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Abstract: A highly sensitive Gallium Nitride (GaN) diaphragm based micro-scale pressure sensor
with an AlGaN/GaN heterostructure field effect transistor (HFET) deflection transducer has been
designed and fabricated for high temperature applications. The performance of the pressure sensor
was studied over a pressure range of 20 kPa, which resulted in an ultra-high sensitivity of ~0.76%/kPa,
with a signal-to-noise ratio as high as 16 dB, when biased optimally in the subthreshold region. A high
gauge factor of 260 was determined from strain distribution in the sensor membrane obtained from
finite element simulations. A repeatable sensor performance was observed over multiple pressure
cycles up to a temperature of 200 ◦C.
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1. Introduction

In harsh environments, such as in the aerospace, automotive, nuclear power and petroleum
industries, there is a great need for high temperature pressure sensors [1–3]. Silicon electrical properties
degrade with the temperatures above 150 ◦C, due to the generation of thermal carriers and high leakage
currents, which makes it less suitable for harsh environments. The corrosion resistance of silicon is also
limited at high temperatures. This moved the researcher’s interest to higher bang-gap materials like
SiC, AlN, Gallium Nitride (GaN) and so forth [4–11]. Due to their higher band gap, these materials
have excellent thermal stability at higher temperatures. Among these, AlGaN got a special interest
due to its excellent piezo-electric properties [12]. It is also chemically inert, mechanically stable and
radiation hardened, which makes it a promising device material for hostile environments. GaN layer is
highly piezo electric and AlGaN/GaN heterostructure have a spontaneous polarization at the interface,
which creates a 2DEG (two-dimensional electron gas) at the interface [13]. This 2DEG offers a great
opportunity for using AlGaN/GaN in piezo-resistive and piezo-electric transducers, since both the
2DEG density and the mobility of the 2DEG can be modulated with the strain. The sensitivity for the
applied strain for AlGaN/GaN transducers will have higher values than those of silicon, where only the
carrier mobility gets modulated with the applied strain. These characteristics of AlGaN/GaN interface
make them better suitable material for the sensing applications over silicon [7–15]. Silicon carbide
based piezo resistive pressure sensors at temperatures up to 600 ◦C have been studied, however these
devices have low output signals and low pressure sensitivity values [16–18]. Capacitive sensing
is a dominant technique in pressure sensing, however the motion of the sensor is constrained to a
small vertical and horizontal movements [19]. If the vertical displacement is large, the capacitance
are not suitable for pressure sensing. So, the interest has been shifted to diaphragm based pressure
sensors, where the sensors motion is dependent on the yield strength of the material than on the design
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constraints. The theoretical temperature limit of Gallium Nitride (GaN) can be as high as 600 ◦C and
GaN heterostructure also shown higher mobility values and high critical breakdowns [20]. The III-V
nitrides is also having a high potential for monolithic integration [21]. There have been various studies
on the AlGaN/GaN based pressure sensors for room temperature sensing applications [22,23]. In this
article, we have investigated high temperature pressure sensing behavior of AlGaN/GaN based
devices and its electrical properties with the applied pressure have been studied with the temperature.
The mechanical stress distribution across the circumference of the diaphragm with pressure will
provide the change in piezoelectric charge in GaN HFET (hetero-structure field-effect transistor) and so
thus the change in source-drain resistance. The pressure sensitivity values are significantly better than
existing technologies, which underscores the prospect of these devices for high temperature pressure
sensing applications.

2. Materials and Methods

The pressure transducers used in this study were fabricated on AlGaN/GaN epitaxial layers
on (111) silicon wafer, purchased from NTT Advanced Technology Corporation, Japan. The wafer
had a 2 nm i-GaN cap layer and 15 nm Al0.25Ga0.75N on top of 1 μm i-GaN, with a 300 nm buffer
layer separating the GaN layer from the 675–750 μm thick Si substrate. At the beginning of the
fabrication process, the top 100 nm of AlGaN/GaN layer was etched using BCl3/Cl2 plasma chemistry
to define the mesa region at the periphery of the diaphragm, followed by deposition of a Ti (20 nm)/Al
(100 nm)/Ti (45 nm)/Au (55 nm) metal stack. A rapid thermal annealing process was performed at
825 ◦C for a minute, to form ohmic contacts for the source and drain regions for the HFET. After that,
plasma enhanced chemical vapor deposition (PECVD) technique was used to deposit 100 nm thick
SiO2 to cover the open regions of the mesa, which served as the gate dielectric. This was followed
by two consecutive stages of metallization, the first one had Ni (25 nm)/Au (200 nm) stack as the
gate metal contacts and the second one had Ti (20)/Au (225 nm) stack to from the probe contacts.
Finally Bosch process was used from the bottom face of the sample to perform through wafer etching
of silicon to release the diaphragm. Figure 1a shows the schematic diagram of the pressures sensor
(Appendix A: Figure A1 represents the diagrammatic representation of the process flow the fabrication
of these pressure sensors). Figure 1b,c shows the scanning electron microscopic (SEM) images of a
diaphragm from the topside and the backside of the sample.

Figure 1. (a) Cross-sectional structure of AlGaN/GaN heterostructure field effect transistor (HFET)
pressure sensor; (b) Diaphragm based AlGaN/GaN HFET pressure sensor, with a radius of 1000 μm
diaphragm; (c) The back side of the diaphragm, where the pressure was applied; (d) the experimental
set-up for pressure sensing.
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3. Results and Discussion

The sheet resistance of the AlGaN layer and the contact resistance of the ohmic metal pads were
found out to be 316 Ω/cm2 and 19 Ω/cm2 respectively, measured using transmission line measurement
(TLM) technique. The transfer length, LT, was found to be 18 μm and contact resistivity was calculated
as ρc = (LT)2 × Rsheet = 0.57 Ω·cm2. However, due to the device contacts being of shorter length (10 μm)
than the LT, the estimated total contact resistance for both contacts is about 8.6 Ω, while the overall
channel resistance is about 2.6 Ω, which means a significant amount of voltage (~77%) is dropped at
the contacts, which needs to be accounted for in the calculations that follow.

For electrical and pressure transduction measurements, the HFET embedded diaphragms were
glued to a printed circuit board (PCB) with a small pinhole in such a way that the pinhole is aligned
with the diaphragm and the glue forms a vacuum seal. The contact pads were wire bonded and the
PCB was mounted on a high pressure fixture shown in Figure 1d, where a gas line was installed beneath
the diaphragm with high temperature O-rings for good vacuum sealing. A heater and a thermo-couple
were also placed on top of the PCB, near the transducer chip, to carry out the experiments at higher
temperatures. At first, we performed transistor measurements to calculate field effect mobility, given by

μFET =
gm × lg

q × Vds,e × Cg
(1)

where gm is the drain-source transconductance, q is the electron charge, lg is the gate length of the
channel, Cg is the gate capacitance, Vds,e is the effective voltage drop at the channel (across the
intrinsic transistor), estimated as a fraction of applied Vds from the TLM measurements. Since the
series combination of the oxide capacitance and the capacitance of the top AlGaN layers dominate
the overall capacitance, we consider this constant capacitance as Cg, without performing a full gate
capacitance-voltage (C-V) measurement.

Figure 2a shows the Ids-Vds characteristics the HFET at room temperature (RT). Here the non-linearity
observed at the low bias range can be attributed to the non-ideality of the contacts that was evident
from the relatively higher contact resistivity. The current eventually saturates or reduces at different Vds
depending on the Vgs, which is expected from a well-behaved HFET with high current driving capacity.
Figure 2b shows the variation of Ids at Vgs = 0 V as a function of temperature. As the temperature goes
up, the peak Ids goes down and so does the corresponding Vds, as the channel resistance increases as
a result of increased scattering. However, at low Vds (<1 V), the Ids-Vds curves become more linear at
higher temperatures, which can be attributed to the improved thermionic emission at the non-ideal
contacts. That is why we calculate the field effect mobility at a higher Vds (~V), as it is less sensitive to
the Schottky-like behavior at the lower Vds. Figure 2c shows the Ids-Vgs characteristics of the HFET
measured at different temperatures and at Vds = 1 V. The peak transconductance at room temperature
was ~15 mA/V, which resulted in a raw value of μFET = ~300 cm2/(V·s) and sheet carrier concentration
ns = 7.19 × 1011 cm−2 at Vgs = −2 V and 2.35 × 1011 cm−2 at Vgs = −7 V. This low mobility is likely
attributable to significant voltage drop across the drain and source contact resistances due to their
sub-optimal width (< transfer length) caused by spatial limitation. The true value of the mobility lies
between these two extreme cases. The reduction of mobility at RT is generally associated with the
enhanced defect scattering in HFET and significant carrier trapping at the 2DEG surface [24].
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Figure 2. (a) Ids-Vds characteristics of the circular AlGaN/GaN HFET at room temperature; (b) variation
of Ids at Vgs = 0 V as a function of temperature and (c) Ids-Vgs characteristics of the HFET measured at
different temperatures and at Vds = 1 V.

From Figure 2c, we observe that the threshold and turn off voltages of the HFET were reduced
with the increase of temperature. The threshold voltages of HFET at RT, 100 ◦C, 130 ◦C and 200 ◦C are
approximately −7.5 V, −5.7 V, −4.9 V and −4 V respectively. This is in good agreement with the study
by Alim et al. [25] on the variation of the threshold with the temperature, where they also noticed
that the positive shift in the Schottky barrier height along with trap-assisted phenomena shifted the
threshold voltage towards positive values as the temperature was increased. At higher temperatures,
the phonon scattering also plays a dominant role leading to the reduction in the mobility values.

Since AlGaN/GaN heterojunction has a spontaneous piezoelectric polarization at the interface,
any external strain changes the density of the mobile carriers (2DEG) at the interface. The associated
change in resistance with strain can be used as a direct measure of the strain that is being applied on
the system [26,27]. Figure 3 shows the finite element (FE) simulations using COMSOL Multiphysics
(version 4.3, COMSOL Inc., Stockholm, Sweden), which shows the (a) stress values across the
diaphragm and the (b) displacement of the diaphragm at an applied pressure of 20 kPa above
atmospheric pressure. From this computation, the maximum displacement of the diaphragm was
estimated to be ~10 μm. The maximum stress in the diaphragm was at the circumference and because of
we designed the HFETs to be at the periphery of the diaphragm to maximize the polarization-induced
change in conductivity and hence the maximum sensitivity.

Figure 4a shows the variation of source drain resistance (Rds) with 20 kPa of pressure difference
being applied to the diaphragm in regular intervals, which resulted in the Rds increasing. The pressure
was applied and released quickly using a valve to reduce mechanical transients in the measurements.
At each measurement point, the differential pressure was kept at 20 kPa for few seconds and then
was reduced back to zero (atmospheric pressure) and repeated the experiments for a number of
cycles. This was repeated for various temperatures and the results are compared in Figure 4a,
where we kept the drain source voltage at 1.5 V but varied the gate voltage to achieve the highest
sensitivity for each temperature. The signal to noise ratio is calculated for each dataset using the
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expression, SNRdB = 10 log10

( Rsignal
Rnoise

)
, where Rsignal is the average change in resistance when the strain

is applied and Rnoise is the average variation in resistance when there is no strain. The calculated
signal-to-noise ratio (SNR) is15–16 dB for these pressure sensors, for all the measured temperatures.
The rise and fall times of the response are ~200 ms and ~600 ms respectively, which includes the
mechanical transient arising from the time required for the pressure to reach the steady-state. Therefore,
actual electrical transient is negligible, which is quite extraordinary for an AlGaN/GaN HFET without
any surface passivation.

 

Figure 3. (a) Stress (N/m2) simulations results on AlGaN/GaN diaphragm using finite element method
using COMSOL (b) the displacement (cm) of the diaphragm with applied pressure (20 kPa).

Figure 4. (a) The change in drain-source resistance, with applied pressure in regular intervals, indicated
by the increased Rds. The figure shows the measurement at different temperatures, Vds is 1.5 V and
pressure difference is 20 kPa; (b) The variation of pressure sensor sensitivity with gate voltage of HFET,
at different temperature. Vds is 1.5 V and the applied differential pressure is 20 kPa.

The sensitivity of the device is calculated from the equation, S = ΔR
Ro

1
P %. Here S is defined as the

percentage change in the resistance, with respect to the pressure difference (P). Gauge factor, GF of the
device can be derived as

GF =
ΔR
R0

1
∈ =

1
∈
(

Δμn

μn
+

Δns

ns

)
(2)
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where R0 is the initial resistance and ΔR is the change in resistance with applied strain, ∈. μn and ns are
the mobility and carrier concentrations respectively. From Equation (1), we see that the gauge factor
depends on the changes in mobility and carrier concertation. In an HFET device, the gate voltage can
be tuned deplete the 2DEG to bring ns to a low level, also known as the subthreshold region, where a
small change in ns caused by the strain can significantly affect the Δns

ns
ratio and increase GF [28]. As the

temperature goes up, mobility decreases in general; but due to the imperfect contacts, the change
in conductivity as a function of temperature does not follow the same trend as mobility in low Vds,
which causes a non-monotonous change in device response measured at Vds = 1.5 V. In Figure 4a,
we see that the response magnitude and sensitivity increase from RT to 100 ◦C and then gradually
decrease through 200 ◦C. At higher temperature, μn decreases [29], as a result, overall sensitivity is
expected to decrease. However, because of our contacts being shorter than the transfer length, we have
variable contact resistance which improves with slightly higher temperature (Figure 2b) due to the
increased efficiency in thermionic emission process. This increases the injection efficiency from the
contacts into the channel, which allows the changes in Δns and ΔR to appear larger under applied
pressure as well, due to the non-linearity in the Ids-Vds curves at the low field. However, as temperature
keeps on increasing, the contact resistance is expected to reach an equilibrium at one point (LT coming
closer to the contact length) and the high temperature causes the sensitivity to drop.

Figure 4b, which shows the variation of the pressure sensitivity as a function of Vgs of the HFET
at different temperatures, is in good agreement with the aforementioned explanation. For all four
temperatures shown here, the sensitivity becomes nearly constant for Vgs < −6 V, which indicates
that a Vgs just below −6 V is the optimal gate bias. The change in ns is maximum when Vgs is
between 0 V and about −6 V, which is why the large changes in sensitivity is only observed in this
region. At zero gate bias, very low sensitivity is observed since the baseline carrier concentration ns is
very high (order of high 1012 cm−2), while the change in carrier concentration Δns due to deflection
related strain is very low. Due to this a gate control is required to reduce the 2DEG density which
will automatically increase the sensitivity (proportional to Δns/ns) [30]. This is in agreement with
an earlier study by Zimmermann et al. which also showed that the pressure response increases at
higher gate bias [31]. The sensitivity of our pressure sensors varied from 0.022%/kPa, at zero gate
voltage, to 0.5–0.76%/kPa in the subthreshold region (Vg ≈ −6 V, see discussion above) for different
temperatures, with the maximum gauge factor (GF) being ~260. The corresponding sensitivity in terms
of change in the drain voltage (assuming a constant current of ≈1 × 10−7 amp) is ~7–18 mV/kPa,
which is slightly higher than the value of 7.25–14.5 mV/kPa reported for commercial high sensitivity
pressure sensors (IMI sensors) [32]. It is important to note that the sensitivity values obtained from our
AlGaN/GaN pressure sensor are orders of magnitude higher than the sensitivity value of 0.02% change
for 50 bar reported by Boulbar et al. on AlGaN/GaN heterojunction based pressure sensors fabricated
on sapphire substrate [19]. Our results are also close to an order of magnitude better than the recently
reported sensitivity value of 0.64%/psig (= 0.09%/kPa) measured on InAlN/GaN heterostructure
based micro-pressure sensors [33].

4. Conclusions

In summary, we have demonstrated for the first time a diaphragm based AlGaN/GaN HFET
embedded circular membrane pressure sensor for high temperature pressure sensing, with ultra-high
sensitivity. Finite element simulation was utilized to determine the strain across the diaphragm and
determine the gauge factor, which was found out to be ~260 in the sub-threshold region. A very
high sensitivity of 0.76%/kPa was also measured, which is the highest reported so far for III-Nitride
based pressure sensors. The pressure sensor performance was found to be quite repeatable and was
maintained up to a temperature of 200 ◦C.
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final manuscript.
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Appendix

Figure A1. Diagrammatic representation of process flow for the fabrication of pressure sensors.
(a)–(e) Different steps of the process flow shown in order, as discussed in the text.
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