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Abstract: In the interstitium of the connective tissue 
several types of cells occur. The fibroblasts, responsible 
for matrix formation, the mast cells, involved in local 
response to inflammatory stimuli, resident macrophages, 
plasma cells, lymphocytes, granulocytes and monocytes, 
all engaged in immunity responses. Recently, another type 
of interstitial cell, found in all organs so far examined, has 
been added to the previous ones, the telocytes (TC). In the 
gut, in addition to the cells listed above, there are also 
the interstitial cells of Cajal (ICC), a peculiar type of cell 
exclusively detected in the alimentary tract with multiple 
functions including pace-maker activity. The possibility 
that TC and ICC could correspond to a unique cell type, 
where the former would represent an ICC variant outside 
the gut, was initially considered, however, further stud-
ies have clearly shown that ICC and TC are two distinct 
types of cells. In the gut, while the features and the roles 
of the ICC are established, part of the scientific commu-
nity is still disputing these ‘new’ interstitial cells to which 
several names such as fibroblast-like cells (FLCs), intersti-
tial Cajal-like cells or, most recently, PDGFRα+ cells have 
been attributed. This review will detail the main features 
and roles of the TC and ICC with the aim to establish their 
relationships and hopefully define the identity of the TC 
in the gut.
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Introduction

The term telocyte (TC) was introduced for the first time in 
the scientific literature in 2010 (1). Since these cells were 
described, an increasing number of papers have been 
published on this issue and cells with TC features have 
been found in almost all mammalian organs (2–7). These 
cells reside in the interstitium of the connective tissue 
and are characterized by peculiar features seen using 
transmission electron microscopes (TEM).

More than a century ago, Santiago Ramon y Cajal 
described a particular cell type in the gastrointestinal 
tract (GI) that appeared to function as an ‘endostruc-
ture’ of the intrinsic nervous system; he named these 
cells ‘interstitial neurons’ because they were identifiable 
through staining techniques which specifically labeled 
neurons (e.g. methylene blue or silver impregnation) and 
were located in the interstitium between nerve endings 
and smooth muscle cells (SMCs) (8). Subsequent work 
established their structural and functional characteris-
tics and these cells were finally named interstitial cells of 
Cajal (ICC) (9–14).

Thanks to the research group of Prof. Popescu, the 
possibility that TC and ICC could correspond to a unique 
cell type where the TC represented an ICC variant dis-
tributed in other organs outside the gut was considered. 
The controversial results obtained by different research 
groups testing this possibility, caused the TC cells to be 
initially named as interstitial Cajal-like cells (ICLC) (2). In 
2010 the ambiguous term of ICLC was abandoned and TC 
was finally proposed (1).

To date, part of the scientific community is still ques-
tioning in regard to the existence of the TC as a unique 
type of cell with proper morphological peculiarities and 
roles. In the gut, while the morphology, the topography 
and the roles of the ICC are established, this ‘new’ cell 
type, also named fibroblast-like cell (FLC), or ICLC or, 
most recently, PDGFRα+ cell, is still looking for a proper 
identity and it is matter of debate whether TC and ICC are 
somehow related.
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The present review will discuss the morphological 
and functional properties of TC and ICC in the mammalian 
gastrointestinal tract.

Interstitial cells of Cajal (ICC)
After Cajal described the ‘interstitial neurons’ many mor-
phologists investigated these cells, establishing their 
embryological origin (mesenchyme), common to the SMC 
and different from that of the neuronal cells (15), confirm-
ing their location in the interstitium and demonstrating 
their ability to form networks. Contemporarily, physiolo-
gists were able to attribute to them the role of pacemakers 
for gut peristalsis, being able to generate slow waves (13, 
16–18). Indeed, a combination of morphological and func-
tional investigations was also able to demonstrate that the 
ICC play a role of intermediate in neurotransmission (12, 
17–19). Another function attributed to some ICC popula-
tions is that of being part of the ‘stretch receptor’. In par-
ticular, in the small intestine this role would be played by 
the ICC-DMP (11, 12, 20, 21), in the stomach, by the ICC-IM 
(22).

c-Kit receptor

A fundamental contribution to the ICC studies came from 
the discovery that these cells express the c-Kit recep-
tor, a type III tyrosine kinase receptor (23). By using the 
c-Kit labeling, the ICC were found throughout the entire 
gut wall and showed similar, but not identical, locations. 
Moreover, it was verified that the ICC form networks, are 
closely apposed to nerve endings and connected to the 
SMC by gap-junctions (Figure 1).

In regard to their location the ICC can be divided in 
two main groups. One group, corresponding to the ICC 
located at the myenteric ganglionated plexus level, is 
identified with the acronym ICC-MP (myenteric plexus) or 
ICC-AP (Auerbach plexus), and corresponds to a homog-
enous population of ICC forming a 3-D network around 
the ganglia and the nerve strands of the myenteric plexus 
in the entire GI tract. A second group, corresponding to 
the ICC located intramuscularly (11), form 3-D and/or 2-D 
nets independently of the gut tract and on the muscle 
wall portion where they are located. Accordingly, in the 
esophagus and stomach, these ICC reside almost exclu-
sively endowed in the thickness of the muscle layers (ICC-
IM) forming a 3-D net. In the small intestine two distinct 
subpopulations are present, one located in the thickness 
of the muscle layers (ICC-IM) forming a 3-D web, and the 

Figure 1: ICC. Fluorescence microscope. Transmission electron 
microscope.
(A) c-Kit/PGP9.5 double labeling in guinea pig small intestine. 
Numerous PGP9.5 (red) varicosities are closely apposed to the ICC 
(green). Transmission electron microscope (TEM). (B) A nerve ending 
(NE) take a strict contact (black asterisks) with an ICC which, in turn, 
make a gap junction (white asterisks) with a smooth muscle cells 
(SMC). Bar: A = 28 μm; B = 0.5 μm.

other, peculiar to this tract of the intestine, located in 
a thin and intricate aganglionated nerve plexus named 
deep muscular plexus (DMP; ICC-DMP) forming a 2-D 
web. Finally, in the large intestine there are still two sub-
populations: one intramuscular (ICC-IM) and the other 
one, once again peculiar to this region, located at the 
border between the circular muscle layer and the submu-
cosa, in strict relation with the submucous plexus (SMP), 
and named ICC-SMP. The manipulation of the c-Kit recep-
tor (24) has allowed to ascertain which ICC populations 
are mainly responsible for the slow waves generation in 
the different regions of the GI tract (25). In fact, although 
the ICC are commonly referred to as the pacemaker of gut 
peristalsis, this role is not played by the same ICC popu-
lations. In the small intestine this role is played by the 
ICC-MP while in the large intestine the ICC-SMP are the 
dominant pacemakers. In the stomach, the ICC-MP are 
considered the pacemakers; however, in mutant mice 
lacking the ICC-MP, slow waves are generated by the 
ICC-IM (24–27). The c-Kit receptor expression has been 
related to ICC differentiation. Briefly, it has been dem-
onstrated that this receptor is necessary for the ICC-MP 
differentiation and the maintenance of their phenotype; 
while it is fundamental for the maintenance of the differ-
entiated state of the ICC-IM (28).
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small intestinal motility (37). Moreover, using WWv mice 
that lack intramuscular ICC (ICC-IM), electrical stimula-
tion of nitrergic nerves was not followed by a significant 
muscle relaxation, and stimulation of cholinergic nerves 
did not cause the appearance of excitatory junction poten-
tials in SMCs, leading to the conclusion that innervation 
did not occur via direct communication between nerves 
and smooth muscle but that ICC was an essential interme-
diary (see 38 for review).

ICC plasticity

ICC are commonly affected in several motility disor-
ders. Experimentally, however, the resolution of these 

ANO-1 receptor

Another marker, considered by some authors even better 
than the c-Kit for the ICC identification (29), was recently 
found; the anoctamin 1 (ANO1). It is a Ca2+-activated 
chloride channel necessary for slow wave generation 
and devoid of any effect on ICC differentiation (30). In 
knock-out mice for caveolin-1 gene, an integral membrane 
protein of the caveolae highly expressed in the ICC, the 
ANO1 expression disappeared in the ileal ICC while the 
c-Kit labeling was maintained. This datum suggested that 
ANO1, but not the c-Kit receptor, is strictly related to the 
caveolae integrity and functionality (Figure 2) (31).

ICC and nerve contacts

All the ICC populations receive nerve terminals; however, 
great differences in the number and vicinity of these con-
tacts have been described (11) suggesting that there are 
ICC such as the ICC-DMP almost exclusively engaged in 
the neurotransmission (12). Moreover, it has been shown 
that ICC express molecules indicative of their role either 
in excitatory (NK1 receptor) (32) or inhibitory (nitric oxide 
synthase) (12, 33, 34) neurotransmission. These data point 
out that ICC are under direct neural control and that, by 
their contact, they transmit information to each other and 
to SMCs, according to the Cajal hypothesis. Interestingly, 
by using one of the c-kit mutant mouse strains, the W/We, 
it was reported that the ICC-DMP, commonly considered 
spared by the gene mutations (24, 28, 35, 36), lost the NK1 
receptor and received a significant reduced number of 
SP nerve endings (Figure 3). This result was considered 
responsible for an anomalous tachykinergic control of the 

Figure 2: ICC Light microscope.
(A-B) c-Kit-immunoreactivity (IR). In the control (A) the ICC at the myenteric plexus (MP) and at the deep muscular plexus (DMP) are c-Kit-IR; 
in the Cav-1-/- mice (B), the c-Kit-IR is maintained. (C-D) Ano1-IR. In the control (C), the ICC show the Ano1-IR at both regions whereas in the 
Cav-1-/- mice (D) no Ano1-IR is detected. Bar: 40 μm. (With permission from ref. 31.)

Figure 3: ICC Fluorescence microscope.
NK1r-IR. In Cav1+/+ mouse ileum (A) intensely NK1r-IR spindle-shaped 
cells are present at the deep muscular plexus (DMP) and NK1r-IR 
neurons are present within the myenteric plexus (MP). In Cav1-/- 
mouse ileum (B) NK1r-IR cells are completely absent at the DMP.  
Bar: 40 μm.
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disorders resulted in the recovery of ICC networks sug-
gesting the existence of ICC plasticity (18). In healthy, 
ICC numbers are dynamic (39) indicating that the integ-
rity of the ICC  networks has to be tightly controlled with 
 processes that regulate both ICC loss and ICC replace-
ment. ICC loss might be due to apoptosis (39) and trans/
de- differentiation (40, 41) whereas ICC replacement 
includes cell repair,  proliferation from adult ICC and ICC 
stem cell precursors proliferation (42). As reported above, 
the c-Kit signaling pathway is responsible for ICC devel-
opment and maintenance of the phenotype. Neverthe-
less, several other signaling pathways contribute to ICC 
survival and network organization (see 18 for review). 
Interestingly, although in adults the ICC number could 
recover, mitotic ICC were never observed. Therefore, the 
possibility that local ICC precursors are present in the 
gut wall has taken hold. Studies in postnatal murine 
gastric muscle revealed rare cells that expressed very low 
level of c-Kit and normal level of CD44, CD34, Ano-1, and 
receptors for insulin and IGF-1 (42, 43). In adult mouse 
colon, 14  days after BAC treatment, the damaged areas 
re-innervated and together with the nerve structures, 
cells with FLC features were detected. These FLC con-
tacted both nerve endings and SMCs and later, acquired 
some typical ICC features (41). A morphological study 
in developing ICC of mouse small intestine showed that 
these cells acquired their mature features by day 17 after 
birth whereas the slow wave activity was already present, 
thus suggesting that the functional properties of ICC pre-
cedes their complete morphological maturation (44). In 
the human small intestine, the appearance and differ-
entiation of all the ICC types occurred in concomitance 
with those of the related nerve and muscle structures. 
Therefore, the ICC-MP appeared first during the fetal life, 
ICC-IM and ICC-DMP later and their differentiation was 
still incomplete at birth (45).

Telocytes (TC)
The possibility that the TC could be a variant of the ICC 
outside the gut was taken into consideration since these 
cells were described and for this reason these cells were 
initially named interstitial ICLC (46). This name, however, 
soon showed its ambiguity and vagueness and the term 
TC, considered more identifiably, was proposed (1). The 
choice was accompanied by an accurate explanation of 
the name’s meaning, underlining how the term better 
described the morphological features appreciable under 
TEM (1, 5). Indeed, the TEM identification was and still is, 

the best, easiest and certain way to recognize the TC wher-
ever observed (1, 5).

The relatively recent identification of the TC has raised 
the question of what these cells were previously known as. 
Keeping in mind their shape and location, it is very likely 
that, under the light microscopy, by H&E staining, these 
cells were confused with the fibroblasts/fibrocytes. The 
very long and extremely thin prolongations are undetect-
able in these conditions. Under electron microscopy, they 
could be and, likely, they are still confused with fibro-
blasts/fibrocytes and, in the gut, also with ICCs. Expert 
microscopists might have been suspect of these peculiar 
cells and classified them as ‘unknown’ cells. This was true 
until Prof. Popescu and his group recognized and accu-
rately described this new, ‘unknown’ cell type under TEM. 
Since then, the same research group and many others 
have identified cells like the TC either under TEM or under 
light/fluorescent microscopy.

TC identification by immunohistochemistry 
(see Table 1)

 Although the TC identification by immunohistochem-
istry is still uncertain, it is commonly accepted that the 
CD34 is a good marker to identify these cells, in the gut 
and outside it (3, 7, 47). CD34 is a sialylated transmem-
brane glycoprotein detected in hematopoietic stem cells 
(48). Its expression decreases as these cells differenti-
ate. Interestingly, CD34 labeling was found also in cells 
outside the hematopoietic system such as the endothelial 
cells (49) and the so-called ICLC in several organs [see ref. 
(1) for review]. In the gut these CD34 positive cells were 
located in the connective tissue of the submucosa (Figure 
4), among the muscle bundles (Figure 4) and around the 
myenteric plexus ganglia and nerve bundles, and showed 
an elongated and ramified body resembling ICC. However, 
several reports demonstrated that ICC never showed CD34 
positivity (3, 50) (Figure 4).

Recently, by using the PDGFRα antibody, cells 
sharing the same distribution of the CD34 positive 
cells were identified (51–55). The PDGF/PDGF receptor 
signaling pathway plays critical roles in mammalian 
organogenesis and murine GI villous morphogenesis, 
and it has been demonstrated that selective inhibition 
of the PDGFR suppresses longitudinal smooth muscle 
differentiation (53). The presence of cells PDGFRα+ in 
the same areas where the TC were described, raised the 
question whether they were or not the same cell type. 
The question was solved by  Vannucchi et al. (51). These 
authors clearly showed, in the human gut, that all of 
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the CD34 positive cells were also PDGFRα+ (Figure 5). 
Moreover, in this study, and in several others, it was 
demonstrated that none of the CD34 and PDGFRα+ cells 
were c-Kit labeled, definitively excluding that these 
cells are ICC (50–55) (Figure 4). Notably, while in these 
reports (54, 55) some cells located in the axes of the villi 
were PDGFRα+, Vannucchi et al. (51) could not find any 
CD34 positive cells at this level. Under TEM, cells with 
the features of TC were described in the axes of the villi 
and called myoid cells (56–58). These cells, similarly to 
the ICC, were NK1r-positive, made close contact to each 
other and nerve fibers (56) and were dystrophin positive 
(59), but, contrary to ICC, they were c-Kit negative and 
αSMA-positive (59). It is reasonable to hypothesize that 
these cells are a special variant of TC that might express 
markers that are species-specific. Moreover, peculiar 
TC, PDGFRα/αSMA positive and CD34 negative have 
been described in the human urinary bladder and are 
called hybrid TC (7). Finally, it cannot be excluded that 
the discrepancies listed above might be due to different 
tissue fixation (pre- vs. post-fixation) or to the embed-
ding methodologies employed (freezing vs. paraffin 

embedding). To note, some authors have considered 
the PDGFRα+ cells to correspond to the FLC (52, 53, 60). 
However, because of the vagueness of this indirect defi-
nition of the cell identity, also, this name has been grad-
ually abandoned and in the most recent papers these 
cells are simply called PDGFRα+ cells (54, 55, 61–63). 
Several groups of researcher have shown that in the gut 
of rodents and humans the PDGFRα+ cells also express 
the small conductance Ca2+-activated K+ channel 3 (SK3) 
(53, 55, 60–62). It was also ascertained that none of the 
c-Kit positive cells expressed the SK3 and, in ICC defi-
cient mouse strains, the channel expression was pre-
served (53, 55, 60–62).

TC identification by TEM (see Table 2)

The best method to identify TC is TEM. This is true in all 
organs and especially in the gut where all the TC, indepen-
dently of the region they are located, show all the peculiar 
features already described (1, 5). Under the TEM it was also 
demonstrated that the TC express the CD34 (Figure 4) (3).

Table 1: Ultrastructural features characterizing telocytes and ICC.

  Telocyte   ICC

Nucleus   Small and ovoid. Contains clusters of 
heterochromatin associated to the nuclear 
envelope. Maximum one and small nucleolus

  Large, ovoid, 1-2 nucleoli. Peripheral condensed 
chromatin

Cell body   Small, oval containing scarce cytoplasm
Nucleus/cytoplasm ratio 1:3

  Large, spindle-shaped, containing a great amount 
of cytoplasm. Nucleus/cytoplasm ratio 1:5

Processes   Called telopodes. From two to  ≥ five. Very long 
(100 microns) and thin, with a moniliform profile 
due to the alternation of podomers (thin portions) 
and podoms (large portions)

  Long, large starting from the cell body and then 
progressively thinner, with a smooth profile

Smooth endoplasmic 
reticulum

  Scarce cisternae and only in the cell body   Numerous cisternae in the cell body and 
processes

Rough endoplasmic 
reticulum

  Some cisternae in the cell body and in the 
podoms

  Scarce cisternae, mainly in the cell body

Mitochondria   Small, oval or rounded, accumulated in the 
podoms

  Numerous, elongated, accumulated in the body 
and at the process emergency from the body

Thin filaments   Scarce, small bundles under the plasmalemma   Several small bundles under the plasmalemma
Intermediate filaments   Scarce, gathered in small bundles in the cell body   Abundant, gathered in bundles in the cell body 

and along the processes
Caveolae and 
intracytoplasmatic vesicles

  Scarce caveolae, numerous coated vesicles   Numerous caveolae all along the plasmalemma of 
both body and processes, scarce coated vesicles

Basal lamina   Absent   Always present although discontinuous
Cell-to-Cell contacts   TC-TC: Numerous, mainly of the mechanical type

TC-ICC: Sporadic
TC-SMC: Very rare

  ICC-ICC: Numerous, mainly gap junctions.
ICC-TC: Sporadic
ICC-SMC: very frequent, mainly gap junctions

NE contacts   Sporadic, with a gap  > 40 nm   Very frequent, with a gap   ≤  20 nm
Gut wall distribution   In the mucosa, submucosa and muscle wall   In the muscle wall only
Networks   2-D and 3-D nets whose meshes are extensible   2-D and 3-D nets whose meshes are not 

extensible
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TC subtypes

The TC show immunohistochemical differences depend-
ing on the organ where they are located and/or the 
animal species (64); the gut is no exception to this rule. 
In humans, although all the CD34 positive cells were 

Figure 4: TC Light microscope. Fluorescence microscope. 
 Transmission electron microscope.
(A–B). CD34-IR cells form a 3-D network in the submucosa (A) and a 
2-D network around a muscle bundle (B) of human colon. Fluores-
cence microscope. (C) CD34/c-Kit double labeling. The CD34- (red) 
and c-Kit positive (green) cells are often very close to each other 
but none of them are double labeled. Human stomach. (D) CD34 
immunoelectrolabeling. The labeling appears as electron-dense 
spherules regularly distributed on the telopode plasma membrane. 
Mouse stomach. Bar: A–B = 30 μm; C = 25 μm; D = 0.4 μm.

Figure 5: TC Fluorescence microscope.
PDGFRα/CD34 double labeling. Myenteric plexus of human colon. 
PDGFRα/CD34 double-labeled (yellow) cells surround two myenteric 
ganglia (G) and form networks along the nerve strand (NS). CM: 
Circular muscle; LM: longitudinal muscle. Bar: 30 μm.

Table 2: Immunohistochemical labeling of TC and ICC in the gut.

  Telocyte   ICC

CD34   positive   negative
c-Kit   negative   positive
PDGFRα   positivea   negative
ANO-1   nd   positive
SK3   positive   negative

aSome PDGFRa+ TC described around and along the axes of the villi 
did not share the CD34+ phenotype. nd: Not determined.

found to be also PDGFRα+, in the axes of the villi there 
were described only as PDGFRα+ cells (51, 54, 55, 63). In 
the muscle wall of humans and rodents the PDGFRα+ cells 
also expressed the SK3 channel (see above) but, in the 
mouse, these PDGFRα/SK3+ cells were CD34 negative (60).

In summary, also in the GI tract, TC show regions and/
or species differences. Whether this variability is linked to 
their role needs to be investigated.

TC roles

The ubiquitous distribution and the organization in 
3-D networks of all the TC subtypes testify to a common 
role, independently of the gut wall portions where  they 
are located. This role consists in being the organizers of 
the connective tissue. The 3-D scaffolds are likely able 
to follow the organ distension and relaxation, to avoid 
anomalous organ deformation, to control blood vessels 
closure or rheology, to interact with the extracellular 
matrix determining the orientation of the collagen and 
elastic fiber (Figure 6) (47).

Interestingly, either TEM or light microscopy revealed 
that some ICC were intercalated along the TC networks 
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the muscle wall activity is based on several data, some of 
which clearly demonstrated it, while some other data is  
still speculative. One fundamental condition to guarantee 
the circuit functionality is the presence of electrical cou-
pling among the three types of cells. TEM and immunohis-
tochemistry have shown well that there are gap junction 
between TC (FLC; PDGFRα+ cells) and ICC and between 
ICC and SMC, less certain is the existence of gap-junctions 
between TC and SMC. Indeed, these junctions have been 
described in the small intestine of W/W mutant mice and 
rats (69) but it is known that in the small intestine some 
ICC are spared by the mutation. In regard to the nerve 
contacts, while it has been clearly demonstrated, also 
functionally, the ICC are deeply innervated and the nerve 
contacts are often closer than 20 nm, no similar images 
were reported for the TC. Another condition favorable to 
the existence of SIP would be the presence of receptors and 
effectors of neural responses in the cells forming the SIP. 
Again, the ICC and the SMC possess these requirements. 
Regarding the TC/PDGFRα+ cells interesting findings 
are being reported. As mentioned above, the TC express 
the SK3 channels (55, 57, 62–64); as these channels are 
involved in the purinergic neurotransmission, TC might be 
postjunctional cells to mediate this neural pathway (63). 
Genetic investigations have also demonstrated that the 
TC/PDGFRα+ cells express key genes involved in purine 
signaling (62). Currently, the findings regarding a possi-
ble role of TC/PDGFRα+ cells in the nitrergic transmission 
appear less reliable. The possibility that the PDGFRa+ cells 
could express the soluble guanylate cyclase (sGC) has 
been deduced by immunoelectron microscopical results 
showing some interstitial cells labeled with cGC, and by 
immunohistochemistry (70). However, no double labeling 
with the PDGFRα marker was done.

Conclusions
In the gut, all CD34+TC correspond to the PDGFRα+ cells. 
In the villi, the PDGFRα+/CD34 negative cells could cor-
respond to a TC variant similar to the hybrid TC described 
in the bladder.

The PDGFRα+ definition for these interstitial cells, 
although correct, is not exclusive, as other cells in the 
interstitium express this marker (mast cells, endothelial 
cells); therefore, it is desirable to find a name unique 
for these cells. The term TC has be used to fulfill this 
purpose.

It can be definitively excluded that TC and ICC are 
twins cells. However, these cells are certainly related. 

or strictly intermingled (3, 64). These spatial interactions 
suggested two possible roles of the TC: the TC may favor 
the spreading of neurotransmission signals directed to 
ICC (3); the TC could, on demand, differentiate in ICC. 
This last hypothesis was based on the following data: 
(i) the ICC number did not change significantly with age 
while these cells underwent apoptosis (3, 39, 41); (ii) 
no mitotic ICC were ever described (3); (iii) mitotic cells 
resembling the so-called FLC have been observed in areas 
were ICC, previously destroyed, re-appeared (41); (iv) it is 
commonly accepted that the TC might be adult mesenchy-
mal stromal cells located in the connective tissue able to 
differentiate in different cell types of common embryonic 
origin (47, 65).

In regard to the latter point, TC are also considered 
essential for the survival, proliferation, differentiation, 
maturation and guidance of several parenchymal stem 
cells located in the niches of the organs (47). The clear-
est data have been obtained in the fetal and adult heart. 
In this organ, the TC seemed to be able, from one side, 
to build up cellular scaffolds to preserve the stem cells 
niches, from the other side, to organize 3-D pathways to 
guide the myocardiogenic stem cells organization and 
differentiation (66–68). In the gut, a similar role might 
be played in relation to the glandular stem cells (51, 54) 
where a strict and privileged spatial interaction between 
these cells and the TC/PDGFRα+ cells has been described. 
Of note, the expression by the TC of the PDGFRα recep-
tor is a further element in favor of a such role (see above) 
(51, 53).

More recently, it has also been suggested that the TC 
(named PDGFRα+ cells) (54, 55, 63), may be capable of 
neurotransmission in the gut forming an integrated unit 
called the SIP syncytium where the SMC (S) are electrically 
coupled to ICC (I) and PDGFRα+ cells (P)’ (63). The existence 
of the SIP as a sort of circuit able to control and modulate 

Figure 6: TC Transmission electron microscope.
Numerous TC form an elaborated 3-D network. In the meshes 
described by the TC long and thin telopodes are contained bundles 
of collagen fibers. Bar: 1 μm.
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They share the same embryonic origin (mesenchyme); 
both form networks that run the same regions sometimes 
in parallel, sometimes some ICC intercalate the TC net-
works or vice versa. This strict relationship has suggested 
that TC could spread the ICC signals and TC could repre-
sent ICC stem cells.

Very intriguing is the proposed SIP syncytium where 
the TC and ICC work in sequence to regulate SMC func-
tion. In this regard however, the existence of gap junction 
between TC/PDGFRα+ cells and SMC is still a hypothesis.

TC and ICC can also be considered simply as neigh-
bors. This is the case for the TC present in the thickness 
of the lamina propria and submucosa, two regions where 
ICC never reside. Herein the TC play a proper and unique 
function such as to constitute the scaffold to organize the 
connective components. Even more, in these regions, it 
has been hypothesized that the TC might influence the 
proliferation and differentiation of the stem cells located 
in the intestinal gland funds. Finally, it has even consid-
ered the possibility that in the lamina propria the TC/
PDGFRa+ cells might mediate the neurotransmission.
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