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The effect of control strategies to reduce social mixing on 
outcomes of the COVID-19 epidemic in Wuhan, China: 
a modelling study
Kiesha Prem*, Yang Liu*, Timothy W Russell, Adam J Kucharski, Rosalind M Eggo, Nicholas Davies, Centre for the Mathematical Modelling of 
Infectious Diseases COVID-19 Working Group†, Mark Jit, Petra Klepac

Summary
Background In December, 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, 
emerged in Wuhan, China. Since then, the city of Wuhan has taken unprecedented measures in response to 
the outbreak, including extended school and workplace closures. We aimed to estimate the effects of physical 
distancing measures on the progression of the COVID-19 epidemic, hoping to provide some insights for the rest of 
the world.

Methods To examine how changes in population mixing have affected outbreak progression in Wuhan, we used 
synthetic location-specific contact patterns in Wuhan and adapted these in the presence of school closures, extended 
workplace closures, and a reduction in mixing in the general community. Using these matrices and the latest 
estimates of the epidemiological parameters of the Wuhan outbreak, we simulated the ongoing trajectory of an 
outbreak in Wuhan using an age-structured susceptible-exposed-infected-removed (SEIR) model for several physical 
distancing measures. We fitted the latest estimates of epidemic parameters from a transmission model to data on 
local and internationally exported cases from Wuhan in an age-structured epidemic framework and investigated the 
age distribution of cases. We also simulated lifting of the control measures by allowing people to return to work in a 
phased-in way and looked at the effects of returning to work at different stages of the underlying outbreak (at the 
beginning of March or April).

Findings Our projections show that physical distancing measures were most effective if the staggered return to work 
was at the beginning of April; this reduced the median number of infections by more than 92% (IQR 66–97) and 
24% (13–90) in mid-2020 and end-2020, respectively. There are benefits to sustaining these measures until April in 
terms of delaying and reducing the height of the peak, median epidemic size at end-2020, and affording health-care 
systems more time to expand and respond. However, the modelled effects of physical distancing measures vary by the 
duration of infectiousness and the role school children have in the epidemic.

Interpretation Restrictions on activities in Wuhan, if maintained until April, would probably help to delay the epidemic 
peak. Our projections suggest that premature and sudden lifting of interventions could lead to an earlier secondary 
peak, which could be flattened by relaxing the interventions gradually. However, there are limitations to our analysis, 
including large uncertainties around estimates of R0 and the duration of infectiousness.
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Introduction
Severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), a novel coronavirus, emerged in the city 
of Wuhan, Hubei, China, in early December, 2019.1,2 
Since then, the local and national governments have 
taken unprecedented measures in response to the 
coronavirus disease 2019 (COVID-19) outbreak caused by 
SARS-CoV-2.3 Exit screening of passengers was shortly 
followed by travel restrictions in Wuhan on Jan 23, 2020, 
halting all means of unauthorised travel into and 
out of the city. Similar control measures were extended 
to the entire province of Hubei by Jan 26, 2020.3 

Non-pharmaceutical physical distancing interventions, 
such as extended school closures and workplace dis
tancing, were introduced to reduce the impact of the 
COVID-19 outbreak in Wuhan.4 Within the city, schools 
remained closed, Lunar New Year holidays were extended 
so that people stayed away from their workplaces, and 
the local government promoted physical distancing 
and encouraged residents to avoid crowded places. 
These measures greatly changed age-specific mixing 
patterns within the population in previous outbreak 
response efforts for other respiratory infectious 
diseases.5,6 Although travel restrictions undoubtedly 
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had a role in reducing exportations of infections outside 
Wuhan and delayed the onset of outbreaks in other 
regions,7,8 changes in mixing patterns affected the tra
jectory of the outbreak within Wuhan itself. To estimate 
the effects of physical distancing measures on 
the progression of the COVID-19 epidemic, we look at 
Wuhan, hoping to provide some insights for the rest of 
the world.

Person-to-person transmission is mostly driven by 
who interacts with whom,9,10 which can vary by age and 
location of the contact (ie, school, work, home, and 
community). Under the context of a large-scale ongoing 
outbreak, contact patterns would drastically shift from 
their baseline conditions. In the COVID-19 outbreak in 
Wuhan, physical distancing measures, including but not 
limited to school and workplace closures and health 
promotions that encourage the general public to avoid 
crowded places, are designed to drastically shift social 
mixing patterns and are often used in epidemic settings.4 
Although contact patterns can be inferred from reported 
social contact data that include information on which 
setting the contact took place in, such studies are often 
focused on high-income countries,11 or particular high-
density areas.12 This limitation can be addressed by 
quantifying contact patterns in the home, school, work, 
and other locations across a range of countries based on 
available information from household-level data and 
local population demographic structures.13

To examine how these changes in population mixing 
have affected the outbreak progression, we used synthetic 
location-specific contact patterns in Wuhan and adapted 
these in the presence of school closures, extended 

workplace closures, and reduction in mixing in the 
general community. Using these matrices and the latest 
estimates of the epidemiological parameters of the Wuhan 
outbreak,1,9,14–16 we simulated the ongoing trajectory of an 
outbreak in Wuhan using an age-structured susceptible-
exposed-infected-removed (SEIR) model17,18 for several 
physical distancing measures.

Methods
SEIR model
We simulated the outbreak in Wuhan using a deter
ministic stage-structured SEIR model over a 1 year 
period, during which the modelled outbreak peters out. 
An implication of this approach is that all demographic 
changes in the population (ie, births, deaths, and ageing) 
are ignored.

We divided the population according to the infection 
status into susceptible (S), exposed (E), infected (I), and 
removed (R) individuals, and according to age into 5-year 
bands until age 70 years and a single category aged 75 
and older (resulting in 16 age categories). Susceptible 
individuals might acquire the infection at a given rate 
when they come in contact with an infectious person and 
enter the exposed disease state before they become 
infectious and later either recover or die. We assumed 
Wuhan to be a closed system with a constant population 
size of 11 million (ie, S + E + I + R=11 million) throughout 
the course of this epidemic. We used the SEIR model 
presented in figure 1. The age-specific mixing patterns of 
individuals in age group i alter their likelihood of being 
exposed to the virus given a certain number of infectious 
people in the population. Additionally, we incorporated 

Research in context

Evidence before this study
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
emerged in Wuhan, China in late 2019. In mid-January, 2020, 
schools and workplaces closed as part of the Lunar New Year 
holidays. These closures were then extended to prevent 
SARS-CoV-2 spread. The intended effect of such physical 
distancing measures was to reduce person-to-person contact, 
which spreads infectious diseases. Epidemic parameters, such as 
time-dependent reproduction numbers governing SARS-CoV-2 
transmission in Wuhan, have been estimated based on local 
and internationally exported cases. The frequency of contacts in 
different age groups and locations (schools, workplaces, 
households, and others) in China has also been previously 
estimated. We searched PubMed and medRxiv for studies 
published in English up to March 7, 2020, with the terms 
“coronavirus AND (school OR work) AND (Wuhan OR Hubei)” 
and identified 108 and 130 results, respectively. However, to 
our knowledge, no published article has reported use of 
location-specific transmission models that consider the impacts 
of school or workplace closures to study the spread of 
SARS-CoV-2 in Wuhan.

Added value of this study
We built an age-specific and location-specific transmission 
model to assess progression of the Wuhan outbreak under 
different scenarios of school and workplace closure. 
We found that changes to contact patterns are likely to have 
substantially delayed the epidemic peak and reduced the 
number of coronavirus disease 2019 (COVID-19) cases in 
Wuhan. If these restrictions are lifted in March, 2020, a 
second peak of cases might occur in late August, 2020. 
Such a peak could be delayed by 2 months if the restrictions 
were relaxed a month later, in April, 2020.

Implications of all the available evidence
The measures put in place to reduce contacts in school and 
work are helping to control the COVID-19 outbreak by affording 
health-care systems time to expand and respond. Authorities 
need to carefully consider epidemiological and modelling 
evidence before lifting these measures to mitigate the 
impact of a second peak in cases.
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contributions of asymptomatic and subclinical cases; 
however, the question of whether such individuals are 
able to transmit infection remains unresolved at the time 
of writing, although evidence suggests that they are likely 
to.19 We also considered a scenario in which we assumed 
that younger individuals are more likely to be asympt
omatic (or subclinical) and less infectious than older 
individuals.20,21

For a given age group i, epidemic transitions can be 
described by

Where β is the transmission rate (scaled to the right 
value of R0), Ci,j describe the contacts of age group j made 
by age group i, κ=1-exp(–1/dL) is the daily probability of an 
exposed individual becoming infectious (with dL being 
the average incubation period), and γ=1–exp(–1/dI) is 
the daily probability that an infected individual recovers 
when the average duration of infection is dI. We 
also incorporated contributions of asymptomatic and 
subclinical cases, 1–ρi denotes the probability of an 
infected case being asymptomatic or subclinical. We 
assumed that younger individuals are more likely to be 
asymptomatic (or subclinical) and less infectious 
(proportion of infectiousness compared to Ic, α).

Using parameters from the literature as presented in 
the table, we simulated the outbreak. We assumed the 
mean incubation period and mean infectious period to 
be 6·4 days16 and 3 days or 7 days,22 respectively. Each 
simulation started with 200 or 2000 infectious individuals 
I0,15 with the rest of the population being in the susceptible 
state. We explored the uncertainty in the model by 
drawing R0 values uniformly from the 95% CI from the 
posterior of the R0 distribution from the semi-mechanistic 
model by Kucharski and colleagues (appendix p 2).14

Social mixing and interventions
Social mixing patterns vary across locations, including 
households, workplaces, schools, and other locations. 
Therefore, we used the method set out by Prem and 
colleagues,13 which accounts for these differences and 
obtains the location-specific contact matrices (C) for 
different scenarios. In a normal setting, contacts made at 
all of these locations contribute to the overall mixing 
pattern in a population, so we summed contacts across 
the different locations to obtain our baseline contact 

pattern in the population before the outbreak (figure 2; 
appendix pp 1–2). In an outbreak setting, different 
intervention strategies are aimed at reducing social 
mixing in different contexts to lower the overall 
transmission in the population. To simulate the effects of 
interventions aimed at reducing social mixing, we 
created synthetic contact matrices for each intervention 
scenario from these building block matrices.

We considered the following three scenarios: first 
scenario, theoretical: assumed no change to social mixing 
patterns at all location types, no school term break, and no 
Lunar New Year holidays; second scenario, no inter
ventions, winter school break in Wuhan, and Lunar New 

Values References

Basic reproduction number, R0 2·2 (1·6–3·0)* Kucharski et al14

Average incubation period, dL 6·4 days Backer et al16

Average duration of infection, dI 3 days or 7 days Woelfel et al22

Initial number of infected, I0 200 or 2000 Abbott et al15

Pr(infected case is clinical), ρi 0 or 0·4, for i≤4 Bi et al20

Pr(infected case is clinical), ρi 0 or 0·8, for i>4 Davies21

Pr(infection acquired from subclinical), α 0·25 Liu et al19

*Data are median (IQR). Pr represents the probability of an event. The parameters dL and dI represent the mean 
incubation period and duration of infectiousness, respectively.

Table: Parameters of the susceptible-exposed-infected-removed model

See Online for appendix

Figure 1: Age-structured SEIR model and details of the modelled physical distancing interventions
According to infection status, we divided the population into susceptible (S), exposed (E), infected (I), and 
removed (R) individuals. An infected individual in an age group can be clinical (Ic) or subclinical (Isc), and ρi refers to 
the probability that an individual is symptomatic or clinical. The age-specific mixing patterns of individuals in age 
group i, Ci,j, alter their likelihood of being exposed to the virus given a certain number of infected individuals in the 
population. Younger individuals are more likely to be asymptomatic and less infectious, ie, subclinical. When ρi=0 
for all i, the model simplifies to a standard SEIR. The force of infection φi,t is given by 1–(βΣjCi,jIC

j,t+αβΣjCi,jISC
j,t), 

where β is the transmission rate and α is the proportion of transmission that resulted from a subclinical individual. 
SEIR= susceptible-exposed-infected-removed.
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Year holidays: assumed no physical distancing control 
measures, school-going individuals did not have any 
contacts at school because of school holidays from Jan 15, 
to Feb 10, 2020, and 10% and later 75% of workforce would 
be working during the holidays from Jan 25, to Jan 31, 2020, 
and from Feb 1, to Feb 10, 2020, respectively; and third 
scenario, intense control measures in Wuhan to contain 
the outbreak: assumed school closure and about 10% of 
workforce (eg, health-care personnel, police, and other 

essential government staff) would be working even during 
the control measures (figures 1, 2). For the third scenario, 
we modelled the effect of the intense control measures 
ending at the beginning of March or April, and we allowed 
for a staggered return to work while the school remained 
closed (ie, 25% of the workforce working in weeks one and 
two, 50% of the workforce working in weeks three and 
four, and 100% of the workforce working and school 
resuming (figure 2).3,23,24

Figure 2: Synthetic age-specific and location-specific contact matrices for China under various physical distancing scenarios during the intense control period for China
Synthetic age-specific contact patterns across all locations, at home, in the workplace, in school, and at other locations during normal circumstances (ie, under no intervention) are presented in 
panels A to E. Age-specific and location-specific contact matrices under the various physical distancing interventions are presented in panels F to T. Darker colour intensities indicate higher proclivity of 
making the age-specific contact.
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Analyses and model building were done in R 
version 3.6.2.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to 
all the data in the study and had final responsibility for 
the decision to submit for publication.

Results
Our simulations showed that control measures aimed 
at reducing social mixing in the population can be 
effective in reducing the magnitude and delaying the 
peak of the COVID-19 outbreak. For different control 
measures among individuals aged 55 to <60 years 
and 10 to <15 years, the standard school winter 
break and holidays for the Lunar New Year would 
have had little effect on progression of the outbreak 

0

20

40

60

80

100

Cu
m

ul
at

iv
e 

in
cid

en
ce

 (%
)

November

December

January

February
March April

May
June

July

August

September

Octo
ber

November

December

2019 2020

0

40

20

60

80

100

150
A B

November

December

January

February
March April

May
June

July

August

September

Octo
ber

November

December

2019 2020

School winter holidays
Intense control measures
Staggered relax of interventions (March)
Staggered relax of interventions (April)

Theoretical no intervention
School break and Lunar New Year
Relax intervention in March
Relax intervention in April

0

1

2

3

4

5

N
ew

 ca
se

s p
er

 d
ay

 (t
ho

us
an

ds
)

C

0

5

10

15
D

0

10

20

30

40

50

November

December

January

February
March April

May
June

July

August

September

Octo
ber

November

December

2019 2020

E

N
ew

 ca
se

s p
er

 d
ay

 (t
ho

us
an

ds
)

0

20

40

60

80

100

N
ew

 ca
se

s p
er

 d
ay

 (t
ho

us
an

ds
)

November

December

January

February
March April

May
June

July

August

September

Octo
ber

November

December

2019 2020

Age 0 to <5 Age 5 to <15 Age 15 to <25

F

0

6

4

2

8

10

November

December

January

February
March April

May
June

July

August

September

Octo
ber

November

December

2019 2020

GAge 25 to <60 Age 60 to <80

Figure 4: Effects of different physical distancing measures on cumulative incidence (A) and new cases per day (B), and age-specific incidence per day (C to G) 
from late 2019 to end-2020
Results depicted here assume an infectious period of 7 days. Median cumulative incidence, incident cases per day, and age-specific incidence per day are represented 
as solid lines. Shaded areas around the coloured lines in panel A represent the IQR.



Articles

www.thelancet.com/public-health   Vol 5   May 2020	 e267

had schools and workplaces reopened as normal 
(figure 3).

We present the median cumulative incidence, incident 
cases per day, and age-specific incidence per day of 
200 simulated outbreaks (figure 4). Intense control 
measures of prolonged school closure and work holidays 
reduced the cumulative infections by end-2020 and peak 
incidence, while also delaying the peak of the outbreak 
(figure 4). Our model suggests that the effects of these 
physical distancing strategies vary across age categories; 
the reduction in incidence is highest among school 
children and older individuals and lowest among 
working-age adults (figure 4; figure 5).

Physical distancing measures were most effective if the 
staggered return to work was at the beginning of April; 
this reduced the median number of infections by more 
than 92% (IQR 66–97) and 24% (13–90) in mid-2020 and 
end-2020, respectively (figure 5; appendix p 3), should 
the disease have a longer duration of infectiousness, and 
reduced the magnitude and delayed peak incidence 
across all age categories (figure 4), which could have had 
further beneficial impact by relieving the pressure on the 
health-care system in the immediate few months after 
the outbreak began. Uncertainty in R0 values has a large 
effect on the timing of the epidemic peak and final size of 
the outbreak (figure 4).

The modelled effects of the intense control measures 
of prolonged school closure and work holidays vary by 
the duration of infectiousness. If the disease had a short 
infectious period (3 days), then our model suggests 
that relaxing physical distancing interventions in March 
(figure 5; appendix p 4) could avert around 30% of cases 
in school children and older individuals. Fewer cases 
could be averted by end-2020 should the disease have a 
longer duration of infectiousness (eg, 7 days; figure 5); 
physical distancing interventions would need to be 
relaxed a month later (in April) to observe a larger effect. 
If children were less infectious, lifting physical distancing 
interventions in April instead of March could engender 
additional health benefits (figure 5; appendix pp 5–6).

Discussion
COVID-19, a contact-transmissible infectious disease, is 
thought to spread through a population via direct contact 
between individuals.1,9,10 Outbreak control measures 
aimed at reducing the amount of mixing in the 
population have the potential to delay the peak and 
reduce the final size of the epidemic. To evaluate 
the effect of location-specific physical distancing 
measures—such as extended school closures and 
interventions in workplaces—on the timing and 
magnitude of the peak and the final size of the epidemic, 
we accounted for these heterogeneities in contact 
networks in our model. We simulated outbreaks 
and modelled the interventions by scaling down the 
appropriate component of the contact mixing matrices 
for China.

Mathematical models can help us understand how 
SARS-CoV-2 could spread across the population and 
inform control measures that might mitigate future 
transmission.25,26 We simulated the trajectory of the 
ongoing outbreak of COVID-19 in Wuhan using an age-
structured SEIR model.17,18 As individuals’ mixing patterns 
are non-random, they influence the transmission 
dynamics of the disease.11 Models that assess the effective
ness of physical distancing interventions, such as school 
closure, need to account for social structures 
and heterogeneities in mixing of individuals.27–31 In our 
model, we incorporated changes to age-specific and 
location-specific social mixing patterns to estimate the 
effects of location-specific physical distancing 
interventions in curtailing the spread of the outbreak. 
The measures put in place to reduce contacts at schools 
and workplaces are helping control the outbreak by 
providing the health-care system with the time and 
opportunity to expand and respond. Consequently, if 
these restrictions are lifted prematurely, while there are 
still enough susceptible people to keep the Re>1 once 
contacts increase, the number of infections would 
increase. Realistically, interventions are lifted slowly, 
partly as an attempt to avoid a sharp increase in infection, 
but also for logistical and practical reasons. Therefore, we 
simulated lifting the interventions in a staggered fashion.
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Figure 5: Modelled proportion of number of infections averted by end-2020 by age for different physical 
distancing measures, assuming the duration of infectiousness to be 3 days (A, B) or 7 days (C, D)
The additional proportions of cases averted (compared with no intervention) are presented across age and by the 
different physical distancing measures.
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Evidence of the effects of various physical distancing 
measures on containing the outbreak are scarce and 
little is known about the behavioural changes of 
individuals over time, either during an outbreak or 
otherwise. Therefore, to model the effects of the physical 
distancing measures implemented in Wuhan, we 
assumed the effect that certain types of physical dis
tancing have on age-specific and location-specific 
contact rates.

Much is unknown about the true age-specific sus
ceptibility and transmissibility of COVID-19. Therefore, 
we assumed no heterogeneity in susceptibility between 
children. Furthermore, for simplicity, we assumed that 
children and adults were equally transmissible, other 
than the differences in their contact rates (subclinical 
children could be more infectious than subclinical adults; 
appendix pp 5–6). Similar to an influenza-like pathogen, 
our model suggests that interactions between school 
children and older individuals in the population have 
important public health implications, as children might 
have high infection rates but the elderly are more 
vulnerable to severe infections, with potentially fatal 
outcomes.32,33 However, unlike models built for pandemic 
or seasonal flu, we accounted for the lack of population 
immunity to SARS-CoV-2.

This study describes a mathematical model that 
quantifies the potential impacts of physical distancing 
policies, relying on Wuhan as a case study. Epidemio
logical investigations during the WHO-China Joint 
Mission on COVID-19 found many infections clustered 
around households.34 Extreme physical distancing 
measures, including school closures, workplace closures, 
and avoidance of any public gatherings all at once can 
push the transmission to households, leading to increased 
clustering of household cases.5 As households are not 
explicitly included in the model, we did not consider 
heterogeneity and clustering of household transmission. 
Distinguishing between repeated and new contacts is 
important for disease propagation in contact network 
models;35,36 more sophisticated methods that account for 
temporal presence within the household37 would be 
needed to characterise higher degrees of contact. Looking 
at limitations of our study, our compartmental model does 
not capture individual-level heterogeneity in contacts, 
which could be important in super-spreading events, 
particularly early in an epidemic. Combined with 
nosocomial infections, the risk of COVID-19 infection is 
potentially amplified with close contact between 
confirmed cases and health-care workers. However, the 
compartmental model we present is not equipped to 
explicitly consider transmission within health-care 
institutions and households. More complex models, such 
as individual-based models with familial and health-care 
structures, should be explored. Nosocomial infection risk 
among health-care workers and patients has been 
identified as a research gap to be prioritised in the next 
few months by WHO.

A key parameter is the basic reproduction number (R0), 
which determines how fast SARS-CoV-2 can spread 
through the population during the early stages of the 
outbreak. This is an inherently difficult parameter to 
estimate, since the true number of cases that can 
transmit infection at a given time is unknown (reported 
cases are likely to be just a small fraction of true cases) 
and probably varies over time (because of different 
interventions being introduced and population behaviour 
changing in response to the epidemic). In our analysis, 
we used an existing model that inferred time-dependent 
Re based on the growth of reported cases in Wuhan and 
the number of exported cases outside China originating 
from Wuhan.14 We acknowledge that the underlying 
reproduction number in Wuhan could have been larger 
than that used in our study. However, other studies of 
early SARS-CoV-2 transmission dynamics in Wuhan, 
using different methods, arrived at the same estimate 
with similar ranges.1,9

Although the precise effects of interventions might 
vary by country and different estimates of key para
meters, our model highlights the usefulness of physical 
distancing interventions and the need to carefully 
calibrate their lifting to avoid second and subsequent 
waves of a COVID-19 epidemic. Areas of China outside 
Hubei and other east or southeast Asian regions have 
managed to avert a major outbreak locally and delayed 
the peak of the epidemic, without resorting to Hubei’s 
extreme measures.38 Policy makers are advised to 
reapportion their resources to focus on mitigating the 
effects of potentially soon-to-be overwhelmed health 
systems.39

Non-physical distancing factors play a part in mitigating 
potential spikes in cases, especially when physical 
distancing measures are relaxed. The effects of seasonality 
on SARS-CoV-2 are difficult to predict without long time 
series; supporting evidence for the link between climate 
and COVID-19 has been largely anecdotal and based on 
spread in different settings and such analyses are subject 
to confounding.40,41 Consequently, we have not incorporated 
climatic factors into our mathematical model. Future 
research should be directed towards understanding the 
potential seasonality of COVID-19 and the climatic factors 
that could affect its transmission dynamics. Other 
innovations, such as the rapid expansion of hospital 
capacity and testing capabilities, would shorten diagnostic 
and health system delays,3,38,39 thus reducing effective 
interactions between infectious and susceptible indi
viduals and interrupting transmission. Effective vaccines42 
and antivirals43 that are being developed could counteract 
this global public health threat. The extent to which these 
strategies can detect cases earlier and isolate infectious 
individuals from the susceptible pool or protect against 
infection is less well-understood, hence necessitating 
further evaluation.

Combined physical distancing and travel restrictions 
have aided in lowering the transmission of COVID-19 
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over the course of the ongoing outbreak in Wuhan.8,44,45 
Evidence for this drop in transmission can be gleaned 
from the time-varying estimates of the reproduction 
number14 or observing that the turnover of the epidemic 
has occurred far before depletion of susceptible 
individuals, indicating the effects of the implemented 
measures. It is difficult to quantify whether physical 
distancing alone is responsible for the drop in cases, 
especially during the ongoing epidemic. Therefore, we 
took a broad view of this question, making assumptions 
about the results of certain forms of physical distancing 
and measuring the effects somewhat qualitatively. 
However, to some extent, physical distancing has resulted 
in both a shorter epidemic and a lower peak. Given what 
is known about the transmissibility and (the relatively 
long 5–6 days) incubation period of COVID-19,1,16 the 
efficacy of physical distancing in reducing these 
important attributes of any epidemic are no surprise.

In the analysis, we have varied the basic reproduction 
number, the average duration of infections, the initial 
proportion of cases infected, the susceptibility of children, 
and the role of younger individuals in transmission 
dynamics of COVID-19.

In conclusion, non-pharmaceutical interventions based 
on sustained physical distancing have a strong potential 
to reduce the magnitude of the epidemic peak of 
COVID-19 and lead to a smaller number of overall 
cases. Lowering and flattening of the epidemic peak is 
particularly important, as this reduces the acute pressure 
on the health-care system. Premature and sudden lifting 
of interventions could lead to an earlier secondary peak, 
which could be flattened by relaxing the interventions 
gradually.
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