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Abstract: The multifaceted protein clusterin (CLU) has 
been challenging researchers for more than 35 years. The 
characterization of CLU as a molecular chaperone was 
one of the major breakthroughs in CLU research. Today, 
secretory clusterin (sCLU), also known as apolipoprotein 
J (apoJ), is considered one of the most important extra-
cellular chaperones ever found. It is involved in a broad 
range of physiological and pathophysiological functions, 
where it exerts a cytoprotective role. Descriptions of vari-
ous forms of intracellular CLU have led to further and even 
contradictory functions. To untangle the current state of 
knowledge of CLU, this review will combine old views 
in the field, with new discoveries to highlight the nature 
and function of this fascinating protein(s). In this review, 
we further describe the expression and subcellular loca-
tion of various CLU forms. Moreover, we discuss recent 
insights into the structure of CLU and assess how struc-
tural properties as well as the redox environment deter-
mine the chaperone activity of CLU. Eventually, the review 
connects the biochemistry and molecular cell biology of 
CLU with medical aspects, to formulate a hypothesis of a 
CLU function in health and disease.

Keywords: Alzheimer’s disease; apolipoprotein J; clus-
terin; LDL-receptors; molecular chaperones.

Introduction: clusterin (CLU), 
its history and the challenge for 
researchers

In the year 1979, a protein was first discovered, whose 
complexity, abundance and involvement was initially 
unknown (1). Later, this sulfated glycoprotein was identi-
fied by virtue of its blood cell aggregating ability in vitro, 
and was therefore named clusterin (CLU) (2). Most strik-
ingly, it surfaced in a broad spectrum of tissues and is 
overexpressed in the face of pathological processes, such 
as atherosclerosis, cancer and Alzheimer’s disease (3–6). 
Moreover, CLU was found in the bodily fluids of almost 
all vertebrates from zebra fish to humans (7, 8). In accord-
ance with these findings, an extensive repertoire of names 
emerged ranging from complement lysis inhibitor (CLI) 
and testosterone repressed prostate message-2 (TRPM-2) 
to apolipoprotein J (apoJ). Nevertheless, in 1992 the name 
CLU was the generally accepted term for all discovered 
proteins (9).

Thus far, CLU has been demonstrated to be a highly 
glycosylated glycoprotein of 80 kDa, consisting of two 
 polypeptide chains connected by four to five disulfide 
bonds (10). The protein is one of the most prominent 
extracellular chaperones. The chaperone activity of CLU 
has been intensively studied by Mark Wilson and his col-
leagues (11–14). In connection with its chaperone activity, 
CLU is described as a protein that allows for the clearing 
of cellular debris and misfolded proteins, as well as the 
clearance of Aβ via the blood-brain barrier (BBB) (15–17). 
The  concerted action of chaperone activity, scavenging- 
and clearance-function, may be one basis for the cyto- 
and tissue protective role of the protein (5, 15, 18, 19). 
Previously, it was further shown that the protein acts as 
a signaling molecule, inducing cellular prosurvival and 
proliferatory pathways, which may convey another mech-
anism of its cytoprotective function (20–22).

This understanding of CLU (as previously described) 
became complicated when intracellular CLU forms were 
described in damaged cells, in addition to the predomi-
nant secreted form, and attributed to a diverse and even 
opposing role (23–26). This review will summarize the 
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biosynthesis of CLU, its structural features and chap-
erone activity as well as focus on aspects of intracellu-
lar CLU forms to assess their cellular and physiological 
function. Finally, the involvement of CLU in the modu-
lation of various signal transduction pathways, its role 
in the immune system and its involvement under patho-
logical conditions, such as ischemia and necrosis will be 
discussed. The goal is to summarize current views about 
CLU to enable future studies to finally solve the ‘CLU 
mystery’.

Biogenesis of clusterin (CLU)
The biosynthesis of human secretory CLU (sCLU) follows 
the canonical pathway of secretory proteins (Figure 1). 
Translation of CLU starts from a startcodon located on 
exon 2 of the CLU-mRNA, resulting in a pre-proprotein 
composed of 449 amino acids. The first 22 amino acids 
represent a signal sequence ensuring co-translational 
translocation into the endoplasmic reticulum (ER). Subse-
quently, the signal sequence is cleaved off and four to five 
disulfide bonds are formed (10). Hereafter,  N-glycosylation 
at six Asn-residues (Asn86, 103, 145, 291, 354, 374) takes place 

converting the proprotein to a high-mannose ER-precursor 
(pre-secretory CLU, psCLU) of 60 kDa (27, 28). After trans-
location to the golgi-apparatus, complex carbohydrate 
moieties are attached to the maturating psCLU, composed 
of galactose, fucose, mannose, N-acetylglucosamine and 
N-acetylneuraminic acid (29–31). The resulting 80  kDa 
protein is further cleaved by a furin-like proprotein con-
vertase (FC) (amino acid recognition motif: RIVR) between 
Arg227 and Ser228 to produce an N-terminal α-chain and a 
C-terminal β-chain which are interlinked by disulfide 
bonds (29–31). Finally, mature sCLU is secreted as a het-
erodimeric complex of two 40-45 kDa subunits (28, 29).

Under cellular stress additional CLU forms emerge by 
diversion from the canonical secretory pathway (Figure 1). 
They encompass core-glycosylated forms, presumably 
derived from retrotranslocated CLU out of the ER (32, 33) 
or intracellular forms which failed to be segregated into 
the ER and thus are not carrying any sugar residues or 
disulfide bonds, respectively (34). In addition, intracel-
lular forms may arise from alternative splicing events or 
from non-canonical/alternative translation-initiation start 
sites downstream of the ER-leader peptide (Figure 1) (34). 
All mentioned intracellular CLU forms are single-chain 
 proteins, since they are not proteolytically processed.
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Figure 1: Illustration of CLU biosynthesis.
The canonical pathway of secretory proteins leads to the synthesis of secretory CLU (sCLU). It undergoes proteolytic maturation and carries 
complex carbohydrate moieties as well as disulfide bonds. Upon cellular stress, non-canonic CLU forms emerge, mainly derived from failed 
translocation, alternative splicing or translation-initiation events on exon 3, as well as from retrotranslocation. All non-secreted CLU forms 
are incompletely maturated. For details please see text.
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Structure and function of secretory 
clusterin (sCLU)

Structure

So far, one of the most challenging questions pertains to 
the structure of sCLU. Over the past three decades numer-
ous studies have been conducted, but the structural prop-
erties of sCLU are still not fully understood. One reason 
for this lack of knowledge lies in the aggregating nature 
of sCLU. Besides interacting with a plethora of ligands, it 
aggregates with itself, forming di-, tetra- and even higher 
oligomers, depending on the pH-value (2, 12–14, 35). In 
combination with distinct ligands, such as fibrinogen, 
sCLU can form high molecular weight complexes with a 
putative molecular mass up to 40 000  kDa and a diam-
eter ranging from 50 to 100  nm (14). These characteris-
tics together with a heterogeneous glycosylation pattern, 
renders it difficult to obtain X-ray structures or reliable 
NMR spectra from purified sCLU-samples (13, 36). Addi-
tionally, it is hard to obtain suitable protein samples in 

sufficient quantities (30, 36). Nevertheless, a number of 
studies have been conducted, which focus on distinct 
properties of sCLU and shed light on its structural ele-
ments (10, 13, 37–39). Beyond doubt, the primary structure 
of sCLU is highly conserved between different species, 
with the highest homologies found in the regions of 
disulfide bonding cysteins and the FC cleavage site point-
ing to their significance regarding sCLU-function (8, 40). 
Already after the first successful isolation of sCLU, its 
amphipathic character was apparent (2). Later on, sec-
ondary structural elements were investigated by means 
of circulardichroism (CD)- and infrared-spectroscopy (14, 
30, 35, 38, 41, 42). In all of these a predominant α-helical 
content of up to 60% was calculated. In silico analyses 
further predicted five amphipathic α-helices (37). On the 
tertiary structure level, sCLU is believed to belong to the 
family of intrinsically disordered proteins, meaning that 
it partially lacks a defined tertiary structure, thus expos-
ing hydrophobic regions, so-called molten globule-like 
domains, towards the external space (43). This in turn 
allows for binding to other molecules via hydrophobic 
interactions (Figure 2A). Remarkably, sCLU shares this 
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Figure 2: Schematic depiction of sCLU chaperone activity and hypothetical influence of structural elements.
Fully maturated sCLU is stabilized by disulfide bonds and intramolecular interactions, such as hydrophobic interactions in the region of 
amphipathic helices (A). In contrast, artificial uncleaved sCLU relies on its disulfide bonds and therefore displays a high sensitivity towards 
reducing conditions (B). Preliminary data show that uncleaved sCLU partly regains its chaperone activity after removal of DTT within 48 h 
(C). The procedure of sCLU purification, DTT treatment and chaperone activity assay are in accordance with Rohne et al. (30). After 12 h of 
incubation with or without 40 mm DTT at 37°C upon gentle agitation, sCLU was subsequently used for chaperone activity assays (Ctrl reduc-
ing and non-reducing) or DTT was substituted by PBS using a Vivaspin 4 5000 MWCO PES (Sartorius) at 4°C and used for chaperone activity 
assays subsequently or after 48 h at 4°C. All chaperone activity assays were performed in the presence of 5 mm DTT with Catalase being 
the client protein. Additionally, BSA was mixed with Catalase and served as a negative control to calculate the relative chaperone activity 
of sCLU as described by Rohne et al. (30). For evaluation, the data of two to three independent experiments, each with the mean of two to 
three measurements were used (unpaired t-test *p < 0.05). The error bars correspond to the mean±standard errors.
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feature with other intrinsically disordered proteins, most 
prominently heat shock protein (Hsp) 27 or α-crystalline 
(11, 44). As pointed out in the following, sCLU indeed pos-
sesses a chaperone activity similar to that of Hsp27 and 
other heat shock proteins.

Chaperone and scavenging function

Chaperones are part of the basic molecular defense mech-
anism for a cell overcoming stress situations induced by 
UV light, ionic irradiation, heat, oxidants, heavy metals, 
hyperoxia or certain drugs. They can be divided into differ-
ent classes: chaperonins, Hsp100, Hsp90, Hsp70, Hsp60 
and small Hsps (sHsps) (45). These intracellular chap-
erones regulate the correct folding of maturing proteins 
or prevent the aggregation of denatured proteins thus 
adopting a cytoprotective function. Some even initiate 
the refolding of misfolded proteins in an ATP-dependent 
manner (Hsp70, Hsp90, chaperonins). For chaperones, 
natively disordered regions are required for binding with 
a plethora of structurally diverse client proteins (46).

Similar to the above mentioned Hsps, CLU-mRNA 
is up-regulated upon cellular stress due to a heat shock 
element-like motif present in the CLU promotor (19, 34, 
47, 48). The chaperone function of sCLU was revealed 
20 years after the protein’s discovery (11). Thus it became 
the first molecular chaperone known to act outside 
of the living cell. Similar to sHsps inside the cell, it is 
assumed that sCLU binds to client proteins through its 
molten globule-like regions via hydrophobic interac-
tions (13, 14, 37, 49). In particular, proteins that are on 
the off-folding pathway, e.g. as induced by heat or reduc-
ing conditions, serve as clients for sCLU (12, 30). The 
binding occurs in an ATP-independent manner, leading 
to formation of soluble high molecular weight complexes 
with different molar chaperone-client ratio between 1:5 
and 1:0.33 (14, 50, 51). As a consequence, sCLU prevents 
the uncontrolled aggregation of the denaturing proteins. 
Interestingly, binding of sCLU does not retain poten-
tial enzymatic activities of denaturing client proteins. 
However, in cooperation with ATP-dependent Hsps, such 
as Hsc70, the enzymatic activity of some proteins can be 
restored (11, 50).

In cell culture experiments it was observed, that 
sCLU is able to facilitate the uptake of the bound client 
complexes into surrounding tissue cells to allow their 
removal via lysosomal digestion (Figure 3) (15, 52). Recep-
tors responsible for the binding of sCLU and/or sCLU-pro-
tein complexes, such as megalin (15, 42, 53), LRP1 (15) and 
ApoER2, VLDLR (22, 54) are members of the LDL-receptor 

gene family. In a recent study, sCLU-client complexes 
were intravenously injected into mice, confirming the 
sCLU-chaperone/scavenging activity (17). sCLU-ligand 
complexes were found to be enriched in the mice liver 
and kidneys, which are involved in degradation and sub-
sequent excretion of cellular toxins. The finding that the 
enrichment in the liver can be blocked by administra-
tion of fucoidan (a potent inhibitor of scavenger receptor 
class A, E and F) indicates that sCLU is able to interact 
with scavenger receptors beside those of the LDL-recep-
tor gene family. In addition, a decrease in the removal of 
glomerular protein deposits was found in CLU-K.O. mice 
(55). In humans, reduced sCLU secretion is accompanied 
by a higher risk for Alzheimer’s disease (56). These find-
ings are in line with observations that show that sCLU 
prevents the aggregation and oligomerization of Aβ and 
transthyretin (57, 58). Conclusively, these data argue for 
the pronounced role of sCLU in protein homeostasis in 
the body.

Disulfide bonds & proteolytic maturation: 
Crucial components or dispensable features?

One of sCLU’s prominent features is its maturation into an 
α- and a β-chain occurring within the golgi apparatus of 
vertebrate cells. The two subunits are connected by 4–5 
highly symmetrical disulfide bonds. As suggested by Bon-
Hong Min’s group, the formation of disulfide bonds is a 
prerequisite for sCLU maturation/synthesis (59).

Interestingly, a reduction of these disulfide bonds 
in mature sCLU does not inhibit its activity in chaper-
one activity assays (11, 12, 50). This tolerance of sCLU for 
reducing conditions raises the question whether the α- 
and β-chain of sCLU act independently as chaperones or 
whether the disulfide bonds are extraneous for their intra-
molecular association. It must be noted that the proper 
maturation of sCLU is dependent on appropriate disulfide 
bond formation. Treatment of cells with dithiothreitol 
(DTT), which prevents disulfide bond formation in the ER, 
abolishes the secretion of sCLU (60). More recently it was 
demonstrated that mutations in the cys-rich region of the 
CLU protein are leading to reduced secretion of sCLU in 
patients with Alzheimer’s disease (56).

Additionally, it was shown that the inhibition of 
the proteolytic maturation by in vitro mutagenesis of 
the furin-like proprotein convertase (FC) cleavage site, 
which generates uncleaved sCLU, does not interfere with 
sCLU-maturation and its chaperone activity but rather 
renders it highly sensitive to reducing conditions (30). 
The lack of proteolytic maturation may therefore cause 
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an impaired ‘flexibility’of sCLU (Figure 2B). Studies of 
Bailey et al. revealed that the N- and the C-terminus of 
sCLU are regions with disordered/molten globule-like 
domains which are likely involved in client binding (37). 
Therefore, the only regions left for stabilizing the sCLU 
protein are probably the disulfide bonds and the putative 
amphipathic helices next to the FC cleavage site. As men-
tioned above, mature sCLU is still sufficiently active even 

after long-term reduction (11, 12, 30, 50). However, the 
activity of uncleaved sCLU after long-term reduction is 
tremendously impaired (Figure 2) (30). Thus, the amphi-
pathic domains or other neighboring regions may be 
responsible for sCLU protein stabilization. Intriguingly, 
preliminary data from our lab indicate that uncleaved 
reduced sCLU partly regains its chaperone activity when 
DTT is removed (Figure 2C). In conclusion, we propose 
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that the disulfide bonds are on one hand important for 
correct folding and maturation but on the other hand are 
not essential for the chaperone function of mature sCLU. 
However, we cannot exclude the possibility, that they 
are involved in other processes. The latter is supported 
by the notion that sCLU is able to restore the function 
of glutamine synthetase by acting as a thiol specific-
antioxidant. However, this activity is impaired when the 
disulfide bonds of sCLU are alkylated or when the elec-
tron donor is not thiol-based (59).

Carbohydrates: negligible or essential?

Another prominent feature of sCLU is its high level of 
 glycosylation resulting in carbohydrates, which com-
prise about 30% of the molecular weight (61). The gly-
cosylation pattern of human serum sCLU was elucidated 
in 1997. Six N-linked carbohydrate attachment sites are 
found within the molecule, with three on the α- and three 
on the  β-chain in humans (29). The carbohydrate compo-
sition is highly diverse and depends on the expressing 
tissue (4, 31). Serum sCLU mainly contains carbohy-
drate moieties with sialic acid in a mono- and bianten-
nary fashion (29, 31). Similar glycosylation patterns were 
found with recombinant human sCLU (30). In contrast, 
semen sCLU carries mainly fucose-rich glycans, enabling 
semen sCLU to bind to the C-type lectin receptor DC-SIGN 
found on dendritic cells. This binding was not observed 
with serum sCLU (31, 62). Therefore, the glycan moie-
ties either change the spatial structure of sCLU so that 
its receptor affinity is altered, or the receptors and other 
interacting molecules have varying affinities to distinct 
glycan moieties.

Interestingly, it was observed that the glycosylation 
of sCLU is crucial for correct polar secretion in epithe-
lial cells (28), but not for chaperone function (41). sCLU 
treated with the endoglycosidase PNGase F only showed 
little decrease in chaperone activity (41). Indeed, it was 
recently shown that the removal of the terminal sugars by 
exoglycosidases does neither alter the chaperone activity 
nor the secondary structure of sCLU. However, it became 
obvious that plain PNGase F-digestion results in residual 
sugars still being attached to the protein-core. Fully degly-
cosylated recombinant human sCLU was obtained by 
application of a more elaborated protocol and was shown 
to possess a tremendously decreased chaperone activity. 
CD-spectroscopy further revealed that upon full degly-
cosylation the amount of α-helices lowered from 60% to 
40%, whereas the amount of disordered regions increased 
significantly from about 20% up to 30%. After removal 

of all carbohydrates the rearrangement of the secondary 
structure indicates that the folding of sCLU is correlated 
with its glycosylation (30). In summary, the core-glyco-
sylation is a prerequisite for the folding and chaperone 
activity of sCLU and terminal sugars might be instrumen-
tal for other mechanisms, such as receptor binding and 
signal transduction (21, 31, 62).

Intracellular clusterin: significance 
vs. occurrence

Nuclear CLU (nCLU)

Since its discovery in the early 1980s until the mid-1990s, 
CLU was regarded solely as a secreted protein (sCLU). It 
was not until 1995 that researchers observed an associa-
tion of CLU with the nucleus after induction of cell death 
with anti-estrogens (26) or TGF-β (63). They speculated 
that if translation would start at a start codon located on 
exon 3 of the CLU-mRNA, an otherwise cryptic nuclear 
localization sequence (NLS) could be active. Thus, Reddy 
et al. postulated internal translation initiation as one pos-
sible mechanism leading to N-terminally truncated forms 
of CLU. These truncated forms are lacking the signal 
sequence for segregation into the ER, exposing an NLS 
and therefore localizing CLU in the nuclear compartment 
(Figure 1). This hypothesis, however, is still lacking sup-
porting data.

Around the turn of the millennium, the group of David 
Boothman reported the expression of a nuclear form of 
CLU (nCLU) in MCF-7 cells after treatment with ionizing 
radiation. They proposed that this nCLU form would act 
as a pro-death factor by interacting with the DNA-repair-
associated protein Ku70. While it was initially assumed 
that nCLU derives from an ER-borne psCLU form (64), the 
authors stated in later publications that ionizing radia-
tion favors internal translation initiation at a start codon 
on exon 3, resulting in the expression of nCLU (Figure 1) 
(24, 65). Finally, in 2003, the same group reported that 
an exon-skipping event, resulting in a transcript lacking 
exon 2 with its signal sequence coding region (hereafter 
termed variant 1 [Δex2]), precedes the expression of nCLU 
(25). Surprisingly, overexpression-experiments with 
variant 1 [Δex2] resulted in strong cytosolic localization 
of the corresponding protein as determined by confocal 
microscopy. Nuclear associations, however, could only 
be detected by overexpression of artificial constructs 
lacking distinct portions of variant 1 [Δex2]. Despite this 
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controversial observation, the authors hypothesized that 
the protein translated from the exon 2-lacking mRNA is 
the pre-nuclear form of nCLU. It would then be trans-
formed into mature nCLU of unknown post-translational 
modifications induced by ionizing radiation. However, 
experimental proof of this hypothesis is still missing.

Throughout the first decade of the 2nd millennium 
many research groups claimed a nuclear localization of 
CLU in stressed cells, including cellular stress induced by 
various agents such as Etoposide (66–68), Interleukin-6,  
Somatostatin (69), heat (70), Ca2+-depletion (67, 71), 
serum-starvation (72), TNF-α-treatment (73), indocyanine- 
treatment with green tea extracts (74), proteasome 
 inhibition (75), treatment with 5′-Fluorouracil and Fas 
receptor-binding antibodies (76) or vanadium-treatment 
(77). Furthermore, nuclear localization of CLU has been 
observed upon overexpression of c-fos (77), Interleukin-24 
(78) or pVHL (79), as well as spontaneously in untreated 
cells (69, 76, 80–82). Additional to the mechanisms dis-
cussed above, it was argued that inhibition of sCLU 
secretion could lead to intracellular accumulation and 
subsequently nuclear localization (83). However, dimini-
shed secretion and therefore intracellular accumulation 
of CLU, as described by Bettens et al. (56), did not provide 
any evidence for nuclear localization of CLU.

Another point of intense debate is the potential 
exon 2-skipping of CLU-mRNA (Figure 1). The resulting 
variant 1 [Δex2], was commonly considered to explain 
the occurrence of nCLU in many studies, although rigor-
ous mRNA-analyses have not been performed. This led 
to controversies, as some groups could not validate the 
existence of variant 1 [Δex2] (84–86). It was speculated 
that its expression might be limited to MCF-7 cells or even 
an experimental artifact (75, 84–87). However, Prochnow 
et al. confirmed the existence of variant 1 [Δex2] in several 
human cell lines using validated, variant-specific primer 
sets for RT-PCR (34). Yet, mRNA-quantification indicated 
that variant 1 [Δex2] accounts for  < 0.13% of total CLU-
mRNA, even in stressed cells. The exon 2-containing 
variant 1, in contrast, represents the pre-dominant CLU-
mRNA ( > 99% of total CLU-mRNA). In this study it was also 
shown that the protein encoded by variant 1 [Δex2] local-
izes solely in the cytoplasm of unstressed and stressed 
cells. In fact, very recent studies support this observa-
tion, challenging the theory of a nuclear localization of 
CLU (32, 79, 80, 88–91). Only by incorporating an artifi-
cial nuclear localization sequence (NLS) at the 5′-end of 
variant 1 [Δex2], a nuclear localization of the translated 
protein could be achieved (92). This in turn renders the 
existence of a functional NLS hidden in the CLU pre- 
proprotein unlikely.

CLU associated with mitochondria

Over the course of the last few years, an association of 
CLU with mitochondria has frequently been reported 
and  interactions with intrinsic apoptose-related proteins 
Bax and Bcl-xL have been discussed (32, 93–96). Thus, it 
was speculated, that either psCLU or sCLU might act anti- 
apoptotic by sequestering Bax in its inactive state in the 
cytosol (95, 96). However, in none of these studies it was 
investigated, how extracellular sCLU or ER/golgi-resident 
psCLU can reach the cytosol in order to bind Bax (Figure 1). 
Li et al. (32) recently showed that a  hypoglycosylated form 
of sCLU can escape the secretory pathway with the aid of 
the chaperone GRP78 (BiP) and stabilize the mitochon-
drial membrane to avoid paclitaxel-mediated apoptosis 
(Figures 1 and 3). An interaction with Bax was, however, 
not investigated in this study. Other reports suggest that 
CLU can act pro-apoptotic by preventing Bcl-xL from 
binding to Bax (88, 97). The authors assumed that non-
secreted CLU forms similar to nCLU, are responsible for 
this effect. This was attributed to a potential BH3-domain 
found in silico within the nCLU-sequence (97). However, 
upon overexpression of distinct intracellular CLU forms, 
no pro-apoptotic properties could be assigned to any case 
(34). Thus, the significance of CLU association with mito-
chondria still needs to be challenged.

How significant are distinct intracellular CLU 
forms?

The diverse results and proposals put forward in the 
studies on intracellular CLU over the past 20  years are 
inconclusive and even contradictory. One reason for this 
may be that the described effects are restricted to stressed/
damaged cells and that the abundance of intracellular 
CLU forms is negligible (34). Most importantly, to our 
knowledge, no distinct intracellular CLU forms have been 
described in other organisms besides humans, yet. Addi-
tionally, CLU forms lacking carbohydrates and/or proteo-
lytic maturation are not capable to maintain a chaperone 
activity in the cell (30). Furthermore, Prochnow et  al. 
found no evidence for an apoptosis-modulating effect of 
unglycosylated cytosolic CLU forms. Therefore, we suggest 
that intracellular CLU forms may accidently evolve in com-
promised cells and might have no beneficial function for 
the cell. One exception may be hypoglycosylated psCLU 
forms retrotranslocated from ER/golgi. These forms have 
been described in the course of modulating mitochondria 
integrity or autophagy to promote cell survival (Figure 3) 
(32, 91).
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Cellular challenges: from necrosis 
to immunobiology and beyond

sCLU and necrosis

The expression of sCLU is highly correlated to tissue 
degeneration, necrosis and redox imbalances (98, 
99). The stress-associated upregulation in response to 
UV light, heat-shock, oxidants, heavy metals and in 
 particular  proteotoxic stress is mediated by the clu pro-
motor which contains HSF1, NFκB and AP-1 binding sites 
(100). Cytotoxic stress can also be induced by necrosis 
in neighboring cells (Figure 3) (101). As a consequence, 
misfolded proteins, free radicals, lipids and other com-
ponents accumulate in the extracellular space causing 
an activation of the immune system and affect neighbor-
ing cells (101, 102). Remarkably, it was observed that CLU 
upregulation also occurs in cultured cells upon exposure 
to necrotic cell debris (103). This upregulation is driven 
by  components of the necrotic cells, such as membranous 
phosphatidylserine (PtdSer) (103) or by RNA released 
from the cytosol (Figure 3) (104). PtdSer, under vital con-
ditions, is restricted to the cytosolic side of the plasma 
membrane and is exposed to the extracellular environ-
ment upon damage or apoptosis (105). Extracellular RNA 
is endocytosed by surrounding cells and upregulates 
CLU via the TLR3-signaling pathway (104). Once sCLU 
is secreted into the extracellular space, it mediates the 
binding and endocytic uptake of cellular debris by recep-
tors of the LDL-receptor gene family, such as megalin or 
LRP1 thus reestablishing the extracellular proteostasis 
(Figure 3) (15, 30).

sCLU and immunobiology

Quite recently, data suggest that semen sCLU can bind 
stress-damaged proteins, facilitating the uptake by den-
dritic cells via DC-SIGN thus making a priming of immune 
cells feasible (Figure 3) (31, 62). As a further consequence, 
sCLU has been attributed to mediate tolerance of the 
female genital tract towards male antigens (Figure 3) (62). 
This suggests an immune regulatory role of sCLU, which 
is evident from multiple in vivo and in vitro studies. Ini-
tially, sCLU was found to be co-localized with complement 
SC5b-9/MAC (membrane attack complex) in glomerulo-
nephrititis but not in healthy individuals (106). Subse-
quently, in association with the SC5b-9 complex sCLU was 
characterized as an inhibitor of the complement system 
(Figure 3) (38, 49, 107). The complement system causes cell 

damage under renal pathologies. Thus, sCLU may alleviate 
renal injuries by preventing an uncontrolled MAC activity 
(108). However, in 1999 Hochgrebe et al. (109) showed that 
complement inhibition by sCLU is not possible at physi-
ological concentrations. Despite these facts, the most 
recent data suggest that Pseudomonas aeruginosa can 
protect itself from complement attack by recruiting sCLU 
(110). Similar suggestions were made for sperm cells in the 
female genital tract (Figure 3) (49). Thus, an increase in 
the local sCLU concentration may achieve a complement 
inhibiting effect.

Additionally, other data support a role of sCLU in 
immune modulation: It was shown that sCLU synergize 
with IL-2 to enhance the proliferation of natural killer cells 
(111). Moreover, sCLU is described as a transcriptional 
target of the lymphotoxin-β receptor in germinal centers 
during an immune response (112, 113). It was further dem-
onstrated that sCLU improved the viability of B lympho-
cytes (113). In addition, it is important to note that CLU 
was described as a necessary factor for curation of autoim-
mune myocarditis, which is accompanied by an increased 
level of necrosis and inflammation (102, 114). These con-
clusions were further supported by observations after 
intravenously administration of sCLU in rats during myo-
cardial infarction. After treatment with sCLU, the infarct 
size was significantly reduced and led to macrophage 
invasion (115). This finding is supported by an elevated 
chemotactic migration of macrophages due to increased 
matrix metalloproteinase-9 (MMP9) expression induced 
by sCLU via the ERK1/2-, PI3K/AKT- and NFκB-signaling 
pathway (Figure 3) (21, 116). The ability of sCLU to modu-
late macrophage function was further confirmed by an 
additional study which demonstrated that the migratory 
effect is related to TNF-α secretion induced by sCLU (116). 
However, van Dijk et  al. (20) have found no evidence of 
a difference in wound healing after sCLU application. 
Rather, sCLU protects cardiomyocytes from apoptosis by 
inducing the PI3K/AKT-signaling pathway (Figure 3).

It is important to note that neither the protective 
effect of sCLU on cardiomyocytes, the reduction of infarct 
size nor the interaction with dendritic cells are related to 
receptors of the LDL-receptor gene family (20, 62, 115). It 
is therefore important to emphasize that the characteriza-
tion of other sCLU binding receptors is essential for the 
unraveling of sCLU function.

sCLU and tissue repair

The significance of sCLU in tissue protection/remodeling 
was found to be important because of its potential to 
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prevent organs from damage under ischemic conditions, 
e.g. ischemia-reperfusion injury (IRI) after transplan-
tation (117). The ischemia-reperfusion damage occurs 
when the bloodstream is reestablished after periods of 
limited nutrient and oxygen supply. The consequence 
of this mechanism leads to initial necrosis, followed 
by massive apoptosis of the surrounding tissue (102). 
The surrounding apoptosis is believed to be due to the 
release of free radicals, generating lipid radicals in the 
cellular membrane and therefore causing tremendous 
cellular damage (Figure 3) (101). In fact, sCLU is upreg-
ulated after oxidative stress caused by H2O2 or cigarette 
smoke, protecting the cells and maintaining their viabil-
ity (19, 20, 59, 118). In the case of transplant medicine, it 
was shown that supplement sCLU in University of Wis-
consin-solution (UW-solution) is feasible to prolong the 
handling-time before an organ can be transplanted (119). 
Similarly to this finding, it was observed that a genetic 
inactivation of the CLU gene leads to an increased organ 
rejection as well as impaired cell viability. These protec-
tive actions are probably due to increased membrane flu-
idity in the presence of sCLU, minimizing cold-induced 
stiffening and shear stress (117). Furthermore, sCLU is a 
candidate biomarker for damage in the proximal tubule 
of the kidney (120). Additionally, it was shown that 
over time, the absence of sCLU leads to an increased 
accumulation of components from the immune system 
within the glomeruli (55). Several in vitro studies suggest 
a cytoprotective function of sCLU after gentamicin- or 
H2O2-induced cytotoxicity in kidney cells (121, 122). 
When inducing IRI by clamping the renal pedicles of 
mice, sCLU is an essential factor for renal regeneration. 
In contrast to macrophages, however, sCLU has no pro-
migratory effect on renal tubular epithelial cells (TECs) 
but promotes proliferation and cell viability of TECs. In 
contrast to wild type mice, CLU K.O.-animals exhibit a 
remarkably decreased survival rate of about 90% to 30%, 
respectively (123). Previously it was shown that after uni-
lateral ureteral obstruction (UUO) the presence of sCLU 
was a prerequisite to suppress TGF-β mediated upregu-
lation of plasminogen activator inhibitor-1 (PAI-1). PAI-1 
prevents rearrangement of the extracellular matrix and 
thus attenuates plasmin activation leading to fibrosis 
(124). However, in contrast to Nguan et al. (123) no influ-
ence of sCLU on proliferation or apoptosis on tubular 
epithelial cells was observed. Finally, it is important to 
mention that although Girton et al. (121) have excluded 
an involvement of megalin, the participating receptors 
mediating the cytoprotective effect of sCLU (directly or 
indirectly) are still unknown.

sCLU and the nervous system

Although it is well established that sCLU is cytoprotec-
tive in the kidney and in the heart, the role of sCLU in 
the nervous system is still challenging. As mentioned ini-
tially, sCLU was also described as an apolipoprotein (apoJ) 
which is present in serum (free and bound to high density 
lipoprotein (HDL) particles). sCLU(apoJ)-containing HDLs 
account for approximately 2% of plasma HDLs (125) with 
about 20% of the circulating sCLU being actually bound to 
HDLs (126). In contrast to the brain, sCLU(apoJ)-contain-
ing HDL particles in plasma are more lipid-rich (38, 127). 
In the mammalian brain sCLU (apoJ) and apoE are the two 
most abundant apolipoproteins [reviewed by Wang and 
Eckel (128)].

Intriguingly, both apolipoproteins are involved in 
similar mechanisms, such as Alzheimer’s disease or cog-
nitive and memory processes (18, 128–130). It is important 
to note that even though sCLU is a constituent of HDLs, 
which are the only lipoprotein subclass crossing the BBB, 
only LRP1 and SR-B1 are involved in lipid homeostasis of 
the brain (128). The remaining lipoprotein receptors are 
involved in a plethora of other functions (128, 129).

Inside the brain, CLU is primarily expressed and 
secreted by astrocytes but also by other types of cells, e.g. 
neurons (127, 131, 132). Upon neuronal death, ischemia 
and with advancing age, however, a significant upregula-
tion of CLU is observed (7, 131, 133, 134). Previously, it was 
not clear whether an elevated level of CLU in the brain was 
helpful or harmful. In 2001, two groups performed brain-
ischemia experiments and reported contradictory results 
(133, 134). Whereas Han et al. (133) found that the absence 
of CLU reduces cell death in neonatal hypoxia-ischemia, 
Wehrli et al. (134) observed a neuroprotective effect of CLU 
in permanent focal cerebral ischemia. It is believed that 
these different findings are due to different experimental 
settings; more beneficial effects of CLU in vivo and in vitro 
were observed elsewhere. For instance, brain ischemia 
induced by permanent middle cerebral artery occlusion 
shows heavily impaired tissue remodeling in CLU K.O.-
animals. In wild type animals, however, a significant 
CLU upregulation by astrocytes and increased microglia/
macrophage invasion was detected (135). Interestingly, 
another study has shown that microglia activation by 
sCLU leads to chronic inflammation and thus neurotoxic-
ity due to observing an increased release of nitrite oxide 
and TNF-α (136). Moreover, sCLU in astrocyte-conditioned 
media from the hippocampus and midbrain had a con-
tributing effect on cell survival and differentiation but not 
on proliferation of neural precursor cells (137). However, 
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Leeb et al. recently showed that sCLU promotes ApoER2/
VLDLR-mediated proliferation by inducing the Dab1/AKT-
signaling pathway in neuronal precursors, suggesting a 
role of sCLU in neurogenesis (Figure 3) (22). In contrast, 
conducting oxygen-glucose deprivation experiments 
increased propidium iodide (PI) uptake and impaired 
excitatory postsynaptic potential (EPSP) in hippocampal 
neurons of wild type animals as compared to CLU K.O. 
mice were observed (138).

Further, even though being an established genetic 
risk factor for late onset Alzheimer’s disease (56, 130), the 
mode of sCLU action in Alzheimer’s disease is still unclear. 
In fact, it is not fully understood if sCLU protects or pro-
motes Aβ-induced cell death, respectively. At the one hand 
it was shown that sCLU binds Aβ, preventing its oligomeri-
zation/fibril formation and finally allowing the megalin-
mediated removal across the BBB (Figure 3) (16, 42, 52). In 
other reports, however, a contribution to complex forma-
tion and therefore neuronal death was reported (139, 140). 
Intriguingly, it was further suggested that smaller oligom-
ers would be more harmful to the cell by inducing oxida-
tive stress after interaction with the plasma membrane. In 
contrast, higher oligomers generated by chaperone-client 
interactions have a reduced cytotoxic potential (18, 141). 
In line with this, other reports indicating that sCLU stabi-
lizes Aβ-oligomers preventing their further aggregation or 
disaggregation (58). Moreover, it was demonstrated that 
a lower sCLU to client ratio promotes, whereas a higher 
ratio prevents cytotoxicity (51). Therefore, the role of sCLU 
may depend on its concentration as suggested by Bettens 
et al. (56).

In conclusion, the role of CLU in the brain is still unre-
solved. However, it is thinkable that sCLU acts in a com-
bined manner as a receptor-mediated signal transducer, a 
molecular chaperone which facilitates the removal of mis-
folded proteins or debris after injury and in pathologies, 
as well as a lipid carrier to reestablish damaged nerve 
tissue. These processes, however, are fine-tuned and sus-
ceptible to disturbances that may lead to opposing results.

Perspectives
The enigmatic protein clusterin (CLU) has challenged 
researchers for almost four decades. Its versatility has 
brought numerous insights into different fields of biomo-
lecular science but has also led to even more questions. 
In this review, we provided a comprehensive understand-
ing of the basics of CLU and gave a wider view concerning 
future research possibilities. Thus far, the biosynthesis 

of CLU, its chaperone/scavenging activity and its occur-
rence in diseases was intensively investigated. It can be 
concluded that sCLU is a cytoprotective factor that is par-
ticularly involved in situations of cell/tissue damage.

An overview of CLU’s role in health and disease 
is depicted in Figure 3. In situations, such as tissue 
damage, CLU upregulation is induced by components 
of necrotic cells and by oxidative stress via stress induc-
ible promotor elements [1]. Subsequently, sCLU is 
secreted and allows the binding and removal of proteins 
released from necrotic cells [2]. Moreover, sCLU stimu-
lates the clearance of misfolded protein such as Aβ via 
the BBB [3]. The removal of proteins and Aβ is mediated 
by receptors of the LDL-receptor gene family. Moreover, 
in the female genital tract sCLU-associated with sperm 
cells, allowing the uptake of male antigens (sperm pro-
teins) into female dendritic cells via DC-SIGN and, thus, 
preventing rejection by the female immune system [4]. 
Further, sperm cells protect themselves from the mem-
brane attack complex (MAC) by binding of sCLU [5]. On 
the other hand opportunistic bacteria such as P. aerugi-
nosa escape MAC-induced cell lysis after binding sCLU 
via dihydrolipoamide dehydrogenase [6]. Additionally, 
sCLU attracts macrophages by inducing various signal 
transduction pathways which lead to upregulation of 
pro-migratory proteins [7]. In some cell lines, such as 
cardiomyocytes and neurons, sCLU induces the PI3K/
AKT-signaling pathway leading to survival or prolifera-
tion [8]. Other cytoprotective effects of CLU are executed 
by the retrotranslocated psCLU form (mediated by the ER 
chaperone GRP78), which is involved in the modulation 
of autophagy and apoptosis [9].

It must be noted that under healthy conditions, there 
is no difference in vitality between wild type and CLU-
deficient mice (114). CLU seems to be primarily impor-
tant under pathological conditions where it protects the 
organism and helps to reestablish proteostasis. On the 
downside, by being beneficial to organs, sCLU can be dev-
astating as in the case of cancer. Based on this dual role, 
phase III clinical trials with the CLU antisense oligonucle-
otide OGX-011 (Curtisen) in cancer research are underway 
which may highlight this fact in the upcoming months or 
years (6). The results of these trials will not only shed light 
on treatment of cancer, but will also allow new insights in 
the biology of CLU and, thus, the understanding of many 
other physiological mechanisms and diseases.
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