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Abstract: This paper presents a novel algorithm for the design and analysis of an adaptive
backstepping controller (ABC) for a microgyroscope. Firstly, Lagrange–Maxwell electromechanical
equations are established to derive the dynamic model of a z-axis microgyroscope. Secondly,
a nonlinear controller as a backstepping design approach is introduced and deployed in order to drive
the trajectory tracking errors to converge to zero with asymptotic stability. Meanwhile, an adaptive
estimator is developed and implemented with the backstepping controller to update the value
of the parameter estimates in the Lyapunov framework in real-time. In addition, the unknown system
parameters including the angular velocity may be estimated online if the persistent excitation (PE)
requirement is met. A robust compensator is incorporated in the adaptive backstepping algorithm
to suppress the parameter variations and external disturbances. Finally, simulation studies are
conducted to prove the validity of the proposed ABC scheme with guaranteed asymptotic stability
and excellent tracking performance, as well as consistent parameter estimates in the presence of model
uncertainties and disturbances.
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1. Introduction

As primary information sensors, microgyroscopes have a large potential for several types of
applications in navigation, control, and guidance systems. Fabrication imperfections in microgyroscopes
always generate some coupling between oscillation modes. Meanwhile, the performance of the
microgyroscope is subject to quadrature errors, time-varying parameters, and external disturbances.
Nevertheless, recent applications require sensors with improved performance. The incorporation
of advanced control systems into their existing dynamics seems to be an effective way to improve the
microgyroscope performance.

During the past decades, many researchers have spent great deal of effort in the design of
microgyroscope structures and control systems [1–17]. The conventional controller for a microgyroscope
is to force the drive mode into a known oscillatory motion and then detect the Coriolis effect coupling
along the orthogonal sense mode, which provides the information about the applied angular velocity.
However, the conventional controllers are immanently sensitive to some typical types of fabrication
imperfections, such as the cross-damping term, which produces zero-rate output. To solve these
problems, advanced control schemes such as adaptive controller [2–5], sliding mode controller [6],
compound robust controller [7], adaptive neural controller [8–10], and adaptive fuzzy controller [11–13]
have been applied to microgyroscopes. A mode-matched force-rebalance control for a microgyroscope
was investigated in [14]. Adaptive dynamic surface control for a triaxial microgyroscope with nonlinear
inputs was developed in [15]. Flatness-based adaptive fuzzy control of an electrostatically actuated
micro-electro-mechanical system (MEMS) and self-adaptive nonlinear stops for mechanical shock
protection of MEMS were discussed in [16,17], respectively.
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A backstepping controller [18] that can achieve the goals of tracking and stabilization is a recursive
design procedure based on a Lyapunov framework, breaking a full system design into a sequence
of lower-order systems. Nevertheless, compared with sliding mode control, the backstepping
algorithm has two merits: the first is that it can relax the matching condition for a class of systems
which can satisfy the strict feedback form; the second is that it can refrain from cancellation of the
useful nonlinearities existing in the nonlinear system. The fundamental rule of backstepping is
to recursively design a controller and step back out of the subsystem progressively, guaranteeing
stability at each step, until reaching the final external control step. In [19,20], adaptive backstepping
controllers were deployed for an air-breathing hypersonic vehicle and a fuel cell/boost converter
system. A backstepping controller was applied to a linear 2 × 2 hyperbolic system in [21].
Adaptive intelligent control with backstepping design for dynamic systems were developed in [22–26].
Adaptive command-filtered backstepping control of robot arms with compliant actuators was
introduced in [27]. However, so far, an adaptive backstepping controller has not been deployed
to a microgyroscope. Based on our preliminary work in [28], our work will explore an adaptive
backstepping scheme with a parameter estimator for a microgyroscope. Compared with existing
works, the main contributions of the proposed backstepping approach are emphasized as:

(1) Backstepping is a nonlinear control approach based on Lyapunov stability theorem by means
of recursion process. Backstepping design is a powerful tool for dynamic systems with pure or
strict feedback forms. A major advantage of backstepping is that it has the flexibility to avoid
cancellations of useful nonlinearities and achieve regulation and tracking properties. However,
the vibratory microgyroscope is neither of these two forms. Therefore, the microgyroscope
motion equations should be transformed into a cascade-like system to be suitable for the
backstepping approach.

(2) An adaptive control strategy is deployed in the backstepping procedure to deal with parameter
uncertainties and external disturbances. The Lyapunov-based adaptive controller is obtained
to guarantee the asymptotic stability of the closed-loop system and the consistent parameter
estimates, including the external angular velocity if the persistent excitation (PE) condition is
satisfied. In addition, a robust term is incorporated in the adaptive backstepping algorithm to
suppress the lumped disturbances.

2. Microgyroscope Dynamics

A z-axis vibratory microgyroscope mainly consists of three components: the sensitive element;
electrostatic actuations and sensing mechanisms; and the rigid frame rotating along the rotation z-axis.
Figure 1 shows a schematic diagram of a microgyroscope. The motion equations of the microgyroscope
are developed from the Lagrange–Maxwell equation [1,2]:

d
dt

(
∂L
∂

.
xi

)
− ∂L

∂xi
+

∂F
∂

.
xi

= Qi, (1)

where L = EK − EP is Lagrange’s function, EK and EP are kinetic and potential energies of the sensitive
element, respectively, F is the generalized damping force, Qi are generalized forces acting on the
sensitive element, and i ranges from 1 corresponding to the number of considered degrees of freedom
(2 in our system).

The motion equations can be obtained according to (1) and coordinate transformation knowledge.
Assuming that the angular velocity is almost constant over a sufficiently long time interval,
Ωx ≈ Ωy ≈ 0, only the component of the angular velocity Ωz causes a dynamic coupling between the
x-y axes. Considering fabrication imperfections, which cause extra coupling, the motion equations are
obtained as: {

m
..
x + dxx

.
x + dxy

.
y + kxxx + kxyy = ux + dx + 2mΩz

.
y

m
..
y + dxy

.
x + dyy

.
y + kxyx + kyyy = uy + dy − 2mΩz

.
x

, (2)
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where x and y are the coordinates regarding the gyro frame existing in Cartesian coordinates; m is the
mass; dxx, dyy, kxx, kyy are called the damping and spring coefficients; dxy, kxy are called quadrature
errors, which are coupled damping and spring terms, respectively; ux, uy are called control forces;
and dx, dy represent bounded unknown disturbances (note that the lumped disturbances dx and dy

could also contain the effects of the time-varying unknown but bounded parameter uncertainties); and
2mΩz

.
y, 2mΩz

.
x are the Coriolis forces used to reconstruct the information of the unknown angular

velocity Ωz.

 

Figure 1. Schematic model of a z-axis MEMS vibratory gyroscope.

Dividing both sides of the motion Equation in (2) by reference mass m, reference length q0, and
natural resonance frequency ω2

0, we get the non-dimensional equation as:

..
x + dxx

.
x + dxy

.
y + ωx

2x + ωxyy = ux + 2Ωz
.
y + dx

..
y + dxy

.
x + dyy

.
y + ωxyx + ωy

2y = uy − 2Ωz
.
x + dy

, (3)

where
dxx

mω0
→ dxx ,

dxy

mω0
→ dxy ,

dyy

mω0
→ dyxy ,

Ωz

ω0
→ Ωz ,

√
kxx

mω02 → ωx ,

√
kyy

mω02 → ωy ,

kxy

mω02 → ωxy .

Equation (3) can be transformed into the vector form equation as:

..
q + D

.
q + Kq = u − 2Ω

.
q + d, (4)

where q =

[
x
y

]
, u =

[
ux

uy

]
, d =

[
dx

dy

]
, D =

[
dxx dxy

dxy dyy

]
, K =

[
kxx kxy

kxy kyy

]
,

Ω =

[
0 −Ωz

Ωz 0

]
. Note that D = DT, K = KT, Ω = −ΩT and the input disturbances are assumed

to be bounded by ‖d‖ ≤ ρ, where ρ is a scalar.
Considering a system with parametric uncertainties and external disturbances, the dynamics of

the microgyroscope (4) can be represented as:

..
q + (D + 2Ω + ΔD)

.
q + (K + ΔK)q = u + d, (5)

where ΔD is the unknown parameter uncertainties of D + 2Ω, and ΔK is the unknown parameter
uncertainties of K.
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Rewriting Equation (5) as
..
q + (D + 2Ω)

.
q + Kq = u + d f , (6)

where d f = d − ΔD
.
q − ΔKq, representing the matched, lumped parametric uncertainties and

external disturbances.
Despite these difficulties, an adaptive backstepping control (ABC) algorithm is deployed

to guarantee the tracking performance, asymptotic stability, and parameter estimations of the
microgyroscope system in the following section.

3. Adaptive Backstepping Control Design

Motivated by the research results in [18–22], a backstepping controller was to achieve the goals
of tracking and stabilization by a recursive design procedure. We firstly show that if the parameters
of the microgyroscope are known, the backstepping controller guarantees zero tracking error and
asymptotic stability. Then, we will utilize an adaptive backstepping scheme to deal with the case
of the unknown parameters. Figure 2 describes the block diagram of the proposed ABC approach
of a microgyroscope.

2D KqD Kq 2D Kqq q u q d
+

+

( )td

MEMS Gyroscope

Adaptive 
Law

Angular Rate 
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Reference 
Trajectory

, ,d d dq q qq qd dd,
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Error
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2e

1

11

Adaptive 
Backstepping 

Controller

,q q

z

u

ˆ ˆ ˆ, ,D Kˆ ˆ ˆ, ,,

Figure 2. Block diagram of the proposed adaptive backstepping control of a microgyroscope.

As seen from Equation (3), since the coupled microgyroscope motion equation is not formulated
in “strict-feedback” form, it should to be transformed into a form which could make backstepping
design approach available. We define X1 = q, X2 =

.
q.

The dynamics in (3) can be transformed as the following cascade form:{ .
X1 = X2.

X2 = −(D + 2Ω)X2 − KX1 + u + d f
. (7)

The control objective for a z-axis microgyroscope is to track a reference oscillation trajectory qd as
closely as possible and make all the signals in the closed-loop system be uniformly bounded. For the
microgyroscope in (5), the backstepping control design can be synthesized in two steps.

Step 1: Treat X2 as a virtual control force and design a control law for it to make X1 follow the
reference trajectory.

Firstly, the tracking error is defined as e1 = q− qd = X1 − qd, where qd is the reference trajectory of
q. Assume the first and second derivatives of the reference trajectory qd are all bounded. Considering
D, K, Ω are known, we treat X2 as a control input and design a virtual controller α1 for it such that
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limt→∞q = qd(i.e., limt→∞e1(t) = 0). To make the tracking error e1 converge to zero, we study the
dynamics of e1 derived by differentiating the both sides of e1 = X1 − qd, then we obtain

.
e1 = X2 − .

qd.
Now that X2 is treated as a control input, we naturally design the following simple virtual control

law for X2 to make e1 converge to zero exponentially:

X2 = α1 ≡ −c1e1 +
.
qd, (8)

where c1 is a positive definite symmetric matrix.
With virtual control law (8), the dynamics of

.
e1 = X2 − .

qd become

.
e1 = −c1e1. (9)

Due to the positive property of c1, tracking error e1 will approach zero exponentially. Roughly
speaking, X1 rapidly approximates to qd.

Step 2: However, X2 is not the actual control input, but a state variable. We cannot operate X2

directly. So, let us move on to the second line of (5), which reveals the dynamics of X2. We design the
real control force to make X2 converge to α1.

Define e2 as an error variable that is the deviation between X2 and its virtual control law α1, that is,
e2 = X2 − α1.

We derive the dynamics of e2 as

.
e2 =

.
X2 − .

α1

= −(D + 2Ω)(e2 + α1)− K(e1 + qd) + u + d f − .
α1

= −(D + 2Ω)e2 − K(e1 + qd)− (D + 2Ω)α1 − .
α1 + u + d f

(10)

In (10), the actual control u appears. Our target is to design u such that e1, e2 converge to zero.
Select a Lyapunov function V for the whole system as:

V =
1
2

e1
Te1 +

1
2

e2
Te2. (11)

Its first time derivative is given by:

.
V = e1

T .
e1 + e2

T .
e2 = e1

T(X2 − .
qd) + e2

T .
e2

= e1
T(−c1e1 + e2) + e2

T[−(D + 2Ω)e2 − K(e1 + qd)− (D + 2Ω)α1 − .
α1 + u + d f ]

. (12)

We finally derive and design the real controller u.
.

V must satisfy
.

V ≤ 0. Some terms in (13) are
definitely negative, and we shall keep them. Some terms are positive or indefinite, and we will use the
control force to cancel them. Thus, we design the control effort as:

u = −c2e2 − e1 + (D + 2Ω)e2 + K(e1 + qd) + (D + 2Ω)α1 +
.
α1 − ρsgn(e2), (13)

where c2 is a positive, definite, and symmetric matrix. The last term −ρsgn(e2) in (15) is a robust
compensator for the parameter variations and external disturbances.

Substituting Equation (13) into Equation (12) generates

.
V = −e1

Tc1e1 − e2
Tc2e2 + e2

Td f − ρe2
Tsgn(e2) ≤ 0. (14)

Because −e1
Tc1e1 ≤ 0, −e2

Tc2e2 ≤ 0, and e2
Td f − ρe2

Tsgn(e2) ≤ ‖e2‖1‖d f ‖1 − ρ‖e2‖1 ≤ 0,
.

V coincides with zero if and only if the three terms are simultaneously equal to zero. Because of c1 and
c2 being symmetric positive definite matrices, both −e1

Tc1e1 and −e2
Tc2e2 equal to zero if and only

if e1 = 0 and e2 = 0. Therefore,
.

V = 0 contains no trajectories other than
[
eT

1 , eT
2
]T

= 0. According to
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Lasalle’s invariance principle, the origin zero is globally asymptotically stable. Then, e1, e2 → 0 as
t → ∞ .

4. Adaptive Estimator

In the following, we will develop the procedure to deal with unknown system dynamics, lumped
parametric uncertainties, and disturbances. The modified controller in (13) is

u = −c2e2 − e1 + D̂(e2 + α1) + K̂(e1 + qd) + Ω̂(2e2 + 2α1) +
.
α1 − ρsgn(e2), (15)

where D̂, K̂ and Ω̂ are the estimates of D, K and Ω, respectively. Regarding the characteristics and
performance of the proposed ABC strategy, we state the following theorem.

Theorem 1. In the presence of lumped disturbances d f , the adaptive controller (15) with the adaptive estimator
(16) applied to the microgyroscope model (3) guarantees that all the closed-loop signals are bounded and that
state tracking errors converge to zero asymptotically.

.
D̂

T
= −1

2
γD[(e2 + α1)e2

T + e2(e2 + α1)
T]

.
K̂

T
= −1

2
γK[(e1 + qd)e2

T + e2(e1 + qd)
T]

.
Ω̂

T
= γΩ[e2(e2 + α1)

T − (e2 + α1)e2
T]

(16)

where γD > 0, γK > 0, γΩ > 0.

Proof. Substituting (16) into (5) yields{ .
e1 = e2 + α1 − .

qd.
e2 = [−c2e2 − e1 + d f − ρsgn(e2)] + D̃(e2 + α1) + K̃(e1 + qd) + Ω̃(2e2 + 2α1)

, (17)

where D̃ = D̂ − D, K̃ = K̂ − K, Ω̃ = Ω̂ − Ω, represent the estimation errors.

Consider the Lyapunov function candidate as the form of (18):

V =
1
2

e1
Te1 +

1
2

e2
Te2 +

1
2

tr{γD
−1D̃D̃T}+ 1

2
tr{γK

−1K̃K̃T}+ 1
2

tr{γΩ
−1Ω̃Ω̃

T}, (18)

where tr{·} is the matrix trace operator.
Differentiating (18) generates

.
V = [−e1

Tc1e1 − e2
Tc2e2 + e2

Td f − ρe2
Tsgn(e2)]

+e2
T[D̃(e2 + α1) + K̃(e1 + qd) + Ω̃(2e2 + 2α1)]

+tr{γD
−1D̃

.
D̃

T
}+ tr{γK

−1K̃
.
K̃

T
}+ tr{γΩ

−1Ω̃
.

Ω̃
T
}

(19)

Substituting the adaptive estimator (16) into (19), and
.

D̂ =
.

D̂
T

,
.
K̂ =

.
K̂

T
,

.
Ω̂ = −

.
Ω̂

T
, we obtain

.
V = −e1

Tc1e1 − e2
Tc2e2 + e2

Td f − ρe2
Tsgn(e2) ≤ 0. (20)

Note that (20) and (14) are identical. Thus, e1 and e2 converge to zero asymptotically. The adaptive
laws that guarantee the tracking error converges to zero do not mean the parameter estimates are
consistent only if the PE condition can be satisfied. Since the reference trajectories contain two
distinct nonzero frequencies, the PE condition is satisfied, and the microgyroscope has sufficient
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persistence of excitation to permit the accurate identification of major fabrication imperfections and all
the unknown system parameters.

5. Simulation Study

The proposed ABC scheme was evaluated on a lumped z-axis microgyroscope sensor [1,2].
The physical parameters are described as:

m = 1.8 × 10−7kg, kxx = 63.955
N
m

, kyy = 95.92
N
m

, kxy = 12.776
N
m

dxx = 1.8 × 10−6 N · s
m

, dyy = 1.8 × 10−6 N · s
m

, dxy = 3.6 × 10−7 N · s
m

We chose 1 μm as the reference length q0. It is known that the usual natural frequency of
a microgyroscope is in the kHz range, so chose the ω0 as 1 kHz. Assume the unknown angular
velocity is Ωz = 10 rad/s. Non-dimensionalizing the physical parameters, we obtained the following
nondimensional parameter matrices defined in (3):

D =

[
0.01 0.002
0.002 0.01

]
, K =

[
355.3 70.99
70.99 532.9

]
, Ω =

[
0 −0.01

0.01 0

]
.

The desired trajectory should be the resonance of vibration modes. The reference trajectories were
selected as xd = cos(ω1t), yd = cos(ω2t), where ω1 = 6.17, ω2 = 5.11. Here ω1, ω2 were chosen to be
the resonance frequencies of the z-axis MEMS vibratory gyroscope. We assumed that ω1, ω2 were fixed
in the simulation period.

The lumped parametric uncertainties and external disturbances are given by d f = d −
ΔD

.
q − ΔKq. As for model uncertainties, there were ±20% parameter variations for the spring

and damping coefficients and ±20% magnitude changes in the coupling terms. Random signal
d =

[
randn(1, 1) randn(1, 1)

]
was considered as disturbance.

Let D0, K0 and Ω0 to be the nominal values of D, K and Ω, respectively. Figure 3 shows the
tracking error using a “dull” controller without any adaptation strategies by solely replacing D, K, Ω
in (15) with D0, K0, Ω0. The control parameters are c1 = c2 = 20I, where I is the unit matrix. For the
moment, there is no disturbance. It must be noted that all of the system parameters, including
the gyroscope, controller, and disturbance parameters are nondimensional herein, meaning that all
of the parameters on vertical axes in the following figures are unitless. The simulation time was
nondimensional, as were the simulation positions. Though they were nondimensional, the same class
of parameters could be compared with each other, due to the unified reference physical quantity.

From Figure 3, due to the modeling error, the “dull” controller which relied on the nominal
parameters led to a stable system, but the tracking errors were obvious. For comparison, Figure 4
depicts the tracking error using the proposed ABC approach, and Figure 5 shows the adaptation
procedure of the parameter estimates. Figure 6 plots the control forces for the microgyroscope.

Obviously different from the result depicted in Figure 3, tracking errors approached zero quickly
when using the proposed ABC scheme. Since the reference trajectories contained two different nonzero
frequencies, the PE condition was satisfied. In Figure 5, the parameter estimates converged to their
true values, including the angular velocity. Standard adaptive controllers are not always robust in the
presence of model uncertainties and external disturbances. Hence, if −ρsgn(e2) in (13) was relieved,
our proposed control would not perform that well. For example, a step signal with an amplitude of
100 was added at 20 s as an external disturbance. Figure 7 shows the tracking errors using the adaptive
controller without the robust term. Figure 8 exhibits the improvement of tracking errors using our
proposed controller with the robust term −ρsgn(e2). Comparing Figure 7 with Figure 8, the robust
term effectively suppressed the disturbances and the tracking error maintained a very small value.
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Figure 3. Tracking errors using a “dull” controller.

0 10 20 30 40 50 60
-1

-0.5

0

0.5 Tracking Errors

X-
ax

is 
tra

ck
ing

 e
rro

r

0 10 20 30 40 50 60
-1

-0.5

0

0.5

Nondimensional time

Y-
ax

is 
tra

ck
ing

 e
rro

r

Figure 4. Tracking errors using the adaptive backstepping control (ABC) approach.
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Figure 5. Adaptive parameter estimates using ABC.
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Figure 6. Control efforts for microgyroscope using ABC.

208



Micromachines 2018, 9, 338

0 10 20 30 40 50 60 -1 

-0.5 

0 

0.5 

Tracking Errors 

X-
ax

is
 tr

ac
ki

ng
 e

rro
r

0 10 20 30 40 50 60 -1 

-0.5 

0 

0.5 

Nondimensional time 

Y-
ax

is
 tr

ac
ki

ng
 e

rro
r

Figure 7. Tracking errors using ABC under step disturbances without robust term.
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Figure 8. Tracking errors using ABC under step disturbances with robust term.

A well-known adaptive microgyroscope controller without the backstepping technique was
presented in [2] by Park. The performance of our proposed ABC strategy was compared with the
adaptive controller in [2]. Figures 9–11 show the dynamic response using the adaptive controller in [2]
with the same nominal gyroscope parameters under the same model uncertainties and disturbances.

The tracking errors with the adaptive controller displayed quite a large overshot at the beginning,
as did the control efforts. The settling time of tracking errors was also worse than our proposed adaptive
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backstepping controller. The advantage of our proposed controller over the adaptive controller in
the performance of parameter estimation is clear. Put simply, the proposed adaptive backstepping
controller could improve the dynamic and static performance of the microgyroscope.
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Figure 9. Tracking errors using the adaptive controller in [2].
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Figure 10. Adaptation of parameter estimates using the adaptive controller in [2].
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Figure 11. Control efforts for a microgyroscope using the adaptive controller in [2].

6. Conclusions

An adaptive control with backstepping technique for a z-axis microgyroscope was investigated
and analyzed. The dynamics model of the microgyroscope was developed and transformed to aid in the
backstepping control design. A backstepping approach and adaptive strategy were utilized to deal with
the model uncertainties, disturbances, and unknown parameters of the microgyroscope. A controller
was designed to recursively and progressively step back out of the subsystem, guaranteeing stability
at each step until reaching the final external control step. Consistent parameter estimates, asymptotic
stability, and tracking performance under the lumped disturbances were proved based on a Lyapunov
analysis. Numerical simulation examples demonstrated the validity of the proposed ABC scheme,
showing the improved performance and consistent parameter estimation.

In our study, we only emphasized the proposed adaptive backstepping control algorithm on the
microgyroscope model. In the next step, the proposed adaptive backstepping controller should be
implemented in a practical experimental system to verify its effectiveness.
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