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Multilocus methylation defects in imprinting 
disorders

Abstract: Mammals inherit two complete sets of chromo-
somes, one from the father and one from the mother, and 
most autosomal genes are expressed from both mater-
nal and paternal alleles. In imprinted genes, the expres-
sion of the allele is dependent upon its parental origin. 
Appropriate regulation of imprinted genes is important 
for normal development, with several genetic diseases 
associated with imprinting defects. A common process 
for controlling gene activity is methylation. The first steps 
for understanding the functions of DNA methylation and 
its regulation in mammalian development have led us to 
identify common (epi)genetic mechanisms involved in the 
eight human congenital imprinting disorders.
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Introduction
The term “genomic imprinting” refers to the expression 
of specific genes in a parent-of-origin specific manner, 
that is, expression from the maternal or the paternal 
gene copy only (1). It is controlled by epigenetic modi-
fications, including DNA methylation within differen-
tially methylated regions (DMRs). To date, more than 70 
human genes have been classified as imprinted, with 
many more likely awaiting identification (http://igc.
otago.ac.nz) (2, 3), though the exact number is not clear 
(3). The normal imprinting marks are inherited from the 
parental gametes and are maintained in the somatic cells 
of an individual (Figure 1). However, this mechanism is 
prone to various disturbances resulting in distinctive 
pathological courses, including malignant tumours or – 
in cases of parentally imprinted genes – imprinting dis-
orders (IDs) (4, 5).

IDs are a group of congenital diseases affecting 
growth, puberty, behavior, development, and metabo-
lism, with lifelong impacts on patients’ quality of life (2). 
In nearly all known IDs, the same classes of molecular 
changes are detectable: (i) uniparental disomy (UPD), 
the inheritance of both chromosomal homologs from 
the same parent; (ii) deletions/duplications; (iii) epi-
mutations, aberrant methylation without alteration of 
the genomic DNA sequence; and (iv) point mutations in 
imprinted genes (6). At present, there are eight clinically 
well-recognized IDs (Table 1): the Beckwith-Wiedemann 
syndrome (BWS, OMIM 130650), Silver-Russell syndrome 
(SRS, OMIM 180860), Prader-Willi syndrome (PWS, OMIM 
176270), Angelman syndrome (AS, OMIM 105830), Temple 
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Figure 1 Illustration of the epigenetic reprogramming cycle and the known factors involved in its regulation.
In the fetal germline, all DNA methylation patterns are erased (gray line), and then paternal (blue) and maternal (red) methylation imprints 
are established during gametogenesis. The two germline genomes that are combined at fertilization undergo parent-specific genome 
reprogramming in the early embryo, during which most germline patterns are erased again and somatic patterns (green) are established. 
Only imprinted genes maintain their germline patterns during development of the new organism. DNMT, de novo methyl transferase; MBDs, 
methyl binding domain proteins; lncRNAs, long non-coding RNAs. Adapted from Reik and Walter (1) and Azzi et al. (51).

Table 1 Overview on the known congenital imprinting disorders in humans.

AS PWS BWS SRS mUPD14-like pUPD14-like TNDM PHP1B

Frequency 1/16,000 1/18,000 1/13,000 1/70,000 Unknown Unknown 1/500,000 Unknown
Chromosome 15q11–13 15q11–13 11p15 11p15/7p12 14q32 14q32 6q24 20q13
Candidate gene UBE3A SNORD116 IGF2/CDKN1C IGF2 GTL2/DIO3 GTL2/DIO3 PLAGL1 GNAS
Cytogenetic 
rearrangement (%)

75 75 5 5 Rare 
deletions

Rare 
deletions

29 Deletion in 
STX16/NESPas

DNA mutation (%) 10  < 1 5 Once 0 0 0 Familial cases
UPD (%) 5 25 20 10 50 reported 30 reported 41 6 reported
Epimutation (%) 5  < 1 55 35–50 3 reported 1 reported 30 Sporadic 

cases
MLMD MLMD once Not yet 

reported
MLMD MLMD Not yet 

reported
Not yet 
reported

MLMD MLMD

MLMD, multilocus methylation defect.

syndrome (7), Wang-Kagami-Ogata syndrome (OMIM 
608149), transient neonatal diabetes (TNDM, OMIM 
601410), and pseudohypoparathyroidism type 1B (PHP1B, 
OMIM 603233), though this number is increasing (8). The 
clinical spectrum of IDs is broad, some features are subtle, 
and thus some IDs are likely underdiagnosed.

Initially, each of these disorders was described sepa-
rately, and molecular defects in specific chromosomal 
regions were identified for each; however, over the last 
5 years, several clinical and molecular overlaps among the 
different IDs have become obvious. In particular, many 
patients with different clinically diagnosed IDs have been 
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reported to carry epigenetic mutations not only at the dis-
ease-specific loci but also in other chromosomal regions 
(9–15). The identification of these so called “multilocus 
methylation defects” (MLMDs) illustrates that IDs should 
be considered not separately but as a single entity, given 
their likely similar pathogenic mechanisms (6).

The first evidence of MLMDs was reported by Arima 
et al. (15) and Mackay et al. (12), who identified patients 
with TNDM carrying a PLAGL1/ZAC1 epimutation and a 
hypomethylation of imprinting control region (ICR) 2 in 
11p15 (also known as KvDMR), the most frequent BWS 
epimutation. Recently, mutations in the ZFP57 gene have 
been described in some of these patients with TNDM and 
an MLMD, making this the first gene linked to an autoso-
mal recessively inherited ID (16).

Subsequently, MLMDs have been detected in other 
IDs, with both paternally and maternally imprinted loci 
affected. The highest reported frequency is in TNDM (50% 
of epimutation carriers), followed by BWS, detectable in 
25% of carriers of an ICR2/KvDMR hypomethylation in 
11p15 (9, 10, 14). Given that this epimutation accounts for 
50% of patients (17), it could be deduced that ≈12% of 
patients with BWS are MLMD carriers. MLMDs are less 
frequent in SRS (9, 18) and PHP1B (13, 19, 20), detected 
in 8%–10% of epimutation carriers. MLMDs have been 
described in other IDs only rarely. However, MLMD can 
differ for the same patient when screened in different 
tissues and different tissue-specific MLMDs co-existed 
in 38% of Silver-Russell Syndrome (SRS) patients with 
11p15 loss of methylation (LOM) in leukocytes. These tis-
sue-specific epigenotypes may contribute to the clinical 
heterogeneity observed in IDs (21).

We will summarize the specific (epi)genetic character-
istics of the different IDs as well as the effect of the MLMD 
in some of them.

Chromosome 6q24: TNDM
The 6q24-related transient neonatal diabetes mellitus 
(6q24-TNDM) is characterized by diabetes mellitus that 
presents within the first 6 weeks of life in a term infant 
and resolves by age 18  months (22, 23). It is caused by 
overexpression of the imprinted genes at 6q24 (PLAGL1 
[ZAC] and HYMAI) (24, 25). Normally, expression of the 
maternal alleles of PLAGL1 and HYMAI are silenced 
by DMR methylation, and only the paternal alleles of 
PLAGL1 and HYMAI are expressed (26). Three different 
genetic mechanisms result in twice the normal dosage of 
these two genes and cause 6q24-TNDM: paternal UPD of 

chromosome 6 [UPD(6)pat, 41% of cases]; duplication of 
6q24 on the paternal allele (29%); and hypomethylation of 
the maternal DMR resulting in inappropriate expression 
of the maternal PLAGL1 and HYMAI alleles (30%) (27–30). 
This hypomethylation is invariably complete, which may 
reflect the ascertainment bias of clinical presentation.

Over half of patients with maternal hypomethylation 
at the TNDM locus have additional hypomethylation of 
other maternally methylated imprinted genes throughout 
the genome (30).

Homozygous or compound heterozygous ZFP57 muta-
tions account for almost half of TNDM-MLMD; the other 
causes of MLMD are not known (16). The finding of mosaic 
epigenetic aberrations associated with ZFP57 mutations 
indicates that the gene may be involved in maintenance 
of DNA methylation at imprinted regions during the 
early multicellular stages of human development, simi-
larly to its role in the mouse (31). The epigenetic signa-
ture of ZFP57 homozygous and compound heterozygous 
individuals includes total LOM of PLAGL1 DMR, partial 
hypomethylation of PEG3 DMR (19q13.4), and partial or 
complete hypomethylation of GRB10 DMR (7p12.2) (16, 
32). In other patients with TNDM-MLMD, no underlying 
causative mutation has yet been identified. Among these 
patients, the affected loci identified so far are maternally 
methylated and may include MEST/PEG1 (7q32), ICR2/
KvDMR (11p15) and GNAS (20q13) (12, 30, 33).

Regarding the influence of the multilocus defect over 
the phenotype, non-diabetes manifestations are more 
likely in the subgroup with generalized hypomethylation 
at imprinted loci and can include significant learning diffi-
culties, marked hypotonia, congenital heart disease, deaf-
ness, neurologic features including epilepsy, and renal 
malformations (11, 16). No correlation has been observed 
between clinical severity and either the degree of hypo-
methylation or the range of loci involved. For example, 
the features seen in individuals with 6q24-TNDM caused 
by homozygous or compound heterozygous ZFP57 muta-
tions can vary from severe intellectual disability and early 
infant death to a normal phenotype (32).

Chromosome 11p15: BWS/SRS
BWS is a growth disorder characterized by macrosomia, 
macroglossia, visceromegaly, omphalocele, neonatal 
hypoglycemia, ear creases/pits, adrenocortical cytomeg-
aly, increased risk to embryonal tumors (e.g., Wilms tumor, 
hepatoblastoma, neuroblastoma, and rhabdomyosar-
coma), and renal abnormalities (e.g., medullary dysplasia, 
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nephrocalcinosis, medullary sponge kidney, and nephro-
megaly) (17). BWS is caused by molecular alterations 
in the chromosomal region 11p15.5 which harbors two 
imprinting control regions (ICR1/H19 and ICR2/KvDMR). 
Deregulation of genes controlled by either the ICR1 or ICR2 
results in the BWS phenotype through the change of the 
relative contributions of parental alleles (34). Five major 
different disturbances in 11p15.5 have been described to be 
associated with BWS: (i) Sporadic LOM at the ICR2 occurs 
in 50% of patients. (ii) Gain-of-methylation (GOM) at the 
ICR1 is detectable in 5%; some of these methylation altera-
tions have been associated with genomic alterations (35), 
and these methylation changes are important because of 
their heritability. Up to 20% of the GOM at the ICR1 are 
secondary to genetic anomaly within the ICR1 affecting 
CTCF and OCT4/SOX2 binding sites (36). (iii) Segmental 
paternal UPD(11)pat of the region 11p15.5 is diagnosed in 
20% of BWS patients. Segmental UPD often arises from a 
post-zygotic somatic recombination event and therefore 
has a mosaic distribution (17). (iv) A minor fraction of BWS 
patients carry duplications/deletions of paternal chromo-
some 11p15.5 material. (v) In up to 5% of BWS patients, 
point mutations within the CDKN1C gene in 11p15.5 affect-
ing the maternal allele can be detected. It is now clear that 
the risk of tumor occurrence differs considerably between 
the various underlying molecular defects with a higher 
incidence of tumor when the ICR1 domain is involved (37).

The same chromosomal region 11p15.5 is altered in 
patients with SRS, a congenital disorder characterized by 
severe prenatal and postnatal growth retardation, relative 
macrocephaly at birth, a distinctive triangular face with 
prominent forehead, low-set ears, clinodactyly of the fifth 
fingers, feeding difficulties, and body asymmetry (38, 39). 
Genetic and epigenetic disturbances can be detected in 
approximately 50% of patients with typical SRS features 
(40), and the majority of patients show a chromosome 
11p15.5 disturbance. Hypomethylation of the paternal 
imprinting center 1 (IC1) of chromosome 11p15.5 is identi-
fied in 35%–50% of individuals with SRS (41–43). A small 
number of individuals with SRS have a duplication involv-
ing the maternal 11p15.5 region (44). Recently, an activating 
mutation of CDKN1C has been described in a familial case 
of SRS, completing thereby the molecular mirror of SRS 
causes with the molecular causes identified in BWS (45).

As mentioned before, MLMD in BWS is found in 25% 
(46) of patients with ICR2 hypomethylation (9, 10, 14, 47) 
and in 10% of SRS with hypomethylation of H19 ICR1-DMR 
(11p15.5) (9, 18). In a very recent paper, MLMD was found in 
two out of 10 BWS patients with ICR1/H19 hypermethyla-
tion (48). In some of these patients, the hypomethylation 
can involve paternally or maternally methylated DMRs (9), 

in contrast to ZFP57-related TNDM MLMD patients in whom 
the hypomethylation occurs only at maternally imprinted 
loci. However, no underlying genetic defect for BWS or SRS 
MLMD cases is so far known, except for a single case with 
a homozygous sequence mutation in the NLRP2 gene in the 
mother of two siblings with BWS and hypomethylation of 
the ICR2 and MLMD in one of the twins (49).

Although the analyzed loci and techniques are not 
consistent in the different studies on MLMD, preliminary 
data show that the affected loci vary between groups of 
patients. Whereas PLAGL1, GRB10, and MEST/PEG1 are 
affected both in BWS-MLMD and SRS-MLMD (6), the pre-
dominantly involved loci apart from ICR2 in BWS patients 
are GNAS and IGF2R (9, 10, 14, 47), whereas in SRS, DLK1 
is often affected (9).

In many MLMD patients ascertained with a BWS or 
SRS phenotype (9, 14), no additional clinical features com-
pared with those of single locus hypomethylation BWS 
patients were noted. For example, there was no clinical 
history of TNDM in the BWS (10) or SRS (9) patients who 
had total or partial LOM of PLAGL1 DMR. Moreover, MLMD 
patients with the same aberrant methylation patterns in 
lymphocytes but either a BWS or a SRS phenotype have 
been identified (9). However, some SRS MLMD carriers 
present with a severe clinical spectrum, including devel-
opmental delay and dysmorphisms (9, 18). Furthermore, 
among three of 77 SRS patients with hypomethylation at 
both ICR1 and ICR2, one had an umbilical hernia that is 
not typical for SRS but a common feature for BWS (50). In 
some patients with MLMDs with a BWS phenotype, both 
birth weight and frequency of macrosomia are lower than 
in other BWS subgroups, and features not typically seen in 
BWS (e.g., speech retardation, apnea, feeding difficulties) 
are present (10, 47). To explain the phenotypic outcome in 
MLMD carriers, Azzi et al. suggested that the most severe 
epimutation, i.e., the lowest methylation level, might be 
clinically dominant, and in cases with comparable levels 
of hypomethylation at multiple loci, one locus may have an 
(epi)dominant effect over the other(s) (9, 51). Nevertheless, 
we have to keep in mind that the studies published are 
based on methylation analyses at lymphocyte DNA, and 
it is possible that the mosaic distribution in other tissues 
would influence the phenotypic expression. Furthermore, 
only a limited number of imprinted loci have been tested.

Chromosome 7: SRS
About 10% of individuals with SRS have maternal UPD for 
chromosome 7 (40, 52). Clinically, it should be considered 
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that UPD(7)mat patients generally show a slightly different 
phenotype in comparison to 11p15 hypomethylation carri-
ers (53, 54): while growth is less restricted and asymmetry 
is less frequent in UPD(7)mat carriers, these patients are 
more likely to have delayed development and speech (54).

Two different candidate regions have been proposed: 
7p11.2–p13 and 7q32. For the candidate region in 7p11.2–
p13, SRS patients with duplications have been reported (55, 
56). The region harbours an imprinted gene (growth factor 
receptor bound protein 10/GRB10) and several factors 
involved in human growth and development (IGFBP1, 
IGFBP3, PHKG1, EGFR, and GHRHR). Pathogenic mutations 
in these genes have been excluded in SRS (57). In particular, 
GRB10 plays an essential role in growth and is therefore still 
a good candidate for SRS. This assumption was supported 
by a published family carrying a maternally inherited 
dup(7)(p11.2p12) not including GRB10 and without SRS fea-
tures (58). However, several studies argued against a major 
role of GRB10 mutations in the etiology of SRS (59), and it 
became obvious that an aberrant imprinting of GRB10 in 
7p12 does not significantly contribute to the SRS phenotype 
as several patients with segmental maternal UPD restricted 
to the long arm of chromosome 7 (UPD(7q)mat) have been 
identified (60). The only SRS patient with methylation 
defect at GRB10 also carried a 20p13 microdeletion, so it is 
unclear whether the phenotype is attributable to the GRB10 
hypermethylation or to the 20p13 deletion (61).

Three imprinted genes (MEST/PEG1, CPA4, and 
COPG2) and two imprinted non-coding RNAs (MESTIT1 
and CIT1/COPG2IT1) are located in 7q32. In particular, the 
MEST/PEG1 gene was regarded as a convincing candidate 
gene for SRS since Peg1/Mest knockout mice show prena-
tal and postnatal growth failure when the mutant gene 
is transmitted from the father (62). Both MEST/PEG1 and 
MESTIT1 have been discussed as candidate gene for SRS, 
but screening studies for point mutations as well as meth-
ylation studies have not detect any pathogenic variants 
or aberrant methylation patterns so far (63–66), with the 
exception of a case with a de novo deletion in 7q32 affect-
ing the paternal imprinted MEST/PEG1 gene copy (67).

Schönherr et  al. showed that further epigenetic 
defects did not occur in the groups of SRS with UPD(7)mat 
and that this entity does not belong to the diseases with a 
general hypomethylation defect (68). However, MLMD is 
generally not detectable in UPD cases. The patient with 
isolated hypermethylation at GRB10 was also investigated 
for MLMD, with negative results (61).

However, further studies are needed to identify the 
gene conclusively implicated in SRS. A very recent report 
of Hannula-Jouppi and colleagues has suggested many new 
imprinted sites that need to be tested in these patients (69).

Chromosome 20q13: PHP1B
PHP1B is a rare disease characterized by kidney resist-
ance to parathyroid hormone (PTH) and, in some cases, 
mild resistance to thyroid-stimulating hormone. In a few 
patients, features of Albright hereditary osteodystrophy 
(short stature, ectopic ossifications, and bone shape 
abnormalities) and/or obesity may be present (70).

About 15%–20% of patients with PHP1B display a 
LOM restricted to the A/B DMR, associated with maternal 
3-kb micro/4.4-kb deletions within the STX16 gene (71, 72). 
These patients are described here as having autosomal 
dominant PHP1B (AD-PHP1B). A very small number of 
families with PHP1B have been reported to have a broad 
methylation defect at the GNAS locus (LOM at AS/NESPAS, 
XLas, and exon A/B and GOM at NESP55) and a deletion 
removing AS exons 3 and 4 (73, 74), a deletion removing 
NESP55 and AS intron 4 (75) or very small deletions within 
NESP55 (76). Most patients with PHP1B (80%–85%) have 
a sporadic disease, with broad methylation defect encom-
passing the GNAS locus, without microdeletions within 
the STX16 or AS genes (77, 78) and in a few cases associ-
ated with UPD(20q)pat (79–81).

MLMD is an infrequent event in PHP1B patients (13) 
that includes both hypermethylation and hypomethyla-
tion at maternally and paternally imprinted loci, without 
any specific grouping (19, 20). Regarding the influence 
of the other methylation alterations on the phenotype of 
these MLMD-PHP1B patients, there is no significant cor-
relation between the imprinting defect and PTH resistance 
or weight/height parameters (13, 20). The only atypical 
features found were hypercholesterolemia in a patient 
who also had additional hypomethylation at the MEST/
PEG1 DMR and birth growth restriction with persistent 
short stature in a patient hypomethylated at the IGF2R 
and ZNF331 DMRs (19).

Chromosome 15q11: PWS/AS
PWS is characterized by severe hypotonia and feeding dif-
ficulties in early infancy, followed in later infancy or early 
childhood by excessive eating and gradual development 
of morbid obesity (unless eating is externally controlled). 
Motor milestones and language development are delayed. 
All individuals have some degree of cognitive impairment. 
A distinctive behavioral phenotype (with temper tantrums, 
stubbornness, manipulative behavior, and obsessive-
compulsive characteristics) is common. Hypogonadism 
is present in both males and females and manifests as 
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genital hypoplasia, incomplete pubertal development, 
and, in most cases, infertility (82–84). The major genetic 
defect is a de novo paternally derived deletion of the chro-
mosomal region 15q11–q13 (70%–75% of patients), fol-
lowed by maternal UPD (20%–25%) and in rare cases an 
imprinting defect affecting the paternal chromosome 15 
(82). In 10%–15% of patients with an imprinting defect, 
deletions of the PWS critical region inside the imprinting 
center (IC) on chromosome 15 have been identified (85, 86).

AS is characterized by severe developmental delay 
or intellectual disability, severe speech impairment, gait 
ataxia and/or tremulousness of the limbs, and a unique 
behavior with an inappropriate happy demeanour that 
includes frequent laughing, smiling, and excitability. 
Microcephaly and seizures are also common features. 
Developmental delays are first noted at around age 6 
months; however, the unique clinical features of AS do 
not become manifest until after age 1 year, and it can take 
several years before the correct clinical diagnosis is obvious 
(82, 87, 88). AS is caused by the loss of function of UBE3A, 
which is expressed from the maternal allele in brain. Point 
mutations in the UBE3A gene have been identified (89, 90) 
in nearly 11% of patients (91, 92). Other disease mecha-
nisms are either a de novo maternally derived deletion of 
15q11–q13 (70%–75% of cases), paternal UPD (3%–7%), or 
an imprinting defect affecting the maternal chromosome 
15 (∼3%) (82, 93). The 10%–15% of the imprinting defects 
are caused by microdeletions (6–200 kb) that include the 
AS critical region of the chromosome 15 IC (85).

MLMD is very rare in patients with methylation 
defects at 15q11, mainly perhaps because very few patients 
present imprinting defects. In fact, only one case with a 
molecular diagnosis of AS has been described to have 
additional imprinting anomalies, affecting ICR2, PEG3, 
and the GNAS locus (47, 94). This AS-MLMD patient dif-
fered significantly from typical AS, having initially been 
referred for BWS and PWS testing.

Concluding remarks
As the increasing number of reports on MLMD shows, it 
appears to be restricted to TNDM, SRS, BWS, and some 
cases of PHP1B, whereas this phenomenon has not been 
described in PWS and just one case with hypomethyla-
tion at SNRPN (typical of AS). Except for TNDM, where 
only hypomethylation at maternally imprinted loci has 
been observed, MLMD can include both hypermethyla-
tion and hypomethylation at either paternally or mater-
nally imprinted regions and can differ among the tissues 

studied for the same individual. However, it is possible 
that MLMD is more frequent than known as all studies 
reported to date are focused on the specific imprinting 
locus. Future whole-methylome analyses will help us 
answer this point. Further efforts are needed to identify 
(i) the putative network involved in the hypermethyla-
tion/hypomethylation grouping and (ii) mechanism(s) 
involved in methylation establishment and maintenance, 
whose defects are responsible for these IDs. New high-
throughput techniques, e.g., (bisulfite) exome/genome 
sequencing and analyses at chromatin organization level, 
in combination with functional assays will elucidate the 
interaction between imprinting control regions/genes and 
their target(s), contributing to the understanding of mech-
anism of genomic imprinting and its disturbances.
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