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Abstract: The glyoxalase enzyme system utilizes intracellu-
lar thiols such as glutathione to convert α-ketoaldehydes, 
such as methylglyoxal, into D-hydroxyacids. This over-
view discusses several main aspects of the glyoxalase 
system and its likely function in the cell. The control of 
methylglyoxal levels in the cell is an important biochemi-
cal imperative and high levels have been associated with 
major medical symptoms that relate to this metabolite’s 
capability to covalently modify proteins, lipids and 
nucleic acid.
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Introduction
The glyoxalase enzyme system is a group of enzymes 
that overall convert α-ketoaldehydes into D-hydroxyacids 
(1–5). In the case of methylglyoxal (MG), D-lactate is the 
product. There are several glyoxalase enzymes that have 
been identified. Glyoxalase I (Glo1) converts a non-enzy-
matically formed hemithioacetal, the adduct between an 
intracellular thiol such as glutathione (GSH) and a meta-
bolically produced α-ketoaldehyde such as MG, into a thi-
oester product (Figure 1) (6–9). In the case of MG and GSH, 
S-D-lactoylglutathione is the product. Glyoxalase II (Glo2) 
hydrolyzes this thioester into D-lactate and regenerates the 
intracellular thiol GSH. Glo1 and Glo2 work in tandem to 
convert cytoxic MG into D-lactate. Interestingly, it has been 
determined that another enzyme, termed glyoxalase III 
(Glo3) is capable of directly converting MG into D-lactate/L-
lactate, depending on the source of the enzyme (10–12) 
(Figure 1). The continuing focus on these enzymes, their 
structure-function, and their identification from various 

biological sources is an important area of biochemistry. 
Studies on the biochemistry of MG, its reaction with bio-
molecules in the cell, the analysis of these modifications, 
and the resulting cellular and physiological outcomes are 
also of major concern (13–16). This area of biochemistry 
has continued to be of interest as evidenced by a recent 
international conference organized by the Biochemical 
Society in 2013 celebrating the 100-year anniversary of gly-
oxalase research. The resulting publications from that con-
ference are highly recommended to the reader (17–19). The 
overview presented in this current article hopes to capture 
the major themes of research in this area and also provide 
additional recent literature (to August 2015) to add to the 
reader’s appreciation of this field.

Methylglyoxal
MG is present in all cells and its concentration at any 
moment is a result of its production by both non-enzymatic 
(major) and enzymatic mechanisms as well as its degra-
dation by the glyoxalase enzymes and other enzymes of 
varying importance capable of oxidatively or reductively 
metabolizing it (20–23). Non-enzymatic conversion of 
triose phosphates such as dihydroxyacetone phosphate 
(DHAP) and glyceraldehyde-3-phosphate (GAP), which are 
normal intermediates in the glycolytic pathway, can occur 
in aqueous solutions which can complicate the determi-
nation of MG concentrations and glycation labeling in 
biological solutions and tissues (24–26) (Figure 2). Indeed, 
the non-enzymatic conversion of triose phosphates to MG 
in cells is considered to be the major contributor to MG cel-
lular levels. Mechanistically, the removal of a proton alpha 
to the carbonyl present in DHAP/GAP results in the elimi-
nation of inorganic phosphate through the intermediacy 
of the enediolate phosphate, 3-phospho-2, 3-ene-diol. The 
glycolysis pathway enzyme triose phosphate isomerase 
(TIM) increases the observed rate of MG formation in the 
presence of DHAP/GAP as this enzyme catalyzes the net 
conversion of DHAP to GAP, GAP having a higher rate of 
non-enzymatic elimination of inorganic phosphate than 
DHAP to form MG (25, 26). In rat tissues, MG formation has 
been estimated to be approximately 0.4 mm per day taking 
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Figure 1: Reaction schemes for the glyoxalase enzymes.

Figure 2: Some of the biological pathways that lead to and from MG 
including the position of the enzymes Glo1, Glo2 and Glo3.

into account contributions by TIM (26). In humans the 
whole body rate of formation of MG has been estimated 
to be approximately 3 mmol per day (16). The glyoxalase 
system and various aldo-keto oxidoreductases metabo-
lize the MG, and substantially, but not completely, protect 
cells from MG toxicity (14, 27, 28).

Enzymatic formation of MG is also known, and these 
organism-dependent pathways vary in their overall contri-
bution to MG production. A direct enzymatic route for the 

production of MG through the activity of the enzyme MG 
synthase has been identified in Escherichia coli (29–31). 
The enzyme catalyzes MG formation from DHAP (Figure 2). 
Triose phosphate isomerase-deficient mutants of E. coli 
were observed to accumulate MG in these bacteria. MG 
synthase has been isolated and it has been hypothesized 
that in concert with the glyoxalase system, the resulting 
D-lactate is converted to pyruvate by the bacterial enzyme 
D-lactate dehydrogenase. The overarching metabolic 
scheme (MG → → pyruvate) bypasses the formation of 
pyruvate by the usual glycolytic pathway (Figure 2). Inor-
ganic phosphate (Pi) was observed to inhibit the E.  coli 
MG synthase, an observation that suggested that this 
“glycolytic bypass” is likely activated in E. coli under envi-
ronmental conditions where (Pi) is limiting (29). The redi-
rection of DHAP consumption occurring in the “glycolytic 
bypass” would conserve the existing Pi cellular pool, thus 
permitting Pi-dependent phosphorylation steps such as 
that found in the GAP dehydrogenase catalyzed reaction in 
glycolysis to continue. Threonine catabolism can yield MG 
through the intermediacy of aminoacetone, which is sub-
sequently oxidized to MG by a monoamine oxidase (32). 
MG has also been shown to be a product from the oxidation 
of acetone (acetone → acetol → MG) as catalyzed by select 
cytochrome P450 enzymes (33, 34).

Aldo-keto oxidoreductases
As will be discussed below, MG is a highly electrophilic 
molecule and can covalently label proteins/enzymes, 
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DNA, and other biomolecules. In order to avoid the cyto-
toxicity of MG and that of other α-ketoaldehydes such as 
glyoxal, phenylglyoxal and hydroxypyruvaldehyde, cells 
have developed enzymatic systems to metabolize MG. One 
set of enzymes is the aldo-keto oxidoreductases. NADPH-
dependent oxidoreductases that catalyze the conversion 
of MG to acetol or lactaldehyde have been identified in 
various bacteria and mammals (35–38). MG reductase has 
been identified in fungi and in mammalian liver homoge-
nates and catalyzes the conversion of MG to lactaldehyde 
(39–41). Some Clostridia species utilize the enzyme glyc-
erol dehydrogenase to decrease cellular MG concentra-
tions by first reducing MG to acetol likely by an aldose 
reductase, which is followed by reduction to 1,2-propan-
ediol by glycerol dehydrogenase (42). It has been sug-
gested that the protozoan Trypanosoma brucei utilizes an 
MG reductase to detoxify this compound, resulting in the 
production of L-lactaldehyde, although some uncertainty 
in this proposal has been expressed. It is clear however, 
that the enzyme Glo1 is not present in this organism (22, 
43, 44).

Glyoxalase enzymes
Another set of enzymes that play a role in protecting 
cells from the cytotoxicity of MG is the glyoxalase set of 
enzymes. These enzymes make a major contribution to 
MG detoxification in most cells.

Glo1

The most extensively investigated glyoxalase enzymes are 
Glo1 and Glo2. Glyoxalase I (Glo1; S-D-lactoylglutathione 
MG lyase (isomerizing); EC 4.4.1.5) is the first of a pair of 
enzymes of the glyoxalase enzyme system that work in 
tandem to convert MG to D-lactate (Figure 1). The substrate 
for Glo1 is the hemithioacetal, formed non-enzymatically 
from the nucleophilic reaction between the cellular trip-
eptide GSH and MG (23, 44–46). It should be pointed out 
that a recent study on yeast Glo1 has indicated that the 
best fit to the experimental kinetic data was the situation 
where a GSH-Glo1 binary complex was formed initially 
in the active site of the yeast enzyme with subsequent 
binding of MG to form the ternary complex hemithioac-
etal in the active site of the enzyme (47). These interesting 
initial findings warrant further investigation and a deter-
mination as to whether this mechanism also extends to 
Glo1 enzymes from other organisms.

Figure 3: Ribbon representation of H. sapiens glyoxalase I with 
S-benzylglutathione inhibitor bound to the active site.
The two subunits of the enzyme are colored green and red. Active 
site hexacoordinate Zn2+ is shown as a blue sphere with amino acid 
side chains from both subunits contributing to the binding of each 
active site zinc atom. The inhibitor (in ball-and-stick) is only shown 
in one active site for clarity. (PDB code: 1FRO).

Numerous Glo1 enzymes are widespread in nature, 
yet a few organisms appear not to harbor a Glo1 enzyme. 
Although T. brucei appears to lack Glo1 (although T. brucei 
is suggested to have a MG reductase that reduces MG 
to L-lactataldehyde as mentioned previously), T. cruzi 
does contain an active Glo1 (44, 48, 49). Giardia lamblia 
and Entamoeba histolytica however, lack Glo1 based on 
genome analyses (49). The predominant use of the glyoxa-
lase enzymes to detoxify MG and other reactive dicarbo-
nyls has resulted in intense interest in ameliorating our 
understanding of the structure-function relationships of 
these enzymes. Early research had shown that Glo1 is a 
Zn2+-activated metalloenzyme when isolated from biologi-
cal sources such as yeast, mammals, and Pseudomonas 
putida (7, 50–52). Nevertheless, metal ions such as Co2+, 
Mn2+, Ni2+, and even Mg2+ were also found to activate the 
Glo1 isolated from these sources (53). This foundational 
research indicated a broad metal promiscuity for Glo1, 
although metal reconstitution experiments were techni-
cally challenging at times.

The X-ray structure of the homodimeric Glo1 from 
Homo sapiens bound to the inhibitor S-benzylglutathione 
provided the first detailed structural information on a Glo1 
(54) (Figure 3). Two active sites each bound to octahedral 
Zn2+ were detected. Each Zn2+ was liganded by two amino 
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acid residues from one subunit (His127, Glu173) and two 
residues (Gln34, Glu100) from the second subunit. Water 
molecules were also found proximal to the Zn2+ center and 
were likely liganded to the metal ion in the absence of the 
inhibitor. This information provided structural confirma-
tion of previous biophysical studies that indicated that 
Glo1 maintains an octahedral metal coordination envi-
ronment, with metal-bound H2O/OH- also participating 
 (55–57). Although also expecting the isolated Escherichia 
coli Glo1 to be a Zn2+-activated enzyme, a surprising metal 
activation profile was observed for this enzyme, drasti-
cally different from previously studied Glo1 (58). A nar-
rower metal activation profile was observed for the E. coli 
Glo1, with Ni2+ reconstitution providing the most active 
enzyme. Co2+ resulted in a lower activity Glo1 and Cd2+ and 
Mn2+ ions activated the enzyme to only modest levels. Sur-
prisingly, no enzyme activity was observed in the presence 
of Zn2+, a very different and unexpected characteristic.

Extended X-ray Absorption Fine Structure (EXAFS), 
X-ray Absorption Near Edge Structure (XANES) and X-ray 
crystallographic structure data were obtained on the 
E. coli Glo1 enzyme (59–61) (Figure 4). The enzyme is 
homodimeric in quaternary structure, which is similar to 
the H. sapiens Glo1. Analyses of the E. coli Glo1 structural 
data showed two active sites, each active site being formed 

Figure 4: Ribbon representation of E. coli glyoxalase I.
The two subunits of the enzyme are colored green and red. Active 
site hexacoordinate Ni2+ is shown as a blue sphere with amino acid 
side chains from both subunits contributing to the binding of each 
active site nickel atom. Two water molecules shown as red spheres 
complete the active site metal coordination. (PDB 1F9Z).

by contributions from residues from each of the two subu-
nits (Chain A: His74, Glu122; Chain B: His5, Glu56) with 
two water (or hydroxide) molecules present that com-
plete the octahedral metal coordination. All metal ions 
that activated E. coli Glo1 had octahedral geometry in 
the active site of the enzyme. Zn2+, which did not activate 
the E. coli enzyme, did indeed bind. However, the coordi-
nation geometry was found to be close to trigonal bipy-
ramidal, with only one H2O/OH- bound to the zinc center. 
Subsequent studies by nuclear magnetic resonance spec-
troscopy (NMR) elaborated on the inequivalence of the 
two active sites in the E. coli enzyme, accounting for pre-
vious solution studies (58, 62, 63). Additional studies on 
substrate thiol structure-function activities and kinetic 
isotope effects were reported for the E. coli Glo1 (64).

Investigations of the metal-activation profiles for 
other Glo1 enzymes provided additional support for the 
two classes of Glo1. For example, the Leishmania major 
Glo1 was reported to lack Zn2+-activation, but was found to 
be fully active in the presence of Ni2+ ion (48). Additionally 
this enzyme was found to utilize the cellular thiol trypan-
othione (bis(glutathionyl)spermidine) as the thiol co-sub-
strate for the enzyme (Figure 5). This thiol is exclusively 
found in parasitic protozoa of the order Kinetoplastida, 
such as trypanosomes and leishmania (44). Several of 
these organisms are the causative agents of certain human 
diseases such as Chagas disease and leishmaniasis. Other 
Ni2+-activation class Glo1 have been found in T. cruzi and 
Leishmania donovani (22, 65, 66). Recently a Glo1 utilizing 
the intracellular thiol bacillithiol was identified in Bacil-
lus subtilis (67) (Figure 5). Studies investigating the metal 
activation characteristics of other bacterial Glo1 have also 
provided evidence for the existence of the Ni2+-activation 
class. For example, Glo1 from Neisseria meningitides, 
Yersinia pestis, and Pseudomonas aeruginosa PAO1 were 
all found to substantially exhibit the same metal activa-
tion profiles as seen with the Glo1 from E. coli (68). Subse-
quently, two other open reading frames (ORFs) coding for 
putative Glo1 enzymes in the P. aeruginosa PAO1 genome 
were identified, and their gene products overproduced 
and studied (69). The Glo1 activity of the two additional 
putative Glo1 were confirmed in these studies. One of 
these Glo1 is shorter in length and has higher amino acid 
sequence homology to the E. coli and the first identified 
P. aeruginosa Glo1. This Glo1 exhibits the characteristics 
of the Ni2+-activation class enzymes, with no evidence 
for Zn2+ activation (the X-ray structure of this enzyme has 
recently been reported) (70). The third Glo1 has a longer 
amino acid sequence and a higher amino acid sequence 
homology to the human and the Pseudomonas putida 
Glo1, which are known Zn2+-activation class enzymes. This 
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enzyme was found to be activated by Zn2+ and exhibited 
the “classic” promiscuous metal activation profile typical 
of the Zn2+-activation class of Glo1 enzymes. Little is cur-
rently known about the physiological importance of the 
presence of three Glo1 in P. aeruginosa PAO1, nor the possi-
bility of differential expression of the Glo1s under various 
growth conditions. Although much speculation has cen-
tered on what mechanisms are used by Glo1 to control its 
metal specificity, a recent investigation has clearly deline-
ated the contributions of various structural components 
to the metal-activation profile exhibited by Glo1 (71). 
Using deletional mutagenesis on the Zn2+-activated Glo1 
enzyme from P. aeruginosa, researchers were able to com-
pletely switch the metal-activation class of the enzyme, 
to one where selective Ni2+ activation was exhibited. This 
research contributes to our further understanding of met-
alloenzymes and of Glo1 metal specificity in particular.

Based on the quaternary structures and the subunit 
arrangements found for Glo1 enzymes for which X-ray 
structures had already been determined, it was assumed 
that, for homodimeric Glo1 enzymes, each of the two active 
sites would depend on amino acid residues from each of 
the two subunits to supply the metal ligating residues. 
This is clearly seen in the H. sapiens and the E. coli Glo1 
X-ray structures (54, 61). Surprisingly, an alternate subunit 
orientation from the homodimeric subunit arrangement 
found in the H. sapiens and E. coli Glo1 was discovered as 
a result of structural genomics initiatives. The X-ray struc-
ture of the Glo1 enzyme from Clostridium acetobutylicum, 
which was found to exhibit Ni2+-activation class proper-
ties, was determined. Although the C. acetobutylicum Glo1 
was confirmed to be dimeric by gel permeation chroma-
tography, the X-ray structures determined for both the 

Zn2+-bound (inactive) and the Ni2+-activated Glo1 exhibited 
very different orientations of the subunits compared to the 
arrangements found in the H. sapiens and the E. coli Glo1 
enzymes (72) (Figure 6). Both of these metallated forms of 
the C. acetobutylicum Glo1 have two active sites yet each 
active site is formed by contribution from only one of the 
subunits. All the amino acid residues that ligate a par-
ticular Ni2+ atom are contributed by only a single protein 
subunit. Yet the arrangements of coordinating ligands 
around the Ni2+ center are almost superimposable with 
those from the E. coli Glo1 enzyme. From these results, it 
is clear that Glo1 can maintain the required catalytically 
active octahedral geometry around the active site metal 
ion, yet provide that environment in two completely differ-
ent ways. These results exemplify the capability of Nature 
to supply alternative scaffolds to construct identical active 
sites. It should also be noted that not all Glo1 enzymes are 
homodimeric. For example, the Glo1 from Saccharomyces 
cerevisiae and Plasmodium falciparum are both mono-
mers, but have molecular weights that are double that of 
a “standard” subunit of a multisubunit Glo1 enzyme such 
as E. coli (73, 74). The S. cerevisiae Glo1 has two function-
ing active sites, each exhibiting slightly different kinetic 
properties and possibly metal activation profiles. On the 
other hand, it has been reported that the P. falciparum 
Glo1 exhibits allosterically coupled active sites having dif-
ferent substrate affinities (75). Recent reports have identi-
fied additional Ni2+-activation class Glo1 enzymes in plant 
systems, including single subunit enzymes of the same 
size as the S. cerevisiae and the P. falciparum Glo1 (76–79). 
These findings are being actively studied with respect to 
stress response systems in agricultural important crops, 
and should prove extremely important in addressing the 

Figure 5: Chemical structures of trypanothione and bacillithiol.
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effects of climate change and increasing global popula-
tion on future food availability (78).

An additional aspect to the overall molecular struc-
ture of the Glo1 enzymes is that their protein fold is shared 
by other proteins in its structural class (βαβββ structural 
superfamily) yet these proteins exhibit a range of bio-
logical activities (54, 80, 81). Each protein subunit from 
a homodimeric Glo1 enzyme such as that from H. sapiens 
or E. coli is composed of two βαβββ structural domains. 
For the extended single chain Glo1 from S. cerevisiae and 
P. falciparum, based on protein homology modeling, four 
βαβββ domains are likely present. It has been proposed 
that the evolution of new structures and functions within 
this protein family likely arose from a combination of 
horizontal gene transfer and gene fusion events and pos-
sibly gene duplication events (79, 81). The possibility of 
three-dimensional domain swapping has also been pro-
posed (52, 54). It is interesting to note that the Glo1 protein 
fold is also found in several βαβββ structural superfamily 
members that are involved in antibiotic resistance (82). 
Several of these proteins are important to the resistance of 
the antibiotic producing organism to the cytotoxic natural 
product that it produces. The resistance proteins usually 
act by binding the cytotoxic compound preventing cel-
lular toxicity to the antibiotic producing organism, until 
the toxin can be controllably released outside the cell. For 
example, the bleomycin resistance protein from Streptoal-
loteichus hindustanus (83), the Streptomyces lavendulae 
mitomycin C resistance protein (84) and the thiocoraline 

Figure 6: X-ray structure of Glo1 from Clostridium acetobutylicum (A) and Glo1 from Escherichia coli (B).
Note the close similarities in their active sites but the orientation differences of the two subunits between the two enzymes.  
(PDB: 3HDP and 1F9Z).

Figure 7: Chemical structure of the antibiotic fosfomycin.

peptide binding protein produced by strains of Micromon-
ospora (85), all act to bind a cytotoxic molecule, lowering 
its toxicity to the antibiotic producing organism. These 
proteins have high structural similarity to Glo1. On the 
other hand, the fosfomycin resistance proteins (Fos A, 
B and X) are also structurally related to Glo1 but act by 
chemically degrading the reactive epoxide functionality 
in the antibiotic fosfomycin (82, 86, 87) (Figure 7). Fos A, 
B and X are metalloenzymes and use either intracellular 
thiols or water to accomplish the epoxide ring opening.

Glo2

S-D-Lactoylglutathione is the product of the Glo1-
catalyzed reaction if MG is the dicarbonyl substrate 
(Figure 1). The resulting thioester is the substrate for 
the hydrolytic reaction catalyzed by glyoxalase II (Glo2; 
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S-2-hydroxyacylglutathione hydrolase, EC 3.1.2.6). In 
general, Glo2 hydrolyzes various α-hydroxythioesters to 
their non-cytotoxic α-hydroxycarboxylic acids, regener-
ating GSH. In the case of MG, D-lactate is produced after 
enzymatic conversion by the Glo1 and Glo2 enzyme pair. 
Three dimensional protein structures for a variety of Glo2 
representatives have been reported and include Glo2 
from H. sapiens, Arabidopsis thaliana, Leischmania infan-
tum and Salmonella typhimurium (Figure 8) (88–91). In 
several organisms, two or more Glo2 enzymes have been 
identified and appear to differentially localize in cellular 
compartments such as the mitochondria and apicoplast 
depending on the particular organism (44, 92, 93). Glo2 
is a binuclear metalloenzyme with Zn2+ as the frequently 
detected active site metal ion. The cytosolic and the mito-
chondrial Glo2 from A. thaliana, however, have been 
reported to contain varying ratios of Zn2+, Fe2+ and Mn2+ 
and exhibit broad metal activation, although it has been 
reported that the Zn2+/Fe2+ binuclear center is essential for 
optimal catalysis (94, 95). Ni2+ and Co2+ are also activating 
metal ions for the enzyme, depending upon the specific 
Glo2. The human Glo2 has also been shown to contain 
a mixed binuclear center with Zn2+ and Fe2+ present, 
although the mononuclear Zn2+ reconstituted enzyme is 
also active (96). As E. coli Glo1 was previously shown to be 
in a separate Glo1 metal activation class, that of the Ni2+-
activation class, a study of E. coli Glo2 was undertaken to 
determine if the metal specificity of this enzyme was also 

Figure 8: X-ray structure of the H. sapiens Glo2 with the binuclear 
Zn2+ atoms shown as blue spheres (PDB: 1QH5).

unusual (97). The E. coli Glo2 enzyme was isolated with 
approximately two moles of Zn2+ bound per mole of active 
enzyme. Metal reconstitution studies were undertaken 
on the apoenzyme form of the E. coli Glo2. Activity regain 
was observed for reconstitution of the enzyme with either 
Mn2+ or Co2+ but not Ni2+, indicating that Ni2+ activation was 
not observed in Glo2 as it was for the E. coli Glo1 enzyme. 
Hence Ni2+ activation is not a profile that occurs for both 
the Glo1 and the Glo2 enzyme pair in E. coli. A second 
Glo2, Glo2-2 (also termed GlxII-2) has just been reported 
from E. coli and makes a contribution to MG resistance in 
this organism, although it has a lower activity against the 
substrate, S-D-lactoylglutathione (98).

The Glo2 molecular structures share the same overall 
fold as the Zn2+-dependent metallo-β-lactamases, which 
are members of the larger Zn2+-metallohydrolase struc-
tural family of proteins (99, 100). The Glo2 enzyme is mon-
omeric. Recent work has probed the substrate specificity 
variation with alteration of the metal reconstitution of 
various metallohydrolase protein family members, includ-
ing Glo2 (101). The authors concluded that promiscuous 
activities of metalloenzymes can stem from an ensemble of 
metal isoforms in the cell, which could facilitate the func-
tional divergence of metalloenzymes and engender new 
activities for the cell. The structural relatedness of family 
members in this superfamily has been nicely underscored 
by the conversion of a Glo2 into a functioning β-lactamase 
through protein evolution (102).

Glo3

Although Glo1 and Glo2 are major contributors to the 
metabolism of MG and likely other electrophilic dicarbonyl 
compounds formed within the cell, another protein exhib-
iting glyoxalase activity in E. coli has been identified (11). 
The enzyme, Glo3 (EC 4.2.1.130), was observed to directly 
convert MG into a D-lactate/L-lactate mixture without the 
necessity of a small molecular weight thiol such as GSH 
(12). Studies have shown that this enzyme functions as a 
heat-shock inducible chaperone, termed Hsp31 in E. coli, 
and is regulated by the RNA polymerase sigma factor 
(RpoS) (103, 104). A corresponding homolog is present in 
H. sapiens and is termed DJ-1, also exhibiting glyoxalase 
activity (105). Related proteins with Glo3 activities have 
been identified in yeasts, mice and the worm Caenorhab-
ditis elegans (10, 105). It appears therefore that these chap-
erone proteins, which are usually noted for their ability to 
reduce protein folding errors and protein aggregation in 
the cell, may have a secondary role in handling reactive 
dicarbonyl compounds. The Glo3/Hsp31 E. coli protein is 
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Figure 9: X-ray structure of homodimeric E. coli Hsp31/Glo3 with two subunits colored in red and blue.
The active site containing Cys184, His185 and Asp213 as shown in one of the subunits in ball-and stick (yellow) (PDB:1N57).

homodimeric in nature and has a native molecular mass 
of approximately 82  kDa (Figure 9) (11, 106). The E. coli 
Hsp31, H. sapiens DJ-1 and yeast YDR533Cp proteins have 
related structures and similar potential active sites, with 
Cys, His Glu/Asp residues present and a possible metal 
binding site. This molecular arrangement would likely 
favor reaction of the cysteine thiol with the electrophilic 
carbonyl of MG, aiding in the subsequent isomerization of 
the covalent MG-protein adduct to a thioester, with subse-
quent hydrolysis of this thioester intermediate (12).

It is clear that structural investigations on the glyoxa-
lase enzymes can lead to new fundamental knowledge not 
only in the area of cellular physiology and MG toxicity but 
also in other areas such as antibiotic resistance and Hsp/
chaperone biochemistry.

Advanced glycation end-products (AGE)  
and the dicarbonyl proteome

The buildup of MG is a deleterious situation for a cell, 
with drastic consequences to its normal homeostasis 
and even its viability (16, 20, 21, 107). The electrophilic 
nature of dicarbonyls, such as MG, dictates the nature 
of their interactions with biomolecules such as proteins, 
DNA, RNA and cellular membranes. Due to the extreme 

reactivity of the dicarbonyl functionality, multiple cel-
lular sites can be modified, termed advanced glycation 
end-products (AGE), and the ensuing cellular state will 
be a composite of the additive/synergistic effects that 
result from the array of modified cellular targets (14, 108). 
The glyoxalase enzymes, along with other detoxification 
enzymes such as the aldoketo reductases, play critical 
roles in the removal of dicarbonyl compounds before they 
can react with molecular targets and produce cellular tox-
icity. Studies have attempted to identify the nature of the 
chemical modifications that are produced in the presence 
of MG and to quantitate their presence (16, 18, 109–112). 
Further research has contributed to the identification of 
some of the molecular targets labeled by MG and to the 
careful evaluation of the impact that these modifications 
have on human health.

The nature of several protein and nucleic acid modi-
fication reactions has been elucidated and, in the case 
of MG, reactions with arginine and lysine side chains 
are found to predominate for proteins (20, 33, 109, 110, 
113, 114) (Figure 10). A range of chemical reactions 
has been found to occur with arginine side chains, the 
MG-H1 adduct is thought to be the most frequent argi-
nine glycation modification, although several other 
adducts have been identified and include MG-H2, MG-H3, 
 tetrahydropyrimidine (THP) and the fluorescent adduct 
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argpyrimidine (1). A less frequently found modification, 
that of lysine modification, results in the formation of Nε-
(carboxyethyl)lysine (CEL). Protein crosslinks have also 
been identified and include MG-lysine dimer (MOLD) and 
MG-derived imidazolium crosslinking (MODIC) crosslinks 
(14, 115) (Figure  11). DNA modification by MG can also 
occur and include adduct formation with deoxyguano-
sine  nucleotides (110, 116, 117).

An intensely active area of current glyoxalase 
research is that of the correlation of MG, AGE and disease. 
Connections to vascular diseases, diabetic complications 
and diabetic neuropathy, and amyloid-type neurodegen-
erative disease, among other areas, are being investigated 
(13, 15, 118). In the area of vascular disease and diabetes, 
a recent study has reported that increased MG derived 
AGE appear to be associated with an increased risk of 
cardiovascular events in type 2 diabetic patients (119). 
Post-translationally glycated proteins are thought to exert 
their effects on cells by a receptor-mediated pathway that 
includes their interaction with a receptor recognizing 
AGE-modified proteins. The receptor, termed RAGE, is a 

member of the immunoglobulin superfamily of cell-sur-
face receptors and specifically recognizes MG-modified 
AGEs (120). This interaction appears to result in cellular 
activation leading ultimately to inflammation-provoking 
tissue injury (13). AGEs produced by MG are believed to 
be an important molecular cause for pain associated with 
diabetic neuropathy due to the post-translational modifi-
cation of ion channels in neurons that are contributors to 
chemosensation and action potential generation in nerve 
endings (121). A recent overview of the literature linking 
the potential health effects to the presence of MG and 
AGE indicates the wide-ranging physiological effects of 
these molecules (14).

It cannot be stated too strongly that the biochemical 
links between MG, biomolecule modification and result-
ing disease states are underpinned by excellent quality 
analytical identification and quantitation protocols (110, 
122–128). The labile nature of DHAP and GAP can result 
in incorrect quantitation of MG levels in cells and tissues, 
the reactivity of MG and the non-permanence of AGE 
modifications add further complexities to this research 

Figure 10: Chemical structures of identified MG-arginine and MG-lysine side chain protein adducts formed from advanced glycation end-
product (AGE) formation. Atoms colored in red originate from MG.
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area. Although challenging, investigations in these areas 
should prove intellectually as well as pragmatically 
rewarding well into the future.

Expert opinion
Substantial biochemical information has been obtained 
already on the enzymes involved in glyoxalase and MG 
biochemistry. Yet additional biochemical and structural 
investigations on new glyoxalase enzymes (Glo1, Glo2, 
Glo3) will allow for expanded understanding of metallo-
enzymes and the critical active site structures required to 
control metal activation profile and catalytic activity.

The identification of additional roles for MG and other 
dicarbonyls in biological tissues should be a future goal. 
The application of the current cadre of rigorous analyti-
cal methodology to identify and quantify dicarbonyl bio-
molecule modifications such as glycation and crosslinked 
biomolecules, termed AGE, should lead to a deeper under-
standing of the impact that these modifications have on 
tissues and organisms.

Outlook
It is likely that collaborative research on the enzymes that 
control the cellular concentration of dicarbonyls, and the 
further development of analytical techniques that better 
identify and quantitate the adducts formed by reaction 
of proteins and DNA with dicarbonyls will bring vastly 
improved appreciation for the underlying control and cor-
rection of certain diseases. This area will continue to focus 

on the chemistry and biochemistry of dicarbonyls and the 
additional fundamental knowledge will provide contribu-
tions to the understanding of a range of diseases, includ-
ing cardiovascular disease and pain perception. Further 
advances in understanding the role of MG and the glyoxa-
lase system in plants should be pivotal in improving crop 
yields and hence food stability

Highlights
 – MG formation and degradation in the cell is now well 

understood
 – advanced knowledge of the structure and function of 

enzymes that degrade MG in the cell is available
 – knowledge of the detailed chemical mechanisms of 

the Glo1, Glo2 and Glo3 detoxification enzymes is 
improved although future work is necessary

 – better understanding of metalloenzymes and how 
protein scaffolds control metal activation characteris-
tics is available

 – robust analytical techniques as applied to metabolite 
analysis and MG protein and DNA modification are 
available

 – improved appreciation of AGE modifications as under-
lying contributors to various diseases is occurring

List of abbreviations
AGE advanced glycation end-products
CEL Nε-(carboxyethyl)lysine
DHAP dihydroxyacetone phosphate
EXAFS extended X-ray absorption fine structure

Figure 11: Chemical structures of identified protein crosslinks formed due to advanced glycation end-product reactions with MG.
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GAP glyceraldehyde-3-phosphate
Glo1 glyoxalase I
Glo2 glyoxalase II
Glo3 glyoxalase III
GSH glutathione
Hsp heat shock protein
MG methylglyoxal
MODIC methylglyoxal-derived imidazolium crosslinking
MOLD methylglyoxal-derived lysine dimer
NADPH nicotinamide adenine dinucleotide (phosphate) reduced
NMR nuclear magnetic resonance
ORF open reading frame
RAGE receptor for advanced glycation end-products
RpoS RNA polymerase sigma factor
THP tetrahydropyrimidine
TIM triose phosphate isomerase
XANES X-ray absorption near edge structure.
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