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Short Conceptual Overview

Yoshito Kakihara* and Makio Saeki

The R2TP chaperone complex: its involvement  
in snoRNP assembly and tumorigenesis

Abstract: R2TP was originally identified in yeast Saccha-
romyces cerevisiae as Hsp90 interacting complex, and is 
composed of four different proteins: Rvb1, Rvb2, Tah1, and 
Pih1. This complex is well-conserved in eukaryotes, and 
is involved in many cellular processes such as snoRNP 
biogenesis, RNA polymerase assembly, PIKK signaling, 
and apoptosis. An increasing number of research related 
to R2TP suggests a linkage of its function with tumori-
genesis. In this review, we provide an overview of several 
recent studies on R2TP that are related to cell proliferation 
and carcinogenesis, and propose a possible role of R2TP 
in tumorigenesis through regulating snoRNA/snoRNP 
biogenesis.
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Introduction
R2TP is composed of four different proteins: Rvb1, Rvb2, 
Pih1, and Tah1. It was initially identified by high-through-
put screening of Hsp90 interacting proteins (1). R2TP is 
conserved from yeast to human, and each component has 
diverse names because of different naming conventions, 
as shown in Table 1 (2–5). Rvb1 and Rvb2 belong to the 
AAA+ (ATPases associated with various cellular activi-
ties) superfamily of proteins (5). Pih1 (Protein interacting 
with Hsp90), which belongs to Pih1 family of proteins, 
directly interacts with Rvb1-Rvb2 complex (Rvbs) and Tah1 

(TPR [tetratricopeptide repeat-containing protein] asso-
ciated with Hsp90) (1, 3, 6). In yeast, Pih1 is an unstable 
protein and prone to aggregate in vitro, however, the Pih1 
aggregates are dissociated by Hsp90 in an ATP-depend-
ent manner, and its disaggregation activity of Hsp90 is 
enhanced by Tah1 (6). Tah1 is suggested to function as 
a co-chaperone of Hsp90 in disaggregating Pih1 (6). As 
shown in Figure 1, it has been determined that Rvbs are 
involved in many different cellular processes such as tran-
scriptional regulation, DNA repair, telomerase assembly, 
and mitotic spindle assembly (7–12), in contrast, when in 
complex with Tah1 and Pih1, R2TP’s cellular function is 
limited to apoptosis, PIKK signaling, snoRNP biogenesis, 
and RNA polymerase II assembly (Figure 1) (2–4, 12, 13). 
Also, R2TP (or at least Rvbs) is found in ASTRA (ASsembly 
of Tel, Rvb and Atm-like kinase) complex which is sug-
gested to be involved in telomere maintenance and TORC1 
signaling in yeast (14, 15). It has been demonstrated that 
Pih1 functions as an adaptor protein. In yeast, Pih1 targets 
R2TP to Nop58 (a core factor in box C/D snoRNP) (16). In 
mammals, PIH1D1 targets R2TP to dyskerin (yeast Cbf5 
homologue, a core factor in box H/ACA snoRNP) (17), Rpb1 
(a core subunit in RNA polymerase II) (18), and Tel2 [a core 
subunit in TTT (Tel2-Tti1-Tti2) complex] (19, 20).

In this review, we will focus on describing the R2TP 
function in snoRNP biogenesis. snoRNP biogenesis is 
essential for cell growth and proliferation in eukaryotes 
because snoRNPs are involved in pre-rRNA modifica-
tion, which in turn regulates ribosome biogenesis (21–23). 
There are two major classes of snoRNAs – box C/D and box  
H/ACA snoRNAs – which function as guide RNA, targeting 
snoRNPs to specific nucleotides on pre-rRNA for enzymatic 
modifications, such as 2′-O-methylation and pseudouri-
dylation, respectively (Figure 2) (24, 25). Recent studies have 
shown that the R2TP functions as a chaperone for the both 
box C/D and box H/ACA snoRNP assembly (16, 17), and it 
regulates ribosome biogenesis and subsequently controls 
cell proliferation (16, 26). Intriguingly, it has been reported 
that the expression levels of some components of R2TP, box 
C/D snoRNP, as well as box H/ACA snoRNP, are deregulated 
in various cancer cells (described in main section). On the 
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Table 1 The components of R2TP in yeast and human.

Yeast   Human   Features

Rvb1   RuvBL1/Pontin/TIP49  AAA+ superfamily
Rvb2   RuvBL2/Reptin/TIP48  AAA+ superfamily
Pih1/Nop17  PIH1D1   PIH1 domain-containing
Tah1   RPAP3   TPR domain-containing
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Figure 1 Functions of Rvbs (Rvb1-Rvb2) and R2TP complexes.
Rvbs are involved in transcriptional regulation, DNA repair, telomerase assembly, and mitotic spindle assembly [reviewed in (3, 5, 12)]. In 
contrast, R2TP is involved in apoptosis, PIKK signaling (functions in stress responses including DNA repair, transcription, and mRNA decay), 
and snoRNP biogenesis [reviewed in (2, 4)]. This change in functional profile of the Rvbs is achieved by Pih1/PIH1D1 assisting the binding 
of Rvbs and Tah1/RPAP3 to the specific targets such as Nop58 (box C/D snoRNP), dyskerin (box H/ACA snoRNP), Rpb1 (RNA polymerase II), 
and Tel2 [TTT (Tel2-Tti1-Tti2) complex, which mediates interaction with PIKK complexes]. Target proteins/complexes of Rvbs or R2TP in each 
cellular process are shown in the box.

basis of recent data, we discuss how the R2TP contributes 
to carcinogenesis through regulating snoRNP biogenesis.

R2TP function in box C/D snoRNP 
biogenesis
The box C/D snoRNP is composed of box C/D snoRNA 
and the core proteins, Nop1 (fibrillarin in human), Snu13 
(15.5K in human), Nop56, and Nop58 (21) (Figure 2). This 
RNA-protein complex is involved in 2′-O-methylation of 
the pre-rRNA. The snoRNA moiety functions as guide 
RNA that forms base pairs with pre-rRNA, which in turn 
allows the pre-rRNA to be methylated by Nop1/fibril-
larin. This modification is essential for the subsequent 

endonucleotic cleavage and processing of the pre-rRNA to 
produce mature rRNAs (21, 27). The assembly of snoRNP is 
hierarchical and its proper assembly is essential for both 
the activity and stability of snoRNP (6, 16, 17, 28–31). It 
has been proposed that the assembly of box C/D snoRNP 
starts with the interaction between box C/D snoRNA and 
Snu13/15.5k, followed by the binding of Nop58 and then 
Nop1/fibrillarin and Nop56 are recruited (28, 32). In this 
process, Nufip/Rsa1 (snoRNP assembly factor) and Rvbs 
facilitate the assembly of box C/D snoRNP by bridging 
the interactions of core components of box C/D snoRNP: 
between 15.5K and both Nop56 and Nop58 (29–31). Nufip 
is likely to regulate the interaction between Rvbs and the 
box C/D core proteins by tightly interacting with 15.5K 
(30). An involvement of R2TP in this assembly process 
also have been identified in yeast and human (6, 29), and 
very recently, it was shown that the yeast R2TP specifically 
associates with unassembled Nop58 which has yet to be 
assembled with other core factors such as Nop1, Snu13, 
and Nop56 (16). Under nutrient-rich condition, the yeast 
R2TP localizes to nucleus and tightly associates with the 
unassembled Nop58 that stabilizes Nop58. However, 
under the nutrient-limiting condition, it dissociates from 
Nop58 and subsequently delocalizes to cytoplasm. Impor-
tantly, Pih1 is a key factor in this process. When the yeast 
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Pih1 was artificially tagged with a nuclear export signal 
and thus was forced to localize only in the cytoplasm, 
Nop58 protein level was significantly reduced, and cell 
growth was also severely compromised (16).

Altogether, the current evidence shows that the yeast 
and human R2TP facilitates/regulates the assembly of 
box C/D snoRNPs at its very early stage. Intriguingly, the 
activity and subcellular localization of the yeast R2TP are 
tightly regulated by growth conditions. During the process, 
the association of yeast Pih1 with free form of Nop58 is 
essential and appears to have a direct effect on cell growth 
(16). However, details on how the R2TP-Nop58 interaction 
contributes to the following maturation process of box 
C/D snoRNP remain to be elucidated. Also, it has yet to be 
determined whether subcellular localization of R2TP and 
interaction between R2TP and Nop58 in mammalian cells 
are altered under the different growth conditions.

R2TP function in box H/ACA snoRNP 
biogenesis
The box H/ACA snoRNP consists of box H/ACA snoRNA, 
and the core proteins, Nhp2, Gar1, Nop10, and Cbf5 
(referred to as dyskerin, NAP57, and DKC1 in human) (21) 
(Figure 2). Like box C/D snoRNP, box H/ACA snoRNP 
is also involved in modification of pre-rRNA, which is 
required for downstream processing. The Cbf5/dyskerin 
functions as a pseudouridine synthase, thus this RNA-pro-
tein complex is responsible for pseudouridylation of the 
target uridines on the pre-rRNA (33, 34). It has been shown 
that the box H/ACA snoRNP assembly occurs co-tran-
scriptionally and requires assembly factors, which are not 

integral components of the mature box H/ACA snoRNP, 
such as Naf1 and Shq1 (35–37). The Shq1 initially inter-
acts with free form of Cbf5/dyskerin, which has yet to be 
co-transcriptionally assembled with box H/ACA snoRNA 
and other core proteins (36, 38). In mammalian systems, 
R2TP subsequently interacts directly with Shq1-dyskerin 
complex, resulting in the latter’s dissociation (17). Then, 
another assembly factor Naf1 interacts with dyskerin and 
the complex is brought to the transcription sites of box  
H/ACA snoRNA. Next, Naf1 is replaced by Gar1 to form the 
mature snoRNP complex by assembling with other factors 
such as Nhp2, and Nop10 (39). Additionally, given that all 
core protein factors of box H/ACA snoRNP also assembles 
with TERC (telomerase RNA component), forming TERC-
containing RNP (34), its biogenesis could follow that of 
canonical box H/ACA snoRNPs by involving R2TP (17). In 
yeast, Rvbs are involved in box H/ACA snoRNP biogenesis 
(6, 40), although the contribution of Pih1 and Tah1 to the 
process, if any, remains unknown.

Deregulation of snoRNA biogenesis 
in tumorigenesis
A common feature of the cancer cells is abnormally 
enlarged nucleolus, as a result of hyperactive ribosome 
biogenesis (41). Consequently, cellular processes that are 
related to ribosome biogenesis, such as the biosynthesis 
of ribosomal proteins, rRNA, snoRNAs and core proteins 
of snoRNPs, are expected to be highly activated (41–44). 
In support of this argument, the deregulation of snoRNA/
snoRNP biogenesis has been reported in various cancer 
cell types [reviewed in (45)]. Given that rRNA biosynthesis 
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Figure 2 Components of the box C/D and box H/ACA snoRNP.
Mature form of box C/D and box H/ACA snoRNPs are shown (21). The box C/D snoRNP is composed of box C/D snoRNA and four core pro-
teins: Snu13, Nop1/fibrillarin, Nop56, and Nop58, and is required for 2′-O-methylation of pre-rRNA (21, 23). Nop1 is the catalytic subunit of 
this complex. The box H/ACA snoRNP is composed of box H/ACA snoRNA and four core proteins – Nhp2, Gar1, Nop10, and Cbf5/dyskerin 
– and is involved in pseudouridylation of pre-rRNA (21, 23). The box H/ACA snoRNA includes two hairpins and each of these associates with 
the core protein factors. Cbf5/dyskerin is the catalytic subunit of this snoRNP.
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is upregulated in cancer cells, it is reasonable to assume 
that the expression of snoRNAs will also be upregulated, 
as they are required for pre-rRNA processing. Never-
theless, while some snoRNAs are indeed upregulated 
in cancer cells, others are actually downregulated. For 
example, Mannoor et  al. investigated snoRNAs expres-
sion in tumor-initiating cells (TICs; also known as cancer 
stem cells) of non-small cell lung cancer (46). They iden-
tified 22 snoRNAs that showed changes in expression 
by more than threefold in TICs compared to non-TICs. 
Of these 22 snoRNAs, 21 were upregulated, but one was 
downregulated (46). Among the upregulated snoRNAs, 
SNORA42 showed the highest expression. Intriguingly, in 
TIC xenografts of mice, knock down of SNORA42 resulted 
in a decrease of tumorigenesis (46). In other cancer cell 
lines, it has been identified that SNORD33, SNORD44, 
SNORD66, and SNORD76 are upregulated, and a depletion 
of their expression decreases both cancer cell growth and 
colony formation (47, 48). Regarding snoRNA downregu-
lation that is related to tumorigenesis, human U50 box 
C/D snoRNA (also called SNORD50) is mutated and down-
regulated in prostate and breast cancers (49, 50). On the 
other hand, U50 overexpression inhibits colony formation 
of prostate and breast cancers, suggesting that the U50 
functions as a tumor suppressor (49, 50). In mice, dele-
tion of U50 snoRNA decreased methylation levels of the 
target rRNA, however, no significant growth phenotype 
or tumorigenesis were observed. Subtle effects on lym-
phoid organs such as splenomegaly and swollen lymph 
nodes were observed more frequently compared to wild-
type mice (51). Additionally, other snoRNAs (SNORD43, 
SNORD44 and SNORD48) are known to have decreased 
expression levels in cancer cells, although it mechanism 
has not been elucidated (52).

Potential role of R2TP in tumorigen-
esis through snoRNP pathway
As mentioned above, R2TP is involved in various cellular 
processes and exerts chaperone function, assisting the 
assembly of multiprotein complexes via interaction with 
their specific subunits. As reviewed by Grigoletto et  al. 
(53), RuvBL1/pontin and RuvBL2/reptin are known to be 
involved in carcinogenic processes of hepatocellular carci-
noma as well as colorectal cancer. Although the accumulat-
ing data indicates the involvement of RuvBL1/pontin and 
RuvBL2/reptin in carcinogenesis, the underlying mecha-
nism remains largely unknown. Several reports suggest 
that the regulatory role of Rvbs/R2TP in snoRNP biogenesis 

Table 2 The upregulation of R2TP in various cancers.

Upregulated genes  Types of cancer   References

RuvBL1/Pontin   Hepatocellular carcinoma  (55, 57, 60)
  Breast cancer   (62)
  Colon cancer   (61, 62)
  Colorectal cancer   (63, 64)

RuvBL2/Reptin   Hepatocellular carcinoma  (55, 56, 58–60)
  Breast cancer   (62, 66)
  Colon cancer   (62)
  Gastric cancer   (65)
  Renal cell cancer   (67)
   

RPAP3   Breast cancer   (62)
  Colon cancer   (62)
   

PIH1D1   Breast cancer   (62, 68)
  Colon cancer   (62)

is associated with tumorigenesis. It has been shown that 
Rvbs and Pih1 as well as Nop56 are co-immunoprecipitated 
with Nop58 in Hela cells (31). In addition, PIH1D1 depletion 
resulted in significant decrease of box C/D snoRNAs and 
accumulation of U3 box C/D snoRNA in Cajal body where 
snoRNPs transit during its maturation process (31). Further-
more, Su et  al. showed that snoRNA/snoRNP biogenesis 
involving RuvBL1/pontin is enhanced in breast cancer (54). 
They observed that the depletion of RuvBL1/pontin mark-
edly reduced box C/D snoRNA accumulation, which is sig-
nificantly upregulated in breast cancer cells. Also, similar 
effects were observed by impairment of box C/D snoRNP 
core factors such as fibrillarin, NOP56, and NOP58, suggest-
ing that RuvBL1/pontin and box C/D snoRNP cooperatively 
contribute to tumorigenesis. Moreover, they showed that a 
suppression of snoRNA biogenesis compromised tumori-
genicity through activating p53 (54).

In addition to snoRNAs, the upregulation of R2TP 
has also been reported in various cancer cells as shown 
in Table 2. For example, in human hepatocellular carci-
noma (HCC), the mRNA and/or protein levels of RuvBL1/
pontin and RuvBL2/reptin are increased as compared to 
non-tumor liver (55–60). Also, it has been shown that 
RuvBL1/pontin is overexpressed in breast, colon, and 
colorectal cancers (61–64) and RuvBL2/reptin is overex-
pressed in breast, colon, gastric, and renal cell cancers 
(62, 65–67). Additionally, it has been reported that RPAP3 
and PIH1D1 expressions are upregulated in breast cancer 
as well as colon cancer (62, 68). As aforementioned, 
R2TP directly targets both Nop58 and dyskerin, which 
are a component of box C/D and box H/ACA snoRNP, 
respectively. Interestingly, it has been observed that the 
expression of the both Nop58 and dyskerin are increased 
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Figure 3 Involvement of R2TP in cell proliferation/tumorigenesis through snoRNP biogenesis.
R2TP regulates both box C/D and box H/ACA snoRNP biogenesis, and subsequently controls pre-rRNA processing, ribosome biogenesis, 
and cell proliferation. Elevated snoRNP biogenesis inactivates p53 activity and triggers tumorigenesis, whereas inhibition of snoRNP bio-
genesis activates p53 and inhibits the cell proliferation.

in some cancer cells. For Nop58, the expression level 
was compared between non-metastic and metastatic 
melanoma cells from mice, and its expression was sig-
nificantly increased in metastatic cells (69). Also, in 
tumor samples of human malignant melanoma, Nop58 
is upregulated specifically in metastatic group compared 
to the non-metastatic group (69). For dyskerin, although 
downregulation of the expression has been observed 
in a subset of tumors (70), upregulated expression was 
determined in a number of human cancer cells and also 
its overexpression is correlated with aggressive prolif-
eration of the tumor cells such as hepatocellular (71), 
colon (72), prostate (73, 74), head and neck carcinomas 
(75). Given that the both Nop58 and dyskerin are unsta-
ble proteins and associated/stabilized by R2TP (16, 17, 
76), the expression level of R2TP components also might 
be upregulated to maintain the target proteins level in 
above-mentioned cancers.

In summary, it is shown how R2TP function is related to 
tumorigenesis through snoRNP biogenesis (Figure 3). R2TP 
directly interacts with Nop58 and dyskerin, a component 
of box C/D and box H/ACA snoRNP (16, 17). R2TP stabilizes 

Nop58 protein level, and facilitates the assembly with other 
core components (16). For dyskerin, R2TP dissociates it 
from the associated protein Shq1 to promote the following 
assembly process (17). In cancer cells, some of the R2TP and 
snoRNP components as well as many snoRNAs are upregu-
lated to enhance the snoRNP synthesis to process the pre-
rRNA efficiently and to produce high amount of ribosome. 
This elevated snoRNP and ribosome biogenesis negatively 
regulates the tumor suppressor p53 and that triggers tumo-
rigenesis, whereas inhibition of the snoRNP synthesis in 
cancer cells induces ribosome stress, which activates p53 
and inhibits cell proliferation (54). In this context, R2TP is 
a crucial regulator of cell proliferation. To downregulate 
the highly activated snoRNP/ribosome biogenesis in cancer 
cells, inhibition of the ATPase activity of R2TP and/or block-
ing its interaction with Nop58, and dyskerin could be con-
sidered a promising therapeutic approach. Thus, R2TP has 
great potential as a drug target for future cancer therapeutic 
research and development.
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