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Abstract: The cell must utilise nutrients to generate 
energy as a means of sustaining its life. As the environ-
ment is not necessarily abundant in nutrients and oxygen, 
the cell must be able to regulate energy metabolism to 
adapt to changes in extracellular and intracellular condi-
tions. Recently, several key regulators of energy metabo-
lism have been reported. This review describes the recent 
advances in molecular regulation of energy metabolism, 
focusing mainly on glycolysis and its shunt pathways. 
Human diseases, such as cancer and neurodegenera-
tive disorders, are also discussed in relation to failure of 
energy metabolism regulation.
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Introduction
Living organisms must continuously generate energy from 
food for maintenance of their life and to allow prolifera-
tion. We can utilise glucose, fatty acids and amino acids 
to generate adenosine triphosphate (ATP). Glucose is the 
primary source of energy and carbon for most eukary-
otes, including humans. Due to its polar nature, glucose 
cannot pass through the lipid bilayer of the plasma 
membrane. Therefore, glucose must be transported into 
the cell via the glucose transporter on the plasma mem-
brane. Following its uptake, glucose is phosphorylated by 
hexokinase to produce glucose 6-phosphate, whose nega-
tive charge prevents diffusion of glucose out of the cell. 

Glucose 6-phosphate is processed by a chain of glycolytic 
enzymes to generate pyruvate as the major product (1). 
In an aerobic environment, pyruvate is then metabolised 
into acetyl coenzyme A that enters the tricarboxylic acid 
(TCA) cycle occurring in the mitochondrial matrix. In the 
TCA cycle, a set of enzymes generates the reduced form of 
nicotinamide adenine dinucleotide (NADH), protons (H+), 
and CO2. NADH, H+ and O2 are then used by the mitochon-
drial respiration complexes (Complex I – IV) to generate 
a proton gradient across the mitochondrial inner mem-
brane. ATP synthase (Complex V) generates ATP from ADP 
and inorganic phosphate by utilising this proton gradient. 
In this way, the cell uses glucose as an efficient energy 
source, with a theoretical yield of up to 38 ATP molecules 
per glucose molecule. As energy metabolism is critical for 
cellular functions and survival, its activity is regulated 
by multiple pathways to accommodate environmental 
changes (e.g. extracellular glucose and oxygen levels) (2). 
In addition, glycolysis has several branch pathways to syn-
thesise nucleic acids, amino acids and polysaccharides, 
which are used as building blocks or for energy storage 
for mother and daughter cells (1). Thus, glucose metabo-
lism plays a critical role in cellular functions and survival. 
This article presents a review of recent studies on energy 
metabolism with a focus on regulation of glucose metabo-
lism, and its relationship with human diseases, such as 
diabetes, cancer and neurodegeneration. Based on recent 
studies, we argue that understanding and controlling 
glucose metabolism will represent unique avenues to alle-
viate or prevent some human diseases.

Regulation of glucose transport
Glucose transport across the plasma membrane is the 
most upstream and one of the most important processes 
in cellular glucose metabolism. The glucose transporter 
facilitates movement of glucose across the membrane (3), 
and thus glucose flux is controlled by regulation of glucose 
transporters. Our recent study using the fission yeast 
Schizosaccharomyces pombe as a model demonstrated 
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that two evolutionarily conserved intracellular signal-
ling pathways, the CaMKK (Ca2+/calmodulin-dependent 
kinase kinase) and the TORC2 (target of rapamycin kinase 
complex 2) pathways, play central roles in regulation of 
glucose/hexose transporters in response to changes in 
extracellular glucose concentrations (Figure 1) (4).

Cell culture in higher-than-normal glucose media or 
changing the glucose level of culture media would be a 
straightforward approach to study cellular responses and 
the molecular mechanisms of hyperglycaemia. When 
wild-type fission yeast cells are transferred from high-glu-
cose medium containing 2% (111 mM) glucose, in which 
they are normally cultivated in laboratories, to low-glu-
cose medium containing 0.08% (4.4 mM) glucose, which 
is equivalent to the normal glucose level in human blood, 
the abundance and distribution of glucose transporters on 
the cell membrane show marked changes (Figure 1). The 
CaMKK and TORC2 pathways regulate the transcription of 
glucose transporter genes and the trafficking of their gene 
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Figure 1: Model of the mechanism underlying regulation of glucose 
transporter Ght5.
Schematic illustrations of the proposed mechanisms underlying 
regulation of expression of the fission yeast glucose transporter 
Ght5. (A) Under high-glucose conditions, transcription of the ght5+ 
gene is repressed by Scr1. Ght5, Ght2 and Ght8 transporters are tar-
geted to the middle of the cell. (B) In a glucose-limited environment, 
Scr1 is sequestered from the nucleus to the cytoplasm in a manner 
dependent on Ssp1/CaMKK and Ssp2/AMPK-related kinases. Type 
2A protein phosphatase (PP2A) and Sds23 regulate translocation of 
Scr1. Transcription of ght5+ is then derepressed. Ght5 protein shows 
distinct localisation to the cell tip under glucose-limited conditions. 
See main text and the reference (4) for details.

products to the cell membrane, respectively. These dis-
tinct phosphorylation-mediated signalling pathways are 
known to play critical roles in supporting proliferation of 
fission yeast cells in low-glucose environments (4–6); the 
CaMKK and the Sds23 protein, a negative regulator of type 
2A-like protein phosphatases, function synergistically to 
enable vigorous cell proliferation under low-glucose con-
ditions, while TORC2 is required for control of cell size 
upon reduction of extracellular glucose levels. Among 
eight putative glucose/hexose transporters (Ght1–Ght8) 
(7, 8), we found that Ght5, a high-affinity hexose trans-
porter, was necessary and sufficient for proliferation in 
low-glucose media. Although Ght5 was already expressed 
at high levels under high-glucose conditions, its expres-
sion level was further increased by shifting the cells to 
the low-glucose medium, ensuring sufficient glucose 
uptake in glucose-limited environments. Interestingly, 
Sds23, Ssp1 (a fission yeast CaMKK) and Tor1 (the catalytic 
subunit of TORC2) were found to play critical roles in regu-
lating Ght5 protein expression and localisation. When the 
concentration of glucose in medium is reduced, a tran-
scriptional repressor, Scr1, which represses ght5+ tran-
scription under high-glucose conditions, is translocated 
from the nucleus to the cytoplasm in a manner depend-
ent on Ssp1/CaMKK and Sds23, so that expression of the 
ght5+ gene is derepressed (Figure 1). Proper localisation of 
the newly synthesised Ght5 transporter to the cell mem-
brane requires the functional TORC2 signalling pathway 
consisting of Tor1, Ste20/Rictor, Gad8/Akt and Ksg1/PDK1 
(phosphoinositide-dependent kinase 1) (9–13); Ght5 was 
accumulated in the cytoplasm in mutant cells defective 
in each of these proteins. The primary discoveries of the 
article (4) are that large-scale remodelling occurs in the 
control of glucose transport, metabolism and cell divi-
sion in response to changes in the environmental glucose 
concentrations, and that such remodelling is governed 
by calcium-, phosphatase- and TOR kinase-mediated 
signalling cascades. Proteomic and metabolomic studies 
of fission yeast cells under low-glucose conditions may 
provide further insights into cellular remodelling for 
adaptation to glucose restriction.

It should be noted that there is an interesting similar-
ity between fission yeast and humans in regulation of the 
hexose transporter function in response to extracellular 
glucose levels. Expression and localisation of the GLUT4/
SLC2A4 hexose transporter on the plasma membrane in 
mammalian skeletal muscle cells are regulated by insulin-
dependent and -independent pathways (14, 15). In these 
cells, upon insulin stimulation, cytoplasmic vesicles 
containing GLUT4 are transported to the plasma mem-
brane by exocytosis, mediated by Akt, TORC2 and PDK1 
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kinases (16–19). Independent of insulin, contractile activ-
ity upregulates GLUT4 transcription by the Ca2+ signalling 
pathway, which may involve CaMKK, CaMK and adenosine 
monophosphate-activated protein kinase (AMPK) (20–22). 
As mentioned above, these molecules also regulate the 
Ght5 transporter in fission yeast and are required for 
proliferation in low-glucose medium (4–6), with glucose 
level comparable to that in human blood. Thus, although 
fission yeast does not produce insulin (23), we propose 
that fission yeast is an attractive model system in which to 
study the molecular mechanisms involved in responding 
to changes in glucose levels in cellular environments.

Regulations of glycolytic enzymes 
and their alterations in cancer
Enhanced glycolysis, referred to as the Warburg effect 
(24), and cellular immortalisation are hallmarks of cancer 
(25–27). Previously, Kondoh and colleagues identified 
the glycolytic enzyme phosphoglycerate mutase (PGM), 
which converts 3-phosphoglycerate to 2-phosphoglycer-
ate, in an unbiased screen for genes that can immortal-
ise mouse embryonic fibroblasts (MEFs) (27). Twofold 
enhancement of PGM expression made the MEFs immor-
tal, like MEFs transfected with the p53 dominant-negative 
transgene. The protein level and activity of PGM were 
found to be negatively regulated by p53. Consistent with 
these observations, glycolysis enhancement by the domi-
nant negative p53 and PGM transgenes protected the cells 
from oxidative stress and premature senescence induced 
by the ras oncogene. Taken together, these findings indi-
cated that PGM is the key glycolytic enzyme that can deter-
mine the glycolytic activity and cell fate, i.e. senescence 
or immortalisation (27). Consistent with this indication, 
PGM was recently found to stimulate tumour formation 
by decreasing 3-phosphoglycerate, which inhibited bio-
synthesis via a glycolytic shunt of the pentose phosphate 
pathway (PPP) (28). Uncovering a mechanism regulating 
PGM abundance may, therefore, provide insight into the 
Warburg effect and tumour formation.

A recent study on the relationship of glycolysis regula-
tion and tumour formation revealed the molecular mecha-
nisms of PGM stability as well as its effect on cancerous 
transformation (29). In this study, p21 (Cdc42/Rac1)-acti-
vated kinase 1 (Pak1) was demonstrated to phosphorylate 
Ser118 of PGM, and this phosphorylation, in turn, was 
shown to promote polyubiquitination of PGM by the ubiq-
uitin protein ligase (E3) Mdm2 for degradation by the 26S 
proteasome in MEF cells. Mdm2 functions downstream of 

p53 and destabilises p53 by polyubiquitination, forming 
a negative feedback loop (30). Activation of p53 during 
senescence promoted Mdm2-mediated degradation of 
PGM, and consequently downregulated glycolytic flux. 
Taken together, these findings suggest that Mdm2 and p53 
may suppress tumorigenesis by downregulation of gly-
colysis via promotion of the ubiquitin/proteasome-medi-
ated degradation of PGM, a key regulator of cell fate and 
glucose metabolism (29).

Consistent with the above suggestion, the tumour 
suppressor p53 was reported to have additional roles in 
glucose metabolism, as well as the established roles in 
DNA damage response, apoptosis and cell cycle regula-
tion (31); under conditions of stress, activated p53 induces 
the expression of an evolutionarily conserved gene, 
TIGAR (TP53-induced glycolysis and apoptosis regula-
tor) in wild type p53-expressing cell lines such as U2OS 
and RKO (32). TIGAR, which possesses fructose-2,6-bis-
phosphatase activity, functions through the PPP shunt to 
lower fructose-2,6-bisphosphate levels in cells, and conse-
quently to decrease the levels of cellular reactive oxygen 
species (ROS), which generate proapoptotic stress. p53 
was also suggested to reduce the expression level of the 
GLUT3/SLC2A3 glucose transporter and glucose consump-
tion under aerobic conditions to prevent transformation 
of MEF cells (33). In summary, p53 controls the glucose 
metabolism pathways via modulating the stability of the 
glycolytic enzyme, PGM and expression of the fructose-
2,6-bisphosphatase TIGAR and the GLUT3 transporter (29, 
32, 33). Considering a wide range of functions of p53 in 
cellular processes, it is reasonable that more than half of 
all malignant cancers show a defect in p53 (34, 35).

It should be noted that enhanced aerobic glycolysis 
is observed also in normal, non-cancerous, cells involved 
in the immune system, such as monocytes, macrophages 
and T-helper 17 cells (36, 37). In human primary mono-
cytes exposed to β-glucan, which induces trained innate 
immune memory, expression of glycolytic enzymes 
increases in a manner dependent on the mTOR and HIF-1α 
signalling pathway (36). A metabolic shift towards aerobic 
glycolysis is supposedly important for rapid cell prolifera-
tion (1).

Role of Parkinson’s disease- 
associated DJ-1 in metabolism
Alterations in metabolism are associated with many 
of common diseases, including diabetes and cancer. 
A  number of long-term studies indicated better prognosis 
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of cancer patients taking metformin, a medication for 
diabetes that inhibits mitochondrial Complex I (38–41). 
Neurodegenerative diseases, such as Alzheimer’s disease 
and Parkinson’s disease, have also been suggested to 
be associated with alterations in metabolism (42, 43). It 
is known that patients with some types of cancer have 
reduced incidence rates of Parkinson’s disease (44, 45). 
Similarly, an inverse relation between cancer and Alz-
heimer’s disease was reported, showing a 33% lower risk 
of developing Alzheimer’s disease among survivors of 
cancer (46). Therefore, defects or alterations in metabo-
lism accompanying these neurodegenerative diseases and 
cancer may somehow antagonise each other. The relation-
ship between energy metabolism and Parkinson’s disease 
is discussed below.

Parkinson’s disease is caused by a decline of dopa-
minergic neurons from the substantia nigra, a region deep 
within the brain (47). Difficulties in motion, including 
tremor, slow movement and rigidity, are the major symp-
toms of Parkinson’s disease. Parkinson’s-associated genes 
(PARK loci) have been found by genetic studies of rela-
tively rare familial Parkinson’s disease as well as large-
scale studies (47). Surprisingly, a number of these genes 
are linked to mitochondrial activity, the centres for energy 
production through aerobic glucose catabolism (48); these 
genes include PTEN-induced putative kinase (PINK1/
PARK6), an E3 ubiquitin ligase Parkin/PARK2 (49–51), 
LRRK2/PARK8 kinase controlling mitochondrial dynam-
ics (52) and DJ-1/PARK7. Deficiency in DJ-1/PARK7, which 
causes early-onset Parkinson’s disease, was reported to 
lead to abnormal mitochondrial morphology and dynam-
ics, increased sensitivity to oxidative stress and impaired 
mitochondrial function (53–57). Functions of DJ-1 are 
further described below, as this protein can be viewed as a 
unique coordinator of glucose metabolism, mitochondrial 
function and Parkinson’s disease.

DJ-1 is a relatively small protein (189 amino acids) that 
is evolutionarily conserved from bacteria to mammals (53, 
58, 59), and was originally identified as an oncogene that 
markedly increased transformation ability of the ras onco-
gene in mouse NIH3T3 cells (60). Several studies have 
indicated that DJ-1 antagonises the tumour suppressor 
PTEN (Phosphatase and Tensin Homologue Deleted from 
Chromosome 10), and activates the phosphatidylinosi-
tol-3′ kinase (PI3K) signalling cascade that promotes cell 
growth and cell cycle progression (61–64). DJ-1 is upregu-
lated under conditions of stress, such as oxidative stress, 
low oxygen, hyperglycaemia and aging, to support cell sur-
vival (64–68). In addition to the proliferation-stimulating 
functions, DJ-1 was recently reported to have glyoxalase 
activity (Figure 2) (69). In glycolysis, aldolase catalyses 
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Figure 2: Novel role of glycolic acid and D-lactic acid produced by 
the DJ-1 glyoxalase.
A schematic illustration of production and effects of glycolic acid 
(GA) and D-lactic acid (DL) produced by the DJ-1 glyoxalase is 
shown. Aggressive aldehydes, glyoxal and methylglyoxal, gener-
ated by a glycolytic shunt and peroxidation of lipids, covalently 
bind to biomolecules to produce advanced glycation end-products 
(AGEs) implicated in a wide range of diseases. GA and DL produced 
from these aldehydes by the DJ-1 glyoxalase restore the reduced 
mitochondrial membrane potential caused by downregulation of 
DJ-1 and PINK1 and environmental stress such as paraquat. GA and 
DL also increase in vitro survival of mouse primary dopaminergic 
neurons. See main text and the reference (75) for details.

production of dihydroxyacetone phosphate (DHAP) and 
glyceraldehyde 3-phosphate (GAP) from one molecule 
of fructose-2,6-bisphosphate. While most GAP is further 
metabolised rapidly, presumably because of the high level 
of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
expression (70), a small fraction (~0.1%–1%) of triose 
phosphate is converted to methylglyoxal (71, 72). Methyl-
glyoxal and glyoxal, the aggressive 2-oxoaldehyde species, 
can bind covalently to proteins, nucleic acids and lipids, 
forming advanced glycation end-products (AGEs) that 
have been implicated in a wide range of human diseases, 
including cancer, diabetes and neurodegenerative disor-
ders (73, 74). DJ-1 was found to function as GLO III class 
of glyoxalase (69, 75), which converts these reactive mol-
ecules into safer molecules, D-lactic acid (DL) and glycolic 
acid (GA) without the need for a cofactor (Figure 2) (76). 
Although DL and GA have been considered as physiologi-
cally inactive substances produced during detoxification 
of glyoxal and methylglyoxal, these molecules were found 
to play important roles in maintenance of mitochondrial 
fitness and viability of dopaminergic neurons (77).
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In the study reported by Toyoda et al. (2014), a defect 
in DJ-1 glyoxalase was shown to decrease mitochondrial 
membrane potential in Caenorhabditis elegans larvae as 
well as cultured human cells. Notably, the decreased mito-
chondrial membrane potential due to DJ-1 deficiency was 
restored by the addition of DL and GA, but not by L-lactate 
(LL) (77). Mitochondrial defects caused by knockdown 
of the PINK1 gene (78) or treatment with Paraquat (N,N′-
dimethyl-4,4′-bipyridinium dichloride, PQ2+), which was 
used as a pesticide and impairs mitochondrial respiration 
(79–81), were also restored by DL and GA, but not by LL, 
in HeLa cells. Furthermore, GA and DL, but not LL, were 
shown to increase in vitro viability of primary dopaminer-
gic neurons isolated from both wild-type and DJ-1 mutant 
mouse embryos, and their resistance against low-level 
administration of PQ2+ (Figure 2) (77). Taken together, 
these findings demonstrate unexpected roles of DL and 
GA, the products of DJ-1 and glyoxalases, in protection of 
mitochondrial function and the dopaminergic neurons 
from genetic and environmental stresses (Figure  2) (77). 
Importantly, DL is naturally produced at a branch pathway 
from glycolysis (see Figure 2) (72). Therefore, the Parkin-
son’s disease-related DJ-1 functionally connects glucose 
metabolism and mitochondrial activities. A decline in 
mitochondrial activity, represented by mitochondrial 
membrane potential, is associated with many diseases, 
including Parkinson’s disease and Alzheimer’s disease 
(82). While it remains to be clarified how GA and DL affect 
mitochondria, these substances that occur naturally (e.g. 
DL in yoghurt) may have a general role in protecting cells 
from decline.

Conclusion
In this article we have reviewed cellular strategies to 
adapt to changes in environmental levels and/or cellular 
requirements for glucose. The rates of glucose metabolism 
appear to be tightly regulated via evolutionarily conserved 
signalling cascades, including calcium- and phosphoryl-
ation-mediated pathways, to produce appropriate levels 
of ATP and glycolytic metabolites. Failure in this regula-
tion may cause a wide range of human diseases, such as 
diabetes, cancer and Parkinson’s disease. While the large 
number of proteins involved in the complicated circuits of 
glucose/energy metabolism are well known, the molecu-
lar mechanisms regulating the activities of these proteins 
remain largely unclear. Systematic studies are necessary 
to identify more regulators of energy metabolism. Deter-
mination of the metabolic functions of disease-associated 

genes as well as a better understanding of the molecular 
mechanisms of energy metabolism will provide insights to 
control metabolism-related diseases.
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