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Abstract: Trefoil factor family (TFF) peptides are a group 
of molecules bearing a characteristic three-loop trefoil 
domain. They are mainly secreted in mucous epithe-
lia together with mucins but are also synthesized in the 
nervous system. For many years, TFF peptides were only 
known for their wound healing and protective function, 
e.g. in epithelial protection and restitution. However, 
experimental evidence has emerged supporting a pivotal 
role of TFF peptides in oncogenic transformation, tumo-
rigenesis and metastasis. Deregulated expression of TFF 
peptides at the gene and protein level is obviously impli-
cated in numerous cancers, and opposing functions as 
oncogenes and tumor suppressors have been described. 
With regard to the regulation of TFF expression, epige-
netic mechanisms as well as the involvement of various 
miRNAs are new, promising aspects in the field of cancer 
research. This review will summarize current knowledge 
about the expression and regulation of TFF peptides and 
the involvement of TFF peptides in tumor biology and 
cancerogenesis.
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Introduction
Trefoil factor family (TFF) peptides consist of three 
members of small proteins (TFF1, TFF2 and TFF3 (1), for-
merly breast cancer-associated peptide 2, spasmolytic 
peptide and intestinal trefoil factor, respectively), first 
described about 35  years ago (2). All three human TFF 

genes are clustered on chromosome 21q22.3 (3, 4). They 
are characterized by a P-domain or trefoil motif, a three-
looped or three-leaved structure resembling a trefoil or 
clover leaf, held together by disulfide bonds (2, 4–6). 
Each trefoil domain comprises 42 or 43 amino acids con-
taining six cysteine residues, which form disulfide bonds 
resulting in the characteristic trefoil structure. One such 
motif is found in TFF1 and TFF3, whereas TFF2 possesses 
two TFF domains (7, 8). TFF1 and TFF3 contain a seventh 
cysteine residue that facilitates homodimerization and 
interaction with other proteins (7). For details and dia-
grams depicting TFF peptides’ gene and protein struc-
ture, the readers are referred to the following reviews (5, 
7, 9, 10).

TFFs have been reported to play a key role in the 
maintenance and protection of epithelial surface integ-
rity. Being secreted in response to injuries, they act as 
motogens to facilitate cell migration into the lesion, 
forming a protective barrier and thus being crucial for 
epithelial restitution, particularly of mucosal surfaces 
(11, 12). TFFs have been described as potent inhibitors of 
apoptosis and anoikis (cell death induced by anchorage 
independence) (8). The signaling pathways that mediate 
the effects of TFFs have not been fully elucidated yet, 
and no definite TFF peptide receptor has been character-
ized so far.

Studies of the last decades, however, indicated that 
TFFs seem to be involved in more processes than just epi-
thelial restitution, e.g. the development of human cancer. 
Depending on the context, in the current literature TFFs 
are presented as oncogenes but also as tumor suppressors 
[for review, see (12, 13)].

The aim of the present review is to present an update 
of what is currently known about TFF peptide expression 
under pathological conditions as compared to their expres-
sion in normal, healthy tissues with a special focus on the 
nervous system including the eye and retina. Besides, TFF 
signaling and the regulation of TFF expression will be out-
lined, highlighting new insides in epigenetic mechanisms 
and effects of miRNAs. Last but not least, the implications 
of TFF knockdown and overexpression in vitro and in vivo 
will be addressed with regard to their opposing functions 
as oncogenes and tumor suppressors.
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TFF expression in normal tissues

TFF expression in mucous epithelia

TFF peptides are co-secreted with mucins, typical constit-
uents of mucus gels, e.g. in the gastrointestinal (GI) and 
respiratory tracts and the uterus [for review, see (14, 15)]. 
Among others, TFF expression has likewise been observed 
in human salivary glands (16, 17), the pancreas of rodents 
and man (17, 18), the prostate (17), the female reproductive 
organs (17), the urogenital system (17), the conjunctiva 
[reviewed in (15)] and the lacrimal apparatus (19). In the 
human respiratory tract and uterus, studies by Wiede et al. 
(20) revealed an accumulation of TFF3 mRNA, whereas 
TFF1 and TFF2 transcripts were hardly detectable.

The expression of TFF peptides in mucous epithelia 
has already been addressed in-depth in former reviews, 
and for more details on TFF expression in these tissues 
the reader is referred to the following review articles (9, 12, 
17, 21, 22).

TFF peptides in nervous tissue

Next to their prominent expression in – mostly mucous – 
epithelia, TFF peptides are also synthesized in the central 
nervous system (CNS) (14, 15, 23–26).

In the brain of rats, Tff1 mRNA is predominantly 
expressed in the hippocampus, followed by cerebral 
cortex and cerebellum (24), and rat intestinal trefoil 
factor (rITF) was detected in neurons of the rat hypo-
thalamus (25). A recent study showed the expression of 
Tff1 in the developing and adult rat ventral mesencepha-
lon (27). Formerly, astrocytes but not neurons have been 
reported to synthesize Tff1 in mice and rats (24, 28). By 
contrast, a more recent study on a rat model of Parkinson 
disease reports on the expression of Tff1 in distinct sub-
populations of dopaminergic neurons of the substantia 
nigra (27).

The murine pituitary is a major expression site for 
Tff2, with high Tff2 mRNA transcript levels in the anterior 
lobe (23).

Numerous studies detected TFF3 mRNA and/or 
protein in different areas of the developing and adult 
murine and human brain and spinal cord (23, 25, 29, 
30). Hinz et  al. (23) found murine Tff3 expression to be 
restricted to three brain regions: the hippocampus, the 
temporal cortex and the cerebellum – the latter showing 
the strongest signal. A study investigating the expression 
of TFF peptides in the nervous tissue of developing mouse 

embryos demonstrated Tff3 expression in ganglion cell 
somata and neurons of the spinal cord and Tff3 staining 
in neurons and nuclei of different regions of the brain 
and medulla oblongata (26). In humans, synthesis of 
TFF3 has been verified for neurons of the hypothalamic 
nuclei and the pituitary (25, 29, 31) as well as for TFF3 in 
the cerebrospinal fluid (31, 32). In a most recent study on 
the expression of TFF3 in the adult and developing human 
brain, Bernstein et  al. (33) revealed that this peptide is 
particularly enriched in midbrain and brain stem nuclei.

Initially, TFF3 expression appeared to be restricted 
mainly to neurons and not glial cells, and TFF3 was 
described as a typical neuropeptide synthesized by magno-
cellular neurons of the rat and human hypothalamus (25, 
29, 31). In a recent study, Tff3 transcripts have, however, 
been detected in activated microglia of glial cell-enriched 
embryonic and neonatal cultures of the rat cerebral cortex 
and hippocampus (34). Along this line, TFF3 expression 
was likewise observed in human oligodendroglia neurons, 
though neurons are the predominant cell type to express 
TFF3 (33).

A developmental regulated expression was reported 
for Tff1 in the rat hippocampus, where Tff1 mRNA grad-
ually decreased in the first 3 weeks after birth (24). Tff3 
expression is likewise clearly developmentally regulated 
with a maximum expression at postnatal day (P)15 (23). 
This led to the hypothesis that TFFs play an important role 
during brain development (24, 26). Besides, cerebral TFF3 
has been reported to be involved in processes such as fear, 
depression, learning, object recognition and opiate addic-
tion (35–38). Furthermore, mutations of the TFF3 gene or 
altered expression have been linked to neurodegenerative 
and neuropsychiatric disorders like Alzheimer’s disease 
(32), Parkinson’s disease (39) and schizophrenia (40).

TFF peptides in ocular tissues and the retina

Messenger RNA and/or protein expression of TFF1 and 
TFF3, but not TFF2, have been detected in human and 
porcine conjunctival goblet cells (41–43), human cornea 
(44, 45), rabbit corneal and conjunctival tissue (46) and 
the epithelium of the nasolacrimal ducts (47). TFF3 has 
not only been shown to promote corneal wound healing 
(48) but also to be a promising therapeutic candidate for 
patients with dry eye syndrome (45).

TFF expression was monitored in the CNS and ocular 
tissues, but our group was the first to investigate retinal 
expression of TFF peptides and to report on Tff expression 
in the murine retina (49). Interestingly, Tff2 turned out to 
be the only Tff peptide expressed in the murine retina as in 
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most tissues studied TFF1 and TFF3 are the predominant 
peptides. Recent studies by our group revealed that only 
TFF3, but not TFF1 and TFF2, is expressed in the healthy 
human retina (50, 51).

Pathological expression of TFF 
peptides

Role of TFFs in epithelial restitution and 
ulcers

Analyzing animal models of wound healing, it has been 
observed that in the restitution step after damage, TFFs 
stimulate migration of epithelial cells surrounding the 
wound to re-establish the continuity of the epithelium [for 
review, see (9, 11, 12)]. Impaired healing and its association 
with chronic inflammation-related injury, e.g. inflamma-
tory bowel disease (IBD) and ulceration, is a key event in 
tumorigenesis and one of the key areas of TFFs’ functions, 
being involved in mucosal defense and regeneration or 
reconstitution, respectively (21, 52–57). The disturbance 
of TFFs’ function in mucosal healing aggravating the risk 
of tumorigenesis under chronic inflammatory conditions 
is one model for the involvement of TFFs in cancer (21). 
TFF-peptide expression is upregulated in GI ulcerations 
and IBDs (e.g. ulcerative colitis) (58). Besides, expression 
and upregulation of TFF1 and TFF2 mRNA and peptides 
has been observed in epithelial cells adjacent to ulcerative 
conditions of the GI tract and epithelial cells undergoing 
migration across the base of the lesion, termed the ulcer-
ation-associated cell lineage (UACL), and TFFs have been 
shown to be expressed in small intestinal Crohn’s disease 
(52, 59–62). Along this line, Tff2 mRNA levels increase 
within minutes following gastric ulceration of rats (62), 
and Playford et al. (63) described TFF2 as a cytoprotective 
agent.

For a comprehensive overview of TFFs’ role in epi-
thelial restitution and their effects in animal models of GI 
ulceration, see the following reviews (10, 11, 14).

Role of TFFs in tumor progression, 
suppression and prognosis

TFF peptides are overexpressed in cancer progression 
(64). Experimental and clinical studies indicate a role 
of TFFs in oncogenic transformation, tumor growth and 
tumor metastasis of common human solid tumors [for 

review, see (10, 13, 21)]. TFFs are connected with multiple 
oncogenic pathways (65) and, depending on the context, 
are considered as tumor suppressor genes or potential 
tumor progression factors (13).

TFF1 and TFF3 but not TFF2 mRNAs are expressed in 
hyperplastic and neoplastic human breast epithelium as 
well as in MCF-7 breast carcinoma cells (66). Breast cancer 
is indeed a typical example of cancers overexpressing TFF1. 
This TFF peptide was first controversially considered as an 
oncogene in this carcinoma (13). Buache and colleagues 
(67), however, demonstrated that TFF1 is not an onco-
gene in the mammary epithelium but rather reduces the 
development of breast tumors and has a tumor suppressor 
function. The beneficial function of TFF1 is in agreement 
with clinical studies indicating a better outcome for breast 
cancer patients with TFF1-positive primary tumors (9, 68, 
69). Both TFF1 and TFF3 mRNAs have been identified as 
predictive markers for micrometastatic breast cancer (70, 
71). Ectopic expression of TFF1 is observed in numerous 
other carcinomas and GI acute inflammatory disorders. 
By contrast, tumors of patients with gastric cancer usually 
have reduced TFF1 levels, and disruption of the TFF1 gene 
causes animals to develop gastric carcinomas and ade-
nomas. TFF1 is significantly increased in gastric cancer 
cells with greater metastatic potential compared to their 
less metastatic counterparts (72). Progressive loss of TFF1 
and downregulation of TFF2, together with the induction 
of TFF3, has been suggested to be involved in multi-step 
gastric cancer development (73, 74).

TFF2 is upregulated in diverse pathological condi-
tions of the GI tract. To our knowledge, no genetic or 
epigenetic alterations are currently known to back up a 
tumor supressor role for TFF2 (73).

TFF3 is upregulated by inflammatory and ulcerative 
conditions. Augmented TFF3 and loss of TFF1 expression 
was reported to precede metaplastic differentiation of 
gastric epithelia (75). TFF3 is highly expressed in intesti-
nal metaplasia and is a designated marker for poor prog-
nosis in gastric carcinoma (76, 77). TFF3 overexpression is, 
however, not only frequently observed in human gastric 
cancers but also in colon, pancreatic, breast and hepato-
cellular carcinomas (66, 74, 78–82) and, thus, was thought 
to induce cancer growth. Most recently, Morito et al. (83) 
reported on the value of TFF3 expression in predicting the 
long-term outcome and recurrence of colorectal cancer. 
Along this line, TFF3 expression correlates with the tumor 
grade in hepatocellular carcinoma (84). Moreover, TFF3 
is overexpressed in prostatic carcinoma, and increased 
plasma levels in patients with advanced prostate cancer 
have been described, suggesting a predictive importance 
of TFF3 also in prostate cancer (64, 85).
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For a more comprehensive overview, readers are 
referred to review articles (10, 13, 21).

TFFs in retinal and corneal diseases

Studies from our lab show that compared to the human 
retina, TFF1 is upregulated in retinoblastoma (Rb) cell 
lines established from malignant eye tumors of children 
(50, 51). By contrast, no TFF2 and only trace amounts of 
TFF3 mRNA are detectable in Rb cell lines (50). As men-
tioned above, virtually no expression of TFF1 is observed in 
the healthy human retina, whereas in all Rb cell lines TFF1 
is the only TFF peptide expressed at well detectable levels.

In line with our results, it has been reported that all 
three TFF peptides are absent in healthy corneas, while 
by yet unknown stimuli the secretion of one TFF peptide, 
in this case TFF3, is induced in different corneal diseases, 
e.g. in corneas of patients suffering from keratoconus, her-
petic keratitis, Fuchs’ dystrophy and pterygium (44), prob-
ably as a protection mechanism. Further along this line, 
Schulze et  al. (86) reported that tears of patients suffer-
ing from dry eye disease contain significantly higher TFF3 
levels than those from healthy volunteers. The authors 
demonstrated that in human corneal epithelial cells TFF3 
is upregulated under experimental conditions similar to 
dry eye disease.

Regulation of TFF expression and 
signaling mechanisms conferring 
TFFs’ effects
Several mechanisms seem to be involved in the regulation 
of the TFF expression and their downstream effects on 
normal epithelial and cancer tissues in vivo. The following 
paragraphs will summarize the current knowledge about 
TFF-related signaling cascades with regard to (i) the regu-
lation of TFFs by proteins and chemicals, (ii) the regula-
tion of TFFs by receptors and pathways, (iii) mechanisms 
conferring TFF’s effects on cytoprotection and motility, 
(iv) epigenetic regulation of TFF expression and (v) effects 
of miRNAs.

Regulation of TFFs by proteins and chemicals

In normal tissues, TFFs are expressed in a strictly tissue-
specific manner, whereby the different tissues seem to 

possess individual regulation mechanisms (87, 88). For 
example, the TFF3 promotor contains cis-regulatory 
enhancer and silencer regions, and nuclear proteins 
binding to these regions are exclusively found in intesti-
nal goblet cells (89).

The adjacent localization of the three TFF genes on 
chromosome 21q23 and shared 5′ regulatory sequences 
lead to the assumption that their expression is coordinated 
(90). This assumption was supported by the finding that 
TFFs are auto- and cross-inducible, e.g. TFF2 and TFF3 
enhance the expression of all TFFs in intestinal and gastric 
cell lines by binding cis-regulatory elements of their pro-
motors in a mitogen-activated protein kinase (MAPK)/
extracellular signal-regulated kinase (ERK)-depend-
ent fashion (91). Besides, in Tff3 knockout (KO) mice a 
decreased expression of Tff1 and Tff2 was found (91), and 
in Tff1 KO mice Tff2 levels are decreased (92). The cross-
induction of TFFs requires activation via phosphorylation 
of the epidermal growth factor receptor (EGF-R), the latter 
being activated by all three TFF peptides (93).

TFF1 expression was shown to be regulated by estro-
gen in the cancer cell line MCF-7 as well as in primary 
breast cancers (87, 94–96). Analyses of the TFF1 promo-
tor revealed an estrogen-response element (ERE) as 
well as enhancer sites responsive for epidermal growth 
factor (EGF) (97). In breast cancer cells, estrogen effects 
are mediated mainly by the estrogen receptor (ER)α but 
also by ERβ, which in turn binds to the ERE in the TFF1 
promotor region. The binding of ERβ is enhanced in the 
presence of Sp1 and Sp3 binding sites (98) as well as other 
transcription factors like GATA3, HNF3 and XBP1 (99). A 
more recent study describes new mechanisms by which 
ERα and the insulin-like growth factor I receptor are 
related in breast cancer, contributing to tumor progres-
sion and resistance to anticancer treatments (100). In 
ER-positive breast cancer cells, Akt2 is activated via the 
downstream phosphatidylinositol 3-kinase (PI3-K)/Akt 
pathway and modulates ER transcriptional activity in a 
ligand-independent manner. This activation leads to the 
expression of the forkhead transcription factor FoxO3a, 
which in turn binds to forkhead-responsive sequences in 
the TFF1 promotor. FoxO3a itself plays a repressive role in 
ER activation and TFF1 expression (100). Also, other con-
stitutively expressed estrogen-receptor related receptors 
of the orphan nuclear receptor family can regulate TFF1 
expression in an estrogen-independent fashion (101). The 
regulation of the TFF1 expression is estrogen-independent 
in gastric mucosa, where TFF1 is highly expressed, 
although ERα and ERβ are present (102, 103).

Like TFF1, TFF3 has two ERE located in the promo-
tor region, and in breast cancer cell lines it is expressed 
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in an estrogen-dependent way (78). Additionally, TFF3 
is highly expressed during the estrogen-driven period 
of the menstrual cycle in the epithelium of the human 
uterus (20, 104). During the phase of implantation, TFF3 
is strongly downregulated in the human endometrium, 
probably leading to a reduced barrier function of the endo-
metrium epithelium (88, 105). A recent study describes the 
influence of TFF3 expression and its interaction with ER 
in endometrial adenocarcinoma (106). The authors found 
TFF3 to be upregulated in endometrial adenocarcinoma 
in an estrogen-dependent manner correlating with a good 
prognosis in type I endometrial carcinomas (106).

Next to the ERE also a gastrin responsive element has 
been found in the human TFF1 promotor, and it could be 
shown that gastrin can induce human TFF1 and murine 
Tff1 expression in an ERK-dependent manner (107). Mice 
that cannot signal through SHP2/ras/ERK display reduced 
gastrin and Tff1 expression in gastric tumor tissue (108). 
In contrast to these findings, van de Bovenkamp and col-
leagues (109) reported that elevated gastrin levels occur 
along with reduced TFF1 expression in human Heliobacter 
pylori-mediated gastritis.

TFFs are aberrantly secreted during several inflamma-
tory diseases. It has been shown that the secretion of EGF/
urogaston by the so-called UACL, a type of cells found in 
the area of chronic GI ulceration, induces the expression of 
TFF1 and TFF2 in damaged GI tissues (59, 110). In a human 
bronchial epithelial cell line (BEAS-2B), TFF2 and TFF3 
increase the tumor necrosis factor alpha (TNF-α)-induced 
secretion of interleukin (IL)-6 and IL-8 via signaling 
through protein kinase C (PKC) and ERK1/2 (111). It could 
also been shown that IL-1β and IL-6 themselves are regu-
lators of TFF gene expression. They are able to decrease 
TFF1 promotor activity and gene expression via inhibition 
of NF-κB (nuclear factor ‘kappa-light-chain-enhancer’ of 
activated B cells) and C/EBPβ factors in GI cell lines (112). 
Soutto and colleagues (113) propose that loss of TFF1 in 
gastric cancer leads to an activation of the TNF receptor 
1/IκB kinase pathway mediated by NF-κB transcription 
factors. In line with this hypothesis, TFF1 expression is 
downregulated and NF-κB was highly activated in human 
gastric tissue samples. Consistent with these data, a 
recent study demonstrates that IL-1β and TNF-α activate 
the NF-κB pathway resulting in decreased expression of 
TFF1 in human gastric carcinogenesis (114). By contrast, 
in vivo data showed that murine Tff1 gene expression is 
upregulated by IL-6, and this upregulation involves the 
activation of the SHP2/ERK/AP-1 pathway and signaling 
through the receptor gp130 (115).

In the pathogenesis of IBD, NF-κB is activated, and 
acting as a pro-inflammatory factor may contribute to 

the development of ulcerations, while both the expres-
sion of NF-κB and the toll-like receptor 4 (TLR4) is essen-
tial for expression of cytokines in intestinal epithelial 
cells. It could be shown that the expression of both 
factors induces downregulation of TFF3 by repressing its 
transcription in vitro (116). Conversely, the application of 
recombinant human TFF3 (rTFF3) leads to a downregu-
lation of NF-κB/TLR4 expression, revealing that human 
TFF3 may have therapeutic potential by inhibiting TLR4/
NF-κB pathways (117). In goblet cells, toll-like receptor 2 
(TLR2) activation induces the expression of TFF3, while 
the loss of TFF3 induction leads to impaired wound 
healing. In addition, treatment with rTFF3 rescues 
TLR2-deficient mice from raised morbidity and mortal-
ity during acute colonic injury (118). In colon cancer cell 
lines, TFF3 expression is enhanced by IL-4 and IL-13 in a 
STAT6-dependent manner along with mucin core protein 
(MUC) 2, potentially directly mediated by the STAT6 
binding site (119).

Regulation of TFFs by receptors and 
signaling pathways

The different biological functions of TFFs are expected to 
be mediated by cell surface receptor ligation. However, up 
to now no classical high-affinity binding receptor for TFF 
peptides has been found.

In 2009, the chemokine receptor CXCR4 has been 
described as a low-affinity receptor for TFF2 (120), and 
treatment of a CXCR4 expressing gastric cell line (AGS) 
with TFF2 leads to a distinct proliferative effect [for 
review, see (121)]. A more recent study suggests that TFF2 
is involved in pancreatic β-cell proliferation through 
CXCR4-mediated ERK1/2 phosphorylation (122). Besides, 
several TFF binding proteins have been identified from 
membrane preparations of intestinal cells of different 
species: in the porcine gastric mucosa CRP-ductin was 
reported as a Tff2 binding protein (123), in mouse Toma-
setto and co-workers (124) proposed binding of Tff1 to 
MUC2 and MUC5AC, and in the human gastric mucosa 
GKN2 is a putative candidate for a TFF1 receptor [for 
review, see (10)].

Several pathways are involved in TFF signaling, and 
they often play a major role in cancerous progression in 
human digestive mucosa and other organ types. Path-
ways that are correlated to biological actions of TFFs 
include the PI3-K/Akt pathway, the Rho-ROCK cascade, 
COX-2/TXA2-R/Gαq signaling, PLC/PKC, MAPK and 
EGF-R signaling (125). Additionally, many intermediates 
like src, Rho-like small GTPases, PI3Ks, COX-2, ERK1/2, 
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JNK, Akt, NF-κB and EGF-R tyrosine kinase are included 
in these pathways (111, 125–128). It has long been sug-
gested that TFF expression may be directly regulated 
via the EGF-R. TFFs, however, do not bind directly to the 
receptor but trigger its phosphorylation and downstream 
actions like initiation of the MAPK and PI3K pathways. 
In many normal and cancer tissues, various biological 
functions like growth and differentiation, angiogenesis, 
invasion and apoptosis are mediated via EGF-R signaling 
[for review, see (88)]. Along this line, in a cholangiocar-
cinoma cell line, recombinant TFF2 triggered phospho-
rylation of the EGF-R and downstream ERK, whereas a 
co-incubation with an EGF-R inhibitor blocked the EGF-R/
ERK responses (129).

In cancer, the tumor suppressor function of TFF1 is 
triggered by different pathways. In human colon cancer 
cell lines, TFF1 (and TFF3) exerts growth-reducing effects 
through the activation of the MAPK/ERK pathway (80). In 
the colorectal cancer cell line, HCT8/S11 invasion is initi-
ated by TFF1 in a COX-2- and TXA2-R-dependent way (127). 
A more recent study proposed that in gastric neoplastic 
transformation the downregulation of TFF1 expression is 
at least partially regulated through the activation of the 
NF-κB pathway via IL-1β and TNF-α activation (114).

TFF2-related effects on cell migration are depend-
ent on the expression of E-cadherin and β-catenin (130), 
and EGF has been shown to enhance TFF2’s motogenic 
effects (131). In BEAS-2B cells, TFF2 causes motogenic 
effects through the activation of ERK1/2 and PKC (132) 
and the activation of Scr family tyrosine kinases (111). 
This pathway is PI3K/Akt-dependent with the partici-
pation of β-catenin/α-catenin complexes [for review, 
see (88)]. In gastric cells, TFF3 regulates migration in 
a Twist-dependent manner (133). In SGC7901 cells, the 
Twist pathway is activated by TFF3 with a coupled reg-
ulation of the migration markers CK-8 as well as ZO-1 
and matrix metallopeptidase-9. Conversely, a siRNA-
mediated knockdown of Twist prevents TFF3-induced 
cell migration in those cells.

TFF3 and the tumor angiogenesis regulator vascular 
endothelial growth factor induce cellular invasion and 
reduce growth in HCT8/S11 tumor xenografts in athymic 
mice through phosphorylation of STAT3 (134). In a recent 
study, the forced expression of TFF3 in a mammary 
carcinoma cell line was correlated with an increased 
STAT3 activity induced by the phosphorylation of c-Scr, 
which subsequently leads to a reduced expression of 
E-cadherin (135). Therefore, the authors concluded that 
TFF3 expression in mammary carcinomas stimulate cell 
invasion and metastasis with a poor survival outcome of 
patients (135).

Mechanisms conferring TFFs’ effects on 
cytoprotection and motility

There are various in vivo studies in rodents demonstrating 
the cytoprotective effect of all three TFFs after GI damage 
[for review, see (10, 15)]. The beneficial effects of TFFs 
have been correlated with a reduction in the vascular cell 
adhesion protein, IL-6, and TNF-α expression. Besides, a 
synergistic protective effect with EGF has been proposed 
[for review, see (12)].

It has been shown that the cytoprotective, anti-
apoptotic effect of TFF1 is mediated via a decrease of 
caspase-3, -6, -8 and -9 activities (136, 137).

TFF3-induced resistance to anoikis in intestinal epi-
thelial cells is linked to a signaling cascade involving 
NF-κB (138). Besides, TFF3 promotes mucosal cell integ-
rity by activation of the PI3K/Akt signaling pathway (139). 
The protective effect of TFF3 on HCT116 and IEC-6 cells 
likewise seems to involve PI3K activation and Akt phos-
phorylation as well as activation of the EGF-R (65, 140). 
TFF3 has also been shown to activate the Akt protein 
kinase B survival pathway (8). Moreover, p-53-induced 
cell death in human gastric carcinoma cell lines after 
etoposide treatment is inhibited by TFF3 (8). However, 
no differences in gene expression of any proteins related 
to Fas or TNF receptor-mediated apoptotic pathways or 
apoptosis-associated proteins of the Bcl family like Bcl-2, 
Bax, Bad or Bcl-xL could be detected in Tff3-deficient 
mice (140).

To execute their role in wound healing and epithelial 
repair, TFF peptides stimulate cell survival, protect cells 
from apoptosis and, last but not least, increase cell motil-
ity (8, 21, 65). Migration is essential in the progression of 
cancer, e.g. tumor spreading, and motility is also essential 
for epithelial restitution. After superficial injury, migra-
tion of epithelial cells is observed, particularly in the GI 
mucosa (12), and TFFs have been shown to be essential 
for this rapid repair called ‘restitution’ (9, 11, 12). The first 
step in restitution is the reduction of cell-cell contacts. All 
TFF peptides have been shown to induce downregulation 
of E-cadherin/β-catenin complexes in adherent junctions, 
accounting for their pro-migratory effect (93, 141, 142).

For TFF1, Piezo 1 has been suggested as a new binding 
protein promoting gastric cancer cell motility (143).

TFF2 and TFF3 are motogens in wounded cell mon-
olayer assays in a transforming growth factor beta 
(TGF-β)-independent manner (53). TGFα/EGF motogen 
factors seem to participate in wound healing in a 
TGF-β-dependent manner on the basolateral side of the 
wounded epithelium, whereas TFFs signal through a 
TGF-β-independent pathway at the apical side (53, 63, 144).
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TFF3-mediated motogenic activity during restitu-
tion has been shown to be regulated through E-cadherin 
(142), independent of EGF-R activation, but via the 
MAPK pathway (126, 129) and MEK/ERK inhibition. In 
this context, it has been demonstrated that TFF3 modu-
lates adherens and tight junctions by increasing the 
level of tightening claudin-1 and decreasing the amount 
of claudin-2, known to form cation-selective channels 
(145). Besides, TFF3 binds to the intestinal mucosa and 
increases NO production via type II or iNOS/NOS2 (146), 
and NO has been shown to mediate epithelial cell restitu-
tion during wound healing. Moreover, TFF3 activates the 
PI3K/Akt pathway to protect gastric mucosal epithelial 
cells from lipopolysaccharide-induced damage (147).

Epigenetic regulation of TFF expression

Epigenetic alterations, resulting in site-specific DNA 
methylation and histone deacetylation, are well-known 
mechanisms associated with transcriptional silencing of 
cancer-related genes (148–150). DNA methylation within 
the genome of vertebrates occurs at cytosines located 5′ 
to a guanosine called CpG dinucleotide. Short regions, 
known as CpG islands, are rich in CpG content and fre-
quently found in the proximal promoter region of many 
human genes [for review, see (148, 151)].

Epigenetic mechanisms are also involved in the 
regulation of TFF expression in cancer (65, 88). The 
promotor regions of the TFFs are methylated or only 
partially demethylated in tissues where these genes 
are expressed. By contrast, in organs without TFF gene 
expression their promotors are methylated (152). In gut 
and pancreas (152) as well as human pancreatic ductal 
carcinomas (153), hepatocellular carcinoma (81), and 
mouse small intestine (152), TFF3 is strongly expressed 
with concomitant hypomethylation of its promotor 
region. A most recent study demonstrated that the meth-
ylation status of the CpG islands in the promoter region 
correlates with TFF1 expression levels in human gastric 
cancer cells, and DNA methylation is a key mechanism 
of silencing TFF1 in gastric carcinomas (154). Moreover, 
TFF1 has been described as a differentially methylated 
gene in Rb tumors (155) and as one of the upregulated 
genes in primary Rbs with a matching activating histone 
modification (150). In a recent study by our group, we 
could demonstrate that minimal methylation changes of 
certain CpGs in the TFF promoter of Rb cell lines results 
in changes of TFF expression levels (50). Our data are in 
good accordance with the finding that as little as 6–8% 
methylation can account for 67–90% downregulation of 

genes (156). Along this line, in human breast cancer cell 
lines, a correlation of DNA methylation and TFF1 expres-
sion was not observed at all CpG sites, since some CpGs 
were unmethylated in TFF1 non-expressing cell lines 
(157).

In prostate cancer cell lines, promoter hypomethyla-
tion of TFF1 and TFF3 has been shown to be closely related 
to increased expression of these genes (158). Additionally, 
it could be shown that the DNA methyltransferase inhibi-
tor 5-Aza-2′deoxycytidine (5-Aza-dC) increases TFF expres-
sion in low-expressing prostate cancer cells and restores 
TFF1 expression in gastric carcinoma cell lines (154). In 
a study by our group, we observed a significant induc-
tion of TFF3 expression upon stimulation with 5-Aza-dC 
in all Rb cell lines exhibiting no or low endogenous TFF3 
expression. TFF1 expression was, however, only slightly 
increased by 5-Aza-dC, suggesting a correlation of the 
extent of upregulation with endogenous basal expres-
sion level. No re-expression of TFF2 was observed in Rb 
cell lines, in which this gene seems to be silenced (50). A 
study from Sato and co-workers (153) reported that there is 
no clear correlation between TFF2 promoter methylation 
status and TFF2 expression, although hypomethylation of 
the TFF2 gene was observed in TFF2-overexpressing pan-
creatic ductal adenocarcinoma.

Histone modification is another epigenetic factor 
playing a key role in transcriptional regulation of gene 
expression. TFF1 is upregulated in Rbs with a matching 
activating histone modification, indicating an epigenetic 
regulation (150). A synergistic effect of DNA demeth-
ylation and the inhibition of histone deacetylation in 
the re-expression of silenced genes has been described 
(159). These findings match with data from our recent 
study showing that double treatment with 5-Aza-dC and 
the histone deacetylase inhibitor 4-phenylbutyric acid 
increases TFF mRNA levels in Rb cell lines (50).

Effects of miRNAs

MicroRNAs (miRNAs) are small non-coding RNA mol-
ecules (about 22 nucleotide in length) that play impor-
tant roles in many pathways like differentiation, cell 
cycle progression, growth and apoptosis. The dysregu-
lation of miRNAs may turn out to be crucial for various 
types of cancers and diseases. Lee and colleagues (160) 
published the first report on the function of miRNAs in 
1993. Up to now little is known about the link between 
TFFs and miRNAs. There are a few studies reporting 
on a regulation of TFF1 in gastric cancer by miRNAs. 
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MicroRNA-423-5p negatively regulates the expression of 
TFF1 by binding to its 3′UTR region and consequently 
influences proliferation and invasion-related processes 
in gastric cancer cells (161). Shi et al. (162) could show 
that the TFF1 coding DNA region is also a candidate for 
miR218-5p targeting and that TFF1 is downregulated 
by miR218-5p in gastric cancer cells. The reduced TFF1 
expression regulates the progression of gastric cancer 
in an ERK1/2-dependent way. By in vitro and in vivo 
approaches, a recent study by Soutto and co-workers 
(163) demonstrated that in human gastric cancer, activa-
tion of p53 mediates TFF1 effects via downregulation of 
miR-504.

By whole miRNome profiling and in silico analysis 
of Tff2 KO mice vs. wild-type mice, Shah and colleagues 
(164) identified physiological regulated miRNAs. From 
this proof-of-concept study they suggested that the 
identified miRNAs may play a major role in regulatory 
processes of TFFs, particularly regulation of cancer cas-
cades. In a more recent study of this group, the authors 
compared deregulated miRNAs in blood samples from 
human cancer patients with the expression pattern of a 
gastric carcinoma Tff1 KO mouse model. By subsequent 
in silico analysis of the identified subset of miRNAs, their 
involvement in targeting neoplastic and MAP-kinase 
pathways was demonstrated (165). Applying bioinfor-
matic analyses on miRNA expression data of previous 
Tff2 KO studies, Yin and co-workers (166) set out to 
unravel pathways of genes involved in the TFF regulating 
mechanisms. Their KEGG pathway enrichment analyses 
revealed that the TGF-β signaling pathway as well as a 
cytokine-cytokine receptor interaction is enriched, both 
mediated via miRNAs (166).

Investigating the development of intestinal metapla-
sia in stomach cell lineages, a recent study proposed a 
miRNA to transcription factor network to be responsible 
for the expression of intestinal transcripts, identifying 
miR-30 and miR-194 as regulators for the transcription 
factors HNF4γ (hepatocyte nuclear factor 4 gamma) 
and NR2F2 (nuclear receptor subfamily 2) (167). The 
intestinal metaplasia markers TFF2 and TFF3 were also 
downregulated after overexpression of miR-30a in a 
HNF4γ-dependent way (167). Additionally, the ectopic 
expression of the caudal-related homeobox protein 2 
(CDX2) is connected with the development of intestinal 
metaplasia in gastric carcinogenesis. By overexpression 
and knockdown experiments of the computationally pre-
dicted miR-9, Rotkrua and colleagues (168) found altered 
expression levels of the CDX2 protein and the correspond-
ing downstream target genes including TFF3 in MKN45 
and NUGC-3 cells (168).

Effects of TFF knockdown and 
overexpression in vivo and in vitro

Consequences of TFF knockout and 
overexpression in vivo

Tff KO mice are susceptible for gastric hyperplasia or 
dysplasia, ulceration, adenomas and carcinomas [reviewed 
in (10)].

Tff1-/- (and Tff3-/-) mice partly lack a functional mucus 
layer (54, 92). Mice deficient for Tff1 show increased gastric 
mucosal proliferation rates (92) and, compared to controls, 
display differences in the susceptibility for indomethacin 
(55). Conversely, Tff1 overexpressing mice show resistance 
to intestinal damage (55). In line with these findings, a most 
recent tumor xenograft mouse model of gastric cancer sup-
ports the notion of Tff1 as a protective tumor suppressor 
(169). By contrast, implantation of TFF1 overexpressing 
pancreatic ductal adenocarcinoma cells into nude mice 
did not induce primary tumor growth but increased metas-
tasis (170). Along this line, constitutive expression of Tff1 
potentiates the growth of colon and kidney tumor xeno-
grafts in athymic nude mice (171).

Tff2-/- mice show decreased gastric mucosal thickness 
and proliferation rates (172). It has been shown that com-
pared to wild-type animals, Tff2-deficient mice display 
higher rates of non-steroidal anti-inflammatory drug-
induced ulcers (172). In addition, analyses of Tff2-deficient 
mice revealed Tff2’s role in immune response (173, 174). To 
our knowledge, there are no reports on Tff2 overexpress-
ing mice so far.

In Tff3-/- mice, re-epithelialization of corneal wounds 
is significantly prolonged compared to Tff3+/+ mice (48). 
Besides, Tff3-deficient mice display an increase in colono-
cyte apoptosis (140) and impaired mucosal healing (54). 
In addition, they are more susceptible to chemotherapy- 
and radiation-induced mucositis (175) and die from exten-
sive colitis after oral exposure to dextran sulfate (54). 
Conversely, transgenic mice ectopically expressing rat Tff3 
in their jejunum have been shown to be less susceptible to 
induced enteritis (176).

Implications of TFF overexpression and 
knockdown on prevention and induction of 
apoptosis in vitro

Forced expression of TFF1 has been demonstrated to 
promote both anchorage-independent growth in human 
colon carcinoma cells and transformation of premalignant 



M. Busch and N. Dünker: TFFs – friends or foes?      351

colonic adenoma cells (171). In GI cell lines, application of 
recombinant TFF1 (rTFF1) protects the cells from chemi-
cal-, Bad- or anchorage-dependent apoptosis (80, 136). In 
addition, TFF1 protects gastric cancer cells from apoptosis 
after treatment with etoposide (177).

Lalani et al. (178) reported that TFF2 promotes the sur-
vival of MCF-7 human breast cancer cells via inhibition of 
apoptosis. Later, it had been reported that TFF2 likewise 
inhibits apoptosis in other breast cancer and colorectal 
cancer cell lines (179), and overexpression of TFF2 is asso-
ciated with resistance to apoptosis (180). By contrast, in 
organotypic murine retinal cultures, Tff2 exerts a strong 
pro-apoptotic rather than an anti-apoptotic effect (49). In 
blockage experiments, our group was able to demonstrate 
that the pro-apoptotic effect of TFF2 is caspase-dependent 
(49). Western blot analyses revealed a significant reduc-
tion in the phosphorylation level of ERK and STAT3 pro-
teins compared to basal conditions, suggesting that in the 
developing murine retina survival mechanisms are down-
regulated upon TFF2 administration (49).

It has been shown that exogenously applied TFF3 
protects human colonic carcinoma-derived HCT116 cells 
and non-transformed rat intestinal epithelial cells from 
apoptosis (140). Along this line, cell lines overexpress-
ing TFF3 (e.g. colonic HT-ITF1 cells) are resistant to serum 
starvation- and drug (e.g. ceramide)-induced apopto-
sis (126, 140). It has likewise been shown that TFF3 pre-
vents IEC-18 cells from anchorage-dependent apoptosis 
(anoikis) (21, 138). Conversely, anti-sense TFF3-transfected 
human gastric cancer cells displayed an enhanced chemo-
sensitivity and a marked increase in drug-induced apopto-
sis (181), and neutralization of secreted TFF3 by antibody 
promotes apoptosis in mammary carcinoma cells (182). 
However, evidence in support of the notion of a pro-
apoptotic function of TFF3 was reported in articular car-
tilage during osteoarthritis (183). A pro-apoptotic function 
of TFF3 has already been suggested years ago: in a colo-
rectal carcinoma cell line, rTFF3 induced DNA fragmenta-
tion and morphologic changes characteristic of apoptosis 
(141). To this end, murine Tff3 has been shown to interact 
with peptides contributing to apoptosis (184).

Effects of TFF overexpression and knockdown 
on cell proliferation and growth in vitro

In the human colon cancer cell line HCT116 and the human 
gastric adenocarcinoma cell line AGS, rTFF1 reduces 
cell proliferation (185), and transfected, TFF1-expressing 
HCT116 cells show reduced growth (136). Anti-prolifer-
ative effects were likewise documented when rTFF1 was 

applied or TFF1 was overexpressed in GI cell lines (136). 
In this context, it has been shown that TFF1 delays G1-S 
phase transition of the cell cycle (136). In agreement with 
these findings, a recent study by our group demonstrated 
that rTFF1 has a negative effect on the viability of Y-79 Rb 
cells and causes a reduction in cell proliferation (51). Con-
tradicting these data, TFF1 has been shown to stimulate 
growth of pancreatic stellate cells (170).

Treatment with recombinant TFF2 (rTFF2) reduces 
cell proliferation in GI and carcinoma cell lines (178). 
By contrast, forced expression or application of rTFF2 
has been shown to promote proliferation of pancre-
atic β-cells (122). Supporting these findings, our group 
showed that rTFF2 significantly upregulates cell prolif-
eration in the developing murine retina (49). Along this 
line, Hoosein et al. (186) reported on a growth stimula-
tory effect of TFF2 on cultured human colon carcinoma 
(HCT116) and breast tumor cells (MCF-7) (186). In a later 
study, however, the authors could not confirm these 
initial data, reporting that the addition of TFF2 to human 
colon cancer-derived cell lines (HT-29 and CaCO2) other 
than HCT116 had no consistent stimulatory or inhibitory 
effect on cell proliferation (53).

TFF3 has been shown to suppress the growth of colo-
rectal carcinoma cells (79). In the human colon carcinoma 
cell lines LoVo and SW837, overexpression of TFF3 signifi-
cantly reduced cell growth (80). In human corneal epithe-
lia cells, cell proliferation likewise decreases 24  h after 
stimulation with rTFF3 (86). By contrast, Sun et  al. (147) 
demonstrated that TFF3 promotes proliferation of gastric 
mucosal epithelial cells by the activation of the PI3K/Akt 
pathway. Along this line, a most recent study likewise 
reported that rTFF3 enhances the proliferation of gastric 
endothelial cells (GES-1) through the activation of ERK1/2 
(187). Moreover, forced expression of TFF3 in mammary 
carcinoma and prostate cancer cells significantly increases 
cell proliferation, viability and survival (182, 188).

Impact of TFF overexpression and knockdown 
on cell migration, invasiveness and 
metastasis in vitro

Migration and invasion of cells are crucial processes for 
epithelial restitution as well as tumor progression and 
metastasis. All TFF peptides tested so far are motogens 
enhancing the migration of epithelial cells in different 
systems (1, 10, 65). TFF2 and TFF3 have also been shown 
to enhance cell scattering, and all three TFFs induce 
invasion of transformed kidney and colonic epithelial 
cells (125).
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TFF1 is a potent chemoattractant for human mammary 
carcinoma cells (65) and stimulates migration, invasive-
ness and metastasis of human pancreatic stellate (170) 
and breast cancer cells (67, 189). Besides, TFF1 mutations 
have been shown to enhance gastric carcinoma cell migra-
tion and invasion (177). Recently, Fu et  al. (190) showed 
that compared to stationary rat gastric epithelial cells 
Tff1 expression is upregulated in migratory gastric epithe-
lial cells (RGM-1), providing further evidence for a Tff1’s 
motogenic function.

TFF2 appears to stimulate cell migration and invasion 
as well (125). Overexpression of TFF2 is associated with 
increased cell migration and possibly increased gastric 
cancer invasion (180). Besides, a motogenic effect on 
bronchial epithelial cells (111) as well as the stimulation of 
migration of HT29 cells (63) have been reported for TFF2.

TFF3 likewise exerts a pro-migratory effect, e.g. 
on primary rabbit corneal epithelial cells (46, 86), oral 
keratinocytes (191) and human bronchial epithelial cells 
(131). Moreover, in wounded monolayers of intestinal 
epithelial cells (IEC-6), rTFF3 significantly increases the 
migration of cells into the wound (53). TFF3 has also been 
shown to promote the migration and invasiveness of rat 
fibroblasts (192) and the migration of gastric mucosal 
epithelial cells (139), gastric endothelial cells (GES-1) 
(187) and human colorectal cancer cells (193). Along this 
line, transfecting TFF3 into non-aggressive rat colorectal 
cancer cells has been shown to enhance their ability to 
migrate, invade and behave more aggressively (194). In 
line with these findings, siRNA-mediated knockdown of 
TFF3 in metastatic rat colon cancer cell lines significantly 
inhibited invasion (195). Further along this line, forced 

Table 1: Summary of major confirmed effects of TFF peptides.

Effect   TFF peptide   Model system   References

Cytoprotection   TFF1–3
Tff1
TFF2

  Rodent models 
Overexpressing mice
Rat model of GI damage

  Reviewed in (10, 15) 
(55) 
(63)

Epithelial restitution/
repair/wound healing

  TFF1–3   Rodent models of GI tract damage   (21, 22, 52–57) Reviewed in (9–12, 
14, 15)

Ulceration   TFF1–3
rITF

  Rodent models of GI ulceration; UACL
Rat model of gastric ulceration

  (52, 56, 59, 60) Reviewed in (10, 14) 
(62)

Apoptosis ↑   Tff2
TFF3
Tff3

  Developing murine retina
Articular cartilage; colorectal carcinoma cells
Murine cochlea cDNA library;  Tff3-/- mice colonocytes

  (49) 
 (141, 183) 
(184, 140)

Apoptosis ↓   TFF1
TFF2
TFF3

  GI cells+gastric cancer cells
MCF-7; colorectal cancer cell lines
HCT116; transformed rat intestinal epithelial cells; HT-ITF1; 
IEC-18; gastric cancer+mammary carcinoma cells

  (80, 124, 136, 177) 
(178–180) 
(21, 126, 138, 140, 182, 192)

Proliferation ↑   Tff1
Tff2; TFF2
TFF3

  Tff1-/- mice
Murine retina; pancreatic β-cells 
GES-1; gastric mucosal epithelial+mammary 
carcinoma+prostate cancer cells

  (92) 
(49, 122) 
(147, 182, 187, 188)

Proliferation ↓   TFF1
TFF2
Tff2
TFF3

  HCT116; AGS; Y-79, GI cell lines
GI cells and GI carcinoma cell lines
Tff2-/- mice
LoVo; SW837; colorectal carcinoma+corneal epithelia cells

  (51, 136, 185) 
(178) 
(172) 
(79, 80, 86)

Migration ↑   TFF1–3
TFF1
TFF2
TFF3

  Different epithelial cells
Pancreatic stellate+breast cancer+gastric carcinoma cells
HT29; gastric cancer cells; bronchial epithelial cells
Oral keratinocytes; IEC-6; GES-1; rat fibroblasts; rabbit 
corneal epithelial+bronchial epithelial+colorectal 
cancer+mammary carcinoma+prostate cancer cells

  (1, 10, 65) 
 (67, 170, 177, 189) 
 (63, 111, 180) 
 (46, 53, 86, 131, 139, 182, 188, 
191–193)

Invasion ↑   TFF1–3
TFF1
TFF3

  Transformed kidney+colonic epithelial cells
Pancreatic stellate+breast cancer+gastric carcinoma cells
Rat fibroblasts; mammary carcinoma+prostate cancer cells

  (65) 
 (67, 170, 177, 189) 
 (182, 188, 192)

Cell scattering ↑   TFF2, TFF3   MDCKts.src   (65)
Metastasis ↑   TFF1   Pancreatic stellate+breast cancer cells   (67, 170, 189)
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expression of TFF3 in prostate cancer and mammary car-
cinoma cells enhances anchorage-independent growth 
and 3-D colony formation and promotes cell migration 
and invasion (182, 188). Besides, overexpression of TFF3 
in mammary carcinoma cells increased tumor size in xen-
ograft models, whereas neutralization of secreted TFF3 
in these cells arrested mammary carcinoma xenograft 
growth (182).

Summary and future challenges
Regarding the numerous functionalities of TFFs summa-
rized in Table 1, these peptides have already been consid-
ered as useful targets for pharmacological intervention 
for several indications, e.g. mucosal or epithelial lesions, 
not only in the GI tract. Beyond that, changes in TFF 
expression seem to be a common feature of many types 
of tumors. In most tumor models studied so far, it has not 
yet been experimentally proven whether TFFs drive car-
cinogenesis or represent innocent bystanders. The data 
outlined above demonstrate that TFFs influence key func-
tional characteristics of oncogenic processes by regulat-
ing cell survival, apoptosis, cell migration and invasion. 
The specific roles of TFFs in cancer are, however, not 
clear yet. Thus, with regard to the search for new diagnos-
tic strategies, it will be challenging to reveal the poten-
tial of TFFs as general markers for a broader spectrum of 
cancers. Regarding a potential pivotal role in oncogenetic 
transformation, it will be challenging to further unravel 
the apparent contradiction between the double-faced 
tumor-promoting and tumor-suppressing functions of 
TFF peptides in various carcinomas. Recently, miRNAs 
attracted more and more attention with regard to their 
promising role in the regulation and dysregulation of TFFs 
in cancer development. Further investigations are needed 
to decipher the complex network between miRNAs, tran-
scription factors and the expression of TFFs, which might 
provide helpful novel tools for future targeted cancer 
therapies.

List of abbreviations
AP-1	 activator protein 1
5-Aza-dC	 5-Aza-2′deoxycytidine
CDX2	 caudal-related homeobox protein 2
COX-2	 cytochrome c oxidase assembly factor 2
EGF	 epidermal growth factor
EGF-R	 epidermal growth factor receptor
ER	 estrogen receptor

ERE	 estrogen-response element
ERK	 extracellular signal-regulated kinase
FoxO3a	 forkhead-box-protein O3
HNF	 hepatocyte nuclear factor
IL	 interleukin
JNK	 c-Jun N-terminal kinase
MAPK	 mitogen-activated protein kinase
MEK	 MAPK kinase
MUC	 mucin core protein
NF-κB	� nuclear factor ‘kappa-light-chain-enhancer’ of activated 

B-cells
NR2F2	 nuclear receptor subfamily 2
PI3-K	 phosphatidylinositol 3-kinase
rITF	 rat intestinal trefoil factor
STAT	 signal transducer and activator of transcription
TGF-β	 transforming growth factor beta
TLR	 toll-like receptor
TNF-α	 tumor necrosis factor alpha
TXA2-R	 thromboxane receptor A2
UACL	 ulcer-associated cell lineage
XBP1	 X-box binding protein 1.
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