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Abstract: The regulation of diverse cellular events by 
proteins that have undergone post-translational modifi-
cation with ubiquitin is well documented. Ubiquitin can 
be polymerized and eight types of polyubiquitin chain 
contribute to the complexity and specificity of the ubiqui-
tin signal. Unexpectedly, recent studies have shown that 
ubiquitin itself undergoes post-translational modification 
by acetylation and phosphorylation; moreover, amyloid-
like fibrils comprised of polyubiquitin chains have been 
discovered. Thus, ubiquitin is not only conjugated to sub-
strate proteins, but also modified and transformed itself. 
Here, we review these novel forms of ubiquitin signal, 
with a focus on fibril formation of polyubiquitin chains 
and its underlying biological relevance.

Keywords: amyloid-like fibril formation; post-transla-
tional modification; ubiquitin.

Introduction
Ubiquitin was first identified in 1975 (1) and its essential 
role in ATP-dependent proteolysis was discovered in 1978 
(2). Myriads of subsequent studies have documented how 
ubiquitin-mediated protein degradation plays a valuable 
role in many cellular events, such as gene transcription 
and cell cycle progression; furthermore, the 2004 Nobel 
Prize in Chemistry was awarded for work on the discov-
ery of ubiquitin-mediated protein degradation. Non-pro-
teolytic functions of ubiquitin – for example, in immune 

response and DNA repair – have also been revealed (3). 
Ubiquitylation (the covalent modification of a protein 
with ubiquitin) has become a common post-translational 
modification of physiological significance equivalent to 
that of phosphorylation, acetylation, and methylation.

Ubiquitin itself is a small protein of 76 amino acid 
residues (8.6 kDa) that are highly conserved in all 
eukary-otes (4): for example, there are only three con-
servative amino acid differences between human and 
yeast ubiquitin (5). A recent study found that an uncul-
tivated thermophilic archaeon (Candidatus ‘Caldiar-
chaeum subterraneum’) also possesses a ubiquitin-like 
protein modifier and its system (6). As its name suggests, 
ubiquitin is present in all types of cell and organization 
of their organisms (1). Intriguingly, its intracellular con-
centration is extremely high (approx. 85 μm) (7) and the 
amount of (un-)conjugated ubiquitin molecules is tightly 
controlled in cells (8).

Eukaryotes utilize ubiquitin in a monomeric and/or 
polymeric form as a reversible protein tag to regulate pro-
teolytic functions and non-proteolytic events. To provide 
a signal as such, ubiquitin is covalently conjugated to 
intracellular substrate proteins in successive enzymatic 
reactions brought about by ubiquitin-activating (E1), 
ubiquitin-conjugating (E2), and ubiquitin ligase (E3) 
enzymes (9, 10). Ubiquitin is first activated by formation 
of an E1-ubiquitin thioester in an ATP-dependent manner 
and then transferred to the catalytic cysteine residue of an 
E2 enzyme. Lastly, an E3 enzyme catalyzes the formation 
of an isopeptide bond between the lysine residue on the 
target protein and the C-terminal glycine residue of ubiq-
uitin. In some cases, a covalent bond is formed between 
the N-terminus of the substrate protein and the C-terminus 
of ubiquitin (N-terminal ubiquitylation) (11). Downstream 
proteins containing a ubiquitin-binding domain (UBD) 
interact with conjugated ubiquitin molecules in cells, 
and these interactions function to control various cellular 
events (12). In contrast, deubiquitinating enzymes (DUBs) 
can remove the ubiquitin tag from a substrate protein (13), 
and this reaction is counterbalanced by the action of the 
E1-E2-E3 machinery (8).
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Importantly, anchored ubiquitin tags have various 
linkage types and lengths. Ubiquitin is attached to 
target proteins not only as a single moiety (monoubiq-
uitylation), but also as several independent ubiquitin 
molecules (multi-monoubiquitylation) or a polymeric 
ubiquitin chain. In the latter chain formation, the C-ter-
minus of a given ubiquitin molecule is covalently conju-
gated to either the N-terminal residue (M1) or one of seven 
lysine residues (K6, K11, K27, K29, K33, K48, and K63) of 
another ubiquitin molecule (3). Interestingly, the topol-
ogy of ubiquitin chains depends on its chain linkage; in 
other words, different linking of ubiquitin chains results 
in distinct conformations. The ubiquitin monomer pos-
sesses two solvent-exposed hydrophobic patches (cen-
tered on I36 and I48) (14), and ubiquitin-binding proteins 
distinguish between different types of ubiquitin chain 
by interacting with topological features of the hydropho-
bic patches (12, 15–17). All eight linkage types have been 
structurally characterized by using X-ray crystallography, 
small angle X-ray scattering (SAXS), and nuclear mag-
netic resonance (NMR) spectroscopy. M1-, K27-, K29-, and 
K63-linked diubiquitin form extended structures (18–21), 
whereas K6-, K11-, K33- and K48-linked diubiquitin form 
compact structures owing to the interactions between 
the two hydrophobic patches (22–27). In addition, a 
recent study suggested that each type of ubiquitin chain 
possesses the linkage-dependent dynamics as well as a 
linkage-specific conformation (28–30). In solution, each 
ubiquitin chain does not adopt a single conformation, 
but is in equilibrium among its own different conforma-
tions: extended or compact structures. The distribution of 
conformations is different depending on the linkage type 
of ubiquitin chains. Intriguingly, ubiquitin-binding pro-
teins may recognize a pre-existing conformation of each 
ubiquitin chain (28).

This diversity means that ubiquitylation contributes 
to the regulation of many cellular events. For example, 
monoubiquitylation regulates endocytosis and DNA 
repair (31, 32), and K48-linked poly-ubiquitylation pre-
dominantly mediates ATP-dependent proteasomal deg-
radation (33). In contrast, K63-linked poly-ubiquitylation 
regulates non-proteolytic protein function, subcellular 
localization, and protein-protein interactions (3, 12), 
although some reports indicate that it might also be 
related to the proteolytic system or lysosomal degrada-
tion (34). K11-linked polyubiquitylation has been involved 
in cell cycle regulation (24). M1-linked poly-ubiquityla-
tion plays an essential role in NF-κB activation related to 
inflammatory, anti-apoptosis, and immune pathways (35, 
36). The roles of the other four types of ubiquitin chain 
(K6, K27, K29, and K33) have been less apparent, but data 

on their specific functions are just starting to emerge (37). 
Overall, it is clear that ubiquitylation acts as a code to 
store and transmit information by means of the specific 
recognition of polyubiquitin chains and/or substrate pro-
teins by downstream proteins (17).

Both homo-typic (possessing a single type of linkage) 
and hetero-typic (possessing a mixed linkage or branched) 
ubiquitin chains have been identified recently (38–42). 
In addition, ubiquitylation mixed with sumoylation (the 
covalent modification of a protein with small ubiquitin-
like modifier, SUMO) has also been observed (43). Most 
recently, post-translational modifications (acetylation 
and phosphorylation) of ubiquitin itself have been discov-
ered (44–47). Furthermore, our previous study revealed 
the length-dependent fibril formation of poly-ubiquitin 
chains (48). Namely, ubiquitin is not only conjugated to 
substrate proteins, but also modified and transformed 
into fibrils. On the one hand, the quantitative mass spec-
troscopic studies have revealed that approximately 80% 
of ubiquitin chains comprise K48 and K63 linkages (7, 49). 
On the other hand, the intracellular proportion of these 
novel and minor types of ubiquitylation is limited. Nev-
ertheless, they seem to be indispensable for specific bio-
logical events; for example, the percentage of M1-linked 
ubiquitylation in total linkages is 0.01–0.02% (44, 49), 
but the M1-linked ubiquitylation is an important regulator 
of NF-κB signaling (35, 36). Here, we review the recently 
discovered post-translational modifications and the trans-
formation of ubiquitin to polyubiquitin fibrils (Figure 1). 
In particular, we focus on fibril formation of polyubiqui-
tin chains and discuss its possible roles in intracellular 
protein aggregation.

Post-translational modifications 
of ubiquitin
Ubiquitin is not only modified by ubiquitin itself. Accord-
ing to the PhosphoSite Plus database (50), ubiquitin 
has been reported to be acetylated at K6, K11, K27, K29, 
K33, K48, and K63; phosphorylated at T7, T12, T14, S20, 
S57, Y59, S65, and T66; and sumoylated at K11 and K63. 
However, the physiological relevance and biological 
functions of these modifications have mostly remained 
unclear. Recently, acetylated ubiquitin at K6 or K48 
(AcK6 or AcK48) and phosphorylated ubiquitin at S65 
have been functionally identified. Other recent review 
articles provide a detailed discussion of such post-trans-
lational modifications (51, 52); therefore, they are briefly 
described here.
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Acetylation of ubiquitin

In 2015, the functions of AcK6 or AcK48 were reported 
(44). Lysine acetylation is a reversible post-transla-
tional modification and regulates protein functions 
by neutralizing the positive charge of lysine residues 
(53). K6 and K48 are located close to the hydrophobic 
patch centered on I44, which forms the interface with 
ubiquitin-binding proteins. This suggests that AcK6 
and AcK48 might alter the charge of the hydrophobic 
path and that these modifications might affect recog-
nition of ubiquitin. In fact, acetylation represses the 

elongation of ubiquitin chains (K11-, K48-, and K63-
linked), but it does not significantly affect the ability 
of acetylated ubiquitin molecules to conjugate to the 
substrate protein (monoubiquitylation). In other words, 
acetylation of ubiquitin does not inhibit activation of 
ubiquitin by E1 enzymes nor its subsequent transfer to 
E2 enzymes. In contrast, the acetylation inhibits poly-
ubiquitin chain elongation mediated by the E2 enzymes 
(CDC34, UBE2K, UBE2S, UBC13-UEV1a, RAD6, and 
UBCH5). The two acetylation sites (K6 and K48) are close 
to the interaction surface of the acceptor ubiquitin with 
the E2 enzyme (UEV1a) (54). In addition, the interaction 
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Figure 1: Conventional and novel types of ubiquitylation.
Ubiquitin molecules are covalently conjugated to substrate proteins in monomeric or polymeric forms. Conjugated (poly-)ubiquitin mol-
ecules can be cleaved and recycled by DUBs. The intracellular reservoir of ubiquitin consists of monomeric ubiquitin and unanchored short 
chains for maintaining adequate levels of ubiquitin molecules. Not only eight types of homo-typic ubiquitin chains, but also branched 
or mixed ubiquitin chains have been identified. In this manuscript, the two types of novel ubiquitin signal have been reviewed: right, 
post-translational modification of ubiquitin; left, fibril formation of polyubiquitin chains. The post-translational modifications reported in 
the PhosphoSite Plus database are shown in the upper right box. Acetylation of ubiquitin at K6 inhibits ubiquitin chain elongation, which 
contributes to stabilization of histone H2B in cells. Phosphorylation of ubiquitin at S65 impairs both elongation and hydrolysis of ubiq-
uitin chains. In addition, phosphorylated (poly-)ubiquitin at S65 activates parkin and this contributes to the efficient mitophagy. On the 
other hand, polyubiquitin chains are thermodynamically destabilized in a chain-length-dependent manner and can form fibril by heat or 
mechanical forces. Their fibrillar aggregates are selectively degraded by autophagy, but impairment of autophagy results in accumulation of 
ubiquitin-positive inclusions. Question marks represent that no factor has been identified in the indicated pathway.
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surfaces of the acceptor ubiquitin with the E2 enzymes 
(CDC34, UBE2K, UBE2S, and UBCH5) are also located 
near the K6 residue (55–58). Because formation of iso-
peptide link between a donor ubiquitin and an accep-
tor ubiquitin is mediated by the interaction of the E2 
enzyme with the acceptor ubiquitin (54), the decreased 
affinity of the E2 enzymes for ubiquitin by the acetyla-
tion inhibits elongation of ubiquitin chains (44).

The repression of chain elongation in cells would 
result in the inhibition of signal transduction specific to 
polyubiquitin chains. So far, the only reported example 
is monoubiquitylation of histone H2B, which is found to 
be stabilized by acetylated ubiquitin in cells. Although it 
remains unclear whether this stabilization is caused by 
the repression of proteolysis-related polyubiquitylation or 
by other mechanisms, acetylated ubiquitin seems to have 
a role in stabilizing monoubiquitylation of the endog-
enous substrate protein in cells.

Mass spectrometry has indicated that the proportion 
of AcK6 and AcK48 molecules in total ubiquitin is very low 
at approximately 0.03% and 0.01%, respectively (44). The 
mass spectrometry has also showed that M1-linked ubiq-
uitin chains constitute 0.02% of total ubiquitin (44). As 
discussed above, M1-linked ubiquitylation is an important 
regulator of NF-κB signaling in spite of its low abundance 
in cells (35, 36). Therefore, acetylation of ubiquitin might 
be directed at specific targets in cells although its intra-
cellular proportion seems to be limited. Further studies 
need to focus on identifying both endogenous substrates 
of acetyl-ubiquitylation (i.e. the conjugation of acetylated 
ubiquitin) and the related biological significance of these 
modifications.

Phosphorylation of ubiquitin

As indicated above, ubiquitin has been reported to be 
phosphorylated at eight residues (T7, T12, T14, S20, S57, 
Y59, S65, or T66), but three different research groups have 
simultaneously found that phosphorylation at S65 plays 
an essential role in the selective degradation of damaged 
mitochondria by autophagy (mitophagy) (45–47). During 
PINK1- and parkin-mediated clearance of damaged mito-
chondria, it is important to accelerate the E3 ubiqui-
tin ligase activity of parkin because at steady state this 
enzyme forms an auto-inhibited conformation (59–61). 
Dysfunction-related mutations in PINK1 or parkin cause 
an intracellular accumulation of damaged mitochondria, 
followed by an abnormal generation of reactive oxygen 
species (ROS), which can trigger autosomal recessive Par-
kinson’s diseases.

So far, it has been shown that both phosphorylation 
of the N-terminal ubiquitin-like (Ubl) domain of parkin by 
PINK1 (62, 63) and allosteric association of phosphoryl-
ated ubiquitin with parkin (45–47) are required for enzy-
matic activation. The structure of the Ubl domain is similar 
to that of ubiquitin (64), and both the Ubl domain and 
ubiquitin are phosphorylated at S65 by PINK1; however, 
the structural roles of these two phosphorylation events 
are different, although both of them can induce confor-
mational rearrangements of parkin. On the one hand, 
phosphorylation of the Ubl domain has been proposed 
to induce release of the domain from the core structure 
including the enzymatic center. Because the Ubl domain 
interacts with the E2-binding site in the RING1 domain in 
an auto-inhibited state (59–61), its release may enhance 
the enzymatic activity (65). On the other hand, phospho-
rylated ubiquitin interacts with another surface in the 
RING1 domain, which induces conformational changes of 
a helix near the RING1 domain, suggesting that binding 
of phosphorylated ubiquitin would induce release of the 
Ubl domain and subsequent phosphorylation of the Ubl 
domain (65). Thus, although there is little structural dif-
ference between the Ubl domain and ubiquitin, phospho-
rylation of Ubl causes inhibition of the domain-domain 
interaction, while phosphorylation of ubiquitin generates 
a novel protein-protein interaction.

The proportion of phosphorylated ubiquitin is 0.05% 
of total ubiquitin in intact cells, but it rises to approxi-
mately 3% when mitochondria are depolarized (47). 
These cellular amounts would seem to be insufficient for 
activation of parkin; however, the local concentration 
is relatively high on mitochondria: ~20% of ubiquitin 
on depolarized mitochondria is phosphorylated (66). In 
addition, overexpression of phosphorylation-deficient 
ubiquitin (S65A mutants) results in delayed activation of 
parkin (46, 47), suggesting that phosphorylation of ubiq-
uitin and the association of phosphorylated ubiquitin 
with parkin are necessary for the clearance of damaged 
mitochondria. Not only monoubiquitin but also K48- and 
K63-linked polyubiquitin chains are reported to be phos-
phorylated, which also enhances the enzymatic activities 
of parkin (67).

Phosphorylation of ubiquitin at S65 has been shown 
to have a novel biological role in the clearance of damaged 
mitochondria and has also been shown to alter physico-
chemical and biochemical properties of ubiquitin itself 
(68). Although there is no clear conformational difference 
between unphosphorylated and phosphorylated ubiqui-
tin, phosphorylation results in significant changes in the 
electrostatic surface potential of the molecule and gen-
erates a new minor conformation containing a different 
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hydrophobic patch (68). This phosphorylation has no 
influence on the E1-mediated formation of an E2-ubiquitin 
complex, but it inhibits both discharge of the E2 enzyme 
to form ubiquitin chains and hydrolysis of the chains by 
DUBs, thereby affecting chain synthesis and cleavage. 
Although the physiological relevance of the changes 
induced by phosphorylation has not been fully elucidated, 
phosphorylation of ubiquitin affects ubiquitin-specific 
interactions with ubiquitin-binding proteins and some of 
the related enzymatic reactions are impaired; in particu-
lar, inhibition of the hydrolytic cleavage of the phospho-
rylated ubiquitin chains by DUBs might contribute to the 
stabilization of specific signals on mitochondria.

Polyubiquitin chains: new 
 physicochemical properties and 
unexpected transformations
In addition to the post-translational modifications of ubiq-
uitin as described above, novel physicochemical proper-
ties, as well as the ‘transformation’, of ubiquitin chains, 
have been recently identified and described (48).

Length-dependent physicochemical 
 properties of ubiquitin chains

On the one hand, ubiquitin is well known to possess 
exceptional physical and chemical stability. On the other 
hand, little is known about the physicochemical proper-
ties of polyubiquitin chains. As discussed above, ubiq-
uitin moieties are oriented in different ways depending 
on the linkage point of the polyubiquitin chain. Previous 
structural studies have shown that the tertiary structure 
of ubiquitin moieties in polyubiquitin chains almost 
matches that of monoubiquitin. Although structural 
studies have suggested that a chain length of two to four 
ubiquitin units may be sufficient for specific recognition 
by ubiquitin-binding proteins (3), polyubiquitin chains of 
more than four units in length are commonly observed in 
cells. An early study indicated that longer chains might 
be bound more tightly by ubiquitin-binding proteins, and 
polyubiquitin signals with more than four units seem 
to provide an efficient protein degradation signal (69). 
Nevertheless, there is little structural evidence to show 
how polyubiquitin chains longer than tetra-ubiquitin 
are recognized. In addition, excessively long polyubiqui-
tin chains would seem to be paradoxical, given that the 

biosynthesis of such long chains demands a great deal of 
cellular energy in form of ATP.

Notably, despite the exceptional structural rigidity 
and high solubility in vitro, ubiquitin chains have been 
identified as a major component of protein inclusion 
bodies in various intractable diseases, including cancer 
and neurodegenerative disorders such as Alzheimer’s 
disease, Parkinson’s disease, and amyotrophic lateral 
sclerosis (70–76). In some cases, ubiquitylated aggregate-
prone proteins might contribute to formation of ubiqui-
tin-positive aggregates, i.e. the aggregate-prone proteins 
form aggregates and attached ubiquitin chains may be just 
entrapped by the aggregates. For example, α-synuclein 
is one of the aggregate-prone proteins and its intracel-
lular aggregates contain ubiquitylated α-synuclein (77). 
Alternatively, dysfunction of the proteolysis system is 
suggested to cause accumulation of ubiquitin-positive 
inclusions. Indeed, protein aggregates including ubiqui-
tin chains are thought to be the result of failure to elimi-
nate ubiquitylated substrates by the 26S proteasome or 
autophagy. In neurodegenerative diseases, some stress 
factors such as ROS and neurotoxic compounds may lead 
to dysfunction of the proteolysis system (78). However, 
the detailed formation mechanism and function of the 
ubiquitin-positive inclusion bodies remain unclear. This 
implies that polyubiquitin chains have as yet unidenti-
fied features.

Differential scanning calorimetry analysis has 
revealed the novel thermodynamic properties of poly-
ubiquitin chains that are significantly different from that 
of monoubiquitin. The denaturation point of ubiqui-
tin monomer is close to the boiling point of water and it 
refolds easily after heat denaturation (79). However, these 
properties are found to be weakened simply by its cova-
lent linkage to another ubiquitin or another protein mol-
ecule (48). A longer ubiquitin chain is further destabilized 
regardless of the linkage type, and no ubiquitin polymers 
show thermal reversibility. Although polyubiquitin chains 
are a type of repeat protein, other repeat proteins have 
been reported to show increasing thermodynamic stability 
with increasing numbers of units (80, 81). In these cases, 
the interactions between monomeric units contribute to 
the thermodynamic stabilization. Such hydrophobic inter-
actions between units are also observed in K48-linked 
ubiquitin chains (26, 82); nevertheless, these chains are 
destabilized in a chain-length-dependent manner. This 
length-dependent destabilization seems to be specific to 
ubiquitin chains, suggesting that the covalent conjugation 
of ubiquitin may destabilize the ubiquitin molecule that 
is attached. Indeed, recent computational studies have 
discussed the possibility that ubiquitylation may induce 
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thermodynamic destabilization of the attached protein 
(83, 84).

Fibril formation of polyubiquitin chains

The length-dependent thermal destabilization of poly-
ubiquitin chains has been shown to result in amyloid-like 
fibril formations (48). Whereas no aggregate of monoubiq-
uitin is observed after heat denaturation, polyubiquitin 
chains form fibrillar insoluble aggregates after heat dena-
turation. Regardless of the chain length or the linkage 
type, all ubiquitin chains form fibrils after heat denatura-
tion. The fibrils show morphology very similar to that of 
amyloid-like fibrils reported previously (85); in addition, 
the fibrils form β-rich secondary structure and are stained 
by thioflavin T. Previously, it has been reported that the 
thermodynamic destabilization of a protein is corre-
lated with its propensity to aggregate in the case of other 
fibrillogenic proteins such as α-synuclein and tau (86, 87). 
This suggests that the length-dependent thermodynamic 
destabilization of polyubiquitin chains might induce fibril 
formation.

In addition, it is well known that hydrodynamic forces 
(agitation or shear forces) induce the formation of amyloid 
fibrils in fibrillogenic proteins such as Aβ, insulin, 
lysozyme, and β-lactoglobulin (88). Indeed, polyubiquitin 
chains also form fibrils upon moderate agitation or shear 
forces in a Couette cell, regardless of the chain length or 
linkage type (48). As expected, the responses of polyubiq-
uitin chains to such mechanical forces correlate with their 
thermodynamic stability: i.e. a longer chain forms fibrillar 
aggregates faster or with smaller forces. Elongated mole-
cules may be more easily affected by external mechanical 
stress because they undergo larger anisotropic Brownian 
motions.

In the agitation experiments, M1-linked ubiquitin 
chains were found to form aggregates more easily than 
K48-linked ones (48). In contrast, previous atomic force 
microscopy (AFM) studies have shown that the force 
required to unfold K48-linked ubiquitin chains is smaller 
than that required to unfold M1-linked ones (89, 90). On 
the one hand, the mechanical forces in those AFM experi-
ments were used to stretch a single ubiquitin chain mol-
ecule. On the other hand, not only energy for partial 
deformation of the molecules, but also their inter-molec-
ular interactions are required for the formation of fibrillar 
aggregates. It is possible, therefore, that the inter-molec-
ular interactions occur more frequently or easily when 
M1-linked ubiquitin chains are agitated as compared with 
K48-linked ones. Further studies should focus on the 

mechanism by which mechanical forces induce the forma-
tion of ubiquitin chains.

Formation of intracellular aggregates 
of ubiquitin

Polyubiquitin chains of all linkage type are found 
within the ubiquitin-positive inclusion bodies in livers 
with impaired proteasome activity (48) or those that are 
autophagy-deficient (48, 91). These inclusion bodies are 
also frequently observed in neurodegenerative diseases 
(70–76), suggesting that the length-dependent properties 
of ubiquitin chains may be related to aggregate formation. 
Indeed, the length-dependent propensity of polyubiqui-
tin chains to aggregate in vitro has also been observed in 
living cells (48). Monoubiquitin expressed in cells does 
not form aggregates; however, recombinantly expressed 
M1-linked hexa-ubiquitin forms aggregates in the cytosol. 
In cells, there are likely to be several intracellular forces 
due to cytoplasmic streaming or macromolecular crowd-
ing. Polyubiquitin chains are subject to such intracellu-
lar forces and, as a result, may form aggregates in cells. 
Notably, simple overexpression of polyubiquitin chains 
seems to be sufficient for intracellular aggregate forma-
tion. In contrast, the cellular ubiquitin pool includes 
unanchored polyubiquitin chains (~3-mer) that can gen-
erate free ubiquitin molecules (8, 92) and intracellular 
forces may constitutively affect their endogenous chains. 
However, the intracellular concentration of such unan-
chored chains may not be enough for aggregation, and 
they dynamically undergo both cleavage by DUBs and 
re-synthesis (8), suggesting that substantial formation of 
aggregates of polyubiquitin chains may hardly occur in 
healthy cells. Instead, an increase in the concentration of 
polyubiquitin chains owing to proteasome dysfunction or 
dysregulated deubiquitylation may lead to their aggregate 
formation.

If intracellular aggregates of polyubiquitin chains 
continue to accumulate in cells, the cells will die due to 
endoplasmic reticulum stress and/or abnormal inhibition 
of inherent cellular functions (93). In particular, the accu-
mulation of polyubiquitin aggregates in neurons leads to 
neurodegeneration (94). Indeed, on the one hand, ubiq-
uitin-positive aggregates are known to be hallmarks of 
neurodegenerative diseases, as described above (70–76). 
On the other hand, the ubiquitin-positive aggregates are 
thought to be selectively eliminated by autophagy (aggre-
phagy) (94, 95). Ubiquitin-adaptor proteins such as p62 
and NBR1 recognize ubiquitin on the aggregates and the 
core Atg proteins form an autophagosome, which then 
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fuses with a lysosome, leading to the degradation of its 
constituents (95). The process of aggrephagy is indispen-
sable for eliminating of polyubiquitin aggregates and its 
impairment causes the accumulation of ubiquitin-positive 
aggregates (48, 94). In contrast, it seems to be difficult to 
degrade the aggregates via the proteasome due to their 
size and volume; moreover, they impair the ubiquitin-
proteasome system (96). Recently, it has also been found 
that dysfunction of the proteasome leads to the activation 
of autophagy (97, 98).

Polyubiquitin aggregates not only are autophagic 
cargo, but also have been proposed to serve as an initia-
tion signal for aggrephagy (48). Solution NMR studies have 
indicated that the ubiquitin-adaptor proteins p62 and 
NBR1 recognize the fibrillar form of polyubiquitin chains. 
Although the structures of the fibrils may be partially or 
entirely different from those of native ubiquitin chains, 
ubiquitin-adaptor proteins have the ability to bind to the 
fibrillar aggregates in vitro and they are co-localized with 
them in cells (48). Furthermore, over-expression of poly-
ubiquitin chains results in S351-phosphorylation of p62 
and co-localization of endogenous LC3 (48), indicating 
that polyubiquitin aggregates activate aggrephagy (95, 99).

Thus, the intracellular aggregate formation of poly-
ubiquitin chains has two different aspects: first, the 
abnormal accumulation of aggregates displays cytotoxic-
ity, leading to neurodegeneration; second, the aggregates 
function as signals to eliminate protein aggregates effi-
ciently. Previously, it was reported that ubiquitylation is 
involved in the sequestration of misfolded proteins (100, 
101). The insolubilization caused by aggregate formation 
would prevent any undesired activities of the substrate 
proteins in cells (102, 103). Therefore, the protein aggre-
gates sequestered by ubiquitylation need to be rapidly 
degraded by autophagy before they form large inclusions. 
Notably, the dysfunction or inactivation of autophagy has 
been observed in senescent cells (104, 105), which may 
result in the cytotoxic accumulation of ubiquitin-positive 
aggregates.

Expert opinion
Approximately 30 000 kinds of proteins have been iden-
tified in the human proteome (106) and they maintain 
cellular homeostasis with other components such as 
peptides, nucleotides, and lipids. Because ubiquitylation 
controls the activity, lifetime, and localization of the pro-
teins, it plays an important role in the homeostasis. The 
diverse ways in which polyubiquitin chains can be linked, 

coupled with a sufficient number of specific E3 ligases, 
seem to have the ability to regulate many types of cellular 
events. Recently, however, it has been found that not only 
is ubiquitin used for conjugation and/or polymerization, 
but it is also acetylated and phosphorylated; furthermore, 
it can form fibrils (Figure 1). Increasing evidence indicates 
that ubiquitin shows a wider variety of signaling and that 
eukaryotes use ubiquitin in more different ways than pre-
viously thought.

On the one hand, acetylation and phosphorylation 
alter the inherent function of the ubiquitin signal: acety-
lation of ubiquitin represses elongation of the ubiquitin 
chain, while phosphorylation inhibits the formation of 
ubiquitin chains as well as the hydrolysis of chains by 
DUBs. Phosphorylation also provides a novel biological 
function as an allosteric effector. On the other hand, the 
fibril formation of polyubiquitin chains seems to be an 
inherent property of ubiquitin chains themselves. Wild-
type polyubiquitin chains show chain-length-dependent 
destabilization and have the ability to form fibrils. This 
feature contrasts with other amyloid-prone proteins, many 
of which are truncated and/or carry mutations (86, 107), 
and might account for the pathological ubiquitin-positive 
aggregates observed in human sporadic proteinopathies 
without genetic mutations.

Collectively, these recent new findings indicate that 
ubiquitin acquires its multifunctional features by diverse 
types of polymerization, post-translational modifica-
tion, and transformation. Nevertheless, several questions 
about the ubiquitin signal remain. Is the acetylation or 
phosphorylation of ubiquitin a reversible reaction in 
cells? If so, how is their quite low abundance in cells main-
tained? Do other post-translational modifications of ubiq-
uitin have biological significance? What is the structure of 
polyubiquitin fibrils? What are the biological functions of 
ubiquitin chains with minor linkage-types (K6, K27, K29, 
and K33)? How is ubiquitin itself degraded? What is the 
intracellular localization of each ubiquitin signal? Future 
studies should aim to answer these questions and reveal 
the underlying mechanisms.
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