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Teaching Mathematics in Tomorrow’s
Society: A Case for an Oncoming
Counter Paradigm
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Abstract The historical analysis of mathematics teaching at secondary level shows
the succession in time of different school paradigms. The present paper describes
and tries to analyse a new didactic paradigm, still at an early age, the paradigm “of
questioning the world”, which relies heavily on four interrelated concepts, that of
inquiry and of being “Herbartian”, “procognitive”, and “exoteric”. It is the author’s
ambition to show, however succinctly, how the present crisis in mathematics
education could hopefully be solved along these lines, which preclude recurring to
strategies seeking only to patch up the old, still dominant paradigm “of visiting
works”.
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The Anthropological Theory of the Didactic

I formally began working on mathematics education when I joined the Institute for
research on mathematics teaching (IREM) in Marseilles (France) more than forty
years ago—in February of 1972 to be precise. I write these lines qua 2009 recipient
of the Hans Freudenthal Medal, an honour of which I am immensely proud. It is
thus my wish to respond to it by indulging in a quick outline of the main con-
clusions at which I have arrived, letting interested readers judge for themselves the
cogency of such views.

First of all, I must say that this presentation will draw upon the theoretical
framework which my name has come to be associated with, I mean ATD, i.e. the
anthropological theory of the didactic. Just as there are economic or political facts,
there are didactic facts, which I will refer to as a whole as the didactic. The didactic is
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a vital dimension of human societies. In a slightly simplified way, one can say that it
is made up of the motley host of social situations in which some person does
something—or even manifests an intention to do so—so that some person may
“study”—and “learn”—something. The something to be studied (and learnt) is
known as the didactic stake in the situation. As you can see, this formulation formally
refers to two persons. I will use the letter y to denote the first person, and the letter x to
denote the second, so that we can say that y does, or intends to do, something to help
x study (and learn) something. Of course, at times, y and x can be one and the same
person. In such a (fundamental) case of self-directed learning, x helps him/herself
study the didactic stake. The “something” that y does or intends to do is metaphor-
ically called a didactic gesture and is part of the didactic as a whole.

Basically, didactics is the science studying the conditions that govern such
“didactic situations”, i.e. social situations which hinge on some “didactic triplet”
comprising some x, some y, and some didactic stake O. The didactics of mathematics
is concerned with those cases in which the didactic stake O is regarded as pertaining to
mathematics. More generally speaking, O is what is called, in ATD, a “work”, i.e.
anything, material or immaterial, created by deliberate human action, with a view to
achieving definite functions. To obtain more generality, let me substitute a set X of
persons for the person x, arriving thus at the “didactic triplet” (X, y, O), which can
model a typical high-school class—X being the group of students, and y the teacher to
whom it befalls to teach the work O. Naturally, we can also consider triplets of the
form (X, Y, O), where Yis a team of didactic “helpers” that may include a full-fledged
teacher alongside “assistants” of different kinds. Let me add here that, in ATD, a
condition is said to be a constraint for a person or an institution if it cannot be
modified by this person or institution, at least in the short run. Now the basic question
in didactics is somewhat the following: given a set of constraints K imposed upon a
didactic triplet (x, y, O), what conditions can x and y create or modify—i.e. what
didactic gestures can they make—in order for x to achieve some determined relation
to O? This will be the starting point for what follows.

The Paradigm of Visiting Works and Its Shortcomings

The prospective view on the didactic dimension in our societies that I wish to make
explicit—and, I hope, clear—can be encapsulated in a crucial historical fact: the old
didactic paradigm still flourishing in so many scholastic institutions is bound to give
way to a new paradigm still taking its first steps. To cut a longer story short, I define a
didactic paradigm as a set of rules prescribing, however implicitly, what is to be
studied—what the didactic stakes O can be—and what the forms of studying them are.

The “old” paradigm I’ve just mentioned has been preceded by a number of
distinct, sometimes long-forgotten paradigms. The most archaic of these didactic
paradigms disappeared, in many countries, during the nineteenth century. In the
field of mathematics as well as in many other fields of knowledge, it was organised
around the study of doctrines or systems—of mathematics, of philosophy,
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etc.—approached from outside and considered as outstanding achievements in the
history of human creation. Within this paradigm, one used to study Euclid’s Ele-
ments in the way most of us may still study (or aspire to study) Plato’s or Hegel’s
systems of philosophy. This initial paradigm—which I call the paradigm of “hailing
and studying authorities and masterpieces”—has gradually given way to the school
paradigm that nowadays all of us, willingly or not, are supposed to revel in, which
evolved in the course of centuries from the older paradigm of studying “grand
systems”. The “great men” supposed to have authored those systems were waved
aside and the systems crushed into smaller pieces of knowledge of which the
authorised labels—Pythagoras, Thales, Euclid, Gauss, etc., as far as mathematics is
concerned—still record their origins.

In the framework of the anthropological theory of the didactic, this paradigm is
known as the paradigm of “visiting works” or—according to a metaphor used in
ATD—*"of visiting monuments”, for each of those pieces of knowledge—e.g.,
Heron’s formula for the area of a triangle—is approached as a monument that
stands on its own, that students are expected to admire and enjoy, even when they
know next to nothing about its raisons d’étre, now or in the past.

In spite of the long-standing devotion of so many teachers and educators to this
unending intellectual pilgrimage, notwithstanding the often admirable docility of so
many students in accepting the teacher as a guide, this once pervasive paradigm is
currently on the wane. This has come to be so, it can be argued, because the
paradigm of visiting monuments tends both to make little sense of the works thus
visited—"“Why does this one happen to be here?”, “What is its utility?”” remain
generally unanswered questions. The interested reader may want to check how this
applies to a number of mathematical entities. For example, what purpose does the
notion of reflex angle serve? The same question can be raised about angles in
general, and also about parallel lines, intersecting lines, rays, line segments, and so
on. Of course, the same goes for the reduction of fractions or polynomial expansion,
with the notion of decimal number, and what have you. In what situations can this
mathematical entity prove useful, if not utterly unavoidable, and how? Because
these questions are usually hushed up—yvisiting a monument is no place to raise
“What for?” or “So what?” questions—, students are reduced to almost mere
spectators, even when educators passionately urge them to “enjoy” the pure spec-
tacle of mathematical works.

A number of factors explain at least partially the long dominance of the paradigm
of visiting works as monuments as well as its present decline—and, I suggest, its
impending demise. Historically, the first cause seems to be the congruity of this
paradigm with the social structure of formerly undemocratic countries or, since
more recent times, weakly or incompletely democratic. Such societies are founded
on an all-pervasive pattern inseparably linking those in command positions, on the
one hand, and those in obedience positions, on the other hand. Almost all institu-
tions (be they families, schools, or nations) hinge on some replica of this funda-
mental, dualistic pattern. I shall not go into debate, here, about this age-old social
structuring. I only want to emphasise the specific risks that the functioning of this
ubiquitous power structure easily generates, in the form of abuses of authority,
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power, or rank—call them as you like. The existence of a dualistic configuration
with one in authority and one in obedience may for sure be vindicated, on a
“technical” basis, as needed to keep institutions going. But such a technically
justified twofold structure is normally limited in time and, above all, in scope.
Authority is, or should be, restricted to a specified number of specific situations, and
should therefore refrain from encroaching on every aspect of life—unless it changes
into tyranny. But respecting this rule is not everyone’s forte. The classical paradigm
of visiting “monuments of knowledge,” however small, suffers today, at many
levels, from the constant abuses of pedagogic power that its historical kinship with
the dualistic pattern of power mechanically generates.

The consequences of this historical situation are many. First and foremost, I shall
mention a consequence already alluded to: the resistless evolution of the school
mathematics curriculum towards a form of epistemological “monumentalism” in
which knowledge comes in chunks and bits sanctified by tradition and whose
supposed “beauty” has been enhanced by the patina of age; that students have to
visit, bow to, enjoy, have fun with and even “love”. All this of course is but a
daydream, as far as the mass of students—not the happy few, who need very little
attention—is concerned.

The main effect of this long-term situation is the growing tendency among
students to develop a relation to “official”, scholastic knowledge in agreement with
what I shall term the “Recycle bin/Empty recycle bin” principle: all the knowledge
taught may legitimately be forgotten or, more exactly, ignored, as soon as exams
have been passed. Of course this is presumably as old as the school-and-exam
system. But it has shaped a relation to knowledge as driven by institutional, short-
term, and labile motives, which stands away from the functional approach to
knowledge based on its real-world utility—to understand a situation, be it mathe-
matical or not, make a decision, or postpone it to allow for further study of the
problem addressed.

A correlate, if not properly a consequence, is to be found in a yet more chal-
lenging fact: what little knowledge remains after the school years is rarely regarded
as something that could bear on situations one might face outside school—and this
seems particularly true in the case of mathematical knowledge. School-generated
knowledge tends therefore to be unusable, in that its “remnants” are unable to
perform their specific function. But there is more to it than that. Visiting a monument
basically boils down to listening to a report or account made by the teacher-guide
about the monument visited—what we call in the French of ATD an exposé, a word
from whose meaning the negative connotation it has acquired in English must be
expelled in this context. By its very nature, any account, a report, or an expos¢ skips
“details”, i.e. aspects that, more or less arbitrarily, choice-makers have ignored or
altogether discarded. To give just one example, in the French curriculum—as is the
case, I presume, in many other mathematics curricula across the world—, tradition
has it that the algebraic solving of cubic equations is overlooked, while quadratic
equations are emphatically considered. In his/her scholastic visit of the mathematical
universe, the student thus reaches an endpoint beyond which lie mathematical
_territories that, more often than not, will remain indefinitely terra incognita to
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him/her. What will be of this student if, in later life, they need to know what a cubic
equation is and how it can possibly be solved? School education along the lines of
the current paradigm has no clear answer to that question, it seems.

The relation to knowledge and ignorance thus associated with the visiting of
mathematical works has become increasingly unsuited to people’s needs and wants,
up to the point that there currently exists a widespread belief that mathematical
knowledge is something one can almost altogether dispense with—whereas, in a
not so remote past, mathematics could be regarded as the key to a vast number of
individual as well as collective problems. In this respect, the chief flaw in the
paradigm of visiting monuments, which relates to the undemocratic ethos in which
this paradigm originated, has to do with the choice of “monuments” to visit at
school. As we know, this choice is usually the combined result of a long-lasting
tradition, on the one hand, and of irregularly spaced, hectic reforms, on the other. In
no way, it seems, the decisions made go beyond what the people in charge of this
choice-making think opportune, fit, or even “good” for the edification of the
mounting generations. In no way, it seems, is the choice of the monuments to be
visited made on an experimental basis or at least on a large and supposedly relevant
experiential basis. In what follow, I will try to adduce evidence that such a “feat”
can be achieved provided we opt for the emerging didactic paradigm I call the
“paradigm of questioning the world”.

Questioning the World: Towards a New Didactic Paradigm

Up to a point, we might soon discard the current didactic world in favour of a new
paradigm which, when contrasted with the old one, looks like a counterparadigm—
although, as we shall see, it isn’t doomed to break off all contact with its predecessor.
The main changes that I shall stress are few but radical. Let us consider again a triplet
(X, Y, 0). An almost inconspicuous but crucial tenet of traditional education is that the
members x of X are children or adolescents: traditionally, the educational endeavour
is about young people, before they attain maturity. When maturity has been reached,
everyone is supposed to be educated—well or badly, that is another question. In
contrast with this view of education, in the didactic paradigm of questioning the
world, education is a lifelong process. The x in the triplet (x, y, O) can be a toddler as
well as a mature adult or an older person. A society’s didactic endeavour is regarded
(and assessed) as applying to all—to citizens no less than to future citizens. Conse-
quently, the assessment of this crucial endeavour can no longer focus on young
people only: not only should we explore what 15-year olds happen to know, but we
should extend this quest to people aged 30 to (at least) 70. More than anything,
society’s didactic effort is not simply known by what people know: it should be
appraised on the basis of what they can learn—and how they can do so.

A second, central tenet of the paradigm of questioning the world is that, in order
to learn something about some work O, x has to study O, often with the help of
some y. You don’t learn to solve a cubic equation by chance; you have to stop and
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consider the question that arises before you. In today’s common culture, many
people, it seems, have a propensity to shun every question to which the answer is
not obvious to them. What the new didactic paradigm aims to create is a new
cognitive ethos in which, when any question Q arises, x will consider it, and, as
often as possible, will study it in order to arrive at a valuable answer A, in many
cases with a little help from some y. In other words, x is supposed not to sys-
tematically balk at situations involving problems that he/she never came across or
never solved. For reasons I shall not comment on, I call Herbartian—after
the German philosopher and founder of pedagogy Johann Heinrich Herbart
(1776-1841)—this receptive attitude towards yet unanswered questions and
unsolved problems, which is normally the scientist’s attitude in his field of research
and should become the citizen’s in every domain of activity.

The new didactic paradigm wants the future as well as the full-blown citizen to
become Herbartian. Let me give three easy, miscellaneous examples of possibly
impending “open” questions. First example: many people engaged in social science
research but who have had little contact with statistics during their school or college
years may come across Pearson chi-squared test, bump into the elusive notion of
degrees of freedom, and become obsessed with the question “What does the
expression ‘degrees of freedom’ mean exactly?” Second example: physics students
may be upset about having to use the curious symbol “proportional to” (<), “an
eight lying on its side with a piece removed” (Miller 2011), without having the
slightest idea about how the manipulation of this symbol can be justified in
mathematical terms, particularly as concerns the intriguing conclusion that, if a
variable z is proportional to variables x and y, then z will also be proportional to
their product xy. Third example: anyone interested in the question of biodiversity
may stumble upon a mathematical equation such as this:

1

H=1-—"
1+ 4N,

(1)

For the unrepentant non-mathematician, the first question will be: “What does
that mean? What does that entail?” For all of us, I suppose, a second question will
soon emerge: “Where does it come from? How can it be arrived at?” Of course, the
pre-Herbartian citizen generally ignores all these questions because he/she usually
recoils from anything seemingly mathematical. But the citizen in tune with the new
didactic paradigm will face the questions, and, whenever possible, will come to
grips with each of them. How is that possible?

In the didactic world shaped by the paradigm of visiting monuments, most people
behave “retrocognitively”. I use the word “retrocognition” not in its old parapsy-
chological sense but simply to express the cognitive attitude that leads one to refer
preferentially and almost exclusively to knowledge already known to one. Retro-
cognition in this sense is governed by the quasi-postulate according to which, once
your school and college years are over, if you don’t know in advance the answer to the
question that faces you, then you’d better renounce all pretension to arrive at a
sensible answer. This, of course, correlates with the propensity I mentioned earlier for
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staying away from unheard-of questions. By contrast, the paradigm of questioning
the world calls for a very different attitude, that I dub procognitive (in a sense
unrelated to the use of the word in denoting a drug that “reduces delirium or dis-
orientation’’), and which inclines one to behave as if knowledge was essentially still to
discover and still to conquer—or to rediscover and conquer anew. In the retrocog-
nitive bent, therefore, knowing is “knowing backwards’’; whereas in the procognitive
dedication, knowing is “knowing forwards”.

In the scenario I present, how does one construct and validate an answer A to a
question Q? Basically, inquiring into a question Q requires a twofold move. In the first
place, the “inquirer” x will search the relevant literature for existing answers to question
(O—a move traditionally banned at school, while to the contrary it is unavoidable in
scientific research. In ATD itis common to denote an existing answer by the letter A with
a small lozenge or diamond—a “thin” thombus—in superscript, AO, in order to express
that such an answer has been created and diffused by some institution which, in some
sense, hallmarked it. Of course an answer A® needs not be “true” or “valid”; butitisupto
x to evaluate answers A to see if they are relevant—which also departs from school
usage, in which answers provided by the teacher are guaranteed by the same token. In
order to arrive at a proper answer—usually denoted by the letter A with a small heart in
superscript regarded as the “maker’s mark”: A¥—, the inquirer x has to use “tools”,
mathematical or not, i.e. works of different nature. It is from the combined study of the
“hallmarked” answers A® and of the works O (used as tools both to study answers A°
and to construct an answer A") that the process of research for an answer A will get
under way.

The inquiry led by x into Q opens up a path called a research and study path (or
trail, or track, or course, etc.). To proceed along this path, the inquiry team X has to
use knowledge—relating to answers A® as well as to the other works O—hitherto
unknown to its members, that the team will have to get familiar with to be able to
continue on the trail towards answer A¥. A necessary condition in this respect is for
X and for every member x of X to behave procognitively, looking forward to
meeting new knowledge—new works—without further ado.

Some more didactic aspects should be stressed here. Firstly, in the paradigm of
questioning the world, encountering new knowledge or e-encountering old, half-
forgotten knowledge along the research and study path is the way that inquirers
x learn—they learn or relearn the answers Ao, the working tools O and, finally, the
answer AY. Tt should then be clear that the contents learnt, in this context, have not
been planned in advance—contrary to what is usual in the paradigm of visiting
monuments—and are determined essentially by two factors: by the question
0 being studied, in the first place, and then by the research and study path covered,
which in turn is determined by the A® and the O encountered and studied in order to
build up the answer A¥. Secondly, it must be emphasised that studying a (mathe-
matical or non-mathematical) work O—the same holds for the answers A% —is
determined by the project of arriving at an answer A¥. Contrary to the fiction forced
upon x and y in the paradigm of visiting works, there is no such thing as a “normal”
or “natural” study of a given work O. All exposés are special, none is exhaustive,
and most fail to conceal their arbitrariness. The study of a work O in the context of
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an inquiry into some question Q will heavily depend, both quantitatively and
qualitatively, on the use of O in the making of the answer A¥Y. What should be clear
in such a context-bound study of O is that the knowledge of O thus acquired by the
investigators is functionally coherent because it is cohered by the inquiry into
question Q, so that the raisons d’étre of O that do explain its use in the case in point
are readily apparent.

Society, School, and the New Paradigm

The paradigm of questioning the world and the inquiries that make it a reality do
not exist in a vacuum. They must have a basis in society and in school. Once again
let me stress here that the field of relevance of the didactic schema—called the
Herbartian schema—outlined so far extends to the whole of society—it is not
conceived as being restricted to school. Any person can represent x in a didactic
triplet (x, y, O). [A didactic “helper” y may fail to exist, in which case it is common
to write the triplet in the form (x, &, O): the didactic triplet is then reduced in actual
fact to a 2-tuple.] Of course it is easy to spot an outstanding difference. In many
modern societies, going to school during the first part of one’s life—while you’re a
youngster—is compulsory. Admittedly, there is no such thing as compulsory
education for adults in general. In this respect, the scenario advocated here supposes
a fundamental change, with the extension of the right to education into the right to
lifelong education for all, provided by an adequate infrastructure that we could
continue to call “school”, but in a sense that goes back to ancient Greece and, more
precisely, to the Greek word skhole, which originally designated spare time devoted
to leisure (this was still its meaning in the time of Plato, for example), but which
evolved to mean “studious leisure”, “place for intellectual argument”, and “time for
liberal studies”. The new role of the didactic in our societies thus implies the
development of a ubiquitous institution that, in what follows, I shall term, more
genuinely, skhole. Of course, school as we know it is a key component of skhole,
even though, in its present form, it remains largely foreign to the new didactic
paradigm. But school is not all of skhole. For example, for adults as well as for
younger people, a good part of skhole takes place at home: home skholeing will be,
and already is, a master component of skhole. In what follows, skhole will be
approached for its capacity to favour the development and flourishing of the par-
adigm of questioning the world—even though parts of it are still under the control
of the old school paradigm.

I begin by considering the case of adults’ skholeing—of which today’s “adults
schooling”, as we may call it, is but a meagre component. In truth, many citizens
are already, though partially, equipped to inquire on their own into the many
questions that may beset them, for example in their daily life. This being noted,
what are the main constraints that hinder, and what are the conditions that might
favour the development of adults’ skholeing? The first condition lies in the fact that,
instead of fleeing when faced with questions, x duly confronts them. To do so, x has
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to formulate them explicitly, at least for him/herself. Simple as it may sound, such a
move conflicts with a fundamental determinant of our cultures, the disjunction
between “masters” and “underlings”, if I may say so, that forbids the latter to raise
questions about the world—natural or social—, or, as the saying goes, to put it “into
question”, while “masters” have alone the legitimacy to question the world and to
change it. Sheer observation—but this conclusion can easily be submitted to
experimentation—shows that most people get excited at daring to pose on their own
the merest question. Historically, posing questions was the privilege of the mighty,
although it has become a defining right of citizens; but it is a right not yet exercised
as it should in a fully developed democracy.

Let us suppose that some citizen has decided to inquire into some question Q,
becoming thus an inquirer x in a triplet (x, ?, Q). At this stage of his/her study, two
problems face him/her. On the one hand, x may think of getting help from some
people Y; on the other hand, he/she will have to “search the world” for answers A% to
question Q and relevant works O. The first of these two problems has no systematic
solution today. The second problem has a good approximate solution. It consists in
the sum total of the information provided by the Internet and especially the Web. In
fact, I shall refer to the Internet sensu latissimo—in the broadest sense—, a sense
that, against current usage, includes... all the libraries in the world, because any
document is either available on the Internet or can be regarded as not yet available on
the Internet. To take here just one example, in the case of an inquiry into the
mathematics of the “proportional to” symbol (&), when starting from Jeff Miller’s
well-known website on the Earliest uses of symbols of relation (2011), one is led to
Florian Cajori’s classic book on the history of mathematical notations (1993, vol. 1,
p- 297), which in turn refers the inquirer to three older books, authored respectively
by Emerson (1768), who was the introducer of the symbol &, Chrystal (1866), and
Castle (1905). Today, all of these books are available online for free. Let us also
observe that the Internet allows most inquirers x to find help from occasional helpers
y, for example on Internet forums and discussion threads, so that the main solution to
the second problem also supplies a (partial) solution to the first problem.

Making inquiries on the Internet sensu latissimo meets with well-recognised dif-
ficulties. First, if x is almost certain to come across at least some relevant resources,
documents allowing him/her to go further and deeper into the question studied may be
scarce. Second, the inquirer x can prove unable both to find out relevant documents
that do exist and to make the most of what little information he/she culled. The
inquirer’s intellectual equipment—or more exactly the inquirer’s praxeological
equipment, in a sense of the word praxeology proper to ATD—thus rests on two
pillars: the capacity to locate resources, online and offline, and the knowledge nec-
essary to take advantage of them. This leads to the question of making good use of the
works O gathered. Most general questions Q entail the use of works O pertaining to
different branches of knowledge, so that the study of Q is bound to be a co-disciplinary
pursuit, bringing together for acommon endeavour tools from different “disciplines”.
It should be stressed at this point that what I’ve called a citizen is not a person reduced
to being a member of a political community. But, much to the contrary, he/she is
considered according to his/her accomplishments and potential, particularly as an
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inquirer into questions of any breed. It results from this that a citizen does not only
have to be educated in many fields but, in the procognitive perspective of the new
didactic paradigm, a citizen must be ready to study and learn, even from scratch, fields
of knowledge new to him/her. A citizen is not only a law-abiding person; he/she also
has to become a knowledgeable person, indefinitely ready to study works hitherto
unknown to him/her, just because some inquiry calls for their study.

The citizen I portray here may feel unable to live up to what is thus required of
him/her. This feeling essentially results from the old didactic organisation of school
and society that has imposed upon us the illusion according to which, for any
knowledge need we may experience, there somewhere exists a providential person
who can teach us whatever we want to know. Such a puerile belief leads to pas-
sivity and submission to events outside our reach. In the paradigm of questioning
the world, attending a course or a conference on some subject of interest is certainly
not disregarded. But we should take them as means to a common end—Ilearning
something on some determined work O supposed to be useful in order to bring forth
an answer A¥ to question Q. In such a situation, because of a relation to ignorance
and knowledge resulting from exposure to the old school paradigm, we are prone to
feel frustrated at not having all the knowledge needed—all of history, biology,
mathematics, physics, chemistry, philosophy, linguistics, sociology, and so on
indefinitely. The character implicitly fantasised here is what I’ve come to call an
esoteric (using thus the adjective also as a noun), who is supposed to already know
all the knowledge needed (the idea most people have of “a historian”, “a biologist”,
“a mathematician™, “a physicist”, etc., is commonly akin to this fantasy). By
contrast, an exoteric has to study and learn indefinitely, and will never reach the
elusive status of esoteric. Indeed, all true scholars are exoteric and should remain so
in order to remain scholars: esotericism, as I define it here, is a fable.

The citizen in the new paradigm is therefore called upon to become Herbartian,
procognitive, and exoteric. How can we promote this new citizenship? Beyond
being possessed by the epistemological passion necessary to go all the way from
pure ignorance to adequate knowledge, a crucial condition is, for sure, the time
allotted to study and research in an adult’s life. More often than not, it seems, this
time tends to zero as years pass by. In this respect, I suggest that we repeat again
and again the founding trick of the ancient Greeks—that of transmuting leisure
time, which some of our contemporaries seem to enjoy so abundantly, into study
and research time, in the authentic tradition of skhole. Such a pursuit pertains to
what Freud once called Kulturarbeit, “civilisational work”—a radical change still to
come, which is a sine qua non of the emergence of the new didactic paradigm.

The problem of the time allotted to study and research has an easy solution when
it comes to ordinary schooling: youngsters go to school to study, in accordance with
skhole’s defining principle. But in what measure does school welcome the new
didactic paradigm? I shall not dwell too long on this subject. I will, however,
suggest that in too many cases, the so-called “inquiry-based” teaching resorts to
some form or another of “fake inquiries”, most often because the generating
question Q of such an inquiry is but a naive trick to get students to find and study
works O that the teacher will have determined in advance. Of course, this is the
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plain consequence of the domination of the paradigm of visiting works, which
implies that curriculum contents are defined in terms of works O. In contradis-
tinction, in the paradigm of questioning the world, the curriculum is defined in
terms of questions Q. However, the works O studied in consequence of inquiring
into these questions Q play a central role in the process of defining and refining the
curriculum: starting from a set Q of “primary” questions, the curriculum contents
C eventually studied will include the questions Q and answers AY, together with the
answers A® and the works O.

At this point two questions arise, though. The first question relates to the set Q of
“primary” questions: where do these questions come from, and according to what
mechanisms? In the case of a national curriculum, the set of primary questions to be
studied at school constitutes the “core curriculum”, and therefore the foundation of
the national pact between society and school. Consequently, it is up to the nation to
watchfully and democratically decide what the set Q will consist of and to peri-
odically revise and update its contents on the basis of a careful monitoring of the
curriculum’s life-cycle. Because it is essential to the relationship between a society
and its schooling system, the core curriculum—i.e. the “primary” questions—will
play a decisive part in the society’s skhole. But it should be obvious that the
curriculum is not precisely defined by the primary questions alone. The inquiries
entailed by these questions are in no way uniquely defined: as we know, an inquiry
may follow different paths of study and research, and the questions inquired into as
well as the other works encountered and, up to a point, studied, are indeed path-
dependent. As a result, even if the core curriculum (in the sense defined above) has
been made precise, the ensuing curriculum might well look fuzzily defined because
of its built-in variability. How can this situation be managed for the better?

Let us consider didactic triplets (X, ¥, O) with O a (finite!) family of questions.
We can envisage two types of didactic triplets associated with a class of students.
First, there is a seminar, in which O is a dynamic family of questions comprising
the primary questions and the questions their study will generate. (Remember that
the scenario delineated is supposed to apply to advanced students as well as to...
toddlers, so that the words I use here must be taken in a very broad sense, which
allows for their adaptation to a wide variety of concrete conditions.) This seminar
will essentially be co-disciplinary, for primary questions rarely fall into a unique
disciplinary domain. Second, there will be disciplinary workshops to study the
questions and works put forward in the seminar but which pertain essentially to a
given discipline—there will be for example a chemistry workshop, a mathematics
workshop, a history workshop, a biology workshop, and so on. The activated
workshops may vary depending on the primary questions studied in the seminar.
The key fact is that, in this two-step process (seminar plus workshops), some works
O and disciplines will be insistently recurrent, because they will be more often
called upon in the inquiries, while others will be encountered erratically or will
almost never turn up. This “degree of mobilization” of a work O, if averaged
nationally across all the seminars held at a given school level, gives the “degree of
membership” of the work O to the curriculum regarded, metaphorically, as a
continually redefined fuzzy set—a view more adequate to the true nature of a real
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curriculum. As indicated above, and contrary to the age-old habit of imposing a
curriculum founded essentially on opinion, the paradigm of questioning the world
makes it possible to bring to light in an organic way which resources are really used
in trying to question and know the world, both natural and social.

What Will Be the Place of Mathematics?

At a given point in time, an inquiry may come to a stop because some useful tool
proves unavailable to the inquirers. One major reason for which an inquiry may thus
grind to a halt is that the mastery of essential parts of some work O, ideally required to
continue progress, lie well beyond the inquirers’ reach. This, it should be stressed, is
the common law of inquiry, be it at school or in a research team, and is definitely not
the preserve of “low-level exoterics™: it is part and parcel of the art of inquiry—such
an “incident” is but one of the twists and turns in an inquirer’s venture. But the path
followed in a given inquiry, whatever its determinants, has crucial consequences in
the didactic scenario displayed above: if a work O is very rarely drawn upon in
seminars and workshops across the nation, then this work O will eventually vanish
from the national curriculum. To be quite frank, this can result in the disappearing of
parts of traditional school disciplines; for the place occupied by a discipline in the new
curriculum will depend on its effectiveness in providing tools for inquiring into the
curriculum-generated questions; it will depend no longer on any formerly or recently
established hierarchy of disciplines, held to be the unquestionable legacy of the past.
Traditionally flourishing disciplines should then worry about their future at school:
will they continue to thrive or will they soon languish? The question is put to every
discipline, and especially to mathematics.

If knowledge is valued according to what it enables us to rationally understand
and achieve, the problem we are confronted with is not so much the fate of the
disciplines as the value and quality of the inquiries going on in the seminars and
workshops. From this point of view, the foregoing scenario can be improved
substantially by allowing for the possibility to append “control questions” to any
question pertaining to the curriculum. In some sense, this adds, to the bottom-up
information flow emanating nationwide from the seminars and workshops, a top-
down regulatory control on schools, operated by supervisory authorities. Any
question Q can indeed be supplemented meaningfully by one or a series of “side
questions” Q* that will be touchstones for controlling the quality, thoroughness and
profundity of an inquiry into question Q. It is in this way that it becomes possible to
point out meaningfully—and not out of sheer pretentiousness—the utility of such
and such work O to get deeper into the question studied. For example, to a question
about biodiversity, one might relevantly add a question about genetic diversity and,
in turn, a question about the meaning and interest of Eq. (1) above, a question likely
to draw the inquirers’ attention to the importance of... mathematics in inquiring
into genetic diversity.
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For mathematics as well as for a myriad of works pertaining to the most varied
fields of knowledge, such a system of control questions seems indispensable to
remind the x and the y that inquiring into some question may require the use of tools
that will first appear, from within the cultural limits that they are precisely expected
to transcend, as far removed from the matter under study. This is particularly true in
the case of mathematical works. For deep-rooted historical reasons, mathematics is
today both formally revered and, at the same time, energetically shunned.
Numerous people flee away from mathematics as soon as they are no longer obliged
to “do” mathematics. This has determined many mathematics educators to engage
in a strategy of seduction, with a view to regaining the favour of “mathematical
non-believers” by convincing them that, as the saying goes, “maths is fun”! Let me
say tersely that this strategy has two main demerits and that, in my view, it should
be as such utterly discarded. The first defect seems to be liberally ignored in today’s
educational world: for deep political and moral reasons, the instruction imparted at
school must refrain from manipulating feelings and beliefs—we must be unim-
peachable as far as the liberty of conscience of x (and y) is concerned. Conse-
quently, mathematics educators must resist the temptation to try to induce students
to “love” mathematics: their unique mission is to let them know mathematics, which
is a bit more demanding! Love and hate are personal, intimate feelings that belong
to the private sphere proper. Of course, it is highly probable that knowing math-
ematics better will result in some form of keenness towards mathematics. But all
this entirely pertains to every single person’s conscience.

The second defect of the much acclaimed seduction strategy is its very low yield,
if I may say so. The problem with mathematics—as with other disciplines—is a
mass problem. The root of it lies, in my view, in the process of cultural rejection
that mathematics has suffered for a long time now, with the crucial consequence
that, outside mathematical institutions proper, mathematics vanishes from the “lay”
scene, so much so that many documents about topics not substantially foreign to
mathematics can show no trace at all of mathematics, a fact which jeopardises the
quality of many inquiries. Let me give here a simple example. Consider the
question “Why does ice float in water?” Part of the answer is: because ice is less
dense than liquid water. Now why is ice less dense than liquid water? The usual
answer is that the arrangement of H,O molecules occupies more space in ice than in
liquid water. A closer look at this answer leads to some easy calculations (Ravera
2012). Indeed, it can be shown that, under certain conditions, the unit cell of ice has
a height of 737 pm (i.e. 737 x 10~'? m), with its base a rhombus with sides of
length 452 pm and an angle of 60°. The volume of the unit cell is therefore

3
V= g x 4522 x 737 x 1075L 2)

The molar mass of water is approximately 18 g/mol. The mass of a unit cell of
ice is known to be that of four molecules of water. Avogadro’s number is taken here
to be 6.02 x 10%* mol™'. Hence the mass M of a unit cell:
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4 x 18
6.02 x 1053 ° (3)

The density of ice is therefore:
d =

M
T~ 91Tg/L (4)

This (approximate) result confirms that ice is lighter than liquid water. The
calculation uses elementary tools that are all (supposedly) mastered at age 15. In
spite of this, this calculation is generally withheld from most relevant presentations
available on the Internet. This is no exception to the rule. In a majority of cases, the
mathematics of the topic being presented is decidedly absent, as if it had never
existed. This is typically what mathematics educators must combat. In this respect,
as far as mathematics is concerned, the “touchstone questions” that should be
appended tentatively to any question proposed for study come down to this: “What
are the mathematics of the matter, and how can awareness of them enhance the
quality of your answer?”

Is this really a way out of the historic trap in which mathematics has been lured?
I believe so. The seduction strategy, which is successful with an insignificant
number of people, is but another pitfall. In my view, the only realistic solution will
consist in trying to rationally persuade the citizens and, to begin with, the students
that dispensing with mathematics may crucially impoverish our understanding and
drastically reduce the quality of our involvement in both the natural and the social
world. This, of course, will not be achieved through fine words only. It needs daily
action, in schools as well as outside schools, especially in the leisure time given to
learning by the citizenry to enrich their lives. In this pursuit, mathematics educators
will play a crucial, though different, part.

For centuries, mathematics as a cultural institution thrived on a twofold self-
presentation: it was understood as being composed, on the one hand, of “pure”
mathematics, and, on the other hand, of “mixed” mathematics, with its pervasive
ethos and slightly imperialistic touch. The “mixed” part, later called “applied”
mathematics, has steadily declined at school during the last decades, while what
remained of the former part—pure, though elementary, mathematics—tried to
symbolise and maintain the old “empire”. It is my belief that this time has now
come to an end. Today, we have to revive the epistemological spirit of mixed
mathematics, although without any cultural arrogance, but with the political and
social will necessary to revitalise the idea that mathematics is for us, human beings,
a solution, not a problem.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Mathematics for All? The Case
for and Against National Testing

Gilah C. Leder

Abstract National numeracy tests were introduced in Australia in 2008. Their
format and scope are described and appraised in this paper. Of the various group
performance trends presented in the annual national NAPLAN reports two (gender
and Indigeneity) are discussed in some detail. For these, the NAPLAN findings are
compared with broader international data. Recent Australian research spawned by,
or benefitting from, the NAPLAN tests is also summarised. In some of this work,
ways of using national test results productively and constructively are depicted.

Keywords National tests «+ Gender - Indigeneity

Introduction

It should come as no surprise... that the introduction of a national regime of standardised
external testing would become a lightning rod of claim and counter-claim and a battle-
ground for competing educational philosophies. The National Assessment Program—Lit-
eracy and Numeracy (NAPLAN) is a substantial educational reform. Its introduction has
been a source of debate and argument (Sidoti and Keating 2012, p. 3).

Formal assessment of achievement has a long history. Kenney and Schloemer
(2001) point to the use, more than three thousand years ago, of official written
examinations for selecting civil servants in China. The birth of educational
assessment is, however, generally traced to the 19th century and its subsequent
growth has undoubtedly been intertwined with advancements in the measurement
of human talents and abilities (Lundgren 2011). Over time the development of large
scale, high stake testing and explorations of its results have proliferated. “Many
nations”, wrote Postlethwaite and Kellaghan (2009), “have now established
national assessment mechanisms with the aim of monitoring and evaluating the
quality of their education systems across several time points” (p. 9). More recently,
Eurydice (2011) also drew attention to the widespread practice of national testing
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throughout Europe, confined in some countries to a limited number of core cur-
riculum subjects but in others comprising a broad testing regime. Large scale
national assessment programs, with particular emphasis on numeracy and literacy',
were introduced in Australia in 2008—after extensive consultation and much
heated debate within and beyond educational and political circles.

The NAPLAN Numeracy Tests

Until 2007, Australian states and territories ran their own numeracy and literacy
testing programs. Although much overlap could be found in the assessment
instruments used in the different states, there were also variations—some subtle,
others substantial—in these tests.

The first National Assessment Program—ULiteracy and Numeracy (NAPLAN)
tests were administered in May 2008 and have been conducted annually since then.
For the first time, students in Years 3, 5, 7, and 9, irrespective of their geographic
location in Australia, sat for a common set of tests, administered nation-wide. The
Numeracy tests contain both multiple choice and open-ended items. Their scope
and content are informed by the Statements of Learning for Mathematics (Curric-
ulum Corporation 2006). The ‘what’ students are taught is described by four broad
numeracy strands. These are Algebra, function and pattern; Measurement, chance
and data; Number; and Space, though some questions may overlap into more than
one strand. Instructional strategy, the ‘how’ of mathematics is described by profi-
ciency strands. “The proficiency strands—Understanding, Fluency, Problem solv-
ing and Reasoning—describe the way content is explored or developed through the
‘thinking’ and ‘doing’ of mathematics” (Australian Curriculum, Reporting and
Assessment Authority ACARA 2010). In Years 3 and 5, the papers are expected to
be completed without calculator use. Two distinct papers are set for Year 7 and 9
students—one is expected to be completed without the use of a calculator; for the
other calculator usage is allowed.

The NAPLAN numeracy scores for Years 3, 5, 7, and 9 are reported on a
common scale which is divided into achievement bands. For each of these year
levels, the proportion of students with scores in the six proficiency bands consid-
ered appropriate for that level is shown. For Year 3, 5, 7, and 9 these are bands one
to six; three to eight; bands four to nine; and bands five to ten respectively. Each
year, results of the NAPLAN tests are published in considerable detail, distributed
to each school, and made readily available to the public.

The advantages anticipated by the introduction of national tests to replace the
variety of tests previously administered by the different Australian states and

! Sample assessment tests have been administered to selected groups of students in Years 6 and
10 in Scientific Literacy (Year 6 students only), Civics and Citizenship, and Information Com-
munication Technology Literacy. These sample assessments were introduced respectively in 2003,
2004, 2005 and are held on rolling a three-yearly basis.
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territories were similar to those commonly put forward in the wider literature (e.g.,
Postlethwaite and Kellaghan, 2009) as a rationale or justification for introducing
national tests: assessment consistency across different constituencies, increased
accountability, and a general driver for improvement.

ACARA is responsible for the development of the national assessment program
and the collection, analysis, and reporting of data. The procedures followed are
described clearly on the ACARA website and are consistent with those generally
advocated for large scale assessment testings (Joint committee on testing practices
2004). Guidance on interpreting the vast amount of data in the National Report is
provided in the document itself (ACARA, 2011a) and in multiple ancillary docu-
ments (see e.g., ACARA, 2011b; Northern Territory Government n.d). NAPLAN
achievement outcomes are reported not only at the national level, but also by state
and territory data; by gender; by Indigenous status; by language background status?;
by geolocation (metropolitan, provincial, remote and very remote); and by parental
educational background and parental occupation. Each of these categories which
are clearly not mutually exclusive, has been shown, separately, to have an impact
on students” NAPLAN score. Broad performance trends for the different groupings
have been summarised as follows:

In Australia, girls have typically performed better on tests of verbal skills..., while boys have
typically performed better on tests of numerical skills... Children from remote areas, children
from lower socioeconomic backgrounds and children of Indigenous background have tended
to perform less well on measures of educational achievement (NAPLAN 2011b, p. 255).

It is beyond the scope of this paper to look at each of the categories mentioned
above. Instead, the focus is on two groups of special interest: girls/boys and
Indigenous students. What trends can be discerned in the years of NAPLAN data
available at the time of writing this paper?

Trends in NAPLAN Data: Gender and Indigeneity

Data for Years 3 and 9 by gender and Indigeneity are shown in Tables 1 and 2
respectively.
From these tables it can be seen that:

Gender

e The mean NAPLAN score for males is invariably higher than that for females.
e The standard deviation for males is also consistently higher than for females,
that is the range of the NAPLAN scores for males is higher than that for females.

2 LBOTE, language background other than English, defined as “A student is classified as LBOTE
if either the student or parents/guardians speak a language other than English at home.”
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Table 1 Numeracy Year 3 students, NAPLAN achievement data 2008-2011

Group All M F Indigenous | Non- Indigenous
\year Indigenous | year 5%
2008 Mean 3969 |400.6 |393.1 327.6 400.5 408.0
S.D 70.4 72.8 67.6 70.6 68.4 65.8
>National 95.0 % |94.6 % |95.5 % |78.6 % 96.0 % 69.2 %
min® (%)

2009 Mean 3939 3975 |390.2 |320.5 397.7 420.5
S.D 72.9 75.3 70.0 76.0 70.6 66.4
>National 94.0 % |93.5% (945 % |74.0 % 952 % 74.2 %
min (%)

2010 Mean 3954 13978 3929 3253 399.0 416.9
S.D. 71.8 74.0 69.3 71.2 69.8 70.5
>National 943 % |93.7 % [949 % |76.6 % 953 % 714 %
min (%)

2011 Mean 398.1 |402.6 3935 |3344 401.7 421.1
S.D. 70.6 73.0 67.6 65.0 69.1 64.0
>National 95.6 % 952 % |96.0 83.6 % 96.4 % 75.2 %
min (%)

@ T refer to the data in the last column later in the paper. To save space the information is included
in this table

® National minimum standards: The second lowest band on the achievement scale represents the
national minimum standard expected of students at each year level

Table 2 Numeracy Year 9 students, NAPLAN achievement data 2008-2011

Group All M F Indigenous | Non- Year 7

\year Indigenous | Non-Indigenous

2008 Mean 582.2 586.5 5776 |515.1 585.7 548.6
S.D 70.2 72.0 68.1 65.6 68.7 71.6
>National 93.6 % |93.7% [93.6% |72.5 % 94.8 % 96.4 %
min (%)

2009 Mean 589.1 5924 | 585.6 |520.2 592.4 547.0
S.D 67.0 69.2 64.4 63.2 65.3 69.4
>National 95.0% 947 % 952 % |75 % 96 % 95.8 %
min (%)

2010 Mean 585.1 591.1 578.8 515.2 588.5 551.4
S.D 70.4 72.7 67.4 64.7 68.8 70.8
>National 93.1 % (933 % (929 % |70.4 % 94.3 % 96.1 %
min (%)

2011 Mean 583.4 5893 577.3 515.8 586.7 548.5
S.D 72.1 74.7 68.7 62.2 70.8 72.1
>National 93.0% |93.0% [93.0% |72 % 94.1 % 95.5 %
min (%)

(Data in both tables adapted from ACARA 2011a)
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e At the Year 3 level a higher proportion of females than males score above the
national minimum standard NAPLAN score. There is no such consistency at the
Year 9 level, with a marginally higher proportion of males performing at or
above the minimum level in some years (e.g., 2008, 2010) and a marginally
higher proportion of females performing at or above the minimum level in other
years (e.g., 2009).

Indigeneity

e Each year, non-Indigenous students do (a lot) better than Indigenous students.
From Table 1 it can be seen that Year 5 Indigenous students performed just above
the level of Year 3 non-Indigenous students; from Table 2 that Year 9 Indigenous
students performed below the level of Year 7 non-Indigenous students.

e In 2011, there was a noticeable increase, compared with the previous years, in the
percentage of Indigenous students at Year 3 who performed at or above the
national minimum standard. No such increase is apparent at the other Year levels.

Also relevant are the following:

e In 2011, between 240,000 and 250,000 non-Indigenous students sat for the Years
3,5, 7, and 9 NAPLAN papers. For the Years 3, 5, and 7 papers close to 13,000
Indigenous students participated. A smaller number, about 10,000 sat for the Year
9 paper. Thus at the different Year levels, Indigenous students comprised between
4 and 5 % of the national groups involved in the NAPLAN tests.”

e The exemption rates for the two groups are similar: around 2 % for Indigenous
students and about 1 % for non-Indigenous students.

These summaries for gender and Indigenous performance outcomes are set
against a broader context in the next sections.

Gender

In many countries, including Australia, active concern about gender differences in
achievement and participation in mathematics can be traced back to the 1970s. Two
reliable findings were given particular prominence: that consistent between-gender
differences were invariably dwarfed by much larger within-group differences; and
that students who opted out of post compulsory mathematics courses often
restricted their longer term educational and career opportunities. These general-
izations remain relevant.

* The proportion of school students in Australia identified as Aboriginal and/or Torres Strait
Islanders has risen from 3.5 % in 2001 to almost 5 % in 2011(http://www.abs.gov.au/ausstats/
abs @ .nsf/Lookup/4221.0main+features402011).
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Evidence of progress towards gender equity more broadly than with respect to
mathematics learning specifically has been mapped in many different ways:

Whereas the challenge of gender equality was once seen as a simple matter of increasing
female enrolments, the situation is now more nuanced, and every country, developed and
developing alike, faces policy issues relating to gender equality. Girls continue to face
discrimination in access to primary education in some countries, and the female edge in
tertiary enrolment up through the master’s level disappears when it comes to PhDs and
careers in research. On the other hand, once girls gain access to education their levels of
persistence and attainment often surpass those of males. High repetition and dropout rates
among males are significant problems (UNESCO 2012, p. 107).

As can be seen from large scale data bases such as NAPLAN, some gender
differences in mathematics performance remain. What explanations for this have
been proffered?

Explanatory Models

Over the years a host of, often subtly different, explanatory models for gender
differences in mathematics learning outcomes have been proposed. They invariably
contain a range of interacting factors—both person-related and environmental.
Common to many models is an

...emphasis on the social environment, the influence of other significant people in that
environment, students’ reactions to the cultural and more immediate context in which
learning takes place, the cultural and personal values placed on that learning and the
inclusion of learner-related affective, as well as cognitive, variables (Leder 1992, p. 609).

A comprehensive overview of research concerned with gender differences in
mathematics learning is beyond the scope of this paper. Instead, some recent
publications, the majority with at least a partial cross-national perspective and
published in a variety of outlets, are listed to sketch the range of factors invoked as
explanatory or contributing factors for the differences still captured. Included is
work in which the need for a repositioning of perspective to examine gender
differences, via a different theoretical (often feminist and/or socio-cultural) frame-
work, is prosecuted, as well as several articles in which there are strong attempts to
rebut the notion that gender differences persist.

Gender Differences: Possible Explanations

e Kaiser et al. (2012) found, in a large study involving over 1,200 students, that
“the perception of mathematics as a male domain is still prevalent among
German students, and that this perception is stronger among older students. This
is either reinforced by the peer group, parents or teachers” (p. 137).

e Kane and Mertz (2012) concluded “that gender equity and other sociocultural
factors, not national income, school type, or religion per se, are the primary
determinants of mathematics performance at all levels of boys and girls” (p. 19).
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e Stoet and Geary (2012) challenged but ultimately supported the notion of ste-
reotype threat (provided it is carefully operationalized) as an explanation for the
higher performance of males in mathematics, particularly at the upper end.

e Wai et al. (2010) examined 30 years of research “on sex differences in cognitive
abilities” and focussed particularly on differences in favour of males found in
the top 5 %. As well as highlighting the role of sociocultural factors they
concluded: “Our findings are likely best explained via frameworks that examine
multiple perspectives simultaneously” (p. 8).

e “Traditionally, all societies have given preference to males over females when it
comes to educational opportunity, and disparities in educational attainment and
literacy rates today reflect patterns which have been shaped by the social and
education policies and practices of the past. As a result, virtually all countries
face gender disparities of some sort” (UNESCO 2012, p. 21).

Gender Differences: Have They Disappeared?

e Else-Quest (2010) used a meta-analysis of PISA and TIMSS data to examine the
efficacy of the gender stratification hypothesis (that is, societal stratification and
inequality of opportunity based on gender) as an explanation for the continuing
gender gap in mathematics achievement reported in some, but not in other,
countries. They concluded that “considerable cross-national variability in the
gender gap can be explained by important national characteristics reflecting the
status and welfare of women” (p. 125) and that “the magnitude of gender
differences in math also depends, in part, upon the quality of the assessment of
mathematics achievement” (p. 125).

e Hyde and Mertz (2009) drew on contemporary data from within and beyond the
U.S. to explore three major questions: (1) “Do gender differences in mathe-
matics performance exist in the general population? (2) Do gender differences
exist among the mathematically talented? (3) Do females exist who possess
profound mathematical talent?” (p. 8801). They summarised respectively: (1)
Yes, in the U.S. and also in some other countries; (2) Yes, there are more males
than females are amongst the highest scoring students, but not consistently in all
ethnic groups. Where this occurs, the higher proportion of males is “largely an
artefact of changeable sociocultural factors, not (due to) immutable, innate
biological differences between the sexes” (p. 8801); and (3) Yes, there are
females with profound mathematical talent.

Gender Differences: Looking for New Directions

e Erchick (2012) argued that consideration of conceptual clusters, rather than
topics in relative isolation, should lead to new questions in as yet fallow ground
to be found in the field of gender differences in mathematics. Three clusters are
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proposed: “Feminism/Gender/Connected Social Constructs; Mathematics/
Equity/Social Justice Pedagogies; and Instruction/Perspectives on Mathematics/
Testing” (p. 10).

e Jacobsen (2012) is among many of those who argue for a reframing of the deficit
model approach to gender differences in which male performance and experi-
ence are considered the norm to one recognizing the social construction of
gender and accepting that females may learn in different, but not inferior, ways
from males. One approach to translating this theoretical perspective into practice
is also described.

In some of the publications listed (as well as in others not listed here) gender
differences are minimized while in others they are given centre-stage. Collectively,
a complex rather than simplistic network of interweaving and sometimes con-
trasting pressures emerges from this body of work. After four decades of research
on gender and mathematics, there is only limited consensus on the size and
direction of gender differences in performance in mathematics and stark variation in
the explanations put forward to account when differences are found.

The NAPLAN scores summarised in Tables 1 and 2 also require a nuanced
rather than uni-dimensional reading. When performance on the NAPLAN test is
described in terms of mean scores, the small but consistent gender differences in
favour of males mirror those obtained in other large scale tests such as the Trends in
International Mathematics and Science Study (TIMSS) and the OECD Programme
for International Student Assessment (PISA)*. But in terms of another set of
NAPLAN achievement criteria, the percentage of students achieving above the
minimum national average, the small differences reported generally favour girls in
the earlier years of schooling, in each of 2008-2011 at Year 3; for three of the four
years (2009-2011) for Years 5 and 7; but in only one year (2009) at the Year 9
level. Clearly, gender differences in performance on the NAPLAN tests are small,
consistent or variable, depending on the measuring scale and the method of
reporting used.

Assessment: Gender Neutral or not?

That gender differences in mathematics learning may be concealed or revealed by
the assessment method used is not a new discovery. Else-Quest et al. (2010) judged
that “the magnitude of gender differences in math also depends, in part, upon the
quality of the assessment of mathematics achievement” (p. 125). Dowling and

* Differences in the samples involved in the three tests are worth noting. NAPLAN is adminis-
tered to all students in Years 3, 5, 7, and 9. It is best described as a census test. The TIMSS tests,
aimed at students in Years 4 and 8, and the PISA tests administered to 15-year-old students, are
restricted to “a light sample (of) about 5 % of all Australian students at each year or age level”
(Thomson, p. 76).
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Burke (2012) pointed to the 2009 General Certificate of Secondary Education
examinations in the U.K. as the first occasion in a decade for boys to perform better
than girls in an external examination. “This reversal coincided with a change in the
form of the examination” (p. 94), they noted.

A now somewhat dated, yet still striking, example of the impact of the format of
examinations on apparent gender differences in mathematics achievement is pro-
vided by Cox et al. (2004). They tracked gender differences in performance in the
high stake, end of Year 12 examinations in Victoria, Australia for the years 1994—
1999, a sustained period of stability in the state’s external assessment regime.
Student performance in three different mathematics subjects—Further Mathematics
(the easiest and most popular of the three mathematics subjects offered at Year 12),
Mathematical Methods (a pre-requisite for many tertiary courses), and Specialist
Mathematics (the most demanding of the three mathematics subjects)—were among
the results inspected. For each of these three subjects there were three different
examination components. These were common assessment task (CAT) 1 consisting
of a school assessed investigative project or problem, to be completed over several
weeks; CAT 2, a strictly timed examination comprising multiple choice and short
answer questions; and CAT 3, also a strictly timed examination paper with prob-
lems requiring extended answers. Thus CATs 2 and 3 followed the format of
traditional timed examinations.

During the period monitored, a student enrolled in a mathematics subject in Year
12 was required to complete three assessment tasks in that subject. A test of general
ability was also administered to the Year 12 cohort. These combined requirements
provided a unique opportunity to compare the performance of the same group of
students on timed and untimed examinations and on papers with items requiring
substantially and substantively different responses. In brief:

e Males invariably performed better (had a higher mean score) than females on the
mathematics/science/technology component of the general ability test.

e In Further Mathematics, females outperformed males in CAT 1 and in CAT 2 in
all of the six years of data considered, and on CAT 3 for five of the six years.

e In Mathematical Methods, females performed better than males in all of the six
years on CAT 1; males outperformed females on CAT 2 and CAT 3 for the six
years examined.

e In Specialist Mathematics, females performed better than males in all of the six
years on CAT 1 and in five of the six years on CAT 3. However males out-
performed females on CAT 2 for each of the six years examined.

Thus whether as a group males or females could be considered to be “better” at
mathematics depends on which subject or which test component is highlighted. If
the least challenging and most popular mathematics subject, Further Mathematics,
is referenced then the answer is females. If for all three mathematics subjects the
focus is confined to the CAT 1 component, the investigative project or problem
assessment task, done partly at school and partly at home, then again the answer is
females. But if the focus is on the high stake Mathematical Methods subject, the
subject which often serves as a prerequisite for tertiary courses, and on the
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traditional examination formats of CAT 2 and CAT 3 in that subject, then the
answer is males. Collectively these data illustrate that the form of assessment
employed can influence which group, males or females, will have the higher mean
performance score in mathematics. Would the small but consistent differences
found in favour of males’ mean performance on the NAPLAN papers disappear if
the tests were changed from their traditional strictly timed, multiple choice and
short answer format to one resembling the CAT 1 requirements?

Changes to the Year 12 assessment procedures in Victoria were introduced in
2000, seemingly in response to concerns about student and teacher workload and to
issues related to the authentication of student work for the teacher-assessed CATs.
The changes were described by Forgasz and Leder (2001) as follows:

For the three VCE mathematics subjects the assessment changes involve the CAT 1
investigative project task being replaced with (generously) timed, classroom based tasks, to
be assessed by teachers but with the scores to be moderated by externally set, timed
examination results. It is worth recalling that it was on the now replaced format of CAT I,
the investigative project, that females, on average, consistently outperformed males in all
three mathematics studies from 1994 to 1999. Is it too cynical to speculate that this
consistent pattern of superior female achievement was a tacit factor contributing to the
decision to vary the assessment of the CAT 1 task? It is difficult to predict the longer term
effects of the new... assessment procedures on students’ overall mathematics performance
and study scores. Is there likely to be a return to earlier patterns of superior male perfor-
mance in mathematics? If so, will this satisfy those who are arguing that males are currently
the educationally disadvantaged group? (p. 63)

Indigeneity

That there is no ambiguity about the differences in the performance on the NA-
PLAN tests between Indigenous and non-Indigenous students is clearly apparent
from Tables 1 and 2, and widely emphasized elsewhere. Thomson et al. (2011), for
example, examined the 2009 PISA data for Australian students and reported a
substantial difference between the average performance of Indigenous and non-
Indigenous students on the mathematical literacy assessment component. What
message is conveyed by the reporting of these differences?

Gutiérrez (2012) has compellingly used the term “gap gazing” to describe pre-
occupation with performance differences between selected groups of students and
has argued convincingly that highlighting such differences can be counter-pro-
ductive and reinforce stereotyping. “In its most simplistic form, this approach points
out there is a problem but fails to offer a solution... (T)hat it is the analytic lens
itself that is the problem, not just the absence of a proposed solution” (Gutiérrez
2012, p. 31) should not be ignored.

As mentioned earlier, the results of NAPLAN testings are widely disseminated
and described in media outlets. Forgasz and Leder (2011) compared the more
nuanced reporting of students’ results on these tests in scholarly outlets with the
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more superficial tone of print media reports. According to these authors “media
reports on students’ performance in mathematics testing regimes appear to rely
heavily on the executive summaries that accompany the full reports of these data...
(T)he more detailed and complex analyses undertaken of entire data sets are often
omitted” (p. 218). These comments apply equally to the simplified reporting of
gender differences, and differences in performance between Indigenous and non-
Indigenous students. It is the arguments advanced in the “more superficial tone of
the print media reports” that capture the attention of the general public and shape
the sociocultural norms and expectations of the broader society. These norms and
expectations are, as mentioned above, among the factors identified by Hyde and
Mertz (2009) (among others) as contributing to or averting the emergence of gender
difference in performance in mathematics.

Unease has been expressed, both nationally and internationally, about the neg-
ative impact of high stake, national testing. Common concerns:

range from the reliability of the tests themselves to their impact on the well-being of
children. This impact includes the effect on the nature and quality of the broader learning
experiences of children which may result from changes in approaches to learning and
teaching, as well as to the structure and nature of the curriculum (Polesel 2012, p. 4).

Disadvantages stemming from blanket reporting of results in large scale exam-
inations have also been widely discussed and selectively elaborated by Berliner
(2011). Although his remarks were aimed at indiscriminate and shallow reporting of
the PISA results of selected groups of students in the USA, many of his comments are
equally applicable to the coverage of performance of Indigenous students on the
Australian NAPLAN tests. Three of his concerns seem highly relevant with respect to
the portrayal of the numeracy results of Indigenous students: “what was not repor-
ted”, “social class”, and “the rest of the curriculum”.

What Was not Reported

Each year the NAPLAN data are published, the rather high proportion of Indige-
nous students who fail to meet the nationally prescribed minimum numeracy

standard attracts the attention of educators and the wider community. As noted by
Forgasz and Leder (2011), p. 213:

The lower performance of Indigenous students, compared with the wider Australian school
population, attracted sustained media attention. The discovery that Aboriginal students
living in metropolitan areas as a group performed almost as well as their non-Indigenous
peers received less media attention than the more startling finding that Aboriginal students
living in remote communities had an extremely high failure rate of 70-80 %. ‘A combi-
nation of low employment and poor social conditions were explanations offered for the
distressingly poor performance... their different pass rates are the result of different
schooling’ (and a high level of absenteeism).

Aggregating data for all Indigenous students overlooks the large diversity within
this group, the range of different needs that inevitably accompany such diversity and
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the fact that there are also Indigenous students who perform at the highest level on the
NAPLAN test. Pang et al. (2011) identified how valuable data are lost when the
performance of a multi ethnic group is described and treated as a single entity, rather
than reportedly separately for each constituent group. “Educational policies and
statistical practices in which achievement is measured using the (group) aggregate
result in over-generalized findings” (p. 384) and hide, rather than identify, the
strengths and needs of the different subgroups. These remarks are highly relevant
given the many subgroups within the Indigenous community. Gross reporting of
achievement outcomes fails to recognize the substantially different backgrounds,
locations, needs, and capabilities of individuals within the broader group.

Social Class

There is much diversity in the home background of Indigenous students. Some live in
remote areas; others in urbanized centres with access, inside and outside the home, to
the same resources as non-Indigenous students. Social class related differences in
performance apply to both Indigenous and non-Indigenous students. Although In-
digeneity and family background are among the categories reported separately for
group results on the NAPLAN test, there is no explicit information about the inter-
active effects of these variables on performance. To paraphrase Berliner (2011): the
scores of Indigenous students, as a group, are likely to remain low, “not because of the
quality of its teachers and administrators, necessarily, but because of the distribution
of wealth and poverty and the associated social capital that exist in schools” (p. 83) in
different metropolitan and remote communities. In the reporting of NAPLAN data for
Indigenous students, the emphasis is disproportionately on those performing below
expectations without sufficient recognition of confounding, contributing factors,
while high performing Indigenous students remain largely invisible.

The Rest of the Curriculum

Under this heading Berliner (2011) focuses particularly on the narrowing of the
curriculum, within and beyond mathematics, when the perceived scope and
requirements of a national testing program overshadow other considerations and
influence the delivery of educational programs. Although this criticism cannot be
ignored with respect to the NAPLAN tests, [ want to focus here on another, equally
pervasive issue.

In recent years, many special programs for Indigenous students have been
devised, and implemented with varying degrees of success. Difficulties associated
with achieving a satisfactory synchrony between the intended and experienced
curriculum for Indigenous students in remote communities have been discussed by
Jorgensen and Perso (2012).
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In the central desert context, the Indigenous people speak their home languages which are
shaped by, and also shape, their worldviews. In Pitjantjatjara, for example, the language is
quite restricted in terms of number concepts. The lands of the desert are quite stark with few
resources so the need for a complex language for number is limited. As such, the counting
system is one of ‘one, two, three, big mob’. It is rare that a collection of three or more
occurs so the need for a more developed number system is not apparent. Even when living
in community, the need for number is limited. Few people are aware of their birthdates, and
numbers in community are very limited in terms of home numbers or prices in the local
store. As such, the immersion in number that is common in urban and regional centres is
very limited in remote communities. Therefore, many of the taken for granted assumptions
about number that are part of a standard curriculum are limited in this context. This makes
teaching many mathematical/number concepts quite challenging as it is not only the
teaching of mathematical concepts and processes but a process of induction into a new
culture and new worldview (Jorgensen and Perso, pp. 127-128).

Many Indigenous students live and learn in conditions more closely aligned to
mainstream educational life in Australia than that depicted for Pitjantjatjara. Nev-
ertheless, this snapshot of the prevailing norms and customs of one community
highlights factors that will confound a simplistic interpretation of Indigenous group
performance data.

NAPLAN and Mathematics Education Research

Not surprisingly, the introduction of NAPLAN has already fuelled a variety of
research projects. An overview of work referring substantively to NAPLAN data
and presented at the joint conference in 2011 of the Australian Association for
Mathematics Teachers (AAMT) and Mathematics Education Research Group of
Australasia (MERGA) is summarized in Table 3. It provides a useful indication of
the scope and diversity of these investigations.5 It is worth noting that the 2011
conference represented the first time the two associations held a fully joint con-
ference. According to Clark et al. (2011) it was a unique opportunity for “practi-
tioners and researchers to discuss key issues and themes in mathematics education,
so that all can benefit from the knowledge gained through rigorous research and the
wisdom of practice” (p. iii). In addition to “participants from almost every uni-
versity in Australia and New Zealand, teachers from government and nongovern-
ment schools systems throughout Australia and officers from government Ministries
of Education” (Clark. et al. 2011), p. iii, there were authors and presenters from a
range of other countries.’

3 Details are extracted from the published proceedings of this joint conference, comprising 130
papers. The proceedings consisted of two sets of papers: Research papers and Professional
papers, reviewed respectively according to established MERGA and AAMT reviewing processes.
S These included Singapore, the United States of America, Papua New Guinea and the United
Kingdom.
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Reference to NAPLAN tests was made in some 10 % of the published papers. As
can be seen from Table 3, aspects covered in these papers included issues pertaining
to the development of the tests, interpreting the published results of the tests, using
test results for curriculum development, and examining the performance of groups
of interest, specifically boys and girls and Indigenous students. In some papers
reference to NAPLAN data was very much secondary to the core issue explored, for
example its (seemingly increasing) use as part of a series of measures to identify a
specific group worthy, or in need of, further attention. What could be learnt from
the NAPLAN tests about the performance and numeracy needs of high achieving
students has, however, not yet attracted research attention. The finding by Pierce
and Chick is particularly disturbing. When asked about the statistical and graphical
summaries of NAPLAN data relevant to their students the reactions of teachers in
their sample ranged “from those verging on the statistics-phobic ... through to deep
engagement with the issues”. The NAPLAN national reports contain much valuable
and potentially usable data. But how much of these are actually understood and
used constructively?

Final Words

After collating information from some 70 public opinion polls in which questions
about the efficacy of national tests were included, Phelps (1998) reported:

The majorities in favor of more testing, more high-stakes testing, or higher stakes in testing
have been large, often very large, and fairly consistent over the years and across polls and
surveys and even across respondent groups (with the exception of some producer groups:
principals, local administrators, and, occasionally, teachers) (p. 14) .

The data on which Phelps based his conclusions are now somewhat dated. How
the Australian public today values national tests, and in particular the NAPLAN
testing regime, is a question still waiting to be investigated. When planning future
research activities, whether linked to NAPLAN, to gender and mathematics per-
formance, to issues pertaining to Indigenous students, or to the needs of highly able
students, the recommendation of Purdie and Buckley (2010) is well worth heeding:

Although it is important to continue small, contextualised investigations of participation
and engagement issues, more large-scale research is called for. Unless this occurs,
advancement will be limited because sound policy and generalised practice cannot be
extrapolated from findings that are based on small samples drawn from diverse commu-
nities (p. 21).

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Early Algebraic Thinking:
Epistemological, Semiotic,
and Developmental Issues

Luis Radford

Abstract In this article I present some findings of an ongoing 5-year longitudinal
research program with young students. The chief goal of the research program is a
careful and systematic investigation of the genesis of embodied, non-symbolic
algebraic thinking and its progressive transition to culturally evolved forms of
symbolic thinking. The investigation draws on a cultural-historical theory of
teaching and learning—the theory of objectification—that emphasizes the sensible,
embodied, social, and material dimension of human thinking and that articulates a
cultural view of development as an unfolding dialectic process between culturally
and historically constituted forms of mathematical knowing and semiotically
mediated classroom activity.

Keywords Sensuous cognition - Vygotsky - Arithmetic versus algebraic thinking

Introduction

In light of the legendary difficulties that the learning of algebra presents to students,
it has been suggested that a progressive introduction to algebra in the early grades
may facilitate students’ access to more advanced algebraic concepts later on
(Carraher and Schliemann 2007). An early development of algebraic thinking may,
in particular, ease students’ contact with algebraic symbolism (Cai and Knuth 2011).

The theoretical grounding of this idea and its practical implementation remain,
however, a matter of controversy. Traditionally, algebra has been taught only after
students have had the opportunity to acquire a substantial knowledge of arithmetic.
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That is, arithmetic thinking has been assumed to be a prerequisite for the emergence
and development of algebraic thinking. Clearly, an introduction to algebra in the early
grades does not conform to such an assumption. Now, if this is so, if algebra needs not
to come after arithmetic, the question is: What is the difference and relationship
between these two disciplines? Evading these questions does not do us any favours.

In the next section, I briefly discuss the question of the relationship between
algebra and arithmetic. Drawing on historical and educational research, I suggest an
epistemological distinction between the forms of thinking that are required in both
disciplines. Then, I present some findings of a 5-year longitudinal classroom
research program where 8-year old students were followed as they moved from
Grade 2 to Grade 6. I shall focus in particular on the genesis and development of
embodied, non-symbolic algebraic thinking and its progressive transition to cultural
forms of symbolic thinking.

Arithmetic and Algebra: Filiations and Ruptures

The question of the filiations and ruptures between arithmetic and algebra was one
of the major educational research themes in the 1980s and 1990s. This question was
at the heart of several research programs. It was often discussed in various PME’s
Working Groups and research reports (Bednarz et al. 1996; Sutherland et al. 2001).

Filloy and Rojano’s (1989) work points to one of the fundamental breaks
between arithmetic and algebra—what they call a cur. This cut was observed in
clinical studies where students faced equations of the form Ax + B = Cx + D. To
solve equations of this form, the arithmetic methods of “reversal operations”—
which are effective to solve equations of the type Ax + B = D (the students usually
subtract B from D and divide by A)—are no longer applicable. The students have to
resort to a truly algebraic idea: to operate on the unknown. In order to operate on
the unknown, or on indeterminate quantities in general (e.g., variables, parameters),
one has to think analytically. That is, one has to consider the indeterminate
quantities as if they were something known, as if they were specific numbers (see,
e.g., Kieran 1989, 1990; Filloy et al. 2007). From a genetic viewpoint, this way of
thinking analytically—where unknown numbers are treated on a par with known
numbers—distinguishes arithmetic from algebra. And it is so characteristic of
algebra that French mathematician Frangois Viéte (one of the founders of modern
symbolic algebra) identified algebra as an analytic art (Victe 1983).

A consequence of this difference between arithmetic and algebra is the
following. Because of algebra’s analytic nature, formulas in algebra are deduced.
Failing to notice this central analytic characteristic of algebra may lead us to think
that the production of formulas in patterns (regardless of how they were produced)
is a symptom of algebraic thinking. But as Howe (2005) notes, producing a formula
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might merely be a question of guessing the formula and trying it. I completely agree
with him that there is nothing algebraic in trying and guessing. Try-and-guess
strategies are indeed based on arithmetic concepts only.

Epistemological research has also made a contribution to the conversation about
the distinction between arithmetic and algebra. This research suggests that the
difference between these disciplines cannot be cast in terms of notations, as it has
often been thought. The alphanumeric algebraic symbolism that we know today is
indeed a recent invention. In the west it appeared during the Renaissance, along
with other forms of representation, like perspective in painting and space repre-
sentation, underpinned by changes in modes of production and new forms of labour
division. The birth of algebra is not the birth of its modern symbolism. In his
Elements, Euclid resorted to letters without mobilizing algebraic ideas. Ancient
Chinese mathematicians mobilized algebraic ideas to solve systems of equations
without using notations. Babylonian scribes used geometric diagrams to think
algebraically. As a result, the use of letters in algebra is neither a necessary nor a
sufficient condition for thinking algebraically. Naturally, our modern algebraic
symbolism allows us to carry out transformations of expressions that may be
difficult or impossible with other forms of symbolism. However, as we shall see in a
moment, the rejection of the idea that notations are a manifestation of algebraic
thinking, opens up new avenues to the investigation of elementary forms of
algebraic thinking in young students.

Some Background of the Research

The investigation of young students’ algebraic thinking that I report here started in
2007. The decade before, I was interested in investigating adolescent and young
adults’ algebraic thinking. From 1998 to 2006 I had the opportunity to follow
several cohorts of students from Grade 7 until the end of high school. Like many of
my colleagues, I started focusing on symbolic algebra, that is, an algebraic activity
mediated by alphanumeric signs. One of my goals was to understand the processes
students undergo in order to build symbolic algebraic formulas. My working
hypothesis was that in order to understand the manner in which students bestow
meaning to alphanumeric expressions, we should pay attention to language
(Radford 2000). However, during the analysis of hundreds of hours of videotaped
lessons, it became apparent that our students were not resorting only to language,
but also to gestures, and other sensuous modalities in ways that were far from mere
byproducts of interaction. It was clear that gestures and other embodied forms of
action were an integral part of the students’ signifying process and cognitive
functioning. The problem was to come up with suitable and theoretically articulated
explanatory principles, in order to provide an interpretation of the students’ algebraic
thinking that would integrate those embodied elements that the video analyses
put into evidence. Although by the early 2000s, some linguists and cognitive
psychologists had developed interesting work around the question of embodiment
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(Lakoff and Nufiez 2000), their accounts were not easy to apply to such complex
settings as classrooms; nor were they necessarily taking into account the historical
and cultural dimension of knowledge. In the following years, with the help of some
students and collaborators, I was able to refine our theoretical approach and reveal
non-conventional, embodied forms of algebraic thinking (Radford 2003). In Radford
et al. (2007), we reported a passage in which Grade 9 students displayed an amazing
array of sensuous modalities to come up with an algebraic formula in a pattern
activity. What is amazing in the reported passage is the subtle coordination of words,
written signs, drawn figures, gestures, perception, and rhythm. Figure 1 presents an
interesting series of gestures that a student makes while trying to perceive a math-
ematical structure behind the sequence. Focusing on the first term of the sequence
(which is shown in the three first pictures of Fig. 1), Mimi, the student, points with her
index to the first circle on the top row and says “one;” she moves the finger to the first
circle on the bottom row and repeats “one.” Then she moves the index to her right and
makes a kind of circular indexical gesture to point to the three remaining circles,
while saying “plus three.” She starts again the same series of gestures, this time
pointing to the second term of the sequence (see second term in Pic 4 of Fig. 1),
saying now “two, two plus three.” She restarts the same series of gestures in dealing
with the third term (see third term of the sequence in Fig. 1, Pic 4; we have added
dashed lines to the terms of the sequence to indicate the circles that Mimi points to as
she makes her gestures). In doing so, Mimi reveals an embodied formula that, instead
of being made up of letters, is made up of words and gestures: the formula is
displayed in concreto: “one, one, plus three; two, two plus three; three, three, plus
three.” She then applied the formula to Term 10 (which was not drawn and had to be
imagined): “you will have 10 dots [i.e., circles] (she makes a gesture on the desk to
indicate the position of the circles), 10 dots (she makes a similar gesture), plus 3.” The
embodied formula rests on a use of variables and functional relations that conform to
the requirement of analyticity that, as I suggested previously, is characteristic of
algebra. Although the variable ‘number of the term’ is not represented through a
letter, it appears embodied in its surrogates—the particular numbers the variable
takes. The formula is then shown as the series of calculations on the instantiated
variable. And, as such, the formula is algebraic. Now, our Grade 9 students did use
alphanumeric symbolism and built the formula “n + n + 3,” which was then trans-
formed into “n x 2 + 3” (Radford et al. 2007). Hence, these Grade 9 students went
unproblematically from an embodied form of thinking to a symbolic one.
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Fig. 1 A Grade 9 student displaying an impressive multimodal coordination of semiotic
resources. Recostructed from the video
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We came back to other published and unpublished analyses and noticed that the
subtle multimodal coordination of senses and signs was a widespread phenomenon
in adolescents. Then arose a research question that has kept me busy for the past
6 years: would similar embodied forms of algebraic thinking be accessible to young
students? And if yes, how would these embodied forms of thinking develop as the
students moved from one grade to the next? As Grade 2 students are still learning to
read and write in Ontario, Grade 2 looked like a good place to start. This is how I
moved to a primary school and embarked on a new longitudinal research.

Grade 2: Young Students’ Non-symbolic Algebraic
Thinking

The first generalizing activity in our Grade 2 class was based on the sequence
shown in Fig. 2.

We asked the students to extend the sequence up to Term 6. In subsequent
questions, we asked them to find out a procedure to determine the number of
rectangles in Terms 12 and 25. Figure 3 shows the answers provided by two
students: Carlos and James.

Contrary to what we observed in our research with adolescent students, in
extending the sequence, most of our Grade 2 students focused on the numerical aspect
of the terms only. Counting was the leading activity. Generally speaking, to extend a
figural sequence, one needs to grasp a regularity that involves the linkage of two
different structures: one spatial and the other numerical. From the spatial structure
emerges a sense of the rectangles’ spatial position, whereas their numerosity emerges
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Fig. 2 The first terms of a sequence that Grade 2 students investigated in an algebra lesson

(olol=iniwinw]v v/w]E]]

asla
BLY

o @
J
R
5

Fig. 3 To the left, Carlos, counting aloud, points sequentially to the squares in the top row of
Term 3. In the middle, Carlos’ drawing of Term 5. To the right, James’ drawing of Terms 5 (top)
and 6 (bottom)
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from a numerical structure. While Carlos attends to the numerical structure in the
generalizing activity, the spatial structure is not coherently emphasized. This does not
mean that Carlos, James and the other students do not see the figures as composed of
two horizontal rows. What this means is that the emphasis on the numerical structure
somehow leaves in the background the geometric structure. We could say that the
shape of the terms of the sequence is used to facilitate the counting process. Thus, as
picture 1 in Fig. 3 shows, Carlos always counted the rectangles in a spatial orderly
way. The geometric structure, however, does not come to be related to the numerical
one in a meaningful and efficient way. It is not surprising within this context, then,
that the students encountered difficulties in answering our questions about Terms 12
and 25. Without resorting to an efficient way of counting, the counting process of
rectangles one-by-one in remote terms beyond the perceptual field became extremely
difficult.

Because of their spatial connotation, it might not be surprising that, in extending
the sequences, our young students did not use deictic terms, like “bottom” or “top.”
In the cases in which the students did succeed in linking the spatial and numerical
structures, the spatial structure appeared only ostensibly, i.e., “top” and “bottom”
rows were not part of the students’ discourse but were made apparent through
pointing and actual row counting: they remained secluded in the embodied realm of
action and perception. The next day, the teacher discussed the sequence with the
students and referred to the rows in an explicit manner to bring to the students’
attention the linkage of the numerical and spatial structures. To do so, the teacher
drew the first five terms of the sequence on the blackboard and referred to an
imaginary student who counted by rows. “This student,” she said to the class,
“noticed that in Term 1 (she pointed to the name of the term) there is one rectangle on
the bottom (and she pointed to the rectangle on the bottom), one on the top (pointing
to the rectangle), plus one dark rectangle (pointing to the dark rectangle).” Next, she
moved to Term 2 and repeated in a rhythmic manner the same counting process,
coordinating the spatial deictics “bottom” and “top,” the corresponding spatial rows
of the figure, and the number of rectangles therein. To make sure that everyone was
following, she started again from Term 1 and, at Term 3, she invited the students to
join her in the counting process, going together up to Term 5 (see Fig. 4).

Then, the teacher asked the class about the number of squares in Term 25. Mary
raised her hand and answered: “25 on the bottom, 25 on top, plus 1.” The class

A

Fig. 4 The teacher and the students counting rhythmically say (see Pic 1) “Term 5”, (Pic 2) “5 on
the bottom”, (Pic 3) “5 on top”, (Pic 4) “plus 1.”
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Fig. 5 Karl explaining Term 50

spent some time dealing with “remote” terms, such as Terms 50 and 100. Figure 5
shows Karl explaining to the teacher and his group-mates what Term 50 looks like.
In picture 1, Karl moves his arm and his body from left to right in a vigorous
manner to indicate the bottom row of Term 50, while saying that there would be 50
white rectangles there. He moves his arm a bit further and repeats the moving arm-
gesture to signify the top row of Term 50. Then he makes a semi-circle gesture in
the air to signify the dark square.
The students played for a while with remote terms. In Karl’s group, one of the
questions revolved around Term 500 and Term 50:
Karl How about doing 500 plus 500?
Erica  No. Do something simpler
Karl (Talking almost at the same time) 500 plus 500 equals 1000
Erica  plus 1, 1001
Karl plus 1, equals 1001
Cindy (Talking about Term 50) 50 plus 50, plus 1 equals 101

Schematically speaking, the students’ answer to the question of the number of
rectangles in remote particular terms was “x + x + 17 (where x was always a specific
number). The formula, I argue, is algebraic in nature, even if it is not expressed in
standard notations. In this case, indeterminacy and analyticity appear in an intuited
form, rather than explicitly. A natural question is: Is this all that Grade 2 students
are capable of? In fact, the answer is no. As we shall see in the next section, we
were able to create conditions for the emergence of more sophisticated forms of
algebraic thinking.

Beyond Intuited Indeterminacy: The Message Problem

On the fifth day of our pattern generalization teaching-learning sequence, the teacher
came back to the sequence from the first day (Fig. 2). To recapitulate, she invited
some groups to share in front of the class what they had learned about that sequence
in light of previous days’ classroom discussions and small group work. Then, she
asked a completely new question to the class. She took a box and, in front of the
students, put in it several cards, each one having a number: 5, 15, 100, 104, etc. Each
one of these numbers represented the number of a term of the sequence shown in
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Fig. 2. The teacher invited a student to choose randomly one of the cards and put it
into an envelope, making sure that neither the student herself nor the teacher nor
anybody else saw the number beforehand. The envelope, the teacher said, was going
to be sent to Tristan, a student from another school. The Grade 2 students were
invited to send a message that would be put in the envelope along with the card. In
the message the students would tell Tristan how to quickly calculate the number of
rectangles in the term indicated on the card. The number of the term was hence
unknown. Would the students be able to generalize the embodied formula and
engage with calculations on this unknown number? In other terms, would our Grade
2 students be able to go beyond intuited indeterminacy and its corresponding
elementary form of algebraic thinking? As in the previous days, the students worked
in small groups of three. The usual response was to give an example. For instance,
Karl suggested: “If the number [on the card] is 50, you do 50, plus 50, plus 1.” The
teacher commended the students for the idea, but insisted that the number could be
something else and asked if there would be another way to say it without resorting to
examples. After an intense discussion, the students came up with a suggestion:

Erica It’s the number he has, the same number at the bottom, the same number

at the top, plus 1...
Teacher That is excellent, but don’t forget: he doesn’t have to draw [the term]. He
just has to add... So, how can we say it, using this good idea?

Erica We can use our calculator to calculate!
Teacher Ok. And what is he going to do with the calculator?
Erica He will put the number... (she pretends to be inserting a number into the

calculator)... plus the same number, plus 1 (as she speaks, she pretends
to be inserting the number again, and the number 1).

Another group suggested “twice the number plus 1.” Naturally, the use of the
calculator is merely virtual. In the students’ real calculator, all inputs are specific
numbers. Nevertheless, the calculator helped the students to bring forward the
analytic dimension that was apparently missing in the students’ explicit formula.
Through the virtual use of the calculator, calculations are now performed on this
unspecified instance of the variable—the unknown number of the figure.

Let me summarize our Grade 2 students’ accomplishments during the first week
that they were exposed to algebra. In the beginning, most of our students were
dealing with figural sequences like the one in Fig. 1 through a focus on numerosity.
Finding out the number of elements (rectangles, in the example here discussed) in
remote terms was not easy. The joint counting process in which the teacher and
students engaged during the second day helped the students to move to other ways
of seeing sequences. The joint counting process made it possible for the students to
notice and articulate new forms of mathematical generalization. In particular, they
became aware of the fact that the counting process can be based on a relational
idea: to link the number of the figure to relevant parts of it (e.g. the squares on the
bottom row). This requires an altogether new perception of the number of the term
and the terms themselves. The terms appear now not as a mere bunch of ordered
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rectangles but as something susceptible to being decomposed, the decomposed
parts bearing potential clues for algebraic relationships to occur. Interestingly
enough, historically speaking, the “decomposition” of geometric figures in simpler
forms (e.g., straight lines) was systematically developed in the 17th century by
Descartes in his Geometry, a central book in the development of algebraic ideas.
The decomposition of figures permitted the creation of relationships between
known and unknown numbers and the carrying out of calculations on them
“without making a distinction between known and unknown [parts]” (Descartes
1954, p. 8). Our examples—as well as those reported by other researchers with
other Grade 2 students—suggest that the linkage of spatial and numerical structures
constitutes an important aspect of the development of algebraic thinking. Such a
linkage rests on the cultural transformation in the manner in which sequences can
be seen—a transformation that may be termed the domestication of the eye
(Radford 2010). For the modern mathematician’s eye, the complexity behind the
perception of simple sequences like the one our Grade 2 students tackled remains in
the background, to the extent that to see things as the mathematician’s eye does,
ends up seeming natural. However, as our results intimate, there is nothing natural
there. To successfully attend to what is algebraically meaningful is part of learning
to think algebraically. This cultural transformation of the eye is not specific to
Grade 2 students. It reappears in other parts of the students’ developmental
trajectory. It reappears, later on, when students deal with factorization, where
discerning structural synfactic forms become a pivotal element in recognizing
common factors or prototypical expressions.

All in all, the linkage of spatial and numerical structures resulted, as we have
seen, in the emergence of an elementary way of algebraic thinking that manifested
itself in the embodied constitution of a formula where the variable is expressed
through particular instances, which we can schematize as “x + x +1” (where x was
always a specific number). This formula, I argued on semiotic and epistemological
grounds, is genuinely algebraic. That does not mean that all formulas provided by
young students are algebraic. To give an example, one of the students suggested
that to find out the number of elements in Term 100, you keep adding 2, and 2 and 2
to Term 1 until you get to Term 100. This is an example of arithmetic generalization
—mnot of an algebraic one, as there is no analyticity involved. The ‘“Message
Problem” offered the students a possibility to go beyond intuitive indeterminacy
and to think, talk, and calculate explicitly on an unknown number. Although several
students were able to produce an explicit formula (e.g., “the number plus the
number, plus 17 or “twice the number plus 17), other students produced a formula
where the general unknown number was represented through an example. This is
what Mason (1996) calls seeing the general in or through the particular. Both the
explicit formula and the general-through-the-particular formula bear witness to a
more sophisticated form of elementary algebraic thinking than the embodied one
where the variable and the formula are displayed in action.

Revealing our Grade 2 students’ aforementioned elementary, pre-symbolic
forms of algebraic thinking responded to our first research question—i.e., whether
the embodied forms of thinking that we observed in adolescents are accessible to
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younger students. Yet, there are differences. Adolescents in general tend to gesture,
talk and symbolize in harmonious coordinated manners (often after a period of
mismatch between words and gestures (Arzarello and Edwards 2005; Radford
2009a). Our young students, in contrast, tend to gesture with energetic intensity (see
e.g. Fig. 5). The energetic intensity may decrease as the students become more and
more aware of the variables and the relationship between known and unknown
numbers. However, the energetic intensity remains relatively pronounced as
compared to what we have seen in adolescents (Radford 2009a, b). This
phenomenon may be a token of a problem related to our second research question,
namely: How does young students’ algebraic thinking develop?

Developmental questions are very tricky, as psychologists know very well. It is
not enough to collect data year after year and merely compare what students did in
Year 1, to what they did in Year 2, etc. Exposing differences shows something but
does not explain anything. 1 struggled with the question of the development of
students’ mathematical thinking for about a decade when I was doing research with
adolescents, and I have to confess that I was unable to come up with something
satisfactory. Yet, my research with adolescents helped me to envision a sensuous
and material conception of mathematical cognition (Radford 2009b) that was
instrumental in tackling the developmental question. Before going further in my
account of what the students did in the following years, I need to dwell on the
question of development first.

Thinking and Its Development

In contrast to mental cognitive approaches, thinking, I have suggested (Radford
2009b), is not something that solely happens ‘in the head.” Thinking may be
considered to be made up of material and ideational components: it is made up of
(inner and outer) speech, objectified forms of sensuous imagination, gestures,
tactility, and our actual actions with cultural artifacts. Thus, in Fig. 5, for instance,
Karl is thinking with and through the body in the same way that he is thinking
through and in language and the arsenal of conceptual categories it provides for us
to notice, highlight, and attend to things, and intend them in certain cultural topical
ways. The same can be said of the teacher in Fig. 4. Although it might be argued
that the teacher and the student are merely communicating ideas, I would retort that
this division between thinking and communicating makes sense only within the
context of a conception of the mind as a private space within us, where ideas
are created, computed and only then communicated. This computational view of the
mind has a long history in our Western idealist and rationalist philosophical
traditions. The view that I am sketching here goes against the dualistic assumption
of mind versus body or ideal versus material. Thinking appears here as a an ideal-
material form of reflection and action, which does not occur solely in the head but
also in and through a sophisticated semiotic coordination of speech, body, gestures,
symbols and tools. This is why, during difficult conversations, rather than digging
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in the head first to find the ideas that we want to express, we hear ourselves thinking
as we talk, and realize, at the same time as our interlocutors, what we are thinking
about.

Now to say that thinking is made up of (inner and outer) speech, objectified
forms of sensuous imagination, gestures, tactility, and our actual actions with
cultural artifacts does not mean that thinking is a collection of items. If we come
back to our examples, Carlos (see Fig. 3, left), while moving the upper part of his
body, was resorting to pointing gestures and words to count the rectangles in the
first terms of the sequence. Words and gestures were guiding his perceptual activity
to deal with the numerosity of the terms. Like Carlos, Karl moved his upper body,
made arm- and hand-gestures and resorted to language (Fig. 5). In stating the
formula “the number plus the number, plus 1,” Erica gestured as if she was pressing
keys in the calculator keyboard (Radford 2011). Yet, the relationship between
perception, gestures and words is not the same. What it means is that thinking is not
a mere collection of items. Thinking is rather a dynamic unity of material and ideal
components. This is why the same gesture (e.g. an indexical gesture pointing to the
rectangles on top of Term 3) may mean something conceptually sophisticated or
something very simple. That is, the real significance of a component of thinking can
only be recognized by the role such a component plays in the context of the unity of
which it is a part.

Now I can formulate my developmental question. If thinking is a systemic unity
of ideational and material components, it would be wrong to study its development
by focusing on one of its components only. Thus, the development of algebraic
thinking cannot be reduced to the development of its symbolic component (notation
use, for instance). The development of algebraic thinking must be studied as a
whole, by taking into account the interrelated dialectic development of its various
components (Radford 2012). If in a previous section I talked about the ‘domesti-
cation of the eye,’ this domestication has to be related to the ‘domestication of the
hand’ as well. And, indeed, this is what happened in our Grade 2 class from the
second day on. As we recall, the teacher (Fig. 4) made extensive use of gestures and
an explicit use of rhythm, and linguistic deictics, followed later by the students,
who started using their hands and their eyes in novel ways, opening up new
possibilities to use efficient and evolved cultural forms of mathematical general-
ization that they successfully applied to other sequences with different shapes.

To sum up, it is not only the tactile, the perceptual, or the symbol-use activity
that is developmentally modified. In the same way as perception develops, so do
speech (e.g., through spatial deictics) and gesture (through rhythm and precision).
Perception, speech, gesture, and imagination develop in an interrelated manner.
They come to form a new unity of the material-ideational components of thinking,
where words, gestures, and signs more generally, are used as means of objectifi-
cation, or as Vygotsky (Vygotsky 1987), p. 164 put it, “as means of voluntary
directing attention, as means of abstracting and isolating features, and as a means of
[...] synthesizing and symbolising”. Within this context, to ask the question of the
development of algebraic thinking is to ask about the appearance of new systemic
structuring relationships between the material-ideational components of thinking
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(e.g., gesture, inner and outer speech) and the manner in which these relationships
are organized and reorganized. It is through these developmental lenses that I
studied the data collected in the following years and that I summarize in the rest of
this article, focusing on Grades 3 and 4.

Grade 3: Semiotic Contraction

As usual, in Grade 3 the students were presented with generalizing tasks to be
tackled in small groups. The first task featured a figural sequence, S,, having
n circles horizontally and n—1 vertically, of which the first four terms were given.
Contrary to what he did first in Grade 2, from the outset, Carlos perceived the
sequence taking advantage of the spatial configuration of its terms. Talking to his
teammates about Term 4 he said: “here (pointing to the vertical part) there are four.
Like you take all this [i.e., the vertical part] together (he draws a line around), and
you take all this [i.e., the horizontal part] together (he draws a line around; see
Fig. 6, pic 1). So, we should draw 5 like that (through a vertical gesture he indicates
the place where the vertical part should be drawn) and (making a horizontal gesture)
5 like that” (see Fig. 6, pics 2-3).

When the teacher came to see the group, she asked Carlos to sketch for her Term
10, then Term 50. The first answer was given using unspecified deictics and
gestures. He quickly said: “10 like this (vertical gesture) and 10 like that” (hori-
zontal gesture). The specific deictic term “vertical” was used in answering the
question about Figure 50. He said: “50 on the vertical... and 49...” When the
teacher left, the students kept discussing how to write the answer to the question
about Term 6. Carlos wrote: “6 vertical and 5 horizontal.”

In developmental terms, we see the evolution of the unity of ideational-material
components of algebraic thinking. Now, Carlos by himself and with great ease
coordinates gestures, perception, and speech. The coordination of these outer
components of thinking is much more refined compared to what we observed in
Grade 2. This refinement is what we have called a semiotic contraction (Radford
2008a), that is, a genetic process in the course of which choices are made between
what counts as relevant and irrelevant; it leads to a contraction of previous semiotic

i
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Fig. 6 To the left, Term 4 of the given sequence. Middle, Carlos’s vertical and horizontal gestures
while imagining and talking about the still to be drawn Term 5. To the right, Carlos’s drawings of
Terms 5 and 6
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activity, resulting in a more refined linkage of semiotic resources. It entails a deeper
level of consciousness and intelligibility of the problem at hand and is a symptom
of learning and conceptual development.

Grade 4: The Domestication of the Hand

To check developmental questions, in Grade 4 we gave the students the sequence
with which they started in Grade 2 (see Fig. 2). This time, from the outset, Carlos
perceived the terms as being divided into two rows. Talking to his teammates and
referring to the top row of Term 5, he said as if talking about something banal: “5
white squares, ‘cause in Term 1, there is 1 white square (making a quick pointing
gesture)... Term 2, 2 [squares] (making another quick pointing gesture); 3, (another
quick pointing gesture) 3.” He drew the five white squares on the top row of Term 5
and added: “after that you add a dark square.” Then, referring to the bottom row of
Term 4: “there are 4; there [Term 5] there are 5.” When the teacher came to see their
work, Carlos and his teammates explained “We looked at Term 2, it’s the same
thing [i.e., 2 white squares on top]... Term 6 will have 6 white squares.”

There was a question in the activity in which the students were required to
explain to an imaginary student (Pierre) how to build a big term of the sequence (the
“Big Term Problem”). In Grade 2, the students chose systematically a particular
term. This time, Carlos wrote: “He needs [to put as many white squares as] the
number of the term on top and on the bottom, plus a dark square on top.”

The “Message Problem” Again

At the end of the lesson, the students tackled the “Message Problem” again. As
opposed to the lengthy process that, in Grade 2, preceded the building of a message
without particular examples (Radford 2011), this time the answer was produced
quicker:

David The number of the term you calculate twice and add one. That’s it!
Carlos  (Rephrasing David’s idea) twice the number plus one

The activity finished with a new challenge. The teacher asked the students to add
to the written message a “mathematical formula.” After a discussion in Carlos’s
group concerning the difference between a phrase and a mathematical formula, the
students agreed that a formula should include operations only. Carlos’s formula is
shown in pic 3 of Fig. 7.

From a developmental perspective, we see how Carlos’s use of language has
been refined. In Grade 2 he was resorting to particular terms (Term 1,000) to answer
the same question about the “big term.” Here he deals with indeterminacy in an



222 L. Radford

1—« 5 /i, P o4 - W
D'JFL _Ul-[:ﬂ) L_'T—*"“ o AU

Fig. 7 Left, Carlos’ drawings of Terms 5 and 6. Right, Carlos’s formulas

easy way, through the expression “the number of the term.” He even goes further
and produces two symbolic expressions to calculate the total of squares in the
unspecified term (Fig. 7, right). The semiotic activities of perceiving, gesturing,
languaging, and symbolizing have developed to a greater extent. They have reached
an interrelational refinement and consistency that was not present in Grade 2 and
was not fully developed in Grade 3. This cognitive developmental refinement
became even more apparent when the teacher led the students to the world of
notations, as we shall now see.

The Introduction to Notations

The introduction to notations occurred when the students discussed their answers to
homework based on the sequence shown in Fig. 8. The discussion took place right
after the general discussion about the “Message Problem” alluded to in the previous
sub-section.

The teacher gave the students the opportunity to compare and discuss their
answers to the homework by working in small groups. In Carlos’ group, the terms
of the sequence were perceived as made up of two rows, each one having the same
number as the number of the term plus an addition of two squares at the end (see pic
2 in Fig. 8). As Carlos suggests, referring to Term 15, “15 on top, 15 at the bottom,
plus 2, that is 32.” Or alternatively, as Celia, one of Carlos’ teammates, explains,
“I5 + 1 equals 16, then 16 + 16... which makes 32.” After about 10 min of small-
group discussion, the teacher encouraged the students to produce a formula like the
one that they just provided for the “Message Problem.” Then, the class moved to a
general discussion where various groups presented their findings. Erica went to the
Interactive White Smart Board (ISB) and suggested the following formula:
“l + 1 + 2x__ = __” The teacher asked whether it would be possible to write,
instead of the underscores, something else. One student suggested putting an
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Fig. 8 Pic 1 (left), the sequence of the homework. Pic 2 (right), Carlos’ decomposition of Term 3
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interrogation mark. The teacher acknowledged that interrogation mark could also be

used, and asked for other ideas. Samantha answered with a question:

Samantha A letter?

Teacher Ah! Could I write one plus one plus two times n? What does n mean?

A student A number...

Teacher Could we write that (i.e., one plus one plus two times n) equals n?
(Some students answered yes, others no; talking to Erica who is at the
whiteboard) Ok. Write it, write your formula (Erica writes
1+1+2x%xn=n)

Carlos No, because n (meaning the first one) is not equal to n (meaning the
second one)

Teacher Ah! Why do you say that n is not equal to n?

Carlos Because if you do 2 times n, that will not equal [the second] n

Teacher Wow!

In order not to rush the students into the world of notations, the teacher decided
to delay the question of using a second letter to designate the total. As we shall see,
this question will arise in the next activity. In the meantime, the formula was left as
I1+1+2xn=__

The next activity started right away. The students were provided with the new
activity sheet that featured the sequence shown in Fig. 9. The students were
encouraged to come up with as many formulas as possible to determine the number
of squares in any term of the sequence.

During the small-group discussion, William offers a way to perceive the terms.
Talking to Carlos, and referring to Term 6, which they drew on the activity sheet,
William says (talking about the top row): “There are 8 [squares], because 6 + 2 = 8.
You see, on the bottom it’s always the number of the term, you see?” His utterance
is accompanied by a precise two-finger gesture through which he indicates the
bottom row (see Fig. 10, left). He continues: “then, on the top, it’s always plus 2”
(making the gesture shown in Fig. 10, right).

EEE NEEN NEEEN SEEEEE
U NN HEE OO0

Term 1 Term 2 Term 3 Term 4

Fig. 9 The featured sequence of the new activity

Fig. 10 William making precise gestures to refer to Term 6
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The answer to the “Message Problem” was provided without difficulties.
Without hesitation, Carlos said: “Ok. Double the number and add 2.” The class
moved to a general discussion, which was a space to discuss different forms of
perceiving the sequence and of writing a formula. Marianne went to the ISB and
suggested that the terms could be imagined as divided into two equal rows and that
one square is added to the left and one to the right of the top row. In Fig. 11,
referring to Term 3, she points first to the top row (imagined as made up of three
squares; see Fig. 11, Pic 1). Then she points to the bottom row (Pic. 2), then to the
extra square at the top right (Pic. 3) and to the extra square at the top left (Pic. 4).
Celia proposed that a term was the same as the previous one to which two squares
are added at the right end. In Fig. 11, Pic 5 and 6, she hides the two rightmost
squares in Terms 2 and 3 to show that what remains in each case is the previous
term. The developmental sophistication that the perception-gesture-language
systemic unity has achieved is very clear.

Then, the students presented their formulas. Carlos presented the following
formula: N + N + 2 = _. The place for the variable in the formula is symbolized with
a letter and the underscore sign. Letters in Carlos’s formula appear timidly drawn,
still bearing the vestiges of previous symbolizations (see Fig. 7, right).

The teacher asked if it would be possible to use another letter to designate the
result:

Teacher Well, we started with letters [in your formula]. Maybe we could continue
with letters?

Carlos No!

Teacher Why not?

Carlos An 1?

Teacher Why 1?

Caleb The answer (in French, la réponse)

Carlos completed the formula as follows: : N + N + 2 = R. Other formulas were
provided, as shown in Fig. 12:

Pic 1

Pic 4 Pic 5 Pic 6

Fig. 11 Marianne’s (Pic. 1-4) and Celia’s (Pic. 5-6) gestures
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Fig. 12 Left, some formulas from the classroom discussion. Right, formulas from Erica’s group

Synthesis and Concluding Remarks

In the first part of the article I suggested that algebraic thinking cannot be reduced to
an activity mediated by notations. As I argued in previous work, a formula to
calculate the number of rectangles in sequences like the one presented in Fig. 2,
such as “2n + 1,” can be attained by arithmetic trial-and-error methods. Algebraic
thinking, I suggested, is rather characterized by the analytic manner in which it
deals with indeterminate numbers. A rigorous video analysis convinced us that
students signify indeterminate numbers through recourse to a plethora of semiotic
embodied resources that, rather than being merely a by-product of thinking,
constitute the very sensible texture of it. From this sensuous perspective on human
cognition, it is not difficult to appreciate that 7—8-year-old students can effectively
start thinking algebraically. In the second part of the article I dealt with the question
of the development of algebraic thinking. Algebraic thinking—Iike all cultural
forms of thinking (e.g., aesthetic, legal, political, artistic)—is a theoretical form that
has emerged, evolved and refined in the course of cultural history. It pre-existed in a
developed ideal form before the students engaged in our classroom activities. The
greatest characteristic of child development consists in how this ideal form exerts a
real influence on the child’s thinking. But how can this ideal form exert such an
influence on the child? Vygotsky’s answer is: under particular conditions of
interaction between the ideal form and the child (1994). In our case, the particular
conditions of interaction between algebraic thinking as a historical ideal form and
our Grade 2 students were constituted by a sequence of activities that were inten-
tional bearers of this ideal form. Naturally, the students cannot discern the theo-
retical intention behind our questions, as this cultural ideal form that we call
algebraic thinking has still to be encountered and cognized. The lengthy, creative,
and gradual processes through which the students encounter, and become
acquainted with historically constituted cultural meanings and forms of (in our case
algebraic) reasoning and action is what I have termed, following Hegel, objectifi-
cation (Radford 2008b).

The objectification of ideal forms requires a temporal continuity and stability of
the knowledge that is being objectified. The objectification of ideal forms requires
also the mutual emotional and ethical engagement of teacher and students in the joint
activity of teaching-learning (Radford and Roth 2011; Roth and Radford 2011).
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Drawing on the aforementioned idea of sensuous cognition and development,
I suggested that the development of algebraic thinking can be studied in terms of the
appearance of new systemic structuring relationships between the material-idea-
tional components of thinking (e.g., gesture, inner and outer speech) and the manner
in which these relationships are organized and reorganized in the course of the
students’ engagement in activity. The analysis of our experimental data focused on
revealing those relationships and their progressive refinement. We saw how, for
instance, the development of perception is consubstantial with the development of
gestural and symbolic activity.

The whole story, however, is much more complex. As Vygotsky (1994) argued
forcefully development can only be understood if we take into consideration the
manner in which the student is actually emotionally experiencing the world. The
emotional experience [perezhivanie] is, the Russian psychologist contended in a
lecture given at the end of his life, the link between the subject and his/her
surrounding, between the always changing subject (the perpetual being in the
process of becoming) and his/her always conceptually, politically, ideologically
moving societal environment. The explicit and meaningful insertion of perezhivanie
into developmental accounts is, I suppose, still a trickier problem to conceptualize
and investigate—an open research problem for sure.
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How We Think: A Theory of Human
Decision-Making, with a Focus
on Teaching

Alan H. Schoenfeld

Abstract Suppose a person is engaged in a complex activity, such as teaching.
What determines what that person does, on a moment-by-moment basis, as he or
she engages in that activity? What resources does the person draw upon, and why?
What shapes the choices the person makes? I claim that if you know enough about a
teacher’s knowledge, goals, and beliefs, you can explain every decision he or she
makes, in the midst of teaching. In this paper I give examples showing what shapes
teachers’ decision-making, and explain the theory.

Keywords Decision-making - Teaching - Theory

Introduction

I became a mathematician for the simple reason that I love mathematics. Doing
mathematics can be a source of great pleasure: when you come to understand it, the
subject fits together beautifully. Here I am not necessarily referring to advanced
mathematics. The child who notices that every time she adds two odd numbers the
result is even, wonders why, and the figures out the reason why:

Each odd number is made up of a number of pairs, and one ‘extra.” When you add two odd
numbers together, the extras make a pair. That means that the sum is made up of pairs, so
it’s even!

is doing real mathematics. It was that kind of experience that led me into
mathematics in the first place.

Sadly, very few people develop this kind of understanding, or this kind of
pleasure in doing mathematics. It was this realization, and the thought that it might
be possible to do something to change it, that led me into mathematics education.
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For more than 35 years I have pursued the question, “How can we develop deeper
understandings of mathematical thinking, problem solving, and teaching, so that we
can help more children experience the pleasures of doing mathematics?”

My early work was devoted to mathematical problem solving. I read Pdlya’s
(1945) book How to Solve It early in my mathematical career, and it resonated. Polya
said that mathematicians used a wide range of problem solving strategies, which he
called heuristics. When he described them, I recognized them—I used them too! I
wondered, though, why I had not explicitly been taught those strategies. The answer,
I learned, was that when people tried to teach the strategies described in Polya’s
books, students did not learn to use them effectively. This was disappointing, but it
also represented a lovely challenge. Could we understand such problem solving
strategies well enough so that we could help students learn to use them effectively?

Thus began a decade’s worth of work in which I tried to develop an understanding
of problem solving: What do effective problem solvers do, which enables them to
solve difficult problems? What do ineffective problem solvers do, that causes them to
fail in their problem solving attempts? What can we do, as teachers, to help students
become more effective problem solvers? My answers to those questions, which are
summarized very briefly below, were published in my 1985 book Mathematical
Problem Solving. The book resulted from a decade of simultaneous research on and
teaching of problem solving, in which my theoretical ideas were tried in the class-
room, and my experience in the classroom gave rise to more theoretical ideas.

Mathematical Problem Solving represented a solid first step in a research
agenda. By the time it was written, I knew enough about problem solving to help
students become more effective problem solvers. A next, logical goal was to help
mathematics teachers to help their students develop deeper understandings of
mathematics. In many ways, of course, teaching is an act of problem solving—but it
is so much more. The challenge was, could I develop a theoretical understanding of
teaching in ways that allowed me to understand how and why teachers make the
choices they do, as they teach? Could that understanding then be used to help
teachers become more effective? Moreover, to the degree that teaching is typical of
knowledge-intensive decision making, could the theoretical descriptions of teaching
be used to characterize decision making in other areas as well?

Those questions have been at the core of my research agenda for the past
25 years. My answers to them now exist, in a new book, How We Think
(Schoenfeld 2010). The purpose of this paper is to illustrate and explain the main
ideas in the book. Because my current research has evolved from my earlier
problem solving work, I set the stage for the discussion that follows with a brief
description of that work—what it showed and, more importantly, the questions that
it did not answer. That will allow me to describe what a complete theory should be
able to accomplish. I then turn to the main body of this paper, three studies of
teaching. In those examples I show how, under certain circumstances, it is possible
to model the act of teaching, to the point where one can provide a grounded
explanation of every decision that a teacher makes during an extended episode of
teaching. Following that, I give some other examples to suggest that the theory is
general, and I make a few concluding comments.
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The Challenge

Suppose that you are in the middle of some “well practiced” activity, something
you have done often so that it is familiar to you. Depending on who you are, it
might be

cooking a meal

fixing a car

teaching a class

doing medical diagnosis or brain surgery.

The challenge is this: If I know “enough” about you, can I explain (i.e., build a
cognitive model that explains) every single action you take and every decision you
make?

My goal for this paper is to describe an analytic structure that does just that—an
analytic structure that explains how and why people act the way they do, on a moment-
by-moment basis, in the midst of complex, often social activities such as teaching.

My major claim is this: People’s in-the-moment decision making when they
teach, and when they engage in other well practiced, knowledge intensive activities,
is a function of their knowledge and resources, goals, and beliefs and orientations.
Their decisions and actions can be “captured” (explained and modeled) in detail
using only these constructs.

The main substance of this paper (as in the book) consists of three analyses of
teaching, to convey the flavor of the work. Of course, it is no accident that I chose
mathematics teaching as the focal area for my analyses. I am, after all, a mathe-
matics educator! But more to the point, teaching is a knowledge intensive, highly
interactive, dynamic activity. If it is possible to validate a theory that explains
teachers’ decision making in a wide range of circumstances, then that theory should
serve to explain all well practiced behavior.

Background: Problem Solving

As discussed above, my current work is an outgrowth of my earlier research on
mathematical problem solving. Here I want to summarize the core findings of that
work, to show how it lays the groundwork for my current research.

My major argument about mathematical problem solving (see Schoenfeld 1985,
for detail) was that it is possible to explain someone’s success or failure in trying to
solve problems on the basis of the following four things:

1. Knowledge (or more broadly, resources). This is not exactly shocking—but,
knowing what knowledge and resources a problem solver has potentially at his
or her disposal is important.

2. Problem solving strategies, also known as “heuristics.” We know from Pdlya’s
work that mathematicians use heuristic strategies, “rules of thumb for making
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progress when you do not know a direct way to a solution.” Faculty pick up
these strategies by themselves, through experience. Typically, students don’t use
them. But, my research showed that students can learn to use them.

3. “Metacognition,” or “Monitoring and self-regulation.” Effective problem
solvers plan, and they keep track of how well things are going as they imple-
ment their plans. If they seem to be making progress, they continue; if there are
difficulties, they re-evaluate and consider alternatives. Ineffective problem
solvers (including most students) do not do this. As a result, they can fail to
solve problems that they could solve. Students can learn to be more effective at
these kinds of behaviors.

4. Beliefs. Students’ beliefs about themselves and the nature of the mathematical
enterprise, derived from their experiences with mathematics, shape the knowl-
edge they draw upon during problem solving and the ways they do or do not use
that knowledge. For example, students who believe that “all problems can be
solved in 5 min or less” will stop working on problems even though, had they
persevered, they might have solved them. Students who believe that “proof has
nothing to do with discovery or invention” will, in the context of “discovery”
problems, make conjectures that contradict results they have just proven. (see
Schoenfeld 1985).

In sum: By 1985 we know what “counted” in mathematical problem solving, in the
sense that we could explain, post hoc, what accounted for success or failure. As the
ensuing 25 years have shown, this applied to all “goal-oriented” or problem solving
domains, including mathematics, physics, electronic trouble-shooting, and writing.

BUT... There was a lot that the framework that I have just described did not do.
In the research I conducted for Mathematical Problem Solving, people worked in
isolation on problems that I gave them to solve. Thus: the goals were established
(i.e., “solve this problem”); the tasks didn’t change while people worked on them;
and social interactions and considerations were negligible.

In addition, Mathematical Problem Solving offered a framework, not a theory.
Above and beyond pointing out what is important—which is what a framework
does—a theory should provide rigorous explanations of how and why things fit
together. That is what my current work is about. What I have been working on for
the past 25 years is a theoretical approach that explains how and why people make
the choices they do, while working on issues they care about and have some
experience with, amidst dynamically changing social environments.

I can think of no better domain to study than teaching. Teaching is knowledge
intensive. It calls for instant decision making in a dynamically changing environ-
ment. It’s highly social. And, if you can model teaching, you can model just about
anything! I will argue that if you can model teaching, you can model: shopping;
preparing a meal; an ordinary day at work; automobile mechanics; brain surgery (or
any other medical practice), and other comparably complex, “well practiced”
behaviors. All of these activities involve goal-oriented behavior—drawing on
available resources (not the least of which is knowledge) and making decisions in
order to achieve outcomes you value.
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The goal of my work, and this paper, is to describe a theoretical architecture that
explains people’s decision-making during such activities.

How Things Work

My main theoretical claim is that goal-oriented “acting in the moment”—including
problem solving, tutoring, teaching, cooking, and brain surgery—can be explained
and modeled by a theoretical architecture in which the following are represented:
Resources (especially knowledge); Goals; Orientations (an abstraction of beliefs,
including values, preferences, etc.); and Decision-Making (which can be modeled
as a form of subjective cost-benefit analysis). For substantiation, in excruciating
detail, please see my book, How we Think. To briefly provide substantiation I will
provide three examples in what follows. But first, a top-level view of how things
work is given in Fig. 1. The basic structure is recursive: Individuals orient to
situations and decide (on the basis of beliefs and available resources) how to pursue
their goals. If the situation is familiar, they implement familiar routines; if things are

How Things Work

e Anindividual enters into a particular context with a specific body of resources, goals,
and orientations.

e The individual takes in and orients to the situation. Certain pieces of information and
knowledge become salient and are activated.

e Goals are established (or reinforced if they pre-existed).

e Decisions consistent with these goals are made, consciously or unconsciously,
regarding what directions to pursue and what resources to use:

- If the situation is familiar, then the process may be relatively automatic, where the
action(s) taken are in essence the access and implementation of scripts, frames,
routines, or schemata.

- If the situation is not familiar or there is something non-routine about it, then
decision-making is made by a mechanism that can be modeled by (i.e., is consistent
with the results of) using the subjective expected values of available options, given
the orientations of the individual.

e Implementation begins.
e Monitoring (whether it is effective or not) takes place on an ongoing basis.
e This process is iterative, down to the level of individual utterances or actions:

- Routines aimed at particular goals have sub-routines, which have their own
subgoals;

- If a subgoal is satisfied, the individual proceeds to another goal or subgoal;

- If a goal is achieved, new goals kick in via decision-making;

- Ifthe process is interrupted or things don’t seem to be going well, decision-making
kicks into action once again. This may or may not result in a change of goals and/or
the pathways used to try to achieve them.

Fig. 1 How things work, in outline. From Schoenfeld (2010), p. 18, with permission
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unfamiliar or problematic, they reconsider. It may seem surprising, but if you know
enough about an individual’s resources, goals, and beliefs, this approach allows you
to model their behavior (after a huge amount of work!) on a line-by-line basis.

First Teaching Example, Mark Nelson

Mark Nelson is a beginning teacher. In an elementary algebra class, Nelson has
worked through problems like, x°/x*> = ? Now he has assigned

(a)m® /o, (b)Y /32, and ())&
for the class to work. Nelson expects the students to have little trouble with m®/m?
and x*y"/x*y%, but to be “confused” about x°>/x°; he plans to “work through” their
confusion. Here is what happens.
Nelson calls on students to give answers to the first two examples. He has a
straightforward method for doing so:

e He asks the students what they got for the answer, and confirms that it is correct.
e He asks how they got the answer.
e Then he elaborates on their responses.

Thus, for example, when a student says the answer to problem (b) is xy, Nelson
asks “why did you get xy?” When the student says that he subtracted, Nelson asks,
“What did you subtract? When the student says “3 minus 2,” Nelson elaborates:

OK. You looked at the x’s [pointing to x-terms in numerator and denominator] and
[pointing to exponents] you subtracted 3 minus 2. That gave you x to the first [writes x on
the board]. And then [points to y terms] you looked at the y’s and said [points to the
exponents] 7 minus 6, gives you y to the first [writes y on board].

He then asks what to do with x*/x°. They expand and “cancel.” The board shows

. Pointing to that expression, he says, “what do I have?”” The responses are

LRI 2

“zero,” “zip,” “nada,” and “nothing” ... not what he wants them to see! He tries
various ways to get the students to see that “cancelling” results in a “1”, for
example,

Nelson: “What’s 5/5?”

Students: “1.”

Nelson: “But I cancelled. If there’s a 1 there [in 5/5], isn’t there a 1 there
[pointing to the cancelled expression]?”

Students: “No.”
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Defeated, he slumps at the board while students argue there’s “nothing there.”
He looks as if there is nothing he can say or do that will make sense to the students.

He tries again. He points to the expression and asks what the answer is.
%C CXxx

A student says “x to the zero over 1.” Interestingly, Nelson mis-hears this as “x to
the zero equals 1,” which is the correct answer. Relieved, he tells the class,

“That’s right. Get this in your notes: x’/x° = x° = 1.”
Any number to the zero power equals 1.”

To put things simply, this is very strange. Nelson certainly knew enough
mathematics to be able to explain that if x # 0,

(5=
X
but he didn’t do so. WHY?

There is a simple answer, although it took us a long time to understand it. The
issue has to do with Nelson’s beliefs and orientations about teaching. One of
Nelson’s central beliefs about teaching—the belief that the ideas you discuss must
be generated by the students—shaped what knowledge he did and did not use.

In the first example above (reducing the fraction x°y’/x*y°), a student said he had
subtracted. The fact that the student mentioned subtraction gave Nelson “permis-
sion” to explain, which he did: “OK. You looked at the x’s and you subtracted
3 minus 2. That gave you x to the first. And then you looked at the y’s and said
7 minus 6, gives you y to the first.”

But in the case of example (c), x’/x°, he was stymied—when he pointed to the
XXXXX

expression and asked “what do I have?” the only answers from the students
ok

LR INT

”

were “zero,” “zip,” “nada,” and “nothing.” Nobody said “1.” And because of his
belief that he had to “build on” what students say, Nelson felt he could not proceed
with the explanation. Only later, when he mis-heard what a student said, was he
able to finish up his explanation.

[Note: This brief explanation may or may not seem convincing. I note that full
detail is given in the book, and that Nelson was part of the team that analyzed his
videotape. So there is strong evidence that the claims I make here are justified.]

Second Teaching Example, Jim Minstrell

Here too I provide just a very brief description.
Jim Minstrell is an award-winning teacher who is very thoughtful about his
teaching. It is the beginning of the school year, and he is teaching an introductory
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lesson that involves the use of mean, median, and mode. But, the main point of the
lesson is that Minstrell wants the students to see that such formulas need to be used
sensibly.

The previous day eight students measured the width of a table. They obtained
these values:

106.8; 107.0; 107.0; 107.5; 107.0; 107.0; 106.5; 106.0 cm.

Minstrell wants the students to discuss the “best number” to represent the width
of the table. His plan is for the lesson to have three parts:

1. Which numbers (all or some?) should they use?
2. How should they combine them?
3. With what precision should they report the answer?

Minstrell gave us a tape of the lesson, which we analyzed. The analysis pro-
ceeded in stages. We decomposed the lesson into smaller and smaller “episodes,”
noting for each episode which goals were present, and observing how transitions
corresponded to changes in goals. In this way, we decomposed the entire lesson—
starting with the lesson as a whole, and ultimately characterizing what happened on
a line-by-line basis. See Figs. 2 and 3 (next pages) for an example of analytic detail.
Figure 2 shows the whole lesson, and then breaks it into major episodes (lesson

First Level
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of Parsing
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(See legend)
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a. Have the class interact as a community of Inquiry, with freedom to explore, conjecture, reason things through.
b. Have students experience physics as a way of making sense of the world.

c. Provide a warm, positive atmosphere in which students feel valued, encouraged to speak, etc.

d. Deal with administrivia.
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Fig. 2 A “top level” view of Minstrell’s lesson, “unfolding” in levels of detail. (With permission,
from Schoenfeld 2010, pp. 96-97)
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[1.2.2.3] (39B-99A)

Major Unplanned Excursion:
Exploration of an alternative
formula for arithmetic
average

Initiating event (trigger):
A student suggests an idea that
"is a little complicated" but
*might work."

Beliefs:

« Teacher should follow
students' lead in thinking
where appropriate.

« Content is relevant and
appropriate.

Goals

« All overarching goals are
active (see narrative).

« Explore and clarify the
the properties of the
student's proposed formula.

« Have content emerge from
students if possible.

« Note: Second goal especially is
emergent (unplanned).

Method/action plan:
« Interactive elicitation using
reflective tosses

Episode type:
« As above, interactive
elicitation (a familiar
classroom routine).

Knowledge base:

« Immediate recognition and
understanding of proposed
student formula.

« Memory of which students
were familiar with which
ideas.

Terminating event:

« Satisfactory elaboration of
student’s method and
comparison with standard and
alternative methods.

Note: This entire episode was
unplanned. The time and effort
spent on it reflect Minstrell's
commitment to the goal of
taking student ideas

seriously and pursuing them
where possible.

[1.2.23.1] (39A-76)

Impromptu Excursion:
Clarifying the nature of
a "complicated” formula

proposed by a student

Initiating event, beliefs,
goals, method, and episode
type are all as identified

in Episode 1.2.2.3.

Specific content goal:

« Have students come to
conclusion that the
"complicated" formula
yields the arithmetic
average.

Terminating event:
« The specific content goal
immediately above is
achieved.

‘

1

[1.2.23.1.1] (39A-40)
Student Comment
[.2.23.1.2] (41-62A)

Clarifying What the
Student Suggested
Specific (emergent)
content goal
« Make sure the class
understands the nature
of the proposed formula.
Method
« Interactive elicitation using
reflective tosses.
Terminating event:
« The content goal is achieved.

[1.2.2.3.13] (628-76)
Showing the "Complicated"
Formula is the
Arithmetic Average
Specific content goal
« Have class conclude the
formulas are the same.
Method
« Interactive elicitation,
calling on a specific
student to provide content.
Terminating event:
« The content goal is achieved.

[12232] (77-99A)

‘

[1.2.23.21] 7
Student Comment

237

Comparing "weighted"
and "unweighted" formulas
for the average

Initiating event:

« Student comment about
possible confusion between
the two formulas.

Beliefs, goals, method, and
episode type are all as
identified in Episode 1.2.2.3.

Specific content goal:
« Clarify the difference
between the two formulas.

Terminating event:
« The specific content goal
immediately above is
achieved.

4

[1.2.2.3.2.2] (78-86)
Framing and Clarifying
the Comparison
Specific (emergent)
content goal:
« Make sure the issue
is clear to the students.
Method
« Interactive elicitation using
reflective tosses.
Terminating event:
« Student consensus (by
assertion) they are not
the same - goal achieved.

Note

The next level of detai,
which shows Minstrell's
use of interactive
elicitation to achieve
the goals specified in
episodes
[1.2.2.3.1.2],
12.23.1.3),
[1.2.2.3.2.2], and
[1.2.2.3.2.3],
is not given here.

That is just to save space.

The analysis is straight-
forward.

[1.2.23.23] (87-99A)
Framing and Clarifying
the Comparison
Specific (emergent)
content goal:

« Work through compelling
example to make sure the
difference is understood

Method

« Interactive elicitation using
reflective tosses.

Terminating event:

« Content goal clearly
achieved; teacher summarizes
with mini-lecture.

Fig. 3 A more fine-grained parsing of Episode [1.2.2.3]. (From Schoenfeld 2010, pp. 116-117,

with permission)

segments), each of which has its own internal structure. Most of the lesson was very
simple to analyze in this way.

Minstrell has a flexible “script” for each part of the lesson:

e He will raise the issue;
He will ask the class for a suggestion;
He will clarify and pursue the student suggestion by asking questions, inserting
some content if necessary.

Once the suggestion has been worked through, he will ask for more suggestions.
When students run out of ideas, he may inject more ideas, or move to the next part

of the lesson.

In this way, the lesson unfolds naturally, and it is easy to “capture” it—see Fig. 2
for a “top level” summary of how the lesson unfolded. The episodes in the second
and third columns, which correspond to an analysis of the lesson as taught, show
that Minstrell did cover the big topics as planned.
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A line-by-line analysis (see Schoenfeld 1998, 2010) shows that when Minstrell
was dealing with expected subject matter, he followed the “script” described above
very closely. So, it is easy to model Minstrell’s behavior when he is on familiar
ground.

But what about unusual events? Remember the data: The eight values the stu-
dents had obtained for the width of the table were

106.8; 107.0; 107.0; 107.5; 107.0; 107.0; 106.5; 106.0 cm.

As the lesson unfolded, Minstrell asked the students about “a way of getting the
best value.” (see box 1.2.2 in the third column of Fig. 2.) As the class proceeded,
one student mentioned the idea of using the “average” and, when asked by
Minstrell, provided a definition. (Box 1.2.2.1 in the fourth column of Fig. 2.)
Another student mentioned mode (Box 1.2.2.2). Then, a student said:

This is a little complicated but I mean it might work. If you see that 107 shows up 4 times,
you give it a coefficient of 4, and then 107.5 only shows up one time, you give it a
coefficient of one, you add all those up and then you divide by the number of coefficients
you have.

This is an unexpected comment, which does not fit directly with Minstrell’s
flexible script. The question is, can we say what Minstrell would do when some-
thing unexpected, like this, arises in the middle of his lesson?

Before proceeding, I want to point out that there is a wide range of responses,
which teachers might produce. I have seen responses like all of the following:

That’s a very interesting question. I’ll talk to you about it after class.

Excellent question. I need to get through today’s plans so you can do tonight’s assigned
homework, but I’ll discuss it tomorrow.

That’s neat. What you’ve just described is known as the ‘weighted average.” Let me briefly
explain how you can work with that...

Let me write that up as a formula and see what folks think of it.
Let’s make sure we all understand what you’ve suggested, and then explore it.

So, teachers might do very different things. Is it possible to know what Minstrell
will do? According to our model of Minstrell, (1) His fundamental orientation
toward teaching is that physics is a sense-making activity and that students should
experience it as such; (2) One of his major goals is to support inquiry and to honor
student attempts at figuring things out; (3) His resource base includes favored
techniques such as “reflective tosses”—asking questions that get students to
explain/elaborate on what they said.

Thus, the model predicts that he will pursue the last option—making sure that
the students understand the issue that the student has raised (including the ambi-
guity about how you add the coefficients; do you divide by 5 or 8?) and pursuing it.
He will do so by asking the students questions and working with the ideas they
produce.
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This is, in fact, what Minstrell did. Figure 3 shows how that segment of the
lesson evolved. It is an elaboration of Box 1.2.2.3 in Fig. 2.

As noted above, it is possible to model Minstrell’s decision. The model shows
that, when faced with options such as those listed above, Minstrell is by far most
likely to pursue the one I have indicated. The computations take about seven pages
of text, so I will spare you the detail! More generally:

We have found that we were able to capture Minstrell’s routine decision-making,
on a line-by-line basis, by characterizing his knowledge/resources and modeling
them as described in Fig. 1, “How Things Work;” and,

We were able to model Minstrell’s non-routine decision-making using a form
of subjective expected value computation, where we considered the various alter-
natives and looked at how consistent they were with Minstrell’s beliefs and values
(his orientations).

In summary, we were able to model every decision Minstrell made during the
hour-long class.

Third Teaching Example, Deborah Ball

Some years ago, at a meeting, Deborah Ball showed a video of a third grade
classroom lesson she had taught. The lesson was amazing—and it was controver-
sial. In it,

e Third graders argued on solid mathematical grounds;

e The discussion agenda evolved as a function of classroom conversations;

e The teacher seemed at times to play a negligible role, and she made at least one
decision that people said was not sensible.

In addition, I had little or no intuition about what happened. Thus, this was a
perfect tape to study! There were major differences from cases 1 and 2:

the students were third graders instead of high school students;
psychological (developmental) issues differed because of the children’s age;
the “control structure” for the classroom was much more “organic”;

the teacher played a less obvious “directing” role.

The question was, could I model what happened in this lesson? If so, then the
theory covered an extremely wide range of examples, which would comprise
compelling evidence of its general validity. If not, then I would understand the
limits of the theory. (Perhaps, for example, it would only apply to teacher-directed
lessons at the high school level.)

Here is what happened during the lesson. Ball’s third grade class had been
studying combinations of integers, and they had been thinking about the fact that,
for example, the sum of two even numbers always seemed to be even. The previous
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day Ball’s students had met with some 4th graders, to discuss the properties of even
numbers, odd numbers, and zero. Ball had wanted her students to see that these
were complex issues and that even the “big” fourth graders were struggling with
them. The day after the meeting (the day of this lesson), Ball started the class by
asking what the students thought about the meeting:

e How do they think about that experience?
e How do they think about their own thinking and learning?

Ball had students come up to the board to discuss “what they learned from the
meeting.” The discussion (a transcript of which is given in full in Schoenfeld 2008,
2010) covered a lot of territory, with Ball seemingly playing a small role as students
argued about the properties of zero (is it even? odd? “special”?). For the most part,
Ball kept her students focused on the “meta-level” question: what did they learn
about their own thinking from the meeting with the fourth graders the previous day?

But then, after a student made a comment, Ball interrupted him to ask a
mathematical question about the student’s understanding. This question, which
took almost 3 min to resolve, completely disrupted the flow of the lesson. Many
people, when watching the tape of the lesson, call that decision a “mistake.” How
could Ball, who is a very careful, thoughtful, and experienced teacher, do such a
thing? If the decision was arbitrary or capricious in some way, that is a problem for
the theory. If highly experienced teachers make arbitrary decisions, it would be
impossible to model teachers’ decision making in general.

In sum, this part of the lesson seems to unfold without Ball playing a directive
role in its development—and she made an unusual decision to interrupt the flow of
conversation. Can this be modeled? The answer is yes. A fine-grained analysis
reveals that Ball has a “debriefing routine” that consists of asking questions and
fleshing out answers. That routine is given in Fig. 4.

In fact, Ball uses that routine five times in the first 6 min of class. Moreover, once
you understand Ball’s plans for the lesson, her unexpected decision—what has been
called her “mistake” by some—can be seen as entirely reasonable and consistent with
her agenda. This has been modeled in great detail. For the full analysis, see Schoenfeld
2010; for an analytic diagram showing the full analysis, download Appendix E from
my web page, http://www-gse.berkeley.edu/faculty/ AHSchoenfeld/AHSchoenfeld.
html.

To sum things up: As in the two previous cases, (1) We were able to model
Ball’s routine decision-making, on a line-by-line basis, by characterizing her
knowledge/resources and modeling them as described in Fig. 1. (2) We were able to
model Ball’s non-routine decision-making as a form of subjective expected value
computation.

In short, we were able to model every move Ball made during the lesson
segment.


http://www-gse.berkeley.edu/faculty/AHSchoenfeld/AHSchoenfeld.html
http://www-gse.berkeley.edu/faculty/AHSchoenfeld/AHSchoenfeld.html
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Fig. 4 A flexible, interruptible routine for discussing a topic. (From Schoenfeld 2010, p. 129, with
permission)
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Yet More Examples
Making Breakfast (or Any Other Meal)

If you look at Fig. 1, you can see that it would be easy to model decision-making
during cooking. Usually we have fixed routines for cooking familiar meals. And if
something changes (for example, when my daughter asks me to make a fancy
breakfast), that calls for a “non-routine” decision, which can also be modeled.
Readers might enjoy creating models of their own cooking practices and decision
making.

Routine Medical Diagnosis and Practice

To see if my ideas worked outside of the classroom, I asked my doctor if I could
tape and analyze one of my office visits with her. She said yes; an analysis of our
conversation is given in How We Think. The conversation was easy to model,
because the doctor follows a straightforward (and flexible) script. Modeling a two-
person interaction is a lot easier than modeling a classroom; it is more like modeling
a tutoring interaction. When the person being modeled (in this case, the doctor) only
has to pay attention to one other person (instead of the 30 children a teacher has to
pay attention to), decision-making is comparatively simple—and simple to model.

I should also note that there is a very large artificial intelligence literature on
modeling doctors’ decision making—there are computer programs that make
diagnoses, etc. (The field is well established: see, e.g., Clancey and Shortliffe 1984).
So, the idea that it is possible to capture doctors’ routine decision making is not
new. More recent, and also consistent with my emphasis on beliefs as shaping
behavior, there are studies (e.g., Groopman 2007) of how doctors’ stereotypes
(beliefs and orientations) regarding patient behavior lead them to miss what should
be straightforward diagnoses.

Discussion

The approach I have outlined in this paper “covers” routine and non-routine
problem solving, routine and non-routine teaching, cooking, and brain surgery—
and every other example of “well practiced,” knowledge-based behavior that I can
think of. All told, I believe it works pretty well as a theory of “how we think.”

Readers have the right to ask, why would someone spend 25 years trying to
build and test a theory like this? Here is my response.

First, theory building and testing should be central parts of doing research in
mathematics education. That is how we make progress.
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Second, the more we understand something the better we can make it work;
when we understand how something skillful is done we can help others do it. This
was the idea behind my problem solving work, where an understanding of problem
solving helped me to help students become better problem solvers. I believe that a
comparably deep understanding of teachers’ decision making can be used to help
mathematics teachers become more effective.

Third, this approach has the potential to provide tools for describing develop-
mental trajectories of teachers. Beginning teachers, for example, often struggle with
issues of classroom “management”—of creating an orderly classroom environment
in which their students can learn productively. While teachers are struggling at this,
they have little time or attention to devote to some of the more subtle aspects of expert
teaching, such as teaching responsively—listening carefully to what their students
say, diagnosing what the students understand and misunderstand, and shaping
the lesson so that it helps move the students forward mathematically. The more we
understand what teachers understand at particular points in their careers, the more we
will be able to provide relevant professional development activities for them. An
understanding of teachers’ developmental trajectories can help us help teachers get
better at helping their students learn. (see Chap. 8 of Schoenfeld 2010, for detail.)

Fourth and finally, it’s fun! The challenge of understanding human behavior has
proved itself to be every bit as interesting and intellectually rewarding as the
challenge of understanding mathematics. It has occupied me for the past 35 years,
and I look forward to many more years of explorations. Exploring questions of how
teachers’ understandings develop, and of how and when one can foster the
development of mathematics teachers’ expertise, are intellectually challenging.
Equally important, addressing them can, over the long run, lead to improvements in
mathematics teaching and learning.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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