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Abstract: Ion channels are integral membrane proteins 
that undergo important conformational changes as they 
open and close to control transmembrane flux of differ-
ent ions. The molecular underpinnings of these dynamic 
conformational rearrangements are difficult to ascertain 
using current structural methods. Several functional 
approaches have been used to understand two- and three-
dimensional dynamic structures of ion channels, based 
on the reactivity of the cysteine side-chain. Two-dimen-
sional structural rearrangements, such as changes in the 
accessibility of different parts of the channel protein to the 
bulk solution on either side of the membrane, are used to 
define movements within the permeation pathway, such 
as those that open and close ion channel gates. Three-
dimensional rearrangements – in which two different 
parts of the channel protein change their proximity dur-
ing conformational changes – are probed by cross-linking 
or bridging together two cysteine side-chains. Particularly 
useful in this regard are so-called metal bridges formed 
when two or more cysteine side-chains form a high-affin-
ity binding site for metal ions such as Cd2+ or Zn2+. This 
review describes the use of these different techniques for 
the study of ion channel dynamic structure and function, 
including a comprehensive review of the different kinds 
of conformational rearrangements that have been stud-
ied in different channel types via the identification of 
intra-molecular metal bridges. Factors that influence the 
affinities and conformational sensitivities of these metal 
bridges, as well as the kinds of structural inferences that 
can be drawn from these studies, are also discussed.

Keywords: cysteine; disulfide; ion channel; metal bridge; 
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Introduction
Membrane proteins, including receptors, transporters, 
pumps, and ion channels, are involved in almost all aspects 
of communication between individual cells and their envi-
ronment. However, because these proteins exist embed-
ded in the lipid membrane, their structure is difficult to 
study directly using techniques such as crystallography. 
Furthermore, membrane proteins have to undergo sub-
stantial conformational changes as they transmit signals 
between the extracellular environment and the interior of 
the cell, and the nature and extent of these dynamic con-
formational changes are not apparent from static struc-
tural images. For these reasons, a wealth of alternative 
approaches have been developed to study the dynamic 
aspects of the structure and function of membrane pro-
teins in their native, membrane-embedded environment, 
using functional readouts that are sensitive to changes in 
protein conformation. Several of these approaches take 
advantage of the unique chemistry of the cysteine side-
chain among the natural amino acids that make up pro-
teins. The cysteine side-chain contains a thiol group (-SH) 
that can be readily deprotonated to form a reactive thiolate 
anion (-S-) that is capable of nucleophilic attack on electro-
philic centers. Under oxidizing conditions, this leads to the 
rapid formation of disulfide bonds with other nearby sul-
fur-containing groups. In native proteins this process leads 
to the redox-sensitive formation of inter- or intra-molecular 
disulfide bonds between pairs of cysteine side-chains (1, 
2). It can also be used to label covalently cysteine side-
chains in proteins in situ with designer probes containing 
reactive sulfur groups such as thiosulfonates. Polarizable, 
anionic cysteine thiols also bind a number of metal ions, 
such as Cu2+, Zn2+, Cd2+, Hg+, and Ag+ (3–7). Coordination 
of the metal ligand resulting from simultaneous interac-
tion with multiple cysteine side-chains results in increased 
affinity metal binding, effectively forming a high-affinity 
metal ‘bridge’ between two or more (potentially up to four) 
cysteine side-chains (3–5).

Cysteine-specific probes are used in combination 
with site-directed mutagenesis to introduce a cysteine 

mailto:paul.linsdell@dal.ca


192      P. Linsdell: Metal bridges probe ion channel structure and function

side-chain into any part of a protein. At the two-dimen-
sional level, reactivity of the cysteine side-chain can then 
be used to identify the location of amino acids in any part 
of the primary sequence, their relative accessibility from 
different sides of the membrane, and changes in acces-
sibility during protein conformational changes. At the 
three-dimensional level, the proximity of different amino 
acids can be ascertained using substances that can gen-
erate cross-links or bridges between two cysteine side-
chains introduced into two different parts of the protein. 
Again, changes in amino acid proximity during conforma-
tional changes in the protein can give valuable insights 
into the nature and extent of the protein movements that 
are involved in these conformational changes. These tech-
niques have been used most extensively to study the struc-
ture and function of ion channels, the function of which 
is relatively accessible using electrophysiological tech-
niques to measure the tiny current that flows across the 
membrane carried by these channel proteins; the current 
review is focused on these channel proteins. However, in 
principle these techniques can be used to study any mem-
brane protein for which some aspect of structure or func-
tion can be monitored experimentally (8–17).

Two-dimensional information: 
substituted cysteine accessibility 
mutagenesis
The technique of substituted cysteine accessibility 
mutagenesis (SCAM) was first developed to study the 
structure of ion channels (18, 19) and has since been 
applied to almost all channel types as well as many other 
classes of proteins. This technique is based on the cova-
lent reaction between the cysteine thiol and the thio-
sulfonate group of small, hydrophilic molecules, and 
rests on the assumption that this covalent modification 
will lead to some change in protein function that can 
be easily monitored. The most commonly used probes 
are small methanethiosulfonate (MTS) reagents such as 
the negatively charged [2-sulfonatoethyl] methanethio-
sulfonate (MTSES), the positively charged [2-(trimethyl-
ammonium)ethyl] methanethiosulfonate (MTSET), and 
the neutral/partially positively charged [2-aminoethyl] 
methanethiosulfonate (MTSEA) (20). Because these thio-
sulfonates are highly hydrophilic, and also because they 
react at least 5 × 109 times faster with the ionized (-S-) 
form of the cysteine thiolate than the uncharged (-SH) 
form, it is assumed that any reaction will be with cysteine 

side-chains that are on a water-accessible surface of the 
protein. When the reaction is with a cysteine in the mem-
brane-spanning part of a transmembrane protein such 
as an ion channel, it is most likely that this water-acces-
sible surface is the lining of the permeation pathway or 
some other water-filled crevice in the protein (Figure 1B). 
Cysteine side-chains can be introduced into any part of 
the channel protein using site-directed mutagenesis. In 
this way, channel pore-lining residues can be identified by 
sequentially ‘scanning’ membrane-spanning parts of the 
protein, which is to say that each amino acid is mutated, 
one at a time, to cysteine, and its accessibility to MTS 
reagents tested using functional approaches. Assuming 
that covalent modification of a pore-lining cysteine side-
chains by a small charged reagent will alter channel func-
tion in some way, electrophysiological techniques can 
then be used to discriminate pore-lining (reactive) from 
non-pore-lining (non-reactive) cysteine side-chains, with 
the caveat that a negative result could reflect either non-
reactivity or reactivity that is without measureable func-
tional consequence. MTS reagents react rapidly with the 
cysteine thiol; the rate of reaction between these reagents 
and the thiol of β-mercaptoethanol (β-ME) in free solution 
is  > 10 000 m-1 s-1 (20). However, the measured reaction rate 
with cysteine side-chains in ion channels may be consid-
erably less due to restricted access from the bulk solution 
to the channel pore. Furthermore, where the introduced 
cysteine is in a part of the protein that undergoes signifi-
cant conformational changes, the rate of modification 
may be different in different conformations (Figure 1A,B). 
Because MTS reagents form a stable disulfide bond with 
the cysteine thiol, the functional effects of MTS reagents 
are expected to be sustained even after these reagents have 
been washed from the experimental chamber; however, 
they can usually be reversed using reducing agents such 
as dithiothreitol (DTT) or β-ME to break the disulfide bond. 
To avoid the possibility of reaction with native cysteines, 
SCAM studies should be carried out using functional 
versions of proteins in which all endogenous cysteine 
residues have been replaced by other amino acids using 
site-directed mutagenesis (so-called cys-less protein 
backgrounds). However, in practice, many published ion 
channel SCAM studies use wild-type backgrounds includ-
ing some or all native cysteines, so long as the wild-type 
background is found to be non-responsive to application 
of MTS reagents. Use of a cys-less protein background sim-
plifies interpretation of the experimental results, since an 
introduced cysteine is the only possible target of cysteine-
reactive reagents, but it also has its own potential pitfalls. 
Most importantly, removal of endogenous cysteines can 
impact the function of the protein. For example, in the 
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cystic fibrosis transmembrane conductance regulator 
(CFTR) Cl- channel, removal of the 18 endogenous cysteine 
residues to create a cys-less protein severely compromises 
protein trafficking to the cell membrane (21), necessitat-
ing maneuvers such as additional mutations and growing 
transfected cells at reduced temperature (~27°C) for func-
tional studies on cys-less CFTR expressed in mammalian 
cells (22). Cys-less CFTR also has a slightly (15%–20%) 
elevated single-channel conductance, which was shown 
to be due to substitution of a single cysteine residue 
(C343) in a membrane-spanning part of the protein (23). 
Furthermore, introducing cysteines into different parts 
of the protein can also alter channel function, although 
such functional changes are often ignored if they do not 
prevent SCAM investigation. Again taking CFTR as an 
example, individual cysteine residues introduced into a 
cys-less background have been shown to cause complete 
protein mis-trafficking (even in cells grown in culture at 
27°C) (24), to drastically reduce single-channel conduct-
ance (25, 26), and to modify channel gating (24). Other 
practical aspects of SCAM for the study of ion channels 
and other proteins have been described in detail previ-
ously (8–12, 20).

MTS reagents are excellent probes for cysteines 
located on the surface of proteins, including relatively 
accessible regions close to the wide entrances to aqueous 
ion channel pores (Figure 1B). However, channel pores 
usually narrow to a region that is not much wider than 
the permeant ion (usually a few angstroms), and these 
narrow regions may be inaccessible to large MTS reagents 
(Figure 1B): for example, MTSES, MTSET, and MTSEA fit 
into a cylinder approximately 6 Å in diameter and 10 Å 
in length (20). Indeed, MTS reagents are usually consid-
ered to be impermeant in ion channel pores, implying that 
there are parts of the permeation pathway that cannot be 
accessed by these reagents. For these reasons, smaller 
probes have also been used extensively to test the accessi-
bility of cysteine side-chains introduced into ion channel 
pores. Small transition metal ions also bind to cysteine 
side-chains, albeit reversibly, a fact that is reflected in 
nature in the use of cysteine side-chains in the binding 
sites for metals such as Cu2+, Zn2+, and Cd2+ in many met-
alloproteins (3–5, 27). The ionic radii of some of these 
metal ions (e.g. Cd2+, 1.09 Å; Zn2+, 0.88 Å; Ag+, 1.29 Å) are 
similar to those of biologically relevant ion channel cati-
onic substrates (K+, 1.52 Å; Na+, 1.16 Å; Ca2+, 1.14 Å) (28). 
As such, these thiophilic metal ions are expected to have 
access to all parts of ion channel pores that are visited by 
the natural permeant ion (Figure 1C), and Cd2+, Zn2+, and 
Ag+ have all been used as probes of cysteine side-chains 
introduced into different cation channel pores (29–32). 

Figure 1:  Conceptual overview of the ways in which cysteine chemistry 
is used to probe conformational changes in ion channel proteins.
As an example, this overview considers a conformational change that 
opens and closes the channel pore. (A) Channel opening is controlled 
by a localized ‘gate’, in this example located in the narrow central 
region of the pore; although it is noted that in some channel types, 
the gate is not located in the narrow region. (B) Large probes such as 
MTS reagents may access wide, outer parts of the pore in one confor-
mation only (in this case, in the closed state) to react covalently with 
an introduced cysteine side-chain (cys). (C) Smaller probes such as 
Cd2+ are expected to have access to all parts of the pore and therefore 
should report conformational changes that are relevant to the per-
meant ion (in this case, opening of the channel gate). (D) Two cysteine 
side-chains are close enough together to form a disulfide bond (blue 
line) only in the open state, effectively ‘locking’ the channel in this 
state. (E) Two cysteine side-chains are close enough together to 
form a metal bridge only in the open state, effectively stabilizing the 
channel in this state in the presence of Cd2+ ions.
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One major difference between the use of metal ions and 
MTS reagents is that the interaction between metal ions 
and cysteine side-chains is expected to be reversible, and 
so the functional effects of metal ions should be reversed 
once these ions have been washed from the experimental 
chamber.

Because the dimensions of these thiophilic metal ion 
probes closely match those of the natural substrate, it is to 
be expected that they will be subject to similar restrictions 
on accessibility to different parts of the pore as the channel 
transitions between different open and closed conforma-
tional states (Figure 1C). As a result, these small probes 
have been used successfully to identify the location of ion 
channel ‘gates’ that open and close to allow or prevent the 
flow of ionic current and so control the overall function 
of K+ channels (33–36), hyperpolarization-activated (HCN) 
channels (37), cyclic nucleotide-gated channels (38), 
TRPV1 channels (39), and purinergic P2X receptor chan-
nels (40, 41). State-dependent interactions of metal ions 
with introduced cysteines may also probe other conforma-
tional changes occurring within ion channel pores, such 
as those that control channel inactivation (42–45).

Thiophilic metal ions such as Cd2+ have also been used 
to identify accessible cysteine side-chains introduced into 
narrow regions of anion-selective channel pores (46). 
In these channels, however, cationic metal ions cannot 
be described as appropriate substitutes for the normal 
anionic permeant anions such as Cl- and  HCO3

-. Small 
anions Au(CN)2

- and Ag(CN)2
- have been shown to inter-

act covalently with cysteine side-chains introduced into 
the pore of the CFTR Cl- channel by a process of ligand 
exchange (47, 48). Because these small monovalent 
anions are highly permeant in CFTR (49, 50), they have 
been used to probe cysteines introduced throughout the 
pore region (48, 51–55). These small anions have also 
been used to probe the location of the channel ‘gate’ that 
opens and closes the CFTR Cl- channel (53, 55, 56) as well 
as other conformational changes in the CFTR pore (51, 54). 
Because these reactive anions are able to make a covalent 
reaction with cysteine side-chains, their effects should be 
irreversible on washing; however, the covalent reaction 
can be reversed using DTT or excess CN- (47).

Three-dimensional information: 
cysteine cross-linking
The reactivity of the cysteine thiol group allows indivi dual 
cysteine side-chains to make covalent attachments to 
other, nearby cysteine side-chains via reversible disulfide 

bond formation (1, 2). Because disulfide bond formation 
and breakage is highly sensitive to redox conditions, 
reversible disulfide bond formation is used in nature to 
produce oxidant-sensing proteins (2). Again, researchers 
have taken extensive advantage of the natural process of 
cysteine-cysteine disulfide bond formation to investigate 
the structure and function of membrane proteins. Pairs 
of cysteine side-chains introduced into different regions 
of channel proteins using site-directed mutagenesis can 
be induced to form disulfide bonds under oxidizing con-
ditions provided that the two cysteine side-chains are 
in close proximity, potentially providing a great deal of 
three-dimensional information on protein structure and 
dynamics.

In practical terms, the use of disulfide chemistry to 
probe membrane proteins involves introduction of two 
cysteines into different parts of the protein that are hypoth-
esized to be located close together in three-dimensional 
space, at least at some point in the range of conforma-
tional states in which the protein can exist. The formation 
and breakage of disulfide bonds between the two cysteine 
side-chains can then be ascertained by some change in 
protein function (for example, a change in ion channel 
activity monitored using electrophysiological recording 
techniques) (57–60), or some other parameter, such as a 
change in protein mobility on SDS-PAGE gels (11). Because 
of the potential to form disulfide bonds between an intro-
duced cysteine and any native cysteine side-chains that 
may exist in the protein under investigation, it is highly 
desirable to carry out such experiments using cys-less ver-
sions of the protein (see above).

In the simplest case, disulfide bonds might form 
spontaneously between two introduced cysteine side-
chains. In this case, channel function may be altered 
upon exposure to a reducing agent (usually DTT) to break 
the disulfide bond. However, in mammalian cells, this 
spontaneous disulfide formation usually only applies to 
external cysteines, due to the reducing conditions of the 
cytoplasm. In most cases, an oxidizing agent is applied 
to induce disulfide bond formation (preferably after 
treatment with DTT to reduce any disulfide bonds that 
might have formed spontaneously). A common choice 
for cysteine side-chains that are exposed on the surface 
of the protein is copper(II)-o-phenanthroline (CuPhe) (61), 
which catalyzes oxidation by ambient molecular oxygen 
to promote effective disulfide bond formation, although 
other strong oxidizing agents such as H2O2 or I2 may also 
be effective.

The ability of two identified cysteine side-chains to 
form a disulfide bond is used to provide evidence for the 
proximity of those side-chains in the three-dimensional 
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structure of the protein. For a disulfide bond to form, it 
is thought that the S-S distance must be ~2 Å, with the 
Cβ-Cβ distance ~3.5–4.6 Å and the Cα-Cα distance ~3.8–
6.8 Å, along with strict limits on each of the dihedral 
angles Cα-Cβ, Cβ-S, and S-S (62–66) (Figure 2). However, 
it has been found that cysteine side-chains with Cα-Cα 
distances  > 15  Å in the equilibrium structure can form 
disulfide bonds, which is presumed to reflect the effects of 
protein thermal fluctuations (11, 63).

More distant cysteine side-chains can be connected 
experimentally using chemical cross-linkers that contain 
two cysteine-reactive groups. For example, homobifunc-
tional cross-linkers containing two thiol-reactive MTS 
groups connected by spacer arms of different lengths 
have been used as ‘molecular rulers’ to gauge the dis-
tances between pairs of cysteine residues introduced into 
membrane proteins including P-glycoprotein (67), CFTR 
Cl- channel (68, 69), lactose permease (70), cyclic nucleo-
tide gated channels (71), KCNQ1/KCNE1 voltage-gated K+ 
channels (72), and ENaC Na+ channels (73). One caveat to 
the use of these reagents is that long spacer arms result in 
considerable flexibility of the cross-linker molecule (70), 
such that cysteine-cysteine distances judged using these 
cross-linkers should be considered maximal distances 
and may in fact be considerably less.

Conformational movements are necessary for many 
aspects of membrane protein function, and disulfide bond 
formation can be used to obtain important information on 
the relative proximity of different parts of the protein in 
different conformational states that may not be accessi-
ble using other techniques (Figure 1D). The principle here 
is that, if the physical proximity of two reporter cysteine 
side-chains changes concomitant with a conformational 
change, then (i) disulfide bond formation may be possible 
only in the conformation in which the two side-chains are 
close together and/or (ii) disulfide bond formation may 
‘trap’ or ‘lock’ the protein in the native conformation in 
which the two cysteine side-chains are close together [and 
conversely, disulfide bond breakage using DTT will liberate 

the protein to transition into other conformation(s)]. As 
shown by the selected examples listed in Table 1, the use 
of engineered disulfide bond formation has shed light on 
many different kinds of conformational changes that are 
crucial to the normal activity of many different classes of 
ion channels.

Three-dimensional information: 
cysteine-metal bridging
Cysteine cross-linking has provided a great deal of infor-
mation on the three-dimensional structure of ion channel 
proteins and on the three-dimensional nature of confor-
mational changes in these proteins (Table 1). However, 
the essentially irreversible nature of the disulfide bond 
under non-reducing conditions limits the information 
that can be obtained in this way. As described above, 
whereas the formation of the disulfide bond is subject 
to strict spatial constraints, it has been observed that 
relatively distant cysteine side-chains can form disulfide 
bonds under rare conditions due to protein flexibility. This 
potential caveat is particularly acute when the aim is to 
study protein conformational changes. The overall rate 
at which disulfide bonds will form is dependent on both 
the relative occupancy of different protein conformations 
and the proximity of cysteine side-chains in these differ-
ent conformations. Thus, if disulfide bonds form rapidly 
in an uncommon (or even unnatural) conformation, cross-
linked proteins will tend to accumulate in that conforma-
tion due to the high strength of the disulfide bond (often 
referred to as ‘disulfide trapping’).

An alternative approach is to use the propensity of 
cysteine (or other) side-chains to coordinate the binding 
of metal ions (so-called metal bridge formation). Two or 
more cysteine side-chains in close proximity can tightly 
bind metal ions such as Cd2+ or Zn2+, resulting in a metal 
bridge that stabilizes the protein in the conformation in 

Figure 2: Structure of the cysteine side-chain and experimentally derived proximity of cysteine pairs.
(A) Chemical composition of the cysteine side-chain within a peptide chain. (B) Stick model of the cysteine side-chain. (C) As described in 
the text, to form either disulfide bonds or metal bridges, the two cysteine side-chains are subject to strict spatial constraints (S-S, Cβ-Cβ, 
Cα-Cα), as well as limited regarding the dihedral angles Cα-Cβ, Cβ-S, and S-S.
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which the side-chains in question are retained in the prox-
imal, high-metal-affinity position. Zinc bridges between 
introduced histidine side-chains have also been used in 
the study of some ion channels (see Table 2). Because 
metal binding is reversible, and its affinity is strongly 
dependent on protein conformation (via conformation-
dependent changes in the proximity of amino acid side-
chains), this metal bridge approach is considered more 
likely to reflect normal, natural protein conformations 
and to be far less sensitive to the effects of rare protein 
conformations in which amino acid side-chains briefly 
come into close proximity. Furthermore, reversible metal 
binding means that protein conformational changes can 
continue to occur as the metal ion binds and unbinds from 
the introduced binding site. In effect, metal bridges act 
to stabilize natural protein conformations rather than to 
freeze the protein in a conformation that may or may not 
occur during normal activity.

In most cases, Cd2+ bridges between introduced 
cysteine side-chains are used to identify pairs of amino 
acids that are located in close proximity (see Table 2). To 
ensure that the Cd2+ bridge is formed between the intro-
duced cysteine side-chains, use of a cys-less protein 
background is strongly advisable (see above). Cadmium 
ions also bind to other amino acid side-chains (histi-
dine, aspartate, glutamate), and so it is possible that Cd2+ 
bridges may form between an introduced cysteine and a 
nearby non-cysteine side-chain (74–76). In electrophysi-
ological recordings, application of Cd2+ may, via formation 
of a metal bridge between introduced cysteines, ‘lock’ or 
stabilize the channel in the open conformation (suggesting 
proximity of two or more cysteine side-chains in the open 
state) (Figure 1E) or in the closed conformation (suggesting 
proximity of cysteines in the closed state) (74, 77–80). This 
locking effect allows strict spatial constraints to be placed 
on the proximity of different protein regions in different 
conformational states (Figure 1E). For example, in voltage-
gated K+ channels, evidence from metal bridges formed 
between identified amino acid side-chains has been used 
to identify the conformational changes that open the gate 
in the pore (74), the movements of the voltage-sensor 
domain that result in voltage-dependent activation (78, 
81–87), and relative movements of the voltage-sensor and 
pore domains during channel opening (77, 83) (Table 2). 
Furthermore, manipulations that alter the proportion of 
time that the channel spends in the open state may influ-
ence the observed affinity of Cd2+ binding, by altering the 
likelihood that two cysteines that show state-dependent 
changes in proximity spend in a position that is amena-
ble to metal bridge formation. For example, our own work 
on the CFTR Cl- channel has shown that a mutation that 

keeps the channel in a permanently open state strength-
ens the apparent affinity of Cd2+ binding coordinated by 
certain pairs of cysteines introduced into the channel pore 
(80, 88), suggesting that these cysteines are close enough 
to form metal bridges only in the open state. Meanwhile, 
Cd2+ binding was practically abolished in permanently 
open channels for other cysteine pairs (80, 88), suggest-
ing that metal bridges form here only when the channel 
is closed and that the cysteines in question move apart 
when the channel opens. Structural implications of these 
experimental findings are described in Figure 3.

The binding affinity of Cd2+ for cysteines introduced 
into a protein is expected to be influenced by the number 
of cysteine side-chains that can coordinate the Cd2+ ion. 
In metalloproteins Cd2+ is almost always coordinated 
by binding to four cysteine side-chains in a tetrahedral 
coordination geometry (3–6, 89, 90). The Cd2+ binding 
affinity of such well-coordinated tetra-cysteine binding 
sites is estimated to be on the order of 10-14 m (10 fm) (4). 
Zinc binding to cysteine or histidine side-chains in pro-
teins also usually occurs in a tetrahedral geometry (3, 5, 
90). Electrophysiological investigation of ion channels 
often suggests Cd2+ binding to a single cysteine side-
chain with a measured affinity of  > 100 μm (32, 80, 91), 
whereas measured affinities of  < 1 μm have been reported 
with two proximal cysteine side-chains (32, 57, 77, 80, 91). 
These quantitative reports are consistent with the sug-
gestion that each additional well-positioned, coordinat-
ing cysteine ligand increases Cd2+ binding affinity by a 
factor of ~1000-fold (79). However, it is unlikely that two 
or more cysteine side-chains introduced experimentally 
into an ion channel could match the exact coordination 
geometry found in metalloproteins, and so considerably 
lower apparent affinities of Cd2+ binding are not unex-
pected experimentally. Furthermore, in some cases, it 
may not be known how many introduced cysteine side-
chains can interact simultaneously with a bound Cd2+ 
ion. In the case of monomeric ion channel proteins, the 
number of introduced cysteines is known, and in these 
cases, the measured affinity of Cd2+ binding with two 
cysteines can be compared directly with the affinity when 
only one cysteine is present (32, 57, 80, 91). In the case 
of multimeric proteins, however, introduction of only a 
single cysteine into each subunit may result in the forma-
tion of inter-subunit metal bridges of unknown coordi-
nation geometry. For example, in tetrameric K+ channels 
(92, 93) and trimeric P2X receptor channels (40), it has 
been observed that a single cysteine substitution results 
in very high affinity Cd2+ binding, which has been used 
to suggest that more than two cysteine side-chains are 
able to interact simultaneously with the bound Cd2+ ion to 
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form a high-affinity Cd2+ binding site. Besides the number 
of interacting cysteine side-chains, other factors may 
influence the apparent affinity of Cd2+ binding measured 
in electrophysiological experiments, including ease of 
access of the Cd2+ ion from the bulk solution on one side of 
the membrane to its binding site, the exact proximity and 
relative orientation of introduced cysteine side-chains, 
local structural features such as the presence of other 
potentially interacting side-chains such as histidines, 
aspartates, and glutamates, conformational changes and 
dynamic protein flexibility that influence the proportion 
of the time that cysteine side-chains are in a permissive 
position for Cd2+ bridge formation, strain on the metal 
bridge due to sub-optimal coordination, and the propen-
sity of the channel to undergo conformational changes 
that can break conformationally sensitive Cd2+ bridges. 
As illustrated in Table 2, the range of Cd2+ concentrations 
that have been used experimentally to provide evidence 
for metal bridge formation between introduced cysteine 
side-chains in ion channel proteins span several orders 
of magnitude.

As with disulfide bond formation, identification of 
metal bridges is used to suggest strict spatial constraints 
on the structure of channel proteins. Structural studies 
with a number of model systems suggest a Cd2+-S distance 
of ~2.5 Å (3, 6, 89, 90), implying an S-S distance between 
coordinating cysteine side-chains of ~5 Å (Figure 2). The 
Zn2+-S distance for binding to cysteine is similar, ~2.3 Å, 
while the Zn2+-N distance for binding to histidine is report-
edly ~2.1 Å (3, 90).

Conclusions

Techniques that take advantage of the reactivity of intro-
duced cysteine side-chains have been used to probe the 
structure and function of practically all known types of ion 
channels; the examples cited in Tables 1 and 2 represent 
just a small representative sample of the kinds of important 
dynamic rearrangements that have been identified in differ-
ent channel types. Metal bridges positively identified as being 
formed between different regions of ion channel proteins can 
give invaluable structural constraints that are otherwise inac-
cessible in the study of these integral membrane proteins, 
while at the same time allowing normal conformational 
rearrangements to proceed. These functional techniques 
therefore provide a powerful complement and constraint to 
structural techniques such as X-ray crystallography.

List of abbreviations
β-ME  β-mercaptoethanol
CFTR  cystic fibrosis transmembrane conductance regulator
CuPhe  copper(II)-o-phenanthroline
DTT  dithiothreitol
LBD  ligand binding domain
MTS  methanethiosulfonate
MTSEA  [2-aminoethyl] methanethiosulfonate
MTSES  [2-sulfonatoethyl] methanethiosulfonate
MTSET  [2-(trimethylammonium)ethyl] methanethiosulfonate
SCAM  substituted cysteine accessibility mutagenesis
TM  transmembrane segment

Figure 3:  Examples of the use of metal bridges to determine conformation-dependent distances in the CFTR Cl- channel pore.
(A) Overall atomic homology structure of the CFTR protein within the cell membrane, according to coordinates provided by Mornon et al. 
(133). The location of pore-lining amino acids that have been studied in our laboratory using cysteine mutagenesis and Cd2+ bridge forma-
tion are indicated, close to the outer mouth of the pore (R334, green; T1122, cyan; G1127, blue), and the inner vestibule of the pore (K95, 
red; M348, purple; S1141, orange). (B, C) Location of identified introduced cysteine side-chains that could form conformation-dependent 
Cd2+ bridges at these levels of the pore, viewed from the extracellular side of the membrane. (B) R334C was reported to form a Cd2+ bridge 
with T1122C in open channels and with G1127C in closed channels (88). The measured S-S distances (red dotted lines) are 22.2 Å for 
R334C-T1122C and 21.1 Å for R334C-G1127C, inconsistent with metal bridge formation, which suggests that this model does not accurately 
represent the geometry of this part of either the open or the closed channel. (C) S1141C was reported to form a Cd2+ bridge with K95C in 
open channels and with M348C in closed channels (80). The measured S-S distances (red dotted lines) are 8.6 Å for K95C-S1141C and 8.2 Å 
for M348C-S1141C, close to distances required for Cd2+ coordination, suggesting that only small conformational changes at this level of the 
pore may occur during pore opening and closing.
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