areas that universities could
address to assist students, such as adjusting the content of first year courses, and
instituting a course on proving and proof (where this doesn’t already exist) and
constructing appropriate bridging courses.

Literature Review

A number of different lenses have been used to analyse the mathematical transition
from school to university. Some have been summarised well elsewhere (see e.g.,
Winsløw 2010) but we preface our discussion with a brief list of the major theo-
retical perspectives we found in the transition-related literature. One theory that is in
common use is the Anthropological Theory of Didactics (ATD) based on the ideas
of Chevallard (1985), with its concept of a praxeology comprising task, technique,
technology, theory. ATD focuses on analysis of the organisation of praxeologies
relative to institutions and the diachronic development of didactic systems. A
second common perspective is the Theory of Didactical Situations (TDS) of
Brousseau (1997), where didactical situations are constructed in which the teacher
orchestrates elements of the didactical milieu under the constraints of a dynamic
didactical contract. Other research uses the action-process-object-schema (APOS)
framework of Dubinsky (e.g. Dubinsky and McDonald 2001) for studying learning.
This describes how a process can be constructed from actions by reflective
abstraction, and subsequently an object is formed by encapsulation of the process.
The Three Worlds of Mathematics (TWM) framework of Tall (2008) is also con-
sidered useful by some. This describes thinking and learning as taking place in three
worlds: the embodied; the symbolic; and the formal. In the embodied world
we build mental conceptions using visual and physical attributes of concepts and
enactive sensual experiences. In the symbolic world symbolic representations of
concepts are acted upon, or manipulated, and the formal world is where properties
of objects are formalized as axioms, with learning comprising building and proving
of theorems by logical deduction from these axioms. We use the acronyms above to
refer to each of these frameworks in the text below.

Calculus and Analysis

A number of epistemological and mathematical obstacles have been identified in
the study of the transition from calculus to analysis. These include:

Functions: Students have a limited understanding of the concept of function
(Junior 2006) and need to be able to switch between local and global perspectives
(Artigue 2009; Rogalski 2008; Vandebrouck 2011). Using a TWM lensVandebrouck
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(2011) suggests a need to reconceptualise the concept of function in terms of its
multiple registers and process-object duality. The formal axiomatic world of uni-
versity mathematics requires students to adopt a local perspective on functions,
whereas only pointwise (functions considered as a correspondence between two sets
of numbers) and global points of view (representations are tables of variation) are
constructed at secondary school. An ATD-based study of the transition from concrete
to abstract perspectives in real analysis byWinsløw (2008) suggests that in secondary
schools the focus is on practical-theoretical blocks of concrete analysis, while at
university level the focus is on more complex praxeologies of concrete analysis and
on abstract analysis.

Limits: Students need to work with limits, especially of infinite sequences or
series. Two obstacles regarding the concept of infinite sum are the intuitive and
natural idea that the sum of infinity of terms should also be infinite, and the
conception that an infinite process must go through each step, one after the other
and without stopping, which leads to the potential infinity concept (González-
Martín 2009; González-Martín et al. 2011). According to Oehrtman (2009), stu-
dents’ reasoning about limit concepts appears to be influenced by metaphorical
application of experiential conceptual domains, including collapse, approximation,
proximity, infinity as number and physical limitation metaphors. However, only
physical limitation metaphors were consistently detrimental to students’ under-
standing. One approach to building thinking about limits, suggested by Mamona-
Downs (2010), is the set-oriented characterization of convergence behaviour of
sequences of that supports the metaphor of ‘arbitrary closeness’ to a point. Another,
employing a TDS framework (Ghedamsi 2008) developed situations that allowed
students to connect productively the intuitive, perceptual and formal dimensions of
the limit concept.

Institutional factors: An aspect of transition highlighted by the ATD is that
praxeologies exist in relation to institutions. Employing the affordances of ATD,
Praslon (2000) showed that by the end of high school in France a substantial
institutional relationship with the concept of derivative is already established.
Hence, for this concept, he claims that the secondary-tertiary transition is not about
intuitive and proceptual perspectives moving towards formal perspectives, as TWM
might suggest, but is more complex, involving an accumulation of micro-breaches
and changes in balance according several dimensions (tool/object dimensions,
particular/general objects, autonomy given in the solving process, role of proofs,
etc.). Building on this work Bloch and Ghedamsi (2004) identified nine factors
contributing to a discontinuity between high school and university in analysis and
Bosch et al. (2004) show the existence of strong discontinuities in the praxeological
organization between high school and university, and build specific tools for
qualifying and quantifying these. Also employing an institutional approach, Dias
et al. (2008; see also Artigue 2008) conducted a comparative ATD study of the
secondary-tertiary transition in Brazil and France, using the concept of function as a
filter. They conclude that although contextual influences tend to remain invisible
there is a need for those inside a given educational system to become aware of them
in order to envisage productive collaborative work and evolution of the system.
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Other areas: One TDS-based research project examined a succession of situa-
tions for introducing the notions of interior and closure of a set and open and closed
set (Bridoux 2010), using meta-mathematical discourse and graphical representa-
tions to assist students to develop an intuitive insight that allowed the teacher
to characterise them in a formal language. Another examined the notion of com-
pleteness (Bergé 2008), analysing whether students have an operational or con-
ceptual view, or if it is taken for granted. The conclusion was that many students
have a weak understanding of ideas such as the suprema of bounded subsets,
convergence of Cauchy sequences and the completeness of R.

Some possible ways to assist the calculus-analysis transition have been con-
sidered. For example, Gyöngyösi et al. (2011) report an experiment using Maple
CAS-based work to ease the transition from calculus to real analysis. A similar use
of graphing calculator technology in consideration of the Fundamental Theorem of
Calculus by Scucuglia (2006) made it possible for the students to become gradually
engaged in deductive mathematical discussions based on results obtained from
experiments. In addition, Biehler et al. (2011) propose that blending traditional
courses with systematic e-learning can facilitate bridging of school and university
mathematics.

Abstract Algebra

Understanding the constructs, principles, and eventually axioms, of the algebra of
generalised arithmetic could be a way to assist students in the transition to study of
more general algebraic structures. Focusing on students’ work on solving a para-
metric system of simultaneous equations and the difficulties they experience with
working with variables, parameters and unknowns, Stadler (2011) describes their
experience of the transition from school to university mathematics as an often
perplexing re-visiting of content and ways of working. The study showed that
constructs of number, symbolic literals, operators, the ‘=’ symbol itself, and the
formal equivalence relation, as well as the principles of arithmetic, all contribute to
building a deep understanding of equation. This agrees with the observations of
Godfrey and Thomas (2008), who, using the TWM framework, provided evidence
that many students have a surface structure view of equation and fail to integrate the
properties of the object with that surface structure.

Students’ encounter with abstract algebra at university marks a significant point
in the transition to advanced mathematical formalism and abstraction, with concepts
introduced abstractly, defined and presented by their properties, and deduction of
facts from these properties alone. The role of verbalisation in this process, as a
semantic mediator between symbolic and visual mathematical expression, may
require a level of verbalisation skills that Nardi (2008, 2011) notes is often lacking
in first year undergraduates.

Studies that focus on the student experience in their first encounters with key
concepts in abstract algebra describe a number of difficulties. While some have
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suggested that an over-reliance on concrete examples of groups leading to a lack of
skills in proof production, others, such as Burn (1996), recommend reversing the
order of presentation, using examples and applications to stimulate the discovery of
definitions and theorems through permutation and symmetry. An example of
reducing group theory’s high levels of abstraction (Hazzan 2001) is to ask students to
construct the operation table for low order groups. This was also implemented by
Larsen (2009) as a series of tasks exploring symmetries of an equilateral triangle,
constructing low order group multiplication tables and culminating in negotiating
preliminary understandings of group structure, the order of a group and isomorphism.

In an analysis of student responses to introductory group theory problem sheets,
Nardi (2000) identified student difficulties with the order of an element, group
operation, and the notions of coset and isomorphism. The duality underlying the
concept of group and its binary operation, were also discussed by Iannone and Nardi
(2002). They offer evidence of a student tendency to ignore the binary operation,
consider the group axioms as properties of the group elements and omit checking
axioms perceived as obvious, such as associativity. In addition, research by Ioannou
(see Ioannou and Nardi 2009, 2010; Ioannou and Iannone 2011) considers students’
first encounter with abstract algebra, focusing on the Subgroup Test, symmetries of a
cube, equivalence relations, and employing the notions of kernel and image in the
First Isomorphism Theorem. Provisional conclusions are that students’ overall
problematic experience of the transition to abstract algebra is characterised by the
strong interplay between strictly conceptual matters, affective issues and those
germane to first year students’ wider study skills and coping strategies.

Linear Algebra

A sizeable amount of research in linear algebra has documented students’ transition
difficulties, particularly as these relate to students’ intuitive or geometric ways of
reasoning and the formal mathematics of linear algebra (e.g. Dogan-Dunlap 2010).
The theoretical framework of Hillel (2000) for understanding student reasoning in
linear algebra that identified geometric, algebraic, and abstract modes of description
is valuable. For example, the relationship between linear algebra and geometry were
at the core of Gueudet’s research programme (2004, 2008; Gueudet-Chartier, 2004)
that identified specific views on student difficulties. She claims that the epistemo-
logical view leads to a focus on linear algebra as an axiomatic theory, which is very
abstract for the students and identifies a need for various forms of flexibility, in
particular between dimensions. Further work at the geometry-formalism boundary
by Portnoy et al. (2006) and Britton and Henderson (2009) has demonstrated some
difficulties. First, pre-service teachers who engaged with transformations as geo-
metric processes still had difficulty writing proofs involving linear transformations,
and second, students experienced problems moving between a formal understanding
of subspace and algebraic problem statements due to an insufficient understanding of
the symbols used in the questions and in the formal definition of subspace.

274 M.O.J. Thomas et al.



Employing a framework using APOS theory in conjunction with TWM, Stewart
and Thomas (2009, 2010; Thomas and Stewart 2011) analysed student under-
standing of various concepts in linear algebra, including linear independence,
eigenvectors, span and basis. The authors found that generally students do not think
of these concepts from an embodied standpoint, but instead rely upon a symbolic,
process-oriented matrix manipulation manner of reasoning. However, employing a
course that introduced students to embodied, geometric representations in linear
algebra, along with the formal and the symbolic, appeared to enrich student
understanding of the concepts and allowed them to bridge between them more
effectively than with just symbolic processes.

Another aspect that has been investigated is students’ intuitive thinking in linear
algebra. Working with modelling and APOS frameworks Possani et al. (2010)
leveraged students’ intuitive ways of thinking through a genetic composition of
linear independence and systems of equations. Student use of different modes of
representation in making sense of the formal notion of subspace was analysed by
Wawro, Sweeney and Rabin (2011a), and their results suggest that in generating
explanations for the definition, students rely on their intuitive understandings of
subspace, which can be problematic but can also help develop a more compre-
hensive understanding of subspace.

Some research teams have spearheaded innovations in the teaching and learning
of linear algebra. For example, Cooley et al. (2007) developed a linear algebra
course combined with learning about APOS theory and found the focus on a theory
for how mathematical knowledge is generated enriched understanding of linear
algebra. Another group of researchers used a design research approach simulta-
neously creating instructional sequences and examining students’ reasoning about
key concepts such as eigenvectors and eigenvalues, linear independence, linear
dependence, span, and linear transformation (Henderson et al. 2010; Larson et al.
2008; Sweeney 2011). They argue that knowledge of student thinking prior to
formal instruction is essential for developing thoughtful teaching that builds on and
extends student thinking. In a study on tasks for developing student reasoning they
(Wawro et al. 2011b) report how an innovative instructional sequence beginning
with vector equations rather than systems of equations successfully leveraged
students’ intuitive imagery of vectors as movement to develop formal definitions.

Proof and Proving2

The transition to university mathematics includes a requirement for understanding
and producing proofs. This requires logical deductive reasoning (Engelbrecht 2010)
and rigour (Leviatan 2008). Research highlighting examples of this includes

2 At the time of writing the book Proof and Proving in Mathematics Education: The 19th ICMI
study–Hanna & de Villiers, 2012, was still in press.
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conceptualisation related to the use of quantifiers (Chellougui 2004), the relationship
between syntax and semantics in the proving process (Barrier 2009; Blossier et al.
2009) and logical competencies (Durand-Guerrier and Njomgang Ngansop 2010).

One recommendation is the need for more explicit teaching of proof, both in
school and university (Balacheff 2008; Hanna and de Villiers 2008; Hemmi 2008),
with some (e.g., Stylianides and Stylianides 2007; Hanna and Barbeau 2008)
arguing for it to be made a central topic in both institutions. A possible introduction
to proof, suggested by Harel (2008) and Palla et al. (2012) is proof by mathematical
induction. However, they propose that it should be introduced slowly, building on
students’ own pre-existing epistemological resources (Solomon 2006) valuing both
ways of understanding and thinking (Harel 2008), and distinguishing between proof
schemes and proofs.

A number of potential difficulties in any attempt to place proving and proof more
prominently in the transition years have been identified. These include the role of
definitions, and the problem of student met-befores (Tall and Mejia-Ramos 2006).
Using definitions as the basis of deductive reasoning in schools is likely to meet
serious problems (Harel 2008; Hemmi 2008) since this form of reasoning is gen-
erally not available to school students, and Hemmi (2008) advocates the principle
of transparency, which makes the difference between empirical evidence and
deductive argument visible to students. In addition, the influence of student met-
before can be strong, with Cartiglia et al. (2004) showing that the most recent met-
before for university students, a formal approach, had a strong influence on their
reasoning. A further difficulty, highlighted by Iannone and Inglis (2011), is a range
of weaknesses in beginning university mathematics students’ ability to produce a
deductive argument, even when they were aware they should do so.

Some consideration has been given to methods of bridging the gap between the
fields of argumentation and proof. One pedagogical strategy that may be an
effective way to introduce the learning of proof and proving is student construction
and justification of conjectures. The idea of an interconnecting problem was
employed by Kondratieva (2011) to get students to construct and justify conjec-
tures. Further, conjectures may also have a role during production of indirect
argumentation (Antonini and Mariotti 2008), such as that in contradiction and
contraposition, by activating and bridging significant hidden cognitive processes.
Another approach discussed by Pedemonte (2007, 2008) employs the construct of
structural distance, and she argues for an abductive step in the structurant argu-
mentation in order to assist transition by decreasing the gap between argumentation
and proof. Another proposition is that pivotal, bridging or counterexamples could
assist students with proof ideas (Stylianides and Stylianides 2007; Zazkis and
Chernoff 2008). A potential benefit of a counterexample is to produce cognitive
conflict in the student, while a pivotal example is designed to create a turning point
in the learner’s cognitive perception. Counterexamples may also foster deductive
reasoning, since deductions are made by building models and looking for counte-
rexamples. For Zazkis and Chernoff (2008) a counterexample is a mathematical
concept, while a pivotal example is a pedagogical concept, which is within, but
pushing the boundaries of the set of examples students have experienced. The role
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of examples also arose in research by Weber and Mejia-Ramos (2011) on proof
reading by mathematicians. This suggests that students might be taught how to use
examples to increase their conviction in, or understanding of, a proof. In order
to know what skills to teach students, Alcock and Inglis (2008) maintain that
identifying different strategies of proof construction among experts will grow
knowledge of what skills to teach students, and how they can be employed.

Mathematical Modelling and Applications

Mathematical modelling and applications continues to be a central theme in
mathematics education research (Blum et al. 2002), with a primary focus on
practice activities. However, it appears that little or no literature exists explicitly
discussing these topics with a focus on the ‘transition’ from the secondary to the
university levels, possibly because there have been no roadmaps to sustained
implementation of modelling education at all levels. Hence, recent literature rele-
vant to the secondary-tertiary transition issue is briefly considered here.

One crucial duality, mentioned by Niss et al. (2007), is the difference between
‘applications and modelling for the learning of mathematics’ and ‘learning mathe-
matics for applications and modelling’. This duality is seldom made explicit in lower
secondary school, and instead both orientations are simultaneously insisted on.
However, at upper secondary or tertiary level the duality is often a significant one.
The close relationship between modelling and problem solving is taken up by a
number of authors. For example, English and Sriraman (2010) suggest that mathe-
matical modelling is a powerful option for advancing the development of problem
solving in the curriculum. In addition, according to Petocz et al. (2007), there are
distinct advantages to using real world tasks in problem solving in order to model the
way mathematicians work. This is supported by the research of Perrenet and Taconis
(2009), who describe significant shifts in the growth of attention to metacognitive
aspects in problem solving related to the change from secondary school mathematics
problems to authentic mathematics problems at university. One difficulty outlined by
Ärlebäck and Frejd (2010) is that upper secondary students have little experience
working with real situations and modelling problems, making the incorporation of
real problems from industry problematic. A second possible difficulty (Gainsburg
2008) is that teachers tend not to make many real-world connections in teaching. One
possible solution is to bring together combinations of students, teachers and math-
ematicians to work on modelling problems (Kaiser and Schwarz 2006). This
opportunity may be created through a “modelling week” (Göttlich 2010; Heilio 2010;
Kaland et al. 2010), during which small groups of school or tertiary students work
intensely, in a supported environment, on selected, authentic modelling problems.

There is some agreement that the secondary school curriculum could include
more modelling activities, although high-stakes assessment at the secondary-tertiary
interface is an unresolved problem in any implementation (Stillman 2007). Other
initiatives for embedding modelling in the curriculum proposed by Stillman and Ng
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(2010) include a system-wide focus emphasising an applications and modelling
approach to teaching and assessing mathematical subjects in the last two years of
school and interdisciplinary project work from primary through secondary school,
with mathematics as the anchor subject.

Conclusion

The literature review presented here reveals a multi-faceted web of cognitive,
curricular and pedagogical issues, some spanning across mathematical topics and
some intrinsic to certain topics—and certainly exhibiting variation across the
institutional contexts of the many countries our survey focused on. For example,
most of the research we reviewed discusses the students’ limited cognitive pre-
paredness for the requirements of university-level formal mathematical thinking
(whether this concerns the abstraction, for example, within Abstract Algebra
courses or the formalism of Analysis). Within other areas, such as discrete math-
ematics, much of the research we reviewed highlighted that students may arrive at
university with little or no awareness of certain mathematical fields.

The review presented in this report, as well as the longer version, is certainly not
exhaustive. However we believe it is reasonable to claim that the bulk of research
on transition is in a limited number of areas (e.g. calculus, proof) and that there is
little research in other areas (e.g. discrete mathematics). While this might simply
reflect curricular emphases in the various countries that our survey focused on, it
also indicates directions that future research may need to pursue. Furthermore
across the preceding sections a pattern seems to emerge with regard to how, not
merely what, students experience in their first encounters with advanced mathe-
matical topics, whether at school or at university. Fundamental to addressing issues
of transition seems also to be the coordination and dialogue across educational
levels—here mostly secondary and tertiary—and our survey revealed that at the
moment this appears largely absent.
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Introduction

It is known that socioeconomic factors have an influence on mathematical
achievement. Nowadays such link has become a “fact” that researchers, teachers,
administrators and politicians have at hand: “the better off you—and your family—
are, the more likely you will do well in school, including mathematics”. Such a
statement embodies its opposite: “the worse off you—and your family—are, the
more likely you will do poorly in school and mathematics”. Studies defining socio-
economic status (SES) and showing its relation to school performance emerged at
the beginning of the 20th century. The specification of the relationship for school
mathematics was enunciated as a problem for society and for research in the 1960s.
However, it is only in the 1980s that such issue started to be a focus of attention of
the mathematics education community. What is known so far—which may be part
of a commonsense understanding of the topic—and what seems to be forgotten—
which are critical readings challenging the commonsense—were the central ques-
tions that have guided the work of the survey team.

We thank Alexandre Pais, Aalborg University, Denmark; Arindam Bose, Tata
Institute of Fundamental Research, India; Francisco Camelo, Bogotá’s Capital
District University “Francisco José de Caldas”, Colombia; Hauke Straehler-Pohl,
Freie University, Germany; Lindong Wang, Beijing Normal University, China; and
Troels Lange, Malmö University, Sweden, for their contribution to the teamwork.

What Is Visible

A global literature review for this topic poses challenges such as the multiple
languages in which research reports are made available. We gathered literature that
would indicate some trends in what is known about the socioeconomic influences
on mathematical achievement in different parts of the world. Most of what was
reviewed was published in English.

At a general educational level, the relationship between socioeconomic factors
and school achievement is inserted in the history of expansion of mass education
systems and differential access to education around the world during the 20th
century. Meyer et al. (1992) show that the consolidation of Modern nation states is
correlated to the expansion and Modern organization of mass systems of education.
Many nation states growingly focused on the socialization of citizens with a vision
of progress in which the scientific rationality was an articulating element. The link
between personal development and the mastery of the curriculum, and such indi-
vidual mastery and the progress of the nation were established. With the expansion
of mass education, the issue emerged of who has access to education and the goods
of society and on the grounds of what. To know who was having effective access to
education became important.

286 P. Valero et al.



The report “Equality of Educational Opportunity” (Coleman et al. 1966) was one
of the first large-scale national surveys that formulated a model to determine the
extent to which educational opportunities were equally available to all citizens in
the USA. It allowed individual students’ socio-economic, racial and ethnic char-
acteristics to be connected to school inputs in terms of resources available to run
education, and to students’ individual performance in achievement tests in different
school subjects. Internationally, the International Association for the Evaluation of
Educational Achievement (IEA) started providing international comparative
information about how different national curricula provide different opportunities to
learn, and the existence of a lack of equity between different groups of students.
Since then, the measurement of educational quality was moved from an input-
output model based on school resources to an individualization of the measurement
of educational quality in terms of students’ achievement, even in mathematics. This
fundamental change in the general reports on educational access is central for
connecting socio-economic influences with mathematical achievement.

The discussion on what may be the socioeconomic influences on mathematical
achievement emerged from general social science research and educational
research. Therefore what has become visible about the topic is found in general
reports on educational systems around the world, as much as in mathematics
educational research literature. Thus any talk about the topic in the realm of
mathematics is bound to general discussions about social and educational dispari-
ties for different types of students.

At the level of mathematics education research the concern for this connection
emerged as a research topic in the 1980s. The studies that address this issue are
mainly quantitative and to some extent large scale. It is important to mention that
the amount of literature testing different hypothesis about socio economic influ-
ences and achievement has increased with the growing importance given to peri-
odic, international, standardized, comparative studies such as TIMSS and PISA
since the 1990s.

In different parts of the world there are results about a society’s sense of
expected, normal school achievement and how different groups of students are
compared to the normal expectation. While in the USA, factors that systematically
generates differentiation to the expected norm are socioeconomic status (SES) and
race, in other countries it is socioeconomic status as in for example in the UK and
Australia, or home language and ethnicity in the case of some European countries
such as Germany and Denmark, or rurality as in China or many of the African and
Latin American countries. Although other factors are also present, the tendency of
countries to focus on one factor has influenced the way discussions operate in these
countries. In different countries the independent variables considered to be the
socioeconomic influences on mathematical achievement —the dependent variable
—change. What may be considered the ‘socioeconomic’ influences on ‘mathe-
matical achievement’ depends on the systems of differentiation and stratification of
the population. It is not any kind of existing, a priori characteristic of individuals
and groups of students or of mathematical achievement per se.
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Once the general differentiation is possible, similar statistical indicators are
adopted in the studies. Prior to the existence of international comparable, stan-
dardized national data sets, the variable of socioeconomic status has been one of the
most used in the studies. Since its construction in the 1920s, the measurement has
been composed by a series of reliable indicators—parents’ educational level, family
income, possession of appliances, possession of books, etc.—which have not
changed much in almost 100 years. The tendency to simplify the measurement is
connected to how difficult it is to collect reliable information on this matter from
children. The assignment of a socio-economic level to individual students often
takes place on very thin evidence. The effect of the measurement, on the contrary,
has the tendency to reify a solid state that follows individual children all through
their school life. This reification has been documented in studies that have
addressed how the discussion of students’ differential results is dealt with in the
media and public debates.

Even if many studies have a tendency to establish the relationship between a
limited variables indicating differential positioning, many studies conclude that
those variables intersect. This means that students whose participation in school
mathematics results in low achievement experience differential positioning in
schooling because they are attributed simultaneously several categories of disad-
vantage. For example, low achievement in mathematics in certain regions in China
is explained by the intersection of rurality, parents’ educational level, mother-
at-work, and language (Hu and Du 2009). In other words, existing studies devise
sophisticated statistical measurements to trace the factors that correlate to differ-
ential access to mathematical achievement. However, the very same statistical
rationality on which those studies are based imposes a restriction for understanding
how the complexity of the intersectionality of variables of disadvantage effect
differential results in mathematics.

There is an over-representation of research reports addressing the socioeconomic
influences on mathematical achievement in English speaking countries (USA, UK,
Australia and New Zealand), while there is little research on this matter in many
other places in the world. Such difference may not only be due to the extent of
research in mathematics education in these countries, but also to the fact that
differential achievement has not been construed as a problem. In East Asia there is
little research in mathematics education investigating those who do not perform
highly and why. In Taiwan research discards the focus on socio-economic variables
and privileges variables such as student’s learning goal orientation (Lin et al. 2009).
Researchers argue that it is more meaningful to study what educators can impact
positively to improve students’ results. In South Korea the differentiated achieve-
ment is explained in terms of access to private tuition, which reflects a difference in
resources that educational policies cannot compensate for (Kang and Hong 2008).
In India, it is argued that differential achievement is due to students’ mathematical
aptitude, gender and urbanity/rurality, the socio-economic and cultural character-
istics of communities, and the impact of child work for the lower castes and poorer
communities (World Bank 2009).
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Existing research both in general education and in mathematics education has
constructed the positive correlation between a lower positioning of groups of stu-
dents with respect to the valued norm of societies, and the results of the school
mathematical experience measured in terms of achievement. Poverty, rurality,
ethnicity, gender, language, culture, race, among others, have been defined as the
variables that constitute socioeconomic influences on mathematical achievement.
The question remains whether it is possible to interpret the meaning of “socio-
economic influences” and “mathematical achievement” in ways that allow us to go
beyond the facts established in the last 50 years of research. In the following
sections each one of the members of the team offers a perspective on this issue.

What Is Neglected

Paola Valero on Historicizing the Emergence of Differential
Access to Mathematics Education

I discuss the historical conditions that make it possible to formulate the “socioeco-
nomic influences on mathematical achievement” as a problem of research in math-
ematics education. How and when the problem has been made thinkable, up to the
point that nowadays it is part of the commonsense or taken-for-granted assumptions
of researchers and practitioners alike?My strategy of investigation builds on thinking
the field of practice of mathematics education as a historical and discursive field.
There are at least three important conditions that make the problem possible:

Education, Science and the Social Question. The social sciences and educational
research are expert-based technologies for social planning. In the consolidation of
Modernity and its cultural project in the 20th century, the new social sciences were
seen as the secular rationality that, with its appeal to objective knowledge, should be
the foundation for social engineering. Statistical tools in the social sciences allow
generating constructs that identify the ills of society that science/education needs to
rectify. This is an important element in how educational sciences address the differ-
ential access of children to the school system. Constructs, such as students’ “socio-
economic status”, later on expanded to school and communities socio-economic
status, emerged in the 1920s in a moment where the newly configured social sciences
started to address the “problems” of society. Educational sciences made it possible to
articulate salvation narratives for facing the social problems for which education was
a solution (Tröhler 2011). Measurements of intelligence, achievement and socio-
economic status were and still are technologies to provide the best match between
individuals and educational and work possibilities. The double gesture of educational
sciences of promoting the importance of access to education and reifying difference
by constructing them as a fact inserts human beings in the calculations of power.

Mathematics and progress. During the second industrialization the justification
for the need for mathematics education was formulated clearly in the first number of

Socioeconomic Influence on Mathematical Achievement … 289



L’Enseignement Mathématique. In the times of the Cold War, the justification was
related to keeping the supremacy of the Capitalist West in front of the growing
menace of the expansion of the Communist Soviet Union. Nowadays, professional
associations and economic organizations argue that the low numbers of people in
STEM fields can severely damage the competitiveness of developed nations in
international, globalized markets. The narrative that connects progress, economic
superiority, and development to citizen’s mathematical competence is made intel-
ligible in the 20th century. The consolidation of nation states and the full realization
of the project of Modernity required forming particular types of subjects. The
mathematics school curriculum in the 20th century embodied and made available
cosmopolitan forms of reason, which build on the belief of science-based human
reason having a universal, emancipatory capacity for changing the world and
people (Popkewitz 2008). In this way, subjects are inserted in a logic of quantifi-
cation that makes possible the displacement of qualitative forms of knowing into a
scientific rationality based on numbers and facts for the planning of society. Thus,
from the turn of the 19th century to present day, the mathematics curriculum is an
important technology that inserts subjects into the forms of thinking and acting
needed for people to become the ideal cosmopolitan citizen.

Mathematics for all. That high achievement in mathematics is a desired and
growing demand for all citizens is a recent invention of mathematics education
research. Between the years of reconstruction after the Second World War and the
Cold War, school curricula were modernized with focus on the subject areas for the
purpose of securing a qualified elite of college students. In the decade of the 1980s
the new challenge of democratization and access was formulated. At the “Mathe-
matics Education and Society” session at ICME 5 it was publicly raised the need to
move towards inclusion of the growing diversity of students in school mathematics
(Damerow et al. 1984). The systematic lack of success of many students was posed
as a problem that mathematics education research needed to pay attention to and
take care of. Mathematics education researchers, the experts in charge of under-
standing the teaching and learning of mathematics as well as of devising strategies
to improve them, took the task of providing the technologies to bring school
mathematics to the people, and not only to the elite. “Mathematics for all” can be
seen as an effect of power that operates on subjects and nations alike to determine
who are the individuals/nations who excel, while creating a narrative of inclusion
for all those who, by the very same logic, are differentiated.

It is on the grounds of at least these three interconnected conditions that the
“socioeconomic influences on mathematical achievement” has been enunciated as a
problem of research in the field. I do not intend to say that underachievement is an
unimportant “social construction”. My intention is to offer a way of entering into
the problem that makes visible the network of historical, social and political
connections on which differential social and economic positioning is related to
differential mathematical achievement.

290 P. Valero et al.



Mellony Graven on Socio-Economic Status and Mathematics
Performance/Learning in South African Research

South Africa’s recent history of apartheid and its resultant high levels of poverty
and extreme social and economic distance between rich and poor continue to
manifest in the education of its learners in complex ways. The country provides a
somewhat different context for exploring the relationship between SES and edu-
cation than other countries. The apartheid era only ended in 1994 with our first
democratic elections. Education became the vehicle for transforming South African
society and a political rhetoric of equity and quality education for all emerged. Thus
educational deliberations focused on redressing the inequalities of the past and
major curriculum introductions and revisions were attempted. Engagement with
SES and mathematics education became foregrounded in policy, political dis-
courses and a range of literature since 1994 although in must be remembered that
transformation of education was a priority of the eighties period of resistance and
the people’s education campaign (although heavily suppressed at the time). Yet for
all the political will and prioritization little has been achieved in redressing the
inequalities in education.

Much of the recent data available on the relationship between SES and mathe-
matics performance can be ‘mined’ from large scale general education reviews.
These studies provide findings indicating patterns or correlations between school
performance and socio-economic context. Several indicate that correlations are
exacerbated in mathematics. These reports highlight a range of factors or areas that
affect learner performance, such as social disadvantage, teachers’ subject knowl-
edge, teaching time, teacher absenteeism, resources, poorly managed schools,
poverty effects including malnutrition and HIV/AIDS. In general reports present a
consistent picture. In South Africa, since poverty affects more than half of our
learners, studies tend to focus on the poorest (but largest) SES group when looking
at challenges in education. Many reports point to numeracy scores and mathematics
results being consistently below other African neighbour countries with much less
wealth. Furthermore, South Africa has the highest levels of between-school per-
formance inequality in mathematics and reading among SACMEQ countries.

What might be somewhat different from other countries exploring SES and
mathematics achievement is that South African poverty levels are extreme even
while there is relative economic wealth. Fleisch (2008) argues that poverty must be
understood in its full complexity and not only in economic terms and argues for
“the need to understand the underlying structural dimensions of persistent poverty,
which engages the complexities of social relations, agency and culture, and sub-
jectivity” (p. 58). He also notes that “Poor families rather than being just a source of
social and cultural deficit, are important supporters of educational success […] poor
South Africans share with the middle class an unqualified faith in the power of
education. For poor families education is the way out of poverty, and as such many
spend a large portion of their disposable income on school fees, uniforms and
transport […]” (p. 77)
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Mathematics education research conducted in South Africa almost inevitably
touches on issues of equity and redress when engaging with the context of studies.
One important area is research on language and mathematics education. The overlap
between language of learning with SES and mathematics achievement is referred to
in almost all of the large quantitative studies above (as a correlating factor) and the
data provides for a complex picture that cannot easily be explained in terms of causal
relationships. Setati and collaborators (e.g., Barwell et al. 2007) urge that multi-
lingualism needs to be reconceptualised as a resource rather than a disadvantage. In
this way the deficit discourse around multilingualism and how it negatively corre-
lates with mathematics performance should be reframed. Most language ‘factors’
referred to in the literature above position multilingualism as a factor that correlates
with low mathematics performance but this should not be read as causal.

Recent research by Hoadley (2007) analyses how learners are given differenti-
ated access to school knowledge in mathematics classrooms. She argues that the
post-apartheid curriculum with its emphasis on everyday knowledge has had a
disempowering effect in marginal groups who are not exposed to more specialised
knowledge of mathematics. The result is that “the lower ability student, paradox-
ically, is left free to be a local individual but a failed mathematics learner” (Muller
and Taylor 2000, p. 68). In its implementation teachers in low SES schools
struggled to make sense of these changes resulting in even further mathematics
learning gaps between ‘advantaged’ and ‘disadvantaged’ learners (Graven 2002).
The result has been that “students in different social-class contexts are given access
to different forms of knowledge, that context dependent meanings and everyday
knowledge are privileged in the working-class context, and context-independent
meanings and school knowledge predominate in the middle class schooling con-
texts” (Hoadley 2007, p. 682).

While studies relate poverty, class, race and access to English to differentiated
learning outcomes from a variety of perspectives, most, I would argue, are not
sufficiently concerned with the impact of extreme income inequality within a
context of widespread and deep absolute poverty. Many poor countries achieve
much better educational outcomes compared to South Africa but have lower levels
of inequality. A deeper understanding of inequality as a core component of SES,
and not just of the nature and impact of poverty might enrich our understanding of
the relationship of SES to mathematical educational outcomes.

Murad Jurdak on a Culturally-Sensitive Equity-in-Quality
Model for Mathematics Education at the Global Level

Equity, quality, and cultural relevance are independent dimensions in mathematics
education. I refer to this 3-dimensional framework as culturally-sensitive, equity-
in-quality in mathematics education. In the period 1950–2008 the agendas of equity
and quality in education, and of mathematics education have moved in different
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directions. While the provision for universal primary education was paramount
between 1950 and 2000, educational quality received low priority during that
period. In the first decade of the 21st century, quality education for all has emerged
as a top priority. On the other hand, mathematics education literature shows that the
evolution of mathematics education was dominated by quality concerns in scholarly
discourse between 1950 and 1980. The social and cultural aspects of mathematics
education started to emerge as legitimate research in the 1980s. Towards the end of
1980s, equity became a major concern in mathematics education. The first decade
of the 21st century witnessed the beginning of convergence towards an increased
emphasis on achieving equal access to quality math education (Jurdak 2009).

In the last half of the past century, the decline of colonization was a major reason
for the emergence of the two-tiered system of mathematics education. During
colonization, many developing countries adopted the mathematics education of
their colonial rulers. However, as colonization dismantled, the developing countries
invested most of its resources in increasing coverage at the expense of the quality of
education, and educational research and development. Thus developing countries
did not accumulate enough ‘credentials’ in mathematics education to fully partic-
ipate in the international mathematics education community. This situation led to
the formation of a two-tiered system of math education at the global level. The
upper tier, referred to as the optimal mode of development, includes the developed
countries that are integrated in the international mathematics education community.
The lower tier, referred to as the separate mode of development, consists of the
marginalized countries which have yet to be integrated in the international activities
of mathematics education.

The majority of countries having average or high quality index (measured in
terms of national achievement in TIMSS 2003) and low or average inequity index
(measured in terms of size of between-school variation) generally fit the optimal
mode of development. These countries have high or average mathematics
achievement performance, contribute significantly to international research in
mathematics education, and assume leadership roles in international mathematics
education organizations and conferences. On the other hand, the majority of
countries having low quality index in mathematics education, irrespective of its
equity index, fit in the separate mode of development. These countries have low
mathematics performance, have little contribution to international research in
mathematics education, and normally have humble participation in international
mathematics education conferences, such as the ICME. In other words, they are
marginalized by the international mathematical education community and left to
follow their own path in developing their mathematics education. Some of these
countries use the preservation of cultural values as an argument to rationalize the
lack of their integration in the international mathematics education community.
Other countries do not have the resources to participate and contribute to the
international math education community.

A country classified as fitting in the separate mode of development of mathe-
matics education is likely to be relatively poor, low in the spread and level of
education among its population, and belongs to a socioeconomically developing
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region (Arab states, Latin America, and Sub-Saharan Africa). On the other hand, a
country classified as following the optimal mode of development of mathematics
education is likely to be relatively rich, high in the spread and level of education
among its population, and is part of a developed region (North America, Western
and Eastern Europe, East Asia and the Pacific). There seems to be a divide between
developing and developed countries in mathematics education, and some of the
significant factors that contribute to that divide (socioeconomic status of a country,
its educational capital, and its culture) seem to be beyond the sphere of influence of
local or international mathematics education communities, whereas the other factors
are not. For example, policies that govern international organizations and confer-
ences may be addressed by the international mathematics education community.

The international mathematics education community has a responsibility to find
ways to encourage and enable mathematics educators to be integrated in the
international mathematics education community. The participation in and contri-
bution to international mathematics education conferences and international
mathematics education journals are critical for such integration. One measure in this
regard would be to favour the participation of mathematics educators from devel-
oping countries. Writing and presenting in English is a major barrier to the par-
ticipation of many mathematics educators in international conferences. Some form
of volunteered mentoring by their colleagues who can provide their support in
reviewing and editing manuscripts could be a desirable strategy. Providing
opportunities for presentations in international conferences in languages other than
English would broaden access to such conferences. All these measures may
hopefully help enhance the integration of more mathematics educators in the
international community.

Danny Martin on Politicizing Socioeconomic Status
and Mathematics Achievement

In the United States discussions about the relationships between SES and schooling
processes and outcomes—persistence, achievement, success, failure, opportunity to
learn, access to resources, and so on—are long and enduring. These discussions
have surrounded mathematics education—more so than being generated and sus-
tained by mathematics educators—as much of the research and policy generated to
support various positions about socioeconomic status has been produced in fields
like sociology, economics, critical studies, and public policy.

In many of these studies there is often a deficit-oriented narrative that is generated
and reified about “poor” children and families, while normalizing certain middle-
and upper-class children and families. SES is often used as a proxy for “race” but the
discussions are often unwilling to explore the impact of racism in generating
socioeconomic and achievement differences. The dialectic between race and social
class is important. In fact, a number of dialectics are important with respect to SES as

294 P. Valero et al.



one considers its racialized, gendered, and contextual nature. The processes
undergirding its formation and strata in a given historical and political context may
help to explain outcomes like school achievement in ways that are more insightful
than just placing human bodies into various socioeconomic strata and characterizing
their achievement in relation to human bodies in other strata.

There have been recent reports that consider race, class, gender, ethnicity, and
language proficiency in relation to mathematics education (e.g., Strutchens and
Silver 2000; Tate 1997). They support the intuitive finding that higher socioeco-
nomic status is associated with increased course-taking and higher achievement on
various measures of mathematics achievement. However, the story is less clear
when one considers that many “Asian” students from the lowest socioeconomic
levels in the U.S. outscore White and other students at the highest socioeconomic
levels. Moreover, many of these reports leave unexplained high achievement
among African American, Latino, and Native American students, who are dispro-
portionately represented among the lower socioeconomic levels in the U.S.

I would argue that while SES is positively correlated with achievement, math-
ematics education research in the U.S. context still has far to go in addressing the
complexity of these issues. Tate (1997), for example, noted that in defining and
operationalizing socioeconomic status, “Typically the mathematics-achievement
literature is organized according to a hierarchy of classes—working class, lower-
middle class, middle class, and so on. This hierarchy often objectifies high, middle,
and low positions on some metric, such as socioeconomic status (SES)” (p. 663).
This objectification presents SES as static and uncontested and not influenced by
larger political and ideological forces.

There is complexity that goes unexplored even within the socioeconomic strata
that are used. In the U.S. it is generally true that even among poor and working
class “Whites” and “Blacks”, within-class racism often mitigates the opportunities
of Blacks. Across economic strata, the sociology and economics of schooling
suggest that “Whites” often enjoy the capital associated with their “Whiteness”
even in a supposed meritocracy that many claim and wish for in our society (e.g.,
Jensen 2006). I would argue that such considerations extend to mathematics
education to affect the conditions under which students learn and in which
opportunities unfold or are denied.

My particular orientation is to move “race” to a more central position in the
conversation on SES within the U.S. context (Martin 2009). It might be argued that
“race” is not a central concern in other national and global regional contexts.
I would disagree based on the histories of nationalism, colonialism, xenophobia,
anti-Muslim sentiments, and anti-multiculturalism throughout Europe, South
America, and other locations. Every context, without exception, experiences a
historically contingent “racial” ordering of its society that also structures its
socioeconomic ordering. Research on the global contexts of racism(s), in all its
forms, makes this point clear for the U.S., Europe, Brazil, Asia, and so on. So,
while it may not be an issue of “White” and “Black” in a particular location, there
are likely to be some other forms of “race” and “racism” that are at play (including
differences that result from “lighter” and “darker” skin), whether they be manifested
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in the lives of Indians living in Singapore, the ideologies of the Danish People’s
Party (DF) in Denmark, or the rise of xenophobic nationalism throughout Europe.

We know that SES does not explain all of the variation in achievement and does
not explain why some “poor” or low SES children in a given context succeed
academically and why some “rich” or high SES children do less well. Analyses of
SES often treat it as a static variable and often do not examine human agency or the
manipulation of SES by those in power. SES is intimately linked to other variables
that may impact schooling processes and achievement. These other variables
include gender; geographic location; language status; immigrant status and the
prevailing racial context in given society including nationalism, anti-immigrant
sentiment, xenophobia; quality of health care and pre-school systems; history of
colonialism; the prevailing political context and ideologies that dominate that
context; larger economic system; and so on.

I argue for a more politicized view of SES that takes into account race and
racism, political projects, socioeconomic projects and manipulation, among others.
SES may be conceptualized differently in different contexts. The common reporting
line “the more economic resources one has, the greater their achievement is likely to
be” is not an interesting finding even if it gets repeated in research. It does not
explain why some have more resources than others. We, in mathematics education,
should continue to trouble that imbalance.

Tamsin Meaney on Back to the Future? Mathematics
Education, Early Childhood Centres1 and Children from Low
Socio-Economic Backgrounds

In the last two decades, early childhood has become the focus for much discussion
in regard to overcoming inequalities in educational outcomes between groups.
Although there is a perception that such a connection has only been newly
recognised, the history of early childhood centres shows otherwise. For example,
May (2001) outlined how preschools in New Zealand have changed dramatically
from being charitable organisations for the urban poor in the late nineteenth century
to now being seen as essential for all children, to the extent that children who do not
attend are perceived as likely to be problems for society. The right to determine the
appropriate care for young children through education arose during the history of
early childhood centres.

1 Throughout history and across the world, different names have been given to institutions set
up outside of homes for the care and education of young children. To overcome this confusion,
the term early childhood centres has been adopted.
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An activity such as preschool, like most of the welfare institutions, is marked by its history.
There is a clear relationship between a country’s traditions in preschool and school system
and its administration and integration of new challenges and demands. (Broman 2010,
p. 34; own translation)

I suggest that the history of early childhood centres as carers and educators of
poor children has produced different sorts of mathematical education programmes.
The physical care of young children, who are seen as unable to look after them-
selves, always has been part of the role of early childhood centres. As well,
characteristics of the child, from their character to their imagination, have been
perceived as being in need of moral care. Education, including mathematics
education programmes, reflected these different perceptions of moral care. Many
instigators of early childhood centres have considered that education could over-
come faults in children, particularly poor children. Table 1 provides a summary of
the main early childhood centres for the last two hundred years and the sorts of
moral care and education provided to children.

In recent years, a moral deficiency that early childhood centres are supposed to
overcome is a lack of school readiness in regards to mathematics knowledge. An
analysis by Greg Duncan and colleagues of six longitudinal studies suggested that
early mathematics knowledge is the most powerful predictor of later learning,
including the learning of reading (Duncan et al. 2007). The mathematical pro-
grammes, now being advocated in early childhood centres, reflect society’s wish to

Table 1 Summary of the kind of care and education provided in early childhood centres

Time Care Education Mathematics

Robert
Owen—
Infants
School

Early
19th
century

Care of the
character

Broad curriculum Arithmetic from
manipulating objects
from nature

Frederick
Frobel—
Kindergarten

1837 to
end of
19th
century

Spiritual care
could only
occur in
schools

Playful and based
on children’s own
interests

Geometry and other
math learnt through
engagement with gifts
and occupations

Margaret
McMillan—
Nursery
Schools

Early
20th
century

Care of the
imagination

Physical and mental
development
through play

Math learning was
incidental to using
their imagination to
explore the world

Maria
Montessori
—Children’s
houses

Early
20th
century

Care for
children’s
personalities

Learning though the
senses, using
children’s interests.
School preparation

Materials were math
in they required
comparisons

Diversity of
approaches

Middle
to late
20th
century

Care for
psychological
well-being

Learning to play
with other children

Experiences were
valuable for later
school math learning

Present day 1990s
to
present

Care for
academic
well-being

Content becomes
the focus of
education

Math concepts have
become the focus of
preschool programs
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care for poor children’s academic needs, which are considered to be at risk and
which could result in them being non-productive workers in the future (Pence and
Hix-Small 2009). If all children could receive a quality early childhood education
then the risk of society having citizens with insufficient education and unable to
gain jobs would be alleviated.

A consequence of the acceptance of early childhood centres’ right to determine
the education necessary to appropriately care for young children is leading to the
imposition of a homogenised view of young children, including as young mathe-
matics learners. Providing mathematics programs for this homogenised child can
result in a lack of recognition and undervaluing of what poor children bring to early
childhood centres. Although the jury is still out on the long-term effectiveness of
present structured mathematics programmes, an education that does not recognise
nor value children’s transition back into their home communities (Meaney and
Lange 2013) will result in some children becoming failures before they begin
school.

Miriam Penteado on Mathematics Education and Possibilities
for the Future

The Brazilian educational system is organized as shown in Table 2 below. For both
basic school and the higher education there are two parallel systems: the private and
the public. Concerning basic schools, in general, private schools have more status
and offer better learning and teaching conditions for students. On the other hand,
public schools include the majority of the Brazilian population. The teaching and
learning conditions in public schools is very poor. Many schools are in bad
structural condition and there are cases of no electricity, no potable water, etc. It is
known that Brazilian public schools students study less content than those in private
schools. Furthermore, in Brazil there is lack of teachers. It is difficult to find people
who want to be educated as a teacher, and there is a set of reasons for this: low
salary, low social status, and violence. The best teacher students who graduate are
hired in private schools with better working conditions than in public schools.

Concerning higher education the situation is the opposite of what happens in
basic schools. Public universities are those with the highest investment in research
and teaching. In fact, in the last years part of the policy of the Brazilian government
has been to increase the investment in higher education making available to the
system a considerable amount of resources. It is more difficult to gain enrolment as
undergraduate student in public universities than in private, especially in more

Table 2 The Brazilian educational system

Basic school Primary and secondary level (9 years—from 6 to 14 years old)

High school level (3 years—from 15 to 18 years old)

Higher education Different length
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prestigious courses such as medicine or engineer. For this reason, those who attend
private schools are more likely to become a student at a public university. Many
students from public school do not even dream of having further education at a
public university. The choice (when it is the case) is to work during the day and
take a course in the evening at a private faculty.

Considering the situation it is possible to state that a person with high socio-
economic background follows the route: from private school to public university.
One with low socioeconomic background follows the route: from public school to
private faculty. There is financial governmental support for students from public
schools to study in private faculties. Only a small percentage of the Brazilian
population has further education at the tertiary level (private or public system).
According to the OECD2 the number of Brazilian people within 25–64 years old
who has completed tertiary education has increased to 11 %. However it is still low
when compared with other countries.

Public universities are trying to facilitate access for students from low SES,
however it is not for any career. As an example, one can use a socio economic
report of a public university in Sao Paulo State for the year 2010. The distribution
of students in relation to their background (basic school in the private or the public
system) in university courses such as medicine and mathematics is very different.
While students who enter medicine have studied in private institutions (85.9 % of
students have attended a private primary school and 94.6 % have attended a private
high school), the majority of mathematics students (future mathematics teachers)
have studied primary and high school in public institutions (an average of 72.5 %
for public primary schools, and 74.6 % for public high schools). Thus one can see
that medicine does not function as any social-ladder, while mathematics has the
possibility to do so.

That socioeconomic factors influence students’ educational life is common
sense. Given this, one could think that there is not so much to say about the survey
theme. However, this common sense could be challenged. When working with
students in so-called disadvantaged context one can consider the question: What
possibilities could be constructed together with the students?

It is important for a mathematics education to create new possibilities for stu-
dents. Creating possibilities for students could mean thinking of the opportunities
they might obtain for the future. One could think as students’ possibilities for, later
on in life, to participate as (critical) citizens in political issues. To consider the
conditions for coming to “read and write” the world, to use an expression formu-
lated by Paulo Freire (1972).

There might exist a tendency to consider low achievement related to the students
and to their background. And from this perspective one can start discussing strategies
for compensating the, say “low cultural capital”. One can pay attention to the general
living conditions of the students, including their conditions of getting to school.
One can consider their learning with reference to their worlds and their foregrounds.

2 http://www.oecd-ilibrary.org/economics/country-statistical-profile-brazil_csp-bra-table-en.
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One can claim that it is an important aim for mathematics education to help to
establish possibilities within the horizon of students’ foregrounds (Skovsmose 2005).
To make them recognise that: This could also be for me!

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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