CHAPTER 6

CONDENSER CALCULATION

CONDENSER CALCULATION

6.1.1 Analysis options condensers

Condenser is used to transfer heat energy of refrigerating agent at high temperature for cooling substances. Go into the steam condenser is usually a bit too, so first of all it must be cooled to saturation temperature, and in the process of condensation, finally gets too cold a few degrees before out of the condenser.

Cooling way of condensers can be divided into two groups after:

+ Water-cooled condenser.
+ Condenser cooling by air.
In the works at "VIETNAMESE-GERMAN UNIVERSITY (VGU)" select the condenser water-cooled condensers because water-cooled condenser better cooling cooling by air.

6.1.2 Condenser design calculation

A. The initial data.

- Cooling capacity: $\mathbf{Q}_{\mathbf{0}}=\mathbf{1 1 7 0 , 8 2}(\mathbf{k W})$
- The temperature outside investigation under TCVN 5687-2010 "Design standards for ventilation And Air-conditioning".

$$
\mathrm{t}_{\mathrm{N}}=36^{\circ} \mathrm{C}
$$

- The water temperature in the condenser

$$
\mathrm{t}_{\mathrm{W} 1}=\mathrm{t}_{\mathrm{u}}+(3 \div 5)^{0} \mathrm{C}
$$

We choose $\mathrm{t}_{\mathrm{w} 1}=32^{\circ} \mathrm{C}$
We choose: $\Delta \mathrm{t}_{\mathrm{W}}=5^{0} \mathrm{C}$

- Water temperature to condenser : $\mathrm{t}_{\mathrm{W} 2}=37^{\circ} \mathrm{C}$
- Condensation temperature: $\mathrm{t}_{\mathrm{k}}=42^{\circ} \mathrm{C}$

Condenser heat transfer surface is chosen as copper pipes alternate layout, on the floor with the parameters:

- Impeller diameter $\quad \mathrm{D}=0,02(\mathrm{~m})$
- External diameter of the pipe $\quad d_{n g}=0,0181(m)$
- The internal diameter of the pipe $\quad d_{t r}=0,016(\mathrm{~m})$
- Step off

$$
\mathrm{S}_{\mathrm{c}}=0,0018(\mathrm{~m})
$$

- Tube Steps

$$
S=0,026(\mathrm{~m})
$$

- Wing thickness

$$
\begin{aligned}
& \delta_{\mathrm{d}}=0,0002(\mathrm{~m}) \\
& \delta_{\mathrm{c}}=0,0003(\mathrm{~m})
\end{aligned}
$$

B. Calculate:

The other parameters of the beam pipe.
The stand surface area of 1 m pipe wing.

$$
\begin{aligned}
F_{d} & =\frac{\pi\left(D^{2}-d_{n g}^{2}\right)}{2 S_{c}} \\
& =3,14 \times \frac{\left(0,02^{2}-0,0181^{2}\right)}{2 \times 0,0018} \\
& =0,0631\left(\mathrm{~m}^{2} / \mathrm{m}\right)
\end{aligned}
$$

- Horizontal surface area of 1 m pipe.

$$
\begin{gathered}
F_{n}=\pi \times d_{n g} \times\left(1-\frac{\delta_{c}}{S_{c}}\right)+\frac{\pi \times D \times \delta_{d}}{S_{c}} \\
F_{n}=3,14 \times 0,0181 \times\left(1-\frac{0,0003}{0,0018}\right)+\frac{3,14 \times 0,02 \times 0,0002}{0,0018}=0,0543\left(\mathrm{~m}^{2} / \mathrm{m}\right)
\end{gathered}
$$

- Outside Surface area of the wing pipe 1 m

$$
\begin{aligned}
\mathrm{F}_{\mathrm{ng}} & =\mathrm{F}_{\mathrm{n}}+\mathrm{F}_{\mathrm{d}} \\
& =0,0543+0,0631=0,1174\left(\mathrm{~m}^{2} / \mathrm{m}\right) .
\end{aligned}
$$

- Inside surface area of the wing pipe 1 m

$$
\mathrm{F}_{\mathrm{tr}}=\pi \mathrm{d}_{\mathrm{tr}}=3,14 \times 0,016=0,05024\left(\mathrm{~m}^{2} / \mathrm{m}\right)
$$

- The coefficient making wing

$$
\beta=\frac{F_{n g}}{F_{t r}}=\frac{0,1174}{0,05024}=2,34
$$

The average temperature of condenser cooling water:

$$
\Delta t=\frac{t_{w 1}+t_{w 2}}{2}=\frac{32+37}{2}=34,5^{0} \mathrm{C}
$$

The thermal properties of water in the condenser in the average temperature
$t_{w}=34,5^{0} \mathrm{C}$
Look under Appendix 28 Reference [1] must be:
At a temperature $\mathrm{t}=30^{\circ} \mathrm{C}$

$$
\begin{gathered}
\mathrm{v}=0,805 \cdot 10^{-6}\left(\mathrm{~m}^{2} / \mathrm{s}\right) \\
\rho=995,7\left(\mathrm{~kg} / \mathrm{m}^{3}\right) \\
\operatorname{Pr}=5,42 \\
\mathrm{C}_{\mathrm{w}}=4,174(\mathrm{~kJ} / \mathrm{kgK}) \\
\lambda=0,617(\mathrm{~W} / \mathrm{mK})
\end{gathered}
$$

At a temperature $\mathrm{t}=40^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{v}=0,659 \cdot 10^{-6}\left(\mathrm{~m}^{2} / \mathrm{s}\right) \\
& \rho=992,2\left(\mathrm{~kg} / \mathrm{m}^{3}\right) \\
& \operatorname{Pr}=4,31 \\
& \mathrm{C}_{\mathrm{w}}=4,174(\mathrm{~kJ} / \mathrm{kg}) \\
& \lambda=0,6338(\mathrm{~W} / \mathrm{mK})
\end{aligned}
$$

Using interpolation method is:
At a temperature $\mathrm{t}=34,5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{v}=0,7393 \cdot 10^{-6}\left(\mathrm{~m}^{2} / \mathrm{s}\right) \\
& \rho=994,125\left(\mathrm{~kg} / \mathrm{m}^{3}\right) \\
& \operatorname{Pr}=4,92 \\
& \mathrm{C}_{\mathrm{w}}=4,174(\mathrm{~kJ} / \mathrm{kg}) \\
& \lambda=0,6245(\mathrm{~W} / \mathrm{mK})
\end{aligned}
$$

Thermal properties of R134a in the heat exchange condensing

$$
\begin{gathered}
\mathrm{t}_{\mathrm{k}}=42^{0} \mathrm{C} \\
\gamma=0.925 \cdot 10^{-6}\left(\mathrm{~m}^{2} / \mathrm{s}\right) \\
\rho=1154,9\left(\mathrm{~kg} / \mathrm{m}^{3}\right) \\
\lambda=0,0759(\mathrm{~W} / \mathrm{mK})
\end{gathered}
$$

Load condenser temperature:

$$
Q_{k}=\frac{Q_{0}}{q_{0}} \cdot \Delta h=\frac{1170,82}{151,45} \cdot 176,07=1361,15(\mathrm{~kW})
$$

Cooling water passes through a condenser

$$
G_{w}=\frac{Q_{k}}{C_{w} \cdot \Delta t}=\frac{1361,15}{4,174 x 5}=65,23(\mathrm{~kg} / \mathrm{s})
$$

To calculate the heat transfer to the country choose the rate of water movement in the tube is $\omega=2(\mathrm{~m} / \mathrm{s})$

$$
\begin{gathered}
n_{1}=\frac{4 \cdot \mathrm{G}_{w}}{\pi \cdot \rho \cdot \mathrm{~d}_{\mathrm{tr}}^{2} \cdot \omega} \\
n_{1}=\frac{4 \times 65,23}{3.14 \times 994,125 \times 0,016^{2} \times 2}=163
\end{gathered}
$$

The pipe in a water line is 163
Water velocity reassessed according to $\mathrm{n}_{1}=163$
We have:

$$
\omega=\frac{4 \cdot \mathrm{G}_{w}}{\pi \cdot \rho \cdot \mathrm{~d}_{\mathrm{tr}}^{2} \cdot n_{1}}=\frac{4 x 65,23}{3,14 \cdot 994,125 \cdot 0,016^{2} \cdot 163}=2 \mathrm{~m} / \mathrm{s}
$$

Reynold coefficient:

$$
\begin{gathered}
\operatorname{Re}=\frac{\omega \cdot d_{\mathrm{tr}}}{v} \\
\operatorname{Re}=\frac{2 \cdot 0,016}{0,7393 \cdot 10^{-6}}=43284,18
\end{gathered}
$$

From these results we have $\operatorname{Re}=43284,18>10000$ deduce this is the turbulent regime.
Nusselt coefficient:

$$
\begin{aligned}
\mathrm{Nu} & =0,021 \cdot \operatorname{Re}^{0.8} \cdot \operatorname{Pr}^{0.43} \cdot \varepsilon_{1} \\
& =0,021 \cdot 43284,18^{0.8} \cdot 4,92^{0.43} \cdot 1=213,22
\end{aligned}
$$

Exothermic coefficient in the water:

$$
\alpha_{w}=\frac{N_{u} \cdot \lambda}{d_{\mathrm{tr}}}=\frac{213,22 \cdot 0,6245}{0,016}=8322,24
$$

The average temperature difference of the logarithm

$$
\begin{aligned}
& \theta_{m}=\frac{t_{W 2}-t_{W 1}}{\ln \frac{t_{k}-t_{W 1}}{t_{k}-t_{W 2}}} \\
& \theta_{m}=\frac{37-32}{\ln \frac{42-32}{42-37}}=7,21
\end{aligned}
$$

The equation defines the density of heat flow to the water

$$
q_{W}=\frac{\theta_{m}-\theta_{a}}{\frac{1}{\alpha_{W}}+\sum \frac{\delta_{i}}{\lambda_{i}}}
$$

$\sum \frac{\delta_{i}}{\lambda_{i}}$: thermal impedance of the layer residue and duct wall. According Reference [1] pages 257 , duct wall materials is brass we choose
$\sum \frac{\delta_{i}}{\lambda_{i}}=0,2 \cdot 10^{-3}\left(\mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}\right)$

$$
q_{w}=\frac{7,21-\theta_{a}}{\frac{1}{8322,24}+0,2 \cdot 10^{-3}}=3123,43 .\left(7,21-\theta_{a}\right)
$$

To be able to determine the density of heat flow q_{tr}, the preliminary selection trick textures of condensers:

Preliminary we can choose: $\theta_{\mathrm{a}}=0.3 \theta_{\mathrm{m}}$
We have :

$$
\begin{aligned}
\mathrm{q}_{\mathrm{tr}}^{\prime} & =3123,43 \cdot(7,21-0,3 \times 7,21) \\
& =15763,95\left(\mathrm{~W} / \mathrm{m}^{2}\right)
\end{aligned}
$$

Tubes are arranged on the floor according the edges of the hexagons and on the top of the triangle. So the number of pipes, arranged diagonally along the hexagon of the m can be determined according to the formula:

According to reference [2] pages 161 we have

$$
m=0.75 \sqrt[3]{\frac{Q_{k}}{q_{t r}^{\prime} \cdot s . d_{t r} \cdot k}}
$$

In which:
S: Tube steps
D: Diameter of impeller

$$
\begin{aligned}
& D=0,02(\mathrm{~m}) \\
& S=1,3 . D=1,3 \cdot 0,02=0,026(\mathrm{~m})
\end{aligned}
$$

We choose: $\mathrm{k}=1 / \mathrm{d}=8$
We deduce:

$$
m=0,75 \cdot \sqrt[3]{\frac{1361,15 \cdot 10^{3}}{15763,95 \cdot 0,026 \cdot 0,016 \cdot 8}}=22,2
$$

From the results we choose: $\mathrm{m}=22$
So the vertical tube caves are: $n_{z}=m=22$
Exothermic condensation of R134a in the surface of the tube is determined by the following formula:

$$
\alpha_{a}=0,72 \cdot \sqrt[4]{\frac{\Delta h \cdot \rho \cdot \lambda^{3} \cdot g}{v \cdot d_{n g}}} \cdot\left(\frac{n_{Z}}{2}\right)^{-0,167} \cdot \beta \cdot \theta_{a}^{-0,25} \cdot \psi_{c}
$$

In which:

$$
\Delta \mathrm{h}=\mathrm{q}_{\mathrm{k}}=176,07(\mathrm{~kJ} / \mathrm{kg})
$$

ψ_{c} : the coefficient taking into account other conditions when it condenses on the pipe with wings.

$$
\psi_{c}=1,3 \frac{F_{d}}{F_{n g}} \cdot E^{0,75}\left(\frac{d_{n g}}{h^{\prime}}\right)^{0,25}+\frac{F_{n}}{F_{n g}}
$$

which:
E : the performance of the wing ($\mathrm{E}=1$, copper pipes with wings)
h ': the height of the Convention of the wing

$$
\begin{aligned}
h^{\prime} & =\frac{\pi}{4} \cdot\left(\frac{D^{2}-d_{n g}^{2}}{D}\right) \\
h^{\prime} & =\frac{3,14}{4} \cdot\left(\frac{0,02^{2}-0,018^{2}}{0,02}\right)=0,00298(\mathrm{~m})
\end{aligned}
$$

We deduce:

$$
\psi_{c}=1,3 \cdot \frac{0,0631}{0,1174} \cdot 1^{0,75} \cdot\left(\frac{0,018}{0,00298}\right)^{0,25}+\frac{0,0543}{0,1174}=1,557
$$

The density of heat flow in the R134a

$$
\begin{gathered}
\alpha_{a}=0,72 . \sqrt[4]{\frac{176,07 \cdot 10^{3} \cdot 1154,9 \cdot 0,0759^{3} \cdot 9,81}{0,925 \cdot 10^{-6} \cdot 0,0181}} \cdot\left(\frac{21}{2}\right)^{-0,167} \cdot 2,34 \cdot 1,557 \cdot \theta \mathrm{a}^{-0,25} \\
\alpha_{a}=4758,82 \cdot \theta \mathrm{a}^{-0,25}
\end{gathered}
$$

We have :

$$
\begin{aligned}
\mathrm{q}_{\mathrm{a}} & =\alpha_{\mathrm{a}} \cdot \theta_{\mathrm{a}} \\
& =4758,82 \cdot \theta \mathrm{a}^{-0,25} \cdot \theta_{\mathrm{a}}=4758,82 \cdot \theta_{\mathrm{a}}{ }^{0,75}
\end{aligned}
$$

We have the equation to determine the q_{tr} :

$$
\left\{\begin{array}{l}
q_{w}=3123,43 \cdot\left(7,21-\theta_{a}\right) \\
q_{a}=4758,82 \cdot \theta \mathrm{a}^{0,75}
\end{array}\right.
$$

Solve the equation by iteration method

$$
q_{t r}=\frac{(x-1) q_{t r}^{\prime x}+\theta_{m} B^{x}}{x q_{t r}^{x-1}+\frac{B^{x}}{A}}
$$

In which:

$$
\begin{aligned}
& x=1 / k=1 / 0,75=1,333 \\
& A=3123,43 ; B=4758,82 \\
& \theta_{\mathrm{m}}=7,21 ; \mathrm{q}_{\mathrm{tr}}^{\prime}=15763,95\left(\mathrm{~W} / \mathrm{m}^{2}\right)
\end{aligned}
$$

We deduce:

$$
\begin{aligned}
& q_{t r 1}=\frac{(1,333-1) \cdot 15763,95^{1,333}+7,21 \cdot 4758,82^{1,333}}{1,333 \cdot 15763,95^{0,333}+\frac{4758,82^{1,333}}{3123,43}}=12004,13\left(\mathrm{~W} / \mathrm{m}^{2}\right) \\
& q_{t r 2}=\frac{(1,333-1) \cdot 12004,13^{1,333}+7,21 \cdot 4758,82^{1,333}}{1,333 \cdot 12004,13^{0,333}+\frac{4758,82^{1,333}}{3123,43}}=11910,01\left(\mathrm{~W} / \mathrm{m}^{2}\right)
\end{aligned}
$$

Relative errors:

$$
\delta_{q}=\frac{q_{t r 1}-q_{t r 2}}{q_{t r 2}}=\frac{12004,13-11910,01}{11910,01}=0,0079 \%
$$

Error $0,0079 \%$ so we have $\mathrm{q}_{\mathrm{tr}}=11910,01\left(\mathrm{~W} / \mathrm{m}^{2}\right)$.
The surface area of heat transfer pipe:

$$
\begin{aligned}
& F_{t r}=\frac{Q_{k}}{q_{t r}} \\
& F_{t r}=\frac{1361,15 \times 10^{3}}{11910.01}=114,27 \mathrm{~m}^{2}
\end{aligned}
$$

The total length of the pipe in condenser:

$$
L=\frac{F_{t r}}{\pi \cdot d_{t r}}
$$

$$
L=\frac{114,27}{3,14.0,016}=2274,48
$$

Preliminary have been calculated and choose $\mathrm{m}=22$ so the total number is pipes:

$$
\begin{aligned}
& \mathrm{n}=0,75 \cdot\left(\mathrm{~m}^{2}-1\right)+1 \\
& \quad=0,75 \cdot\left(22^{2}-1\right)+1=363 \text { (pipes) }
\end{aligned}
$$

Of the water in the condenser:

$$
Z=\frac{n}{n_{1}}=\frac{363}{163}=2.2
$$

Choose $Z=2$ (Choose $Z=2, k$ value $=8.86$ does not meet the requirements)
When it:

$$
\begin{aligned}
\mathrm{n} & =\mathrm{Z} . \mathrm{n}_{1} \\
& =2.163=326
\end{aligned}
$$

$\mathrm{m}=\sqrt{\frac{\mathrm{n}-1}{0.75}}+1=\sqrt{\frac{326-1}{0.75}}+1=21,82$
So we can re-choose m, we must chose $m=22$
We have: $\mathrm{n}=0.75 \times\left(\mathrm{m}^{2}-1\right)+1=0.75 \times\left(22^{2}-1\right)+1=363$ (pipe)
To use the condenser capacitor, we must retrench 5 row bottom pipes.
The pipe is removed:

$$
\begin{aligned}
& n^{\prime}=i \cdot \frac{m+1}{2}+\sum_{n=1}^{n=i-1} n_{i} \\
& n^{\prime}=5 \cdot \frac{22+1}{2}+1+2+3+4=68
\end{aligned}
$$

With: i is the number of rows the pipe removed.
So the number of rows the pipe remaining: $\mathrm{n}^{\prime \prime}=\mathrm{n}-\mathrm{n}^{\prime}=363-68=295$ (pipes)
So missing 31 pipes anymore is enough tube 326 will arrange them in a above condenser.
The length of the tube

$$
\begin{aligned}
& l=\frac{L}{n} \\
& l=\frac{2274,48}{326}=6,98
\end{aligned}
$$

Tube step:

$$
\mathrm{S}=1,3 . \mathrm{D}=1,3 \cdot 0,02=0,026(\mathrm{~m})
$$

Sieve diameter:

$$
\mathrm{D}=\mathrm{m} \cdot \mathrm{~S}=42 \cdot 0,026=1.092(\mathrm{~m}) .
$$

The ratio:

$$
K=\frac{l}{D}=\frac{6,98}{1.092}=6,4
$$

I have according Reference [2] page $158, \mathrm{k}=6,4$ range allows ($4 \div 8$)

6.1.3 Hydrodynamic condenser calculation:

In addition to calculating the average evaporation heat transfer, it is also the resistance of the water when cold through condenser. According to formula 9.25 pages 353 Reference [2]:

Hindrance to the water through the condenser:

$$
\Delta \mathrm{P}=\left(\lambda \frac{L}{d_{\mathrm{tr}}}+\xi_{v}+1+\frac{\xi_{v}+1}{z}\right) \cdot \frac{\omega^{2} \cdot \rho}{2} \cdot \mathrm{z}
$$

In which:
ξ_{v} - coefficient of local resistance when water in tube: $\quad \xi_{\mathrm{v}}=0,5$.
L - length of average between the two manifestations: $\mathrm{L}=4,5 \mathrm{~m}$
d_{tr} - diameter of pipe:

$$
\mathrm{d}_{\mathrm{tr}}=0,016 \mathrm{~m}
$$

z - number of lines water in equipment: $\quad \mathrm{z}=2$
ω - the velocity of water flow in pipes: $\quad \omega=2 \mathrm{~m} / \mathrm{s}$
ρ - the density of cold water:

$$
\rho=994,125 \mathrm{~kg} / \mathrm{m}^{3}
$$

λ - coefficient of friction.
Because the water in the tube in a turbulent state, so for copper pipe friction coefficient is calculated as follows:

$$
\begin{equation*}
\lambda=\frac{0,3164}{R e^{0,25}}=\frac{0,3164}{43284,18^{0,25}}=0,022 \tag{2}
\end{equation*}
$$

So pressure drop water through the condenser:

$$
\Delta P=\left(0,022 \cdot \frac{4,5}{0,016}+0,5+1+\frac{0,5+1}{4}\right) \cdot \frac{2^{2} \cdot 994,125}{2} \cdot 4=64121,06 \mathrm{~Pa}
$$

6.1.4 Strength condenser calculation:

A. Strength case condenser calculation:

Evaporator in the air conditioning system is the low pressures side pressure device. Therefore, we have to calculate reliable equipment to ensure the safety of the device when operating ...

Due to the structure of the average evaporation cylindrical geometry, so under pressure.
The thickness of the cylindrical body S is chosen to satisfy the following conditions: (Formula 10.1page 364 Reference [3])

$$
S \geq \frac{P_{R} \cdot \mathrm{D}_{\mathrm{tr}}}{2 \cdot[\sigma] \cdot \phi_{d}-P_{R}}+C
$$

In which:
P_{R} - Calculation of the pressure equipment, MPa. According to table 10.1 pages 360 Reference [3] was chosen: $P_{R}=12 \mathrm{bar}=1,2 \mathrm{MPa}$..
[σ] - Allowing stress of metal fabrication body average, MPa. According to table 10.2 pages 361 Reference [3], choose body building materials per evaporation is steel CCT38, with the calculation of the wall temperature is: $t=42^{\circ} C$ we have: $[\sigma]=138,35 \mathrm{MPa}$ $D_{t r}$ - Diameter of the body evaporation comment: $D_{t r}=754 \mathrm{~mm}$
$\phi_{d}-$ Vertical weld strength coefficient, $\phi_{d}=0,9$ (Reference [3], pages 364, table 10-3)
C-Additional thickness, mm

$$
C=C_{1}+C_{2}+C_{3}
$$

C_{1} - The additional thickness to compensate for corrosion when exposed to hazardous substances: $C_{1}=0,001 \mathrm{~m}$
C_{2}-additional thickness to compensate for the negative thickness tolerance:
$C_{2}=0,001 \mathrm{~m}$
C_{3} - the additional thickness due to the relative thickness of Votes thinning during pulling, stamping, bending, etc $\ldots: C_{3}=0,001 \mathrm{~m}$
So: $S \geq \frac{1,2 \cdot 0,754}{2 \cdot 138,35 \cdot 0,9-1,2}+0,003=0,0066 \mathrm{~m}$
Choose the standard TEMA: $S=0,0095 \mathrm{~m}=9,5 \mathrm{~mm}$ (Table CB 3.13, pages 5.3-1
Reference [4]).
Condenser has the following dimensions:

$$
\begin{aligned}
& D_{t r}=0,754 \mathrm{~m} \\
& D_{n g}=D_{t r}+2 . S=0,754+2.0,0095=0,773 \mathrm{~m}
\end{aligned}
$$

B. Calculate the thickness of floating tube sheet:

In the condenser the ground is soldered to the cylindrical body of the condenser. The copper tube is tight on the floor, so that the thickness of the floor to ensure tight tube and must meet the following conditions:

$$
S_{m} \geq 0,5 \cdot \mathrm{D}_{E} \sqrt{\frac{\left|\mathrm{P}_{o}-P_{R}\right|}{[\sigma]}}+C
$$

In which:
P_{R} - Calculate the pressure outside the tube, is the calculation of the pressure equipment. According to table 10.1 pages 360 Reference [3] was chosen: $P_{R}=12 \mathrm{bar}=1,2 \mathrm{MPa}$. P_{o} - Calculate the pressure inside the pipe: $P_{o}=1,5$ bar $=0,15 \mathrm{MPa}$ $[\sigma]$ - Allowing stress of metal fabrication place, MPa. According to the table 10.2 pages 367 Reference [3], choose body building materials per evaporation is steel CCT38, with the calculation of the wall temperature is: $t=42^{\circ} C$ we have: $[\sigma]=138,35 \mathrm{MPa}$. D_{E} - The diameter of the circle can accommodate the largest in the area do not have the tube on the floor: $D_{E}=104,15 \mathrm{~mm}$

C - Additional section thickness: $C=0,003 \mathrm{~m}$
So: $S_{m} \geq 0,5 . \mathrm{D}_{E} \sqrt{\frac{\left|\mathrm{P}_{o}-P_{R}\right|}{[\sigma]}}+C=0,5.0,10415 \cdot \sqrt{\frac{|0,15-1,2|}{138,35}}+0,003=0,0075 \mathrm{~m}$
We choose the thickness of floating tube sheet: $S_{m}=0,0075 \mathrm{~m}=7,5 \mathrm{~mm}$

C. Strength for the lid calculation:

With condenser cylindrical geometry, we use a curved lid can be removed to open the assembly with two top flange cylindrical body. I choose the bottom of the device is curved circular curved bottom edge boards (Figure 10-4 c, pages 370 Reference [3]).

Round cap thickness is determined as follows: (Formula pages 370 Reference [3])

$$
S_{n} \geq \frac{\mathrm{P}_{R} \cdot \mathrm{R}}{2 \cdot \phi_{d} \cdot[\sigma]-0,5 \cdot \mathrm{P}_{R}}+C
$$

In which:
R - radius of the curved lid, m .

$$
R=D_{\mathrm{tr}}=0,754 \mathrm{~m}
$$

$H_{\mathrm{tr}}=0,25 . \mathrm{D}_{\mathrm{tr}}=0,25 \cdot 0,754=0,1885 \mathrm{~m}-$ The height of the inside of the lid.
ϕ_{d} - Weld strength coefficient along, $\phi_{d}=0,9$
P_{R} - Calculation of pressure equipment: $P_{R}=1,2 \mathrm{MPa}$
[σ] - Allowing stress of metal fabricated cap:
$[\sigma]=138,35 \mathrm{MPa}$.
C - Additional thickness: $C=0,003 \mathrm{~m}$

$$
\text { So: } S_{n} \geq \frac{1,2 \cdot 0,754}{2 \cdot 0,9 \cdot 138,35-0,5 \cdot 1,2}+0,003=0,0066 \mathrm{~m}
$$

We choose the thickness of the lid: $S_{n}=0,007 \mathrm{~m}=7 \mathrm{~mm}$

6.2 CONDENSER OPTIONS

Specification ${ }^{60 \mathrm{~Hz}}$

R134a (60 Hz)

Model		Units	гWWarxata	RWW\%Rackat	rowwoascky	80WW0ackat	SWWOTRCARA	ROWW03sckat	RGWMOSCRA
Standard Condition	Coolingcapacity	MVV	726	793	849	912	1,095	1,217	1298
		usRT	206.4	222.5	241.5	259.3	311.4	346.1	359.1
	- Input Power	NOV	151.87	164.01	177.89	122.51	227.03	24005	251.89
	COP		4.9	4.9	4.9	5	4.9	51	5
AH2 Conditions	Coolingcapacity	M0V	734.53	791.99	859.6	922.89	1108.64	1231.96	1314.09
		usRT	208.9	225.2	244.4	252.4	315.2	K50.3	37.6
	Input Pawer	MV	145.73	157.38	170.67	175.14	217.82	230.33	251.25
	COP		5	5	5	53	51	53	5.2
	PLV		6.44	6.43	6.47	6.74	653	685	673
$\begin{gathered} \text { General Unit } \\ \text { Data } \end{gathered}$	Number of Circuits		2	2	2	2	2	2	2
	Refigerant, A. $134=$	kg	95/95	100/100	110/110	115/115	145/145	160/160	175/175
	Ol Charge	1	19/19	20/20	23/23	20/20	29/29	29/29	29/29
Waight	Shipping Waight	kg	4460	4600	4720	4770	5590	5910	5930
	Oparating Waight	kg	4790	4940	5080	5150	6040	6430	6490
Compressors	Compressor type			Sami*harmatic twin arew					
	Ousativ/	EA	2	2	2	2	2	2	2
Condenser	Evaporator type	kWV		Shall and Tubs					
	Water Volume	kWV	59	61	61	65	90	96	96
	Max Water Pressure	MPz	1	1	1	1	1	1	1
	Max Refrigerant Pressure	Mpz	1	1	1	1	1	1	1
	Mn. Cooling Water Flow Rate	V/s	13.6	14.6	14.6	16.9	19	21.6	21.6
	Max Cooling Water Rlow Rate	V / s	54.4	59.6	59.6	67.7	76	96.5	86.5
	Water Connactions	DN	150	150	150	150	200	200	200
Evaporator	evaporator type			S7eir 2 ad lube					
	Water Volume	1	67	93	93	97	92	112	112
	Mbx Water Pressure	MPz	1	1	1	1	1	1	1
	Max.Refrigerant Pressure	Mpz	1	1	1	1	1	1	1
	Min Chillad Water Flow Rate	V / s	12.6	13.8	13.8	15.7	18	20.2	20.2
	Max.Chillad Water Rlow Rate	V / s	50.2	55.1	55.1	62.8	71.8	80.9	80.9
	Water Connactions	DN	150	150	150	150	200	200	200

