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Abstract: MicroRNAs (miRNAs) are non-coding small 
RNAs that are master regulators of genic expression 
and consequently of many cellular processes. But their 
expression is often deregulated in human tumors leading 
to cancer development. Recently miRNAs were discov-
ered in body fluids (serum, plasma and others) and their 
 levels have often been reported to be altered in patients. 
 Circulating miRNAs became one of the most promising 
biomarkers in oncology for early diagnosis, prognosis and 
therapeutic response prediction. Here we describe the ori-
gins and roles of miRNAs, and summarize the most recent 
studies focusing on their usefulness as cancer biomarkers 
in lung, breast, colon, prostate, ovary cancers and mela-
noma. Lastly, we describe the main methodologies related 
to miRNA detection, which should be standardized for 
their use in clinical practice.
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Introduction
Identified 20  years ago, microRNAs (miRNAs) are non-
coding single strand small RNA molecules of about 22 
nucleotides in length that act as post-transcriptional reg-
ulators of gene expression and control many critical cel-
lular processes. Numerous studies have reported aberrant 
expression of miRNAs in a range of different pathologies, 
with striking alterations in tumor tissues (1). Profiling of 
miRNAs has contributed to the molecular classification 

of tumors according to cancer type and prognosis (2). In 
2008, the presence of miRNAs was reported in body fluids 
(urine, serum, plasma, etc. …) allowing non-invasive iden-
tification of individuals with cancer (3–5). Exponentially 
growing evidence shows that measurements of miRNAs 
in serum or plasma can provide valuable non-invasive 
biomarkers for detection of various human cancers (6, 7). 
Herein, a general overview of the utility of circulating 
miRNAs as cancer biomarkers will be presented with an 
emphasis on the more recent findings on several types of 
cancer.

Biogenesis of miRNAs
miRNAs are transcribed in the nucleus by RNA polymer-
ase II as long primary microRNA (pri-miRNA) precur-
sor molecules whose lengths vary greatly (up to 3–4 kb 
miRNAs) (8). They are then processed by the ribonucle-
ase III Drosha associated with a partner called DGCR8, 
into pre-miRNAs, 60–70 nt long (9), that are exported 
to the cytoplasm by exportin 5 and its partner Ran-GTP 
(10). The second RNAse III Dicer removing the loop of the 
pre-miRNA then generates a small double strand RNA of 
about 22 nt. Dicer is associated with a catalytic complex 
called the RNA-induced silencing complex (RISC) for 
miRNA-mediated post-transcriptional gene silencing 
with the transactivation responsive RNA-binding protein 
(TRBP) that enhances the fidelity of the cleavage and 
recruits to the Argonaute (AGO) proteins, the catalytic 
engine of RISC (11). AGO loads the mature strand of the 
miRNA, while the passenger strand is dissociated and 
degraded (12), resulting in a fully active miRNA [for an 
extensive review, see Ref. (13)]. In the past, both the 
strands of a microRNA gene were named miR and miR*, 
the asterisk indicating that the miR is considered as 
a ‘minor’ product, found at lower concentration, and 
inferred that miR* is non-functional. But several miRs* 
have proven to be functional. For clarification a new 
nomenclature was adopted. miRNAs originating from the 
3′ end or 5′ end of the microRNA gene are denoted with a 
‘-3p’ or ‘-5p’ suffix, respectively.
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microRNA functions
The binding of the complex RISC to mRNA is mediated by 
a sequence of 2–8 nucleotides, known as the seed region, 
at the 5′ end of the mature miRNA (14). The complex 
binds to the target mRNA, via its partially complemen-
tary sequence, most often in the 3′ but sometimes in the 5′ 
untranslated region (15), in the open reading frame (16) or 
in the promoter regions (17). miRNAs inhibit gene expres-
sion through several mechanisms, depending on the 
degree of complementarity between the small RNA and its 
mRNA target (18). It was reported that the mRNA cleavage 
is induced when the homology is perfect (19), but mRNAs 
containing partial miRNA complementary sites can also 
be targeted for degradation in vivo (20). miRNAs could 
also induce repression of mRNA translation, at the level 
of translation initiation (21) and as of post-initiation (22). 
It has also been shown that miRNAs can upregulate the 
expression of their target genes (23). For extensive infor-
mation on the modes of miRNA actions, see the reviews of 
Morozova et al. (24) and James et al. (25).

A single miRNA can target up to a hundred genes 
due to the imperfect matching outside the seed sequence 
(26) and conversely a single mRNA could be controlled by 
several miRNAs. The latest version of miRBase (release 21) 
has annotated 2588  human mature miRNAs sequences, 
which can target more than 30% of the genome (27). 
An analysis has even suggested that more than 80% of 
the gene transcripts are likely under microRNA control 
through their untranslated and amino acid-coding 
regions (28). Therefore the miRNAs play a critical role 
in multiple biological processes including proliferation, 
differentiation, apoptosis and hematopoiesis (29). Thus 
it is quite obvious that a dysregulation of miRNA expres-
sion leads to a number of pathologies such as inflamma-
tion,  cardiovascular diseases, neurological disorders and 
several types of cancer.

miRNAs in cancer
miRNAs contribute to cancer by regulating either onco-
genes (tumor suppressor miRNA) or tumor suppressors 
(oncomiRs). Most of the time oncomiRs, such as miR-17-92 
cluster (30) or miR-21 (31), are overexpressed and tumor 
suppressor miRNAs, such as let-7 family, are downregu-
lated (32). Gain and loss of function experiments have pro-
vided insights into the role of miRNA in oncogenesis. For 
instance, enforced expression of the miR-17-92 cluster that 
codes for miR-17-3p, -17-5p, -18a, -20a, -19a, -19b and -92, 

participates in the tumor development in a mouse B-cell 
lymphoma model by inhibition of the apoptotic pathway 
and cell cycle (30). In contrast, early studies showed that 
overexpression of miRNAs of the let-7 family-inhibited 
tumor formation, progression and metastasis can induce 
apoptosis through targeting many signaling pathways 
(RAS, c-MYC, cyclin D1/2/3, cyclin A, CDK4/6, etc. …) 
(33). But more recent studies show oncogenic functions of 
let-7 repressing the tumor-suppressive caspase-3 and BAX 
genes (34, 35). Several other miRNAs can act as oncomiR 
as well as tumor suppressor depending on the context 
(36). For instance, miR-155  was often considered as an 
oncomiR in different cancer types (36) such as pancre-
atic cancer and lymphoma (37, 38) and its overexpression 
induces B cell malignancy in mice (39). However, several 
groups reported that miR-155 displays tumor suppressive 
role in melanoma, gastric and ovarian cancers where it is 
downregulated (40–42).

Dysregulated miRNAs expression causes a loss of 
control of critical biological processes – proliferation, 
differentiation, apoptosis, EMT, migration – leading to 
oncogenesis. miR-21, a miRNA ubiquitously upregulated 
in cancer is the best example of this (43). miR-21 affects 
all major pathways of carcinogenesis (proliferation, 
apoptosis, angiogenesis and invasion), through its mul-
tiple targets including PTEN (phosphatase and tensin 
homolog) (44), PDCD4 (tumor suppressor gene tropo-
myosin 4) (45) FasL (pro-apoptotic FAS ligand) (46), and 
TIMP3 (metalloproteinase inhibitor 3 precursor) (47). 
Many miRNAs are now known to be regulators of metas-
tasis, interfering with the different steps of the metastatic 
cascade (cell adhesion, migration, EMT, etc.) (48). The 
miR-200 family is well known as a regulator of EMT, tar-
geting key transcription factors such as ZEB-1 and ZEB-2 
(49). The transcription of miR-10b is positively regulated 
by Twist 1 and in turn increases the expression of RHOC, 
involved in metastasis (50). Similarly overexpression of 
miR-21 promotes a metastatic phenotype by targeting the 
tumor suppressor RHOB (51).

The biogenesis of miRNAs is a tightly controlled 
process but it has become evident that miRNAs are deregu-
lated in cancers. Calin et al. were the first to report a dereg-
ulation of miRNAs in cancer (52). They showed that the loci 
miR-15-16 is deleted in patients with B cell chronic lympho-
cytic leukemia. Then an exponentially growing number 
of publications showed that miRNAs expression is altered 
in cancer (53–56). The causes of miRNA aberrant expres-
sion in cancer are multiple. Half of the miRNA genes are 
localized in fragile sites or in cancer-associated genomic 
regions amplified or translocated in cancer such as miR-15 
and miR-16 on the 13q14 locus (57). A CGH array screening 
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227 tumors has shown that 37.1%–85.9% of miRNAs exhibit 
DNA copy number alterations, correlating with miRNA 
expression (58). Moreover an alteration of the expression 
or function of enzymes of the miRNA processing, such as 
Drosha, Dicer 1 or DGCR8, was reported (59). A decrease 
of Dicer or Drosha has been observed in ovarian cancer 
associated with poor survival (60) and in bladder cancer 
(61) while their upregulation occurs in cervical squamous 
cell carcinoma (62), and gastric cancers (63). An analysis 
of gene expression in primary tumors indicates that the 
widespread downregulation of miRNAs observed in cancer 
is due to a failure at the Drosha-processing step (64). 
Somatic mutations of the microRNA-processing enzymes 
such Drosha, DGCR8 or Dicer 1  has also been observed 
notably in nephroblastomas (65). Splice variants of Drosha 
encoding truncated proteins were found in melanoma 
(66). Many studies indicate that the microRNA expression 
may be also regulated by different epigenetic mechanisms 
leading to the silencing of the tumor suppressor microRNA 
including abnormal methylation of the promoter regions 
(67) or histone modifications (68). Another important level 
of regulation of microRNA expression is its transcriptional 
control. The alteration of activators or repressors of pri-
miRNA transcription results in miRNA level defects. The 
miR-34 family is known to be regulated by p53 and to be 
partially responsible for the onco-suppressor-induced 
phenotype (59, 69). Myc regulates the transcription of the 
oncogenic miR-17-92 cluster (70, 71) while Twist1 suppresses 
let-7i via binding to its promoter, to activate mesenchymal 
mode migration (50, 72) and c-Met via the transcription 
factors c-Jun and AP1 induces the oncomiR miR-221-222 
cluster (73). Forkhead box (FOX) transcriptions factors as 
well as Hippo-signaling pathway were recently shown to 
regulate the miRNA transcription as well (74, 75).

Circulating miRNAs as biomarkers 
in cancer
Several profiling studies with microarrays, among them 
the study of Rosenfeld and coworkers who investigated 
400 samples from 22 different tumors and metastases, have 
shown that miRNAs’ expression signatures permit, with 
high accuracy, tumor classification, according to the tissue 
of origin (76–78). The tumor tissues could be distinguished 
from normal tissues in CLL (79) lung (80, 81), breast (82), or 
prostate cancer (PCa) (83, 84). Moreover, besides its diag-
nostic utility, it turns out that the profiling of miRNAs might 
also be a useful tool for prognosis, prediction of metastatic 
outcome and therapeutic response (78, 85–87).

In 2008, princeps studies reported the presence of 
miRNAs in plasma and serum (3–5, 88) and that, between 
healthy donors and those patients with cancer or diabetes, 
the profiles of serum miRNAs differ (3). It was then observed 
that miRNAs were present in all of the 12 body fluids 
assessed, including plasma, urine, saliva, peritoneal fluid, 
pleural fluid, seminal fluid, tears, amniotic fluid, breast 
milk, bronchial lavage, cerebrospinal fluid and colostrum 
(89). The concentration and the profiles of the miRNA vary 
between the diverse fluids. Human urine has the lowest 
concentration and diversity of miRNA while breast milk 
displays a huge concentration and a number of miRNAs 
(89). On the other hand, some reports described higher 
miRNA concentrations in serum samples compared to the 
corresponding plasma samples (5, 90) in contrast to results 
shown by McDonald et  al. (91). The discrepancy between 
these  observations may be the result of an miRNA release 
from blood cells during the coagulation process (90).

In the blood, the circulating miRNAs are packaged 
in extracellular vesicles – microvesicles, exosomes or 
apoptotic bodies – (92) or complexed to RNA-binding 
proteins, AGO2 (93, 94) or nucleophosmin (95), but also 
to HDL (96, 97). It has been proposed that a large major-
ity of plasma miRNAs are complexed with AGO proteins, 
while the miRNAs packaged into vesicles are poorly rep-
resented (93–95), but other studies contradicted these 
results (97–99). The precise mechanisms of the release of 
the miRNAs into extracellular compartment are not yet 
completely understood. The miRNAs could be released by 
a passive mode in pathological conditions such as necro-
sis, apoptosis or inflammation or by an active and selec-
tive process or a combination of both (100). The exosomal 
miRNAs appear to be selectively recruited and actively 
secreted in a regulatory manner (48, 101). Indeed the exo-
somal and donor cell miRNA profiles differ as reported in 
several publications (102–105). Some miRNAs are concen-
trated in exosomes while the expression of most of them 
is lower in exosomes vs. cells (102, 106). While the precise 
mechanism of the regulation of the miRNAs release is not 
yet fully deciphered, RAB proteins, essential regulators of 
intracellular vesicle transport, have emerged as the key 
regulators of exosome secretion (107). Moreover it has 
been proposed that the exosome secretion is triggered by 
a ceramide-dependent pathway (6, 105, 108).

The circulating extracellular miRNAs are believed to 
play an important role in intercellular and inter-organ 
communication. Several mechanisms of internalization 
of extracellular miRNAs by recipient cells have been pro-
posed (109, 110). They could be internalized to elicit their 
regulatory functions, notably either (i) by endocytosis, 
phagocytosis, or by direct fusion of the vesicles with the 
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plasma membranes of the recipient cells, or (ii) by uptake 
by cell surface receptors of the complexes with AGO2. 
Extracellular miRNAs are able to promote multiple bio-
logical processes in the recipient cells and tissues, such as 
proliferation, invasion, metastasis and angiogenesis (48, 
110–112). But a recent study has challenged the existence 
of exosomal miRNAs (113). By using a new exosome quanti-
fication technique, Chevillet et al. (113, 114) have observed 
that most of them do not carry any miRNAs, bringing into 
question their involvement in cell-cell communication.

However, it is now well established that the circulat-
ing miRNAs are linked to cancer and appear to be prom-
ising diagnostic and prognostic, non-invasive biomarkers 
in various cancers. Indeed, the circulating miRNAs display 
several meaningful properties making them good poten-
tial biomarkers. They show a remarkable stability in bodily 
fluids, where they are protected from endogenous RNAse’s 
activity by vesicles or carrier proteins, while miRNAs 
added exogenously are quickly degraded (3–5). The circu-
lating miRNAs resist prolonged incubation at room tem-
perature and to multiple freeze-thaw cycles (5). Moreover, 
the  circulating miRNAs show constant homogeneous 
expression in healthy individuals, derived essentially from 
blood cells (3). By contrast, in cancer patients, most of the 
circulating miRNAs appeared to be directly derived from 
tumor tissues and may reflect the tumor burden. Indeed, in 
cancer patients, the plasma or serum miRNA profiles cor-
relate with the tumor tissues’ profile. On the other hand, 
several studies demonstrated that circulating oncogenic 
miRNA levels decreased after tumor resection (115).

A recent survey of 148 published reports in the eight 
most prominent cancers reports a total of 279 deregulated 
circulating miRNAs in serum and plasma from cancer 
patients to healthy donors (116). A tremendous number of 
publications proposed that the circulating miRNAs, espe-
cially in serum and plasma, could potentially be used as 
diagnostic, prognostic and predictive biomarkers for dif-
ferent types of tumors (6, 29, 100, 116–123).

It is well established that the early detection of cancer 
significantly improves outcomes for patients. Late diag-
nosis is one of the most prevalent reasons for the high 
mortality rate in cancer notably in lung cancer. Thus, very 
sensitive and specific tools are needed. Currently the clas-
sical diagnostic methods, such as CT-scan and mammog-
raphy are expensive, could be dangerous when repeated, 
and their specificity and sensitivity are not optimal. 
Moreover, in the era of personalized therapies, the need 
for non-invasive biomarkers to get iterative information 
on the pathology is critical and has led to the research 
of circulating biomarkers since repeated biopsies are not 
feasible and often associated with morbidity. A rapid and 

non-invasive access to the molecular profile of tumors is a 
current challenge. The liquid biopsies, circulating tumor 
cells, circulating-free DNA, and miRNAs isolated from the 
blood of patients emerged as potential tools and are one of 
the most active areas of translational research in several 
types of cancer.

Lung cancer

Lung cancer is the leading cause of cancer deaths in devel-
oped countries, with non-small cell lung cancer (NSCLC) 
that accounts for the majority of cases. Late diagnosis is 
one of the most prevalent reasons for the high mortal-
ity rate. The overall 5-year survival rate is no more than 
15%. Besides the need for early detection of pathology, a 
non-invasive way to characterize the molecular profile of 
tumors over time is required given the increasing number 
of targeted therapies available for the treatment of NSCLC 
and its dynamic changes through cancer treatment.

Several original publications and reviews have 
reported that the levels of multiple miRNAs are altered in 
lung cancer. Recently Zhao et al. (124) have listed among 
different studies from 2011 to 2015, 39 miRNAs upregulated 
and 18  miRNAs downregulated, that correlated notably 
with clinical stages, metastasis or early lung cancer. A 
meta-analysis based on 28 publications with a total of 2121 
patients and 1582  healthy ones shows that miRNA may 
serve as a potential biomarker in NSCLS detection, espe-
cially from blood, with a high diagnostic accuracy (125). 
Moreover, Ulivi and colleagues have analyzed 28 publica-
tions between 2009 and 2014 that compared microRNA 
levels in serum, plasma and sputum from lung cancer 
patients to healthy donors and summarizes the promising 
miRNAs for lung cancer diagnosis (126).

Many other excellent reviews have described the role 
of miRNAs notably in diagnosis, prognosis and therapeu-
tic response in lung cancer (29, 100, 116, 117, 119, 122, 124, 
126–130). Herein we have tried to summarize the most 
recent publications in Table 1. It is noteworthy that in a 
large proportion of the publications, miRNA panels are 
used rather than a single miRNA to discriminate with 
higher specificity and sensitivity, patients with lung 
cancer and healthy controls.

For example, in 2011 Bianchi and coworkers developed 
a test, based on the detection of 34 miRNAs from serum, 
that could identify patients with early stage NSCLCs in a 
population of asymptomatic high-risk individuals with 
80% accuracy (131). Later, the authors refined this sig-
nature to 13 miRNAs maintaining the same performance 
in order to reduce the costs and complexity of the test 
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and to increase its clinical translatability. This test called 
miR-Test was validated on a large-scale validation cohort 
of high-risk patients (n = 1115) and showed a sensitivity 
and specificity of 77.8% and 74.8%, respectively (132). 
As shown in Table 1, many other signatures appear to be 
useful and promising tools for diagnosis, prognosis or as 
a surrogate marker for therapy response. But few overlaps 
could be found between the different studies.

Breast cancer

Breast cancer is the most common cancer in women 
worldwide, with nearly 1.7 million new cases diagnosed 
in 2012. This represents about 12% of all new cancer 
cases and 25% of all cancers in women (147). Mammogra-
phy and ultrasound imaging are widely used for detect-
ing breast cancer and have helped to improve overall 
survival, but they are known to have a limited specificity 
and sensitivity. Moreover breast cancer is a very complex 
and heterogeneous pathology, determined by estab-
lished markers such as size, node and IHC profiling of 
hormone receptors (ER, PR, HER2) status and prolifera-
tion marker Ki-67. These markers along with two serum-
based tumor biomarkers (CA15-3 and CEA) are used to 
evaluate individual prognosis but with limited sensi-
tivity and specificity. Reliable blood-based biomarkers 
are needed to assess prognosis but also diagnosis and 
response to therapy.

Numerous studies have focused on circulating 
miRNAs as biomarkers in breast cancer diagnosis, 
 classification and prognosis and reviewed by several 
teams (29, 100, 116, 117, 119, 122, 148–153). He et al. have 
analyzed 35 publications with 2850 breast cancer patients 
and 1479 health controls, and identified 106 (61 in plasma 
and 45 in serum) deregulated circulating miRNAs but only 
15 among them miR-21 have been reported by more than 
one study (116). Recently Li et al. performed a meta-anal-
ysis of six studies with 438 patients and 228 healthy con-
trols and indeed showed that miR-21 could be an accurate 
biomarker for early diagnosis (154). miRNA-155  was also 
reported as a diagnostic miRNA in breast cancer (153). 
Both these miRNA could be used also as a prognostic bio-
marker like miR-205 and miR-30a (153). miR-10b was asso-
ciated with metastatic dissemination (155) and miR-210 
or miR-155 to therapy response (151). As for lung cancer, 
many signatures of several miRNAs have also been identi-
fied as tools for early diagnosis, tumor staging or moni-
toring recurrence (Table 2). A recent study performed on 
1206 cancer samples compared to healthy samples has 
found out a signature of five miRNAs (miR-1246, miR-1307, 

miR-4634, miR-6861 and miR-6875) as an accurate tool for 
early detection of breast cancer (156).

Colorectal cancer

CRC is the third most common cancer and a leading cause 
of cancer-related death worldwide. Early diagnosis of CRC 
is a pre-requisite for proper management of the patient 
and increasing survival. Currently, colonoscopy is the 
gold standard for early diagnosis of CRC but its invasive-
ness is a big limitation; up to 12% of precancerous lesions 
miss detection and approximately 10% of CRCs occur in 
individuals within 3  years of a screening colonoscopy. 
Serum markers CEA and CA19-9 are used but are not suf-
ficiently sensitive nor specific. Therefore, non-invasive 
and highly sensitive approaches are urgently needed for 
CRC screening. Several studies have shown that serum 
and plasma could detect CRC with high accuracy (100, 117, 
119, 164, 165). He and coworkers have analyzed 25 studies 
with 2146 patients and 1267 healthy controls and found 78 
deregulated miRNAs, among them miR-21, miR-29a and 
miR-15b were found in more than one study (116). A recent 
meta-analysis of nine studies has suggested miR-21 as a 
potential biomarker for CRC, with a pooled sensitivity and 
specificity of 72% and 85%, respectively (166) as shown 
previously (167). In contrast, Montagnana et  al. have 
contested the use of miR-21 plasma levels as a diagnosis 
and staging CRC tool (168). Interestingly, it was reported 
that in addition to the changes in the level of the circu-
lating miRNAs, miRNA polymorphisms could predict risk 
from CRC such as miR-146a polymorphism (Rs2910164) 
(169). Subgroup and meta-regression analyses of 19 arti-
cles demonstrated that multiple miRNA measurements 
display a higher predictive accuracy than a single miRNA 
in detecting CRC (170). In Table 3 we have summarized the 
most recent publications regarding the role of circulating 
miRNAs as diagnostic and prognostic tool in CRC. A panel 
of miRNAs (miR-31, miR-29c, miR-122, miR-192, miR-346, 
miR-372, miR-374c) was shown to have a very high speci-
ficity and sensitivity to discriminate CRC from adenoma 
when analyzed both in plasma and stool (171).

Melanoma

Melanoma is the deadliest form of skin cancer with an 
increasing incidence worldwide. Its early diagnosis is 
important because the majority of the localized stages 
are curable and cure rates are <15% for patients at AJCC 
stage IV (181). At present, there is no curative therapy for 
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advanced stages of the disease. Currently, lactate dehy-
drogenase (LDH) is the only AJCC circulating biomarker 
approved and used in metastatic disease but LDH has a 
very low specificity. Thus, the identification of efficient 
noninvasive biomarkers is necessary to improve early 
systemic melanoma recurrence and/or response to treat-
ment. Circulating miRNAs related to melanoma remain 
less explored than those of other cancers. However, 
several studies demonstrating the potential interest of 
miRNA in melanoma were reviewed recently (182, 183) 
and the most recent are listed in Table 4. In 2011, the 
first study assessing the diagnostic role of the circulat-
ing miRNAs in melanoma conducted by Kanemaru et al. 
showed that the levels of miR-221, known to be increased 
in melanoma tissues, were increased in the serum of the 
metastatic patients and were correlated with tumor thick-
ness. Thus the authors proposed that the serum level of 
miR-221  might be useful for diagnosis, staging, monitor-
ing of the patients and prognosis (184). Then in 2013, for 
the first time, plasma levels of miR-21 were described to be 
elevated in melanoma and correlated to tumor mass (185). 
Usefulness of the panels of the circulating miRNAs in mel-
anoma was also demonstrated such as a serum-based of 
4 miRNA signature (miR-15b, miR-30d, miR-150 and miR-
425) that predicts recurrence (186) or the ‘MELmiR-7’ panel 
that detects the presence of melanoma with a high sensi-
tivity (93%) and a specificity (≥82%) (187). Moreover the 
co-detection of miR-185 and miR-1246 in plasma allows an 
accurate discrimination of patients with metastatic mela-
noma from healthy individuals with a sensitivity of 90.5% 
and a specificity of 89.1% (188).

Ovarian cancer

Epithelial ovarian cancers (EOC), which account for 90% 
of ovarian cancers, are the leading cause of death among 
gynecological malignancies. The high mortality rate is 
due to the fact that this pathology is asymptomatic up 
to an advanced stage and therefore the diagnosis is most 
often too late. CA-125 is the most routinely used serum bio-
marker but is not sufficiently specific to diagnose EOC at 
an early stage. Indeed, CA-125 is only elevated in approxi-
mately 50% of stage I. New biomarkers for detecting early 
stage of EOC remain a major clinical challenge. About 
20 studies, on circulating miRNAs, have been published 
in ovarian cancers (Table 5 and recent reviews, Refs. 193 
and 194). Firstly they showed the diagnostic then the 
prognostic interest of circulating miRNAs. The first study 
identified a signature of eight exosomal miRNAs (miR-21, 
miR-141, miR-200a, miR-200b, miR-200c, miR-203, miR-205 Ta
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and miR-214) in patients with ovarian cancer compared 
to benign disease (195). Another study, with the largest 
cohort of ovarian cancer patients, showed increase and 
decrease of expression of plasma miR-205 and let-7f, 
respectively, with a high diagnostic accuracy for EOC 
especially in patients with stage I disease (196). Moreover, 
a low rate of let-7f was correlated to poor progression-free 
survival (PFS) (196). The most representative circulating 
miRNAs in ovarian cancers are miR-21, miR-92, mi-93, miR-
141, miR-200a, miR-200b, miR-200c and miR-205 (Table 5 
and Refs. 193, 194).

Prostate cancer

Prostate cancer (PCa) is the most frequently diagnosed 
tumor in men. PSA (prostate-specific antigen) is the 
current gold standard biomarker for the diagnosis and 
response to the treatment of PCa. However, PSA has a 
low specificity with false positive results in patients with 
benign prostatic hyperplasia (BPH). Novel biomarkers 
are needed to distinguish between indolent and aggres-
sive pathology and to reduce the risk of overdiagnosis and 
overtreatment. Many studies have highlighted the interest 
of circulating miRNAs in the diagnosis and prognosis of 
PCa. Recent reviews have been carried out on this subject 
(205–209). Moreover we listed the most recent publica-
tions in Table 6. The potential diagnostic of circulating 
miRNAs in PCa was first reported in 2008. Mitchell and 
coworkers found that serum miR-141 levels can distin-
guish PCa from healthy controls (5). Subsequently, several 
miRNA signatures were identified as accurate biomark-
ers in PCa, such as a panel of five miRNAs (miR-30c, miR-
622, miR-1285, let-7c, let-7e) which discriminates PCa from 
BPH and from healthy controls with a very high accuracy 
area under curve (AUC of 0.924 and AUC of 0.860, respec-
tively) (210) or a signature of 14 serum miRNAs to identify 
patients with a low risk of harboring aggressive PCa (211). 
However, despite the elevated number of studies in PCa, 
only three miRs were regularly reported: miR-141, miR-375 
and miR-21 (Table 6 and refs. 205–209).

Circulating miRNAs analysis 
methods
A comprehensive overview of the circulating miRNAs 
studies unveils great differences in the results with a 
lack of concordance across the different projects (218, 
219). This can partially be explained by methodological 

heterogeneity that affects several steps of the miRNA 
analysis from the sample collection to the post-analyti-
cal steps. Below we will briefly present the main possi-
ble factors of the lack of concordance between the most 
miRNA signatures. Firstly, across the different studies, 
there is a discordance of the source of the circulat-
ing miRNAs such as serum or plasma, of the size of the 
patients and healthy control cohorts, of the preanalytical 
factors (such as delay before sample handling, centrifu-
gation speed, storage temperature and time, freeze/thaw 
cycles, etc.) (90, 218, 220–222). Recent reports highlight 
the importance of proper and systematic sample collec-
tion, preparation and storage to avoid confounding vari-
ables influencing the results (223, 224). Both serum and 
plasma have been equally analyzed but might exhibit 
some differences in the miRNA profiles due in part to a 
release of miRNAs from blood cells or platelets during 
the coagulation process (90, 218, 221). Some precautions 
should also be taken with hemolysis that leads to con-
tamination with red blood cell-enriched miRNAs such 
as miR-486-5p, miR-451, miR-92a, and miR-16. miRNA 
profiles which might be also susceptible to diurnal vari-
ations, fasting, hormonal changes, age of the donors, all 
parameters not often controlled in the various studies 
(218, 220, 221, 225, 226).

Others factors are more analytically related including 
RNA extraction method, measurement platforms, analy-
sis and normalization of data. Several circulating miRNA 
isolation methods are available, phenol-based techniques 
associated or not with silica columns, and phenol-free 
techniques together with columns for RNA isolation (221). 
Differential efficiencies of these methods but with incon-
sistencies among the studies have been reported, depend-
ing notably on the different techniques of detection (225, 
226). Some studies focus on the miRNAs contained within 
the extracellular vesicles such as exosomes. Many tech-
niques are achievable to isolate vesicles in appreciable 
quantity and purity (227). The most common method uses 
differential ultracentrifugation but with several varied 
protocols (227). More recently polymer-based exosome 
precipitation solutions have been developed as a more 
rapid and simple method (227).

The accurate quantification of miRNA in bodily 
fluids is a difficult step due to their low quantity, their 
short sequence length, the high sequence conservation 
among family members, the wide range of miRNA con-
centration in body fluids and the high levels of interfer-
ing molecules measurement. Currently, several methods 
have emerged including hybridization-based approaches 
(like microarrays, nCounter Nanostring technology), 
reverse transcription quantitative PCR arrays (RT-qPCR) 
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and next generation sequencing (NGS) (221, 225). The 
choice of measurement methods depends on the purpose 
of the project. RT-qPCR is the most used method because 
it is easily, quickly performed and has the best sensitiv-
ity, specificity, accuracy and reproducibility. Medium 
throughput profiling of miRNAs based on RTqPCR is pos-
sible with plates or microfluidic cards, using TaqMan® 
hydrolysis probes or locked-nucleic acid primers together 
with Sybr-green detection, the latter appearing to be 
more sensitive and specific (218, 222, 228). On the other 
hand, microarray based on RNA-DNA hybrid capture is 
used to perform an initial screening at lower cost while 
NGS technology allows the search for novel miRNAs or 
 different isoforms (218, 222, 228). RT-qPCR is the gold 
standard technique for validation profiling microarray 
and NGS results (226).

Given all the variations in the source, the isolation 
and detection methods as mentioned above, the nor-
malization of the raw data is a critical step to remove 
variations not related to the biological status (228–231). 
For large scale profiling data, a global mean or quan-
tile normalization is commonly used (220, 228). But this 
method is not suitable for a limited number of miRNAs. 
Furthermore, to correct variability during the purifica-
tion step and RTqPCR efficiency, standardization could 
be done through the use of synthetic spike-in miRNAs 
(such as cel-miR-39) but that does not take into account 
the differences of endogenous miRNA levels and release 
between samples. Following RTqPCR, two quantification 
strategies are used to determine the levels of miRNA. 
Firstly relative quantification measures the comparison 
of the expression levels of the target miRNA and of a ref-
erence gene, making the reference gene choice highly 
critical. Many reference genes have been used; the most 
described are hsa-miR-16 or RNU6 as endogenous genes 
and cel-miR-39 as exogenous gene (Tables 1–6). However, 
their choice has been controversial. Indeed miR-16  was 
shown to be released from hemolytic erythrocytes and 
several studies report that it is deregulated in cancer 
(218). RNU6, is a small nucleolar RNA, not an miRNA, 
therefore the efficiency of its extraction and amplifica-
tion might be different. Some studies suggest that RNA-
U6 may be unsuitable as an endogenous reference gene 
(231–233). The use of multiple reference miRNAs instead 
of a single one is recommended in order to improve 
accuracy and limit the bias of the potential variation of 
the selected miRNA as it will provide statistically more 
significant results and will enable detection of small 
expression differences (231, 234–236). The selection of a 
set of stably expressed genes across the studies could be 
done using algorithms such as GeNorm or NormFinder. 

The published reference gene combinations are multiple 
(Tables 1–6) but no specific combination emerges from 
the studies. The most efficient standardization method 
is the use of relative data normalization with endog-
enous and exogenous reference genes. Further studies 
are needed to identify universal miRNA references. Sec-
ondly, absolute quantification requires a standard curve 
for each miRNA analyzed from known concentrations 
of DNA standard molecules. This method is not optimal 
because it does not consider the influence of RNA 
quality. Droplet digital PCR (ddPCR) appears as a novel 
alternative method providing the advantages of absolute 
quantification without a reference standard curve or an 
endogenous control.

Conclusion
Since their discovery in 2008, as described here, there is 
a plethora of publications assessing the use of circulat-
ing miRNAs as biomarkers in oncology. Despite the great 
enthusiasm for their potential in clinical application, 
currently the circulating miRNA measurement has not yet 
gone into clinical practice. There is not yet any individ-
ual or panel miRNA validated as a biomarker for cancer 
disease. In fact as shown in the different reviews as well 
as in Table 1, very few overlaps could be observed across 
relatively similar studies. Many miRNAs are reported in 
only one publication. Discordant results are sometimes 
published such as for miRNA described upregulated or 
downregulated. Some miRNAs used as reference genes 
in some publications are shown to be differentially 
expressed in other publications (miR-16, miR-103, etc.). 
Moreover, to date, the large majority of studies examined 
only a limited number of samples. Precautions have to 
be taken about the cohort composition since correlations 
of miRNA levels with age, sex and ethnicity have been 
demonstrated.

Thus before clinical application of the measurement 
of circulating miRNAs as biomarkers in oncology, several 
issues have to be overcome. Large-scale inter-laboratory 
studies have to be performed. New advances in standardi-
zation of all the steps in the process of miRNA analysis 
are required to improve knowledge on these new biomark-
ers such as choice of the biofluid, limiting contamination 
from cellular elements, standardization of the preanalytic 
and analytic methods, choice of a reference gene and 
normalization method. Overcoming all these challenges 
is urgently needed to render the promising circulating 
miRNAs as reliable and sensitive biomarkers from the 
bench to the bedside.



74      V. Armand-Labit and A. Pradines: microRNAs as clinical cancer biomarkers

List of abbreviations
AUC area under curve
BPH benign prostatic hyperplasia
EOC epithelial ovarian cancer
LDH lactate dehydrogenase
miRNA microRNAs
NSCLC non-small cell lung cancer
PCa Prostate cancer
ROC receiver operating characteristic curve.
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