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Abstract: Selenium is an essential trace element due to its 
incorporation into selenoproteins with important biologi-
cal functions. However, at high doses it is toxic. Selenium 
toxicity is generally attributed to the induction of oxida-
tive stress. However, it has become apparent that the mode 
of action of seleno-compounds varies, depending on its 
chemical form and speciation. Recent studies in various 
eukaryotic systems, in particular the model organism Sac-
charomyces cerevisiae, provide new insights on the cyto-
toxic mechanisms of selenomethionine and selenocysteine. 
This review first summarizes current knowledge on reactive 
oxygen species (ROS)-induced genotoxicity of inorganic 
selenium species. Then, we discuss recent advances on 
our understanding of the molecular mechanisms of sele-
nocysteine and selenomethionine cytotoxicity. We present 
evidences indicating that both oxidative stress and ROS-
independent mechanisms contribute to selenoamino acids 
cytotoxicity. These latter mechanisms include disruption of 
protein homeostasis by selenocysteine misincorporation in 
proteins and/or reaction of selenols with protein thiols.

Keywords: protein aggregation; reactive oxygen species; 
selenium toxicity; selenocysteine; selenomethionine.

Introduction
Selenium is an essential micronutrient for humans, nearly 
all animals and some bacteria and archaea, because it is 
a component of selenoproteins with essential biological 
functions. In these organisms, selenium is specifically 
incorporated as the amino acid selenocysteine (SeCys), 
the so-called 21st amino acid. A complex translational 

machinery is devoted to this task (1, 2). So far, 25 seleno-
proteins have been identified in humans (3). Many of them 
possess redox properties and function as antioxidants in 
which SeCys is the catalytic residue (4). The last decades 
have witnessed a growing interest in selenium biology 
because of its reported beneficial effects in prevention 
against cancer and other diseases at supranutritional 
intake levels (5, 6). Selenium is thus becoming a widely 
used dietary supplement for humans and livestock (7). 
Potential benefits are, however, not without risk because 
of the relatively narrow window between intakes that 
result in efficacy or toxicity (8).

Although the mechanistic bases of selenium toxicity 
are still not fully understood, toxicity is generally attrib-
uted to the ability of seleno-compounds to induce oxida-
tive stress and to generate reactive oxygen species (ROS) 
(9, 10). However, it has become apparent that selenium 
compounds differ in their metabolic routes and biological 
activities and that toxicity of this metalloid, depends on 
the chemical species under consideration (11).

Because of the chemical similarity between selenium 
and sulfur, most enzymes involved in sulfur metabolism 
do not discriminate between the two chalcogen elements 
(12). As a result, in yeasts and higher plants, inorganic sele-
nium (selenate, selenite) can use the sulfur assimilation 
pathway (13) to form selenoamino acids [selenomethionine 
(SeMet), selenohomocysteine (SeHCys) and selenocysteine 
(SeCys)]. SeMet and SeCys can be incorporated into pro-
teins in the place of methionine and cysteine, generating 
proteins containing non-genetically encoded selenoam-
ino acids (14). Mammalian organisms do not synthetize 
SeMet from inorganic Se precursors (15). Instead, SeMet is 
obtained from the diet and has been estimated to account 
for more than 50% of human dietary selenium (16).

This review focuses on recent advances on selenoamino 
acid toxicity in eukaryotic cells, with a particular emphasis 
on the use of the Saccharomyces cerevisiae model to eluci-
date at the molecular level, the toxic effects of SeMet and its 
metabolic derivatives. For the sake of comparison, current 
knowledge on the mechanism of inorganic selenium tox-
icity will also be briefly considered, although readers are 
invited to consult recent reviews on the subject (17–20).
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Saccharomyces cerevisiae as an 
experimental model for the study 
of selenoamino acid biology and 
toxicity

Saccharomyces cerevisiae was the first eukaryote to have 
its complete genome sequenced in 1996 (21). Since then, 
because of its ease of manipulation and amenability to 

genetic modifications, yeast has become an extremely 
powerful model system, to study eukaryotic cell biology 
(22, 23). The development of high-throughput method-
ologies combined to a high-level of functional conserva-
tion from yeast to humans (24, 25), has proven especially 
useful in studying the basic biology that underlies cell 
functioning and even human diseases (26).

Since the 1950s, yeast has been extensively used to 
study the molecular mechanisms of selenium toxicity 
(27–30). Although the sulfur amino acid pathway is well 
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conserved across genus evolution (Figure 1), several dif-
ferences exist from yeast to humans that should be kept 
in mind. The major difference lies in the absence, in 
yeast and higher plant cells, of a specific SeCys incorpo-
ration pathway and consequently of genetically encoded 
selenoproteins. Actually, this specificity can translate 
into an advantage when studying mechanisms of toxic-
ity, because it allows to ignore the effects related to the 
function of selenium in the active site of selenoenzymes. 
Another difference is that trans-sulfuration is revers-
ible in S. cerevisiae, whereas it is unidirectional, from 
methionine to cysteine, in mammals and from cysteine 
to methionine in higher plants. In mammalian tissues, 
SeCys can be further transformed by specific selenocyst-
eine β-lyases (48), that decompose SeCys into alanine 
and an enzyme-bound selenylsulfide intermediate (49) 
which can be further reduced to H2Se. In plants, cleav-
age of SeCys can be performed by cysteine desulfurases 
(50). These proteins provide the sulfur necessary for 
iron-sulfur cluster biogenesis and thiol-modification of 
tRNAs. A cysteine desulfurase also exists in yeast (51). 
The role of these enzymes in selenium metabolism 
in yeast and plants is unknown. In several species of 
plants, SeCys is converted to the less reactive methyl-
selenocysteine by selenocysteine methyltransferases 
(52). Lastly, methionine γ-lyase (or methioninase) that 

cleaves selenomethionine to MeSe, α-ketobutyrate and 
ammonia, exists in bacteria and plants (53). The pres-
ence of such an activity has been reported in mammalian 
and fish cells but is questionable.

Despite these differences, the yeast model offers 
several advantages to address issues on selenium toxicity. 
For instance, it is admitted that the effects of selenium are 
strongly dependent upon its chemical form (54). Metabo-
lization of seleno-compounds in vivo gives rise to multiple 
different metabolites. For example, more than 60 low-molec-
ular-weight different selenium-metabolites were found in 
Se-enriched yeast grown in a medium containing selenite 
(55). Therefore, deciphering the effects of a given metabo-
lite is a major difficulty in selenium studies, which can be 
overcome by using yeast strains deleted for individual genes 
in a particular pathway. Another advantage of yeast is the 
availability of a full genome deletion collection (56). In these 
mutant strains, a cassette that contains a selectable marker 
flanked on each side by a different molecular barcode or 
‘tag’ replaces each of the approximately 6000 known open 
reading frames (ORF). The tags for each ORF deletion being 
unique, the relative abundance of each strain in a pool can 
be determined by DNA microarray hybridization, allowing 
genome-wide fitness assays under various environmental 
stress conditions (57). Yeast toxicogenomic studies have 
been applied to hundreds of growth-inhibitory chemicals 

Figure 1: Schematic representation of the main selenium metabolic pathways in eukaryotic cells.
From top to bottom, a Saccharomyces cerevisiae, higher plant and mammalian cell are represented with specific pathways highlighted in 
blue [yeast (31, 32)], green [plant (33–35)], and red [mammalian (36)] arrows. (1) Selenate is taken up by sulfate transporters and reduced 
to selenite by the sulfate reduction pathway. In yeast and plant cells, selenite is imported by phosphate transporters (37, 38) and by the 
monocarboxylate transporter Jen1p in yeast (39). The mammalian proteins involved in selenite absorption are anion transporters not yet 
precisely identified (40). Selenoamino acids are taken up by specific and general amino acid permeases (41). Selenocystine (SeCystine) 
is not transported across S. cerevisiae plasma membrane. (2) Selenite is reduced to selenide (see (Figure 2D). (3) H2Se is condensed with 
O-acetylhomoserine to form SeHCys in yeast or with O-acetylserine to generate SeCys in plants. (4) The enzymes of the trans-sulfuration 
(cystathionine γ-synthase and cystathionine β-lyase) and reverse trans-sulfuration (cystathionine β-synthase and cystathionine γ-lyase) 
pathways interconvert cysteine and homocysteine. The four enzymes are present in S. cerevisiae. Therefore, SeMet and SeCys can each be 
synthetized from the other. In plants, only the reverse trans-sulfuration pathway functions. In animals, only the direct pathway exists. (5) 
The methionine cycle is common to all forms of life. SeMet is converted to Se-adenosylmethionine (SeAM) by S-adenosylmethionine (SAM) 
synthases. SeAM is used in methylation reactions, the product of which is Se-adenosylhomocysteine (SeAH). SeAH is hydrolyzed to SeHCys 
by S-adenosylhomocysteine hydrolase. SeAH is methylated back to SeMet by methionine synthase, or by betaine-homocyteine methyl-
transferase in mammals. (6) When SeAM is used in polyamine synthesis (or in plants, in ethylene synthesis), the selenium atom is recycled 
to SeMet by the Met salvage pathway. (7) SeMet and SeCys may be non-specifically incorporated in proteins by the translation machinery 
when methionine- or cysteine- tRNA synthetases activate and transfer onto tRNA the seleno-analogue to the cognate sulfur-amino acid. (8) 
SeCys is used in a two enzymes pathway to synthetize the tripeptide selenoglutathione (GSeH). (9) Selenide and selenols redox cycle with 
oxygen and glutathione (GSH) (or other thiols) with concomitant generation of ROS (see (Figure 2A and B). (10) Selenide may spontaneously 
react with SAM to generate methylselenol (MeSe) (42). (11) In several species of plants, SeCys methyltransferase catalyzes the methylation 
of SeCys to methyl-selenocysteine, which can be further metabolized to volatile MeSe and dimethyldiselenide (DMDSe) (43). (12) Methio-
nine γ-lyase activity catalyzing the conversion of methionine to methylthiol has been characterized in various plants (44). Its occurrence in 
mammalian cells is doubtful. (13) In animal cells, selenophosphate synthetase generates selenophosphate from H2Se and ATP (45), which is 
the precursor for selenoprotein synthesis. (14) Excess selenium can be eliminated by successive methylation to form volatile dimethylsele-
nide and trimethylselenonium or conversion to a selenosugar before excretion (46, 47). (15) Higher eukaryotes SeCys β-lyase catalyzes the 
conversion of SeCys into alanine and elemental selenium, which is further reduced to H2Se non-enzymatically (48).
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with the aim of uncovering their mechanisms of action 
(58–60). They have helped to identify biological functions 
involved in the toxicity of several compounds including 
metals, pesticides and pharmaceutical drugs (61–63).

Selenium and oxidative stress
Today, it is generally admitted that oxidative stress is a 
determinant factor of selenium cytotoxicity as well as 
anticarcinogenic properties (17, 64). Pro-oxidant proper-
ties of selenium originate from the in vivo conversion of 
seleno-compounds into H2Se or into selenols (RSeH: 
SeCys, MeSe, GSeH,…), which are readily oxidized by 
oxygen with concomitant generation of ROS (Figure  2A 
and B) (9, 65–68). The products of these oxidation reac-
tions (Se(0) or RSeSeR) can be reduced by low molecular-
weight thiols (cysteine, GSH) or by the thioredoxin (Trx) 
and glutaredoxin (Grx) systems (69, 70), with regeneration 
of H2Se or RSeH that will initiate a new cycle of oxidation/
reduction (71). These redox cycles consume intracellular 
antioxidants such as GSH and, consequently, the reduc-
ing cofactor NADPH. They lead to massive production of 
ROS, which can damage nucleic acids, proteins and lipids. 
In addition, oxidized selenols react with protein-thiols, to 

form selenylsulfide bridges (Figure 2C) (72–75) and can 
also catalyze the formation of disulfide bridges between 
low molecular-weight thiols and proteins (70) or between 
proteins (76–78), potentially leading to protein inactiva-
tion or aggregation (Figure 2C).

Selenite/selenide toxicity
A large body of evidence, built up in course of the last 
decades, indicates that the toxicity of selenite is mainly 
caused by DNA damage (19, 28). In animal and yeast cells, 
selenite has been shown to induce ROS-dependent DNA 
strand breaks and/or base oxidation that lead to cell death 
by apoptosis or necrosis (30, 79–84). It is likely that reduc-
tion of selenite into hydrogen selenide in vivo (Figure 2D) 
(85–87), followed by redox cycling of selenide in the pres-
ence of oxygen and thiols (Figure 2A), accounts for sele-
nite-induced DNA damage. Indeed, in vitro studies (68, 82) 
showed that selenide induced DNA single-strand breaks 
caused by hydroxyl or hydroxyl-like radicals produced 
upon oxidation of selenide by oxygen. In yeast, studies 
of individual deletion mutants (88–91) and more recently, 
two independent genome-wide analyses (68, 92) con-
firmed the importance of DNA repair systems, especially 
the homologous recombination pathway, in resistance to 
selenite/selenide exposure.

In addition, selenite exposure promotes redox imbal-
ance and oxidative stress. Accumulation of superoxides 
and hydrogen peroxide was observed in various eukary-
otic cell lines (80, 93–98), associated to a decrease of 
the GSH/GSSG ratio and to an increase of protein oxida-
tion and lipid peroxidation (94, 99–101). Transcriptome 
analyses, in S. cervisiae (102) and Caenorhabditis elegans 
(103), revealed that selenite treatment up-regulated genes 
involved in the oxidative stress response. Several analyses 
in yeast showed that mutants of GSH or Grx metabolisms 
were more sensitive to selenite than the wild-type (68, 90, 
92, 104, 105). These results indicate that maintaining a 
proper cellular redox homeostasis is crucial for selenite 
resistance.

Selenocyst(e)ine toxicity
One major difference between SeCys and cysteine is a 
significantly lower pKa value of the selenol function rela-
tive to that of the corresponding thiol (5.2 for SeCys vs. 8.3 
for cysteine) (106, 107). As a consequence, at physiologi-
cal pH, reduced SeCys exists as a selenolate ion (RSe−) 
whereas cysteine is mostly protonated. This property, as 
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well as the higher nucleophilicity of the selenolate, con-
tributes to the greater reactivity of SeCys over cysteine 
in redox reactions (108–110). Thus, for example, a SeCys 
to cysteine substitution reduces 300 times the catalytic 
efficiency of the Escherichia coli selenoenzyme formate 
dehydrogenase (111). However, as discussed above, free 
selenolates can easily react with oxygen and thiols, poten-
tially resulting in oxidative stress and disruption of cel-
lular functions (112). The duality between the beneficial 
properties of catalytic SeCys vs. the harmful effects of free 
SeCys provides a rationale for the selection of a SeCys 
insertion machinery which does not require high concen-
trations of free SeCys in the cell.

Oxidation of SeCys to the diselenide form is fast at 
neutral pH [<10  min vs. >10  h for cysteine, in identical 
conditions (113)]. For this reason, most toxicity studies 
were performed starting from SeCystine, which is easily 
reduced intracellularly into SeCys, either by GSH (114), 
or by the Trx and Grx systems (69). SeCystine has been 
shown to be toxic to animal cells with IC50 ranging from a 
few μm to a few hundreds of μm (115, 116). Higher sensitiv-
ity of cancer cell lines over normal cells suggests a cancer-
cell specificity making SeCystine a promising therapeutic 
agent (115). In various human cells, SeCystine treatment 
was reported to trigger (i) an increase in intracellular ROS, 
(ii) an accumulation of DNA strand breaks, (iii) an activa-
tion of the prosurvival Pi3K/AKT and MAPK/ERK pathways 
and (iv) an activation of the p53 pathway which, in turn, 
induces mitochondrial dysfunction and apoptosis (95, 115, 
117, 118). Protection against DNA damage and apoptosis 
was afforded by various antioxidants and radical scaven-
gers, suggesting that the pro-oxidant properties of SeCys 
mediate cytotoxicity (119). These results are in agreement 
with the generally accepted hypothesis that the cytotoxic 
effects of selenium compounds derive from their ability or 
that of their metabolites to produce an accumulation of 
reactive oxygen species. Redox cycling of the diselenide 
(SeCystine) or of mixed selenylsulfides (CysSeSR) with 
intracellular thiols and oxygen is a potential source of 
ROS.

Nevertheless, the ROS-dependent toxicity of SeCys 
has recently been challenged by the work of Wallenberg 
et  al. (70) who reported that treatment of lung-derived 
H-157 cancer cells with cytotoxic concentrations of SeCys-
tine did not induce ROS production. The same authors 
showed that SeCystine triggered endoplasmic reticulum 
(ER) stress, the unfolded protein response, an increase in 
protein ubiquitination and extensive cytoplasmic vacu-
olarization in HeLa cells, in the absence of DNA damage 
(120). In higher plants also, evidence was recently pro-
vided that SeCys treatment impairs protein homeostasis 

without elevation of superoxide levels (121, 122). It was 
also reported that a mutation of Arabidopsis thaliana BiP2 
protein, an ER chaperone that binds to misfolded pro-
teins, prevented germination when plants were grown on 
SeCys, suggesting errors in ER protein folding or quality 
control (121).

One mechanism that may explain SeCys-induced pro-
teotoxic stress is non-specific incorporation of SeCys into 
proteins, which is expected to cause structural and func-
tional alterations. Such a hypothesis was proposed more 
than 30  years ago from studies in higher plants (123). It 
was based on the observation that, although Se-tolerant 
Astragalus species accumulated considerably more sele-
nium than did sensitive plants, Se concentration in the 
protein fractions from the Se-accumulators was reduced 
nearly 10-fold compared to that from the non-tolerant 
Astragalus species (124). Since then, misincorporation of 
SeCys in proteins was demonstrated in the plant Vigna 
radiata (mung bean) (125), in S. cerevisiae (126, 127) and in 
E. coli cells (128). Another mechanism that may contribute 
to protein damage is reaction of protein thiols with oxi-
dized selenols such as SeCystine. As pointed out above, 
this reaction will lead to the formation of selenylsulfide 
or disulfide bonds, which may in turn cause structural 
changes leading to protein aggregation or to functional 
inactivation.

To summarize, SeCys toxicity seems to result from 
both ROS-dependent and ROS-independent mechanisms. 
The latter may be due to misincorporation of SeCys in 
proteins and/or protein-thiol oxidation. The contribu-
tion to toxicity of each of these mechanisms remains to be 
assessed more precisely and may depend on the cell type 
under study.

Selenomethionine toxicity
A great variability of results were reported on the SeMet 
dose necessary to elicit toxicity in cultured cells, with IC50 
values ranging from a few μm to tenths of mm, depend-
ing on the cell type, culture conditions and type of assay 
(129, 130). Such a disparity may be partly explained by 
the strong inverse dependency of SeMet toxicity on the 
methionine concentration in the growth medium of yeast 
or mammalian cell cultures (113, 131). This dependency 
indicates that SeMet and methionine share common 
uptake and/or metabolic pathways. Therefore, it is impor-
tant to take into account the SeMet/Met ratio rather than 
the selenium concentration only, when comparing the 
toxic effects of SeMet in various conditions.



98      M. Lazard et al.: Selenoamino acids toxicity in eukaryotic cells

Insights into the toxic mode of action of SeMet are 
scarce. Although misincorporation of SeMet in proteins 
might in principle generate toxicity, it has been shown 
in human cells that SeMet can support cell growth in the 
absence of methionine (131). In yeast mutants, the substi-
tution of more than 90% of protein methioninyl residues 
by SeMet does not elicit significant toxicity (132–134). 
Moreover, a S. cerevisiae mutant unable to metabolize 
SeMet to its primary metabolic product, SeAM, displays 
low SeMet sensitivity (135). Therefore, SeMet toxic effects 
must be mediated by one or several of its metabolic prod-
ucts (see Figure 1) rather than by itself.

Comparison of the effects of SeMet and selenite on 
the growth of wild-type and mutant yeast cells indi-
cated the lesser importance of DNA damage in SeMet 
vs. selenite toxicity (91). Likewise, SeMet treatment did 
not result in DNA damage in human lymphocytes, even 
at cytotoxic concentrations (136). Studies investigat-
ing the effects of toxic concentrations of SeMet and sel-
enite in human carcinoma cell lines revealed apoptotic 
responses specific for each compound (137, 138). These 
results indicate that the mechanistic bases of SeMet and 
selenite toxicities are substantially different. Therefore, 
formation of selenide, which plays a central role in the 
toxic effects of selenite, is unlikely to be responsible for 
the toxicity of SeMet.

In 2004, Spallholz and colleagues showed that, 
in vitro, SeMet produced superoxide ions in the presence 
of bacterial methioninase (139). This result led to the 
hypothesis that SeMet toxic effects could be mediated by 
its direct cleavage to MeSe, followed by redox cycling of 
the latter resulting in the accumulation of ROS. However, 
no homologue of bacterial methioninase was found in 
animal genomes (53). Although a methioninase activity 
was reported in trout hepatocytes (140) and in mouse liver 
cell extracts (141), the mouse liver enzyme was later puri-
fied and found to be cystathionine γ-lyase, the enzyme 
converting cystathionine into cysteine (142, 143). Its high 
KM value for SeMet (15 mm), suggests that the amount of 
MeSe generated from SeMet by this enzyme is low in vivo 
(142). Thus, the occurrence in animal cells of a γ-lyase 
enzyme able to efficiently cleave SeMet is unlikely. In 
agreement with this conclusion, speciation studies in rat 
liver or in human leukemia cells exposed to SeMet failed 
to detect MeSe or its oxidized form DMDSe suggesting 
that metabolization of SeMet to MeSe was insignificant 
in these models (144, 145). Therefore, MeSe may only be 
a minor determinant of SeMet-induced toxicity in animal 
cells.

To gain insights into the metabolic product(s) 
underlying SeMet toxicity, we compared the sensitivity 

to SeMet of several S. cerevisiae mutants compromised 
in individual pathways of sulfur metabolism (113). This 
analysis allowed us to exclude effects resulting from an 
accumulation of SeAM, SeAH or any compound in the 
methionine salvage pathway. Instead, it indicated that 
toxicity arised from metabolization of SeMet into sele-
nols, SeHCys, SeCys and possibly γ-Glu-SeCys and GSeH. 
Another study showed that deletion of CYS3, the gene 
encoding cystathionine γ-lyase required for synthesis of 
SeCys, drastically reduced toxicity (134). Overall, these 
results implied that SeCys formation plays a central role 
in SeMet-induced growth inhibition, which suggests that 
SeMet mode of action should be similar to that of SeCys. 
In this context, it is interesting to note that, in a recent 
study by Kupsco and Schlenk (146), exposure of fish 
(Japanese medaka) embryos to SeMet combined with 
hypersalinity induced a 100-fold increase in transcripts 
of BiP, the major ER chaperone (146), suggesting an accu-
mulation of misfolded proteins in the ER reminiscent of 
the SeCystine-induced ER stress observed by Wallenberg 
et al. (120) in HeLa cells.

Recently, a genome-wide screen of the S. cerevisiae 
deletion collection revealed that tolerance against SeMet 
mainly involves mechanisms related to the folding or 
removal of damaged proteins (127). In particular, genes 
related to ubiquitin-mediated protein degradation, either 
via the proteasome complex or via the multivesicular body 
sorting pathway were over-represented among deletion 
mutants sensitive to SeMet. In accordance with the idea 
that proteins are the main targets of SeMet-induced effects, 
an accumulation of aggregated proteins was observed in 
wild-type yeast cells exposed to SeMet. Deletion of CYS3, 
which prevents the formation of SeCys from SeMet, com-
pletely abolished protein aggregation. All these recent 
results suggest the involvement of a SeCys-induced pro-
teotoxic stress as a major determinant of SeMet toxicity in 
yeast.

As discussed in this review concerning SeCys effects, 
oxidative stress may also contribute to SeMet toxic-
ity. Exposure to SeMet was shown to increase the pro-
duction of intracellular ROS in fish embryos (147) and 
hepatocytes (148). Suzuki et al. (138) reported that SeMet 
induced ROS generation and apoptosis in lung cancer 
A549 cells (138). Superoxide production was observed in 
SeMet-treated yeast cells and deletion of SOD1, the gene 
coding for superoxide dismutase, was shown to increase 
SeMet toxicity (113). In addition, metabolomic studies in 
yeast demonstrated that SeMet addition induced a redox 
imbalance (149, 150). How exposure to SeMet generates 
oxidative stress remains to be established. It could be the 
result of redox-cycling of selenols produced in vivo with 
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oxygen and intracellular thiols. In addition, superoxides 
produced in these reactions can catalyze the formation 
of unnatural selenylsulfide or diselenide bridges, which 
may, in turn, promote protein misfolding and aggregation.

Conclusion and future perspectives
Induction of oxidative stress has long been held to 
account for selenium toxicity. ROS-induced DNA damage 
mediated by selenide produced in vivo is now a fairly well 
established mechanism accounting for selenite cytotoxic-
ity. Because cancer cells generally exhibit an increased 
vulnerability to ROS-producing compounds, there is an 
increasing interest in designing anticancer agents promot-
ing oxidative stress. Among redox active drugs, selenite 
is a promising candidate as a cancer therapeutic agent 
(17,  151). The next step consists in evaluating its toxicity 
in cancer patients and the therapeutic potential of redox-
active selenium compounds.

Recent studies suggest that the mode of action of 
selenoamino acids could be different from that of inor-
ganic selenium compounds. In particular, studies in S. 
cerevisiae indicate that SeMet toxicity results from its 
conversion into SeCys by cellular metabolism. SeCys has 
been shown to mediate a proteotoxic stress rather than 
DNA damage, which may play a role in selenium toxic-
ity that was underestimated until now. Several ques-
tions remain unanswered. Firstly, further investigations 
are needed to determine whether SeCys-induced growth 
inhibition mostly arises from unspecific incorporation 
of SeCys resulting in protein misfolding or from protein 
thiol-oxidation leading to aggregation and/or inactiva-
tion of folded proteins. The relative importance of these 
mechanisms in the cell is likely to depend on the rate of 
protein synthesis. Another question that needs answer-
ing is whether SeCys causes functional inactivation of a 
few proteins with essential functions or induces a general 
disruption in protein homeostasis. A promising avenue of 
research to address these issues will be to use a global pro-
teomic approach in yeast to identify proteins that aggre-
gate under SeMet stress.

The involvement of SeCys in the toxicity of SeMet 
emerged from studies in the yeast system. It is likely that 
SeCys also participates in SeMet toxicity in other cellu-
lar systems, in particular human cells, but this remains 
to be confirmed. In animals, the expression of the trans-
sulfuration enzymes, cystathionine β-synthase and cys-
tathionine γ-lyase, is tissue-specific (152). For example, 
the synthesis of cysteine from methionine is at least two 

orders of magnitude lower in the brain than in the liver and 
kidney (153), suggesting that if metabolization to SeCys 
contributes significantly to SeMet toxicity in animals, 
this mechanism should be strongly tissue-dependent. 
Additional studies on SeMet metabolism and toxicity in 
different animal and human cell lines are necessary to 
expand our understanding of the consequences of SeMet 
exposure on protein aggregation in higher eukaryotes. 
Another area of research that may be worth investigating 
is the potential of selenoamino acids as anticancer agents. 
Indeed, tumor cells have a high demand for amino acids 
and in particular for methionine, to sustain their high pro-
liferation rates (154). In addition, tumorigenesis is often 
associated with an increased dependency on protein 
homeostasis networks (155). This makes the use of SeMet, 
alone or in association with agents that interfere with 
protein homeostasis, an interesting strategy to explore for 
cancer treatments.
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