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MicroRNAs as therapeutic targets in 
cardiomyopathies: myth or reality?

Abstract: The identification of biomarkers for cardiomyo-
pathy presents a distinct challenge as the etiologies are 
widely varied. The discovery of small non-coding miRNAs 
with gene regulatory function has opened new avenues of 
investigation in basic and clinical sciences. The search for 
regulatory nucleotide sequences that have specific gene 
targets have put miRNAs at the forefront of development 
of therapeutics, and may serve as valuable diagnostic 
and/or therapeutic targets. MiRNAs appear to influence 
both positive and negative remodeling. As cardiac remod-
eling is a complex process, global molecular networks and 
miRNA profiles may be required to fulfill the roles of mac-
roregulators. The type of cardiomyopathy leading to heart 
failure in the long run appears to have a distinct molecu-
lar pattern underlying the pathophysiology. This review 
discusses in brief the existing literature on the molecular 
signatures in dilated, ischemic, hypertrophic, stress, and 
peripartum cardiomyopathies that may be used to target 
therapies for specific etiologies once diagnosed, therefore 
exploring the utility of specific miRNAs in tailoring ther-
apy for heart failure based on etiology.
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Introduction
The discovery of microRNAs (miRNAs) has opened a whole 
new area of investigation in diagnostics and therapeutics 
for cardiovascular diseases. MiRNAs are approximately 

22-nucleotide non-coding RNA sequences that regulate 
gene expression at the post-transcriptional level by tar-
geting the 3′-untranslated region of mRNA sequences. 
Gene expression studies and research on loss of function 
in animal models have established the role of miRNAs in 
the regulation of growth and development. The existence 
and regulatory function of small non-coding miRNAs were 
first identified in Caenorhabditis elegans in 1993 (1–3), and 
since then their importance has grown in logarithmic 
proportions in the basic and clinical sciences. The search 
for regulatory nucleotide sequences through advances in 
bioinformatics and sequencing, which enhance the pre-
diction of specific gene targets, have put miRNAs at the 
forefront of development in therapeutics.

MiRNAs have proven to be attractive candidates as 
biomarkers, as they circulate packaged either in microves-
icles, exosomes, or apoptotic bodies, which makes them 
resistant to temperatures  > 100°F and be conveniently 
stored at room temperature for long periods. These small 
non-coding nucleotides are also tolerant to acidic and 
alkaline conditions (4). Binding of miRNAs to RNA-bind-
ing proteins such as argonaute 2 and nucleophosmin 1, or 
by linkage to high-density lipoprotein (HDL), confers pro-
tection from circulating RNases (5–8).

Primary RNAs give rise to miRNAs in a two-stage 
process catalyzed by ‘drosha’ in the nucleus and ‘dicer’ 
in the cytoplasm. The freshly synthesized miRNAs bind to 
the argonaute protein to produce the RISC complex (effec-
tor RNA-induced silencing complex), which, in turn, binds 
to target mRNAs, resulting in the inhibition of translation 
and or degradation of the target RNA.

Many properties of miRNas have set them apart as 
candidates not only for diagnostic but also for therapeu-
tic purposes. Their remarkable stability in circulation is 
an important aspect that enables their easy and sensitive 
detection. This property also makes them good targets 
for therapeutic interventions as they can be silenced by 
antisense oligonucleotides. Some of the major strategies 
to target miRNas are to either construct molecules that 
mimic the functions of the miRNAs and thereby make 
them dysfunctional, or overexpress the miRNA of interest 
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in diseases where it is downregulated, or to construct 
directly inhibiting antisense oligonucleotides that are spe-
cific and can be target delivered.

The anti-miRNA concept is currently much used; 
however, the problems of specificity and stability are still in 
the process of being resolved. Chemically modified mRNAs 
ensure stability. 2-O-methyl-group (OMe)-modified oligo-
nucleotides and locked nucleic acid (LNA)-modified oligo-
nucleotides are some of the current modifications in use. 
Additionally, oligonucleotides with increased phosphoro-
thioate versus phosphodiester linkages between nucleotides 
confer more stability and increased resistance to nucleases.

Present-day medical management consists of neuro-
hormonal blockade with β-blockers/angiotensin inhibitors/
angiotensin receptor blockers and aldosterone receptor 
blockers. The current optimal medical management is a 
generalized strategy that targets all types of cardiomyopa-
thies by blockade of the sympathetic and renin-angiotensin 
and aldosterone systems, which helps alleviate symptoms 
and prevents remodeling but cannot be tailored for specific 
etiologies. The concept of molecular medicine, which can 
be used to target specific etiologies, drives home an impor-
tant point in the practice of personalized medicine.

The identification of biomarkers can lead to the devel-
opment of diagnostics and therapeutics. However, there 
are many challenges in developing robust biomarkers that 
would be useful in the development of therapeutic targets. 
This review attempts to explore the existing literature on 
different types of cardiomyopathies and the utility of spe-
cific miRNAs in tailoring therapy for heart failure depend-
ing on the etiology.

MiRNAs are versatile molecules of regulation. They 
can either inhibit translation or degrade their target 
mRNAs, depending on the extent of complementarity 
and number of binding sites. It is also dependent on the 
accessibility of these sites, which is largely dependent on 
free energy states. Greater complementarity of the acces-
sible binding sites results in target mRNA degradation. 
Imperfect sequence complementarities with target mRNAs 
primarily result in inhibition of translation. MiRNAs con-
stitute  > 2% of the predicted human genes that regulate 
∼30% of protein-coding genes and are in some cases 
expressed at  > 1000 copies per cell (9–12).

The transport of miRNAs to target genes is a complex 
process in which they are enclosed in protective vesicles 
during intercellular transport. Exosomes, microparticles, 
and high- and low-density lipoproteins (LDLs) have been 
implicated in the process. MiRNas carried in exosomes are 
released into the extracellular compartment on fusion with 
the plasma membrane. Microparticles form by outward 
budding and blebbing of the plasma membrane. During the 

process of apoptosis or programmed cell death, cells release 
microparticles and apoptotic bodies containing miRNAs, 
which then constitute the intercellular transport (13–15).

The type of cardiomyopathy leading to heart failure in 
the long run appears to have a distinct molecular pattern 
influencing the pathophysiology. This review discusses in 
brief the existing literature on the molecular signatures in 
dilated, ischemic, hypertrophic, stress, and peripartum 
cardiomyopathies, which may be used to target thera-
pies for specific etiologies once diagnosed. MiRNAs have 
been shown to be involved actively in cardiac develop-
ment, hypertrophy, and failure. They appear to play a role 
in positive and negative remodeling. However, cardiac 
remodeling and heart failure is a complex phenotype and 
may require global molecular networks and miRNA pro-
files suggesting that miRNAs could be the macroregula-
tors. Therefore, it is yet to be proven if miRNA signatures 
or single miRNAs would be suitable as therapeutic targets. 
It is possible that both miRNA signatures and individual 
miRNAs may serve as therapeutic targets for different car-
diomyopathies as more specific mRNAs are discovered for 
each disease process. Figure 1 shows the existing miRNA 
patterns in cardiomyopathies of different etiologies from 
the current literature.

Dilated cardiomyopathy
Dilated cardiomyopathy is essentially the end product of a 
number of pathological processes involving hypertrophy 
and disarray of myocytes as well as changes involving the 
extracellular matrix proteins. β-Adrenergic receptor sign-
aling plays an important role in the progression of cardiac 
failure. In cardiac explants from patients with dilated 
cardiomyopathy, inhibition of miR-100, an miRNA upreg-
ulated in heart failure, typically prevents β-adrenergic-
mediated downregulation of the adult component of the 
fetal gene program. In the murine system, overexpression 
of miR-195 leads to hypertrophic growth and myocyte dis-
array, leading to dilated cardiomyopathy and finally heart 
failure (16–18). In a small study of dilated cardiomyopathy 
patients compared with age- and sex-matched controls, 
elevated plasma miR-423-5p levels were noted, which cor-
related positively with the level of NT-proBNP (19).

Deep sequencing experiments in a loss-of-function 
mouse model showed that miR-1 and miR-133a were respon-
sible for the dramatic loss of function seen in Dgcr8-defi-
cient cardiomyocytes derived from these knockout mice 
(20). Analysis of data from a small study of 82 dilated car-
diomyopathy patients compared with 21 normal subjects 
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showed involvement of mir-208a. Mir-208a was found to 
correlate with myosin heavy chain mRNA expression, with 
increase in miR-208 levels being a strong predictor of clini-
cal outcomes in dilated cardiomyopathy (21).

Although a number of miRNAs have been shown to 
be involved in dilated cardiomyopathy, few have been 
directly implicated as therapeutic targets. Interestingly, 
in a mouse model, Sgcb-null mice, which are genetically 
engineered to produce sarcoglycanopathy, necrotic foci 
appear at 9 weeks of age and dilated cardiomyopathy from 
20 weeks. Intraventricular delivery of adeno-associated 
viral-mediated miRNA therapy in this transgenic model 
of severe, chronic myotonic dystrophy-associated dilated 
cardiomyopathy shows a long-term benefit. Overexpres-
sion of mir-699a improved survival and decreased cardiac 
remodeling fibrosis and apoptosis. Sarcomere organiza-
tion improved with reduced ventricular atrial natriuretic 
peptide and improved molecular markers of dilated car-
diomyopathy. Increases in fractional shortening were also 
observed on long-term treatment of these mice (22). Such 
direct implication of miRNA-targeted therapeutic benefit 
brings hope to this area of investigation. More precise 
studies in patient populations are needed to advance 
these findings toward the development of therapeutics.

Ischemic cardiomyopathy
Reduced contractility and negative remodeling after an 
acute myocardial infarction usually results from increased 
fibrosis of the extracellular matrix (ECM). The pathophysi-
ology underlying this process involves transformation of 
myocardial fibroblasts into myofibroblasts secreting ECM 

molecules. Such changes cause disturbances in conduc-
tion of electrical impulses in addition to deterioration of 
pump function.

Several miRNAs have been shown to be involved 
in the regulation of fibrotic reactions. MiR-29 appears to 
play a role after myocardial infarction, while miR-21 may 
exert a fundamental role in post-angioplasty restenosis. 
MiR-208 is involved in the shift toward a fetal gene expres-
sion pattern in contractile proteins in heart failure. MiR-1 
influences susceptibility to cardiac arrhythmias after 
myocardial infarction. Shear stress induces expression 
of miR-21 in endothelial cells, which leads to decreased 
apoptosis and activation of the nitric oxide pathway (23). 
This is important, as apoptosis is also reported to play an 
important role in the progression of left ventricular (LV) 
remodeling in ischemic hearts.

It is interesting to note that a number of miRNAs have 
been implicated in plaque formation and pathogenesis of 
atherosclerosis, in a variety of roles such as monocyte and 
macrophage activation, LDL and HDL level modulation, 
as well as plaque angiogenesis and fibrous cap stabiliza-
tion. Mir-221and mir-222 have been shown to induce vas-
cular smooth muscle cell proliferation, whereas mir-195 
was noted to reduce proliferation of this cell type (24–34). 
Such miRNAs may serve as therapeutic targets if delivered 
appropriately and can be modulated.

Cardiac fibrosis and hypertrophy
Two miRNAs appear to play key roles in cardiac fibrosis 
and hypertrophy. MiR-1 and miR-133 are specific to skel-
etal muscle and cardiac myocytes. Overexpression of 

Figure 1 MicroRNAs in cardiomyopathies with different etiologies.
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miR-1 in vivo results in thinning of the ventricular walls. 
On the contrary, miR-1 knockout mice have thickened ven-
tricles. MiR-1 is downregulated at the onset of pressure 
overload, possibly leading to the initiation and progres-
sion of cardiac hypertrophy. At the molecular level, miR-1 
downregulates calcium-calmodulin signaling through the 
calcineurin/NFAT pathway and negatively regulates the 
expression of Mef2a and Gata-4 to inhibit cardiomyocyte 
growth. The cytoskeleton regulatory protein twinfilin-1 is 
a novel target of miR-1, and reduction of miR-1 by hyper-
trophic stimuli upregulates twinfilin-1, which, in turn, 
leads to hypertrophy (35–40).

MiR-133 also has been shown to influence cardio-
myocyte hypertrophy. Expression of mir-133 was down-
regulated in both in vivo and in vitro cardiac models of 
hypertrophy. In these systems, calcineurin activity was 
enhanced. When cyclosporine was used to inhibit cal-
cineurin, the downregulation of mir-133 was suppressed, 
suggestive of a reciprocal association. Such effects of 
downregulation of mir-133a were also noted in diabetes-
induced cardiac hypertrophy through SGK1 and IGFR1 (18, 
41–44).

The miR-29 family targets a series of mRNAs that 
encode proteins involved in fibrosis, including collagens, 
fibrillins, and elastin. In a recent study by Roncarati et al. 
(45), about a dozen miRNAs were found to be elevated 
in plasma from hypertrophic cardiomyopathy subjects. 
These include miR-27a, miR-199a-5p, miR-26a, miR-145, 
miR-133a, miR-143, miR-199a-3p, miR-126-3p, miR-29a, miR-
155, miR-30a, and miR-21. Interestingly, in this study, the 
miRNA signature obtained was different from those seen 
in hypertrophy resulting from aortic stenosis. MiR-199a-5p, 
miR-27a, and miR-29a were shown to correlate with LV 
hypertrophy. Of these, miR-29a is the only molecule that 
was significantly associated with both hypertrophy and 
fibrosis, making it an attractive candidate as a specific 
biomarker for hypertrophic cardiomyopathy.

Restrictive cardiomyopathy
Restrictive cardiomyopathy can be of multiple etiologies, 
with a common tenet that it is always a consequence of 
fibrosis. Several miRNAs are upregulated in fibrosis; 
however, only a few have been thus far shown to affect 
the pathophysiology. Cardiac fibrosis results from a com-
bination of an exaggerated fibroblast proliferation accom-
panied by ECM deposition. Upregulation of miR-21 and 
downregulation of miR-29 and miR-30 in cardiac fibro-
blasts, as well as downregulation of miR-30 and miR-133 

in cardiomyocytes, have been characteristically noted in 
stress. Spry1 is a negative regulator of ERK-MAP kinase, 
which is repressed by miR-21, resulting in extensive fibro-
blast proliferation contributing to fibrosis (46). Other 
miRNAs that are known to be involved in actively repress-
ing downstream signaling pathways are miR-29, mir-30, 
and mir-133. Mir-29 represses expression of collagens, 
targets TGFβ/SMAD, and disrupts regulation of cell differ-
entiation/proliferation/apoptosis/generation of ECM (47–
49). MiR-30 and miR-133 repress the expression of CTGF, 
a positive regulator of fibrosis. MiR-199 upregulation aug-
ments fibrosis through the calcineurin/NFAT pathway, 
thus illustrating the importance of calcineurin signaling 
in this process (50, 51). Hence, it would be interesting to 
determine the miRNA signature for cardiac fibrosis and 
then use it to decipher how it compares and varies with 
the different etiologies for restrictive cardiomyopathy.

Stress cardiomyopathy
Stress cardiomyopathy or takotsubo cardiomyopathy is 
usually triggered by emotional or physical stress leading 
to reversible wall motion abnormalities involving apical, 
midventricular, basal, or focal segments of the LV (52–
55). Typically, wall motion abnormalities resolve within 
a few days to weeks, and the overall prognosis is gener-
ally good. However, stress cardiomyopathy can be life-
threatening in the acute phase, with 10% of the patients 
developing malignant arrhythmia, cardiogenic shock, or 
ventricular wall rupture resulting in up to 8% mortality. In 
the acute phase, it is indistinguishable from an acute myo-
cardial injury with respect to clinical symptoms, electro-
cardiographic changes, and cardiac biomarkers (56–60). 
Although the peak ratio of NTproBNP/troponin has been 
used to distinguish these patients with those with acute 
myocardial infarctions, rapid diagnosis on admission still 
remains a problem and requires coronary angiography for 
confirmation (61, 62).

The first report on a specific miRNA signature for 
takotsubo cardiomyopathy consisting of miR-1, miR-16, 
miR-26a, and miR-133a has been recently published (63). 
This panel has a diagnostic accuracy of 0.835, sensitivity 
of 74.2%, and specificity of 78.6% when patients were com-
pared with healthy subjects. The panel can also be used to 
differentiate takotsubo cardiomyopathy from an ST eleva-
tion myocardial infarction, which makes it a fairly robust 
test. What makes this panel interesting is that in addition 
to mir-1 and mir-133a, which are upregulated in myocar-
dial ischemia/infarction, two other miRNAs upregulated 
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in psychological stress, mir-16 and mir-26a, are also ele-
vated in stress cardiomyopathy. Three other miRNAs that 
are elevated in stress cardiomyopathy (mir-22, mir-519d, 
and let-7f) are not statistically significant (63). However, 
mir1-25a-5p has been shown to regulate the expression of 
endothelin-1. Downregulation of mir-125a-5p in takotsubo 
cardiomyopathy is accompanied by upregulation of ET-1 
(63). Although it is a small study of 91 subjects (63), this 
paves the way for the development of diagnostic and ther-
apeutic targets for takotsubo cardiomyopathy.

Peripartum cardiomyopathy
Peripartum cardiomyopathy (PPCM) is a devastating 
disease of unknown etiology causing considerable mor-
bidity and mortality in the peripartum period and beyond. 
Insight into the pathophysiology of the disease was first 
elucidated in elegant experiments in mice with stat3 
deletion (64). These mice showed increased expression/
activity of cathepsin D associated with the generation of 
a cleaved antiangiogenic and proapoptotic 16-kDa form of 
prolactin. Bromocriptine, an inhibitor of prolactin secre-
tion, prevented PPCM in the STAT3-deletion-carrying 
mice. Production of the 16-kDa form of prolactin impaired 
the cardiac capillary network and function in the myocar-
dium, resulting in the cardiac phenotype of PPCM. Analy-
sis of myocardial STAT3 protein levels showed reduction 
in serum levels of activated cathepsin D and parallel ele-
vations of the 16-kDa prolactin (64, 65). At the molecular 
level, mir-146a has been implicated in the regulation of the 
prolactin signaling pathway (66). Studies in mouse models 
suggest a major role for a systemically damaged vascula-
ture in PPCM. The truncated 16K PRL fragment exerts neg-
ative effects on endothelial cells by upregulating miR-146a, 
which, in turn, impairs their proliferation and survival 
(67). MiR-146a is also known for its role in innate immunity 
where it targets TRAF6 and IRAK1 and prevents constitu-
tive activation of NF-κB inflammation (27).

Elegant in vitro experiments have shown that mir-146a 
has a significant role in antiangiogenesis. Levels of miR-
146a increased when pre-miR-146a was transfected into 
human umbilical vein endothelial cells (HUVECs), and 
this, in turn, reduced their proliferation. Alternately, inhi-
bition of mir-146a by anti-miR-146a enhanced the prolifer-
ation of these cells. This effect has been demonstrated in 
other proliferation assays such as ex vivo aortic ring assay 
and in an in vitro model of choroidal neovascularization.

A new target for mir-146a was identified as NRAS, 
which was found to be downregulated in HUVECs treated 

with the 16K prolactin fragment. This effect was reversed 
when HUVECs were transfected with anti-miR-146a anti-
sense oligonucleotide (66). Interestingly, delivery of mir-
146a through transfection or fusion of mir-146a-laden 
exosomes to neonatal rat cardiomyocytes showed a 
downregulation of target genes Erbb4, Notch1, and Irak1. 
In vivo cardiac tissue from cardiomyocyte-specific Stat3 
knockout mice with post-partum cardiomyopathy phe-
notype showed increase in mir-146a levels and an asso-
ciated decrease in mRNA levels of NRAS, Erbb4, Notch1, 
and Irak1. Additionally, mir-146a levels were increased in 
patients with PPCM acutely, and this was resolved after 
treatment with heart failure regimen and bromocriptine 
defining the role of prolactin (66).

Functional targets of miRNAs
The complexity of molecular basis of disease has always 
been very intriguing. Table 1 summarizes the functional 
targets known in the literature for a wide variety of 
miRNAs. It helps illustrate the fact that miRNAs can target 
numerous genes and biochemical pathways so upregulat-
ing or downregulating these molecules can have a multi-
tude of effects, some of which may be unwanted. However, 
if specific miRNA signatures are identified, it may better 
suit therapeutic strategies as adverse effects could be 
minimized if not eliminated. This is well illustrated in the 
discussions on peripartum and takotsubo cardiomyopa-
thies where specific miRNAs have been found to play a 
major role in the pathophysiology of both diseases. The 
targeted delivery of antisense nucleotides to regulate spe-
cific genes remains the greatest challenge.

Therapeutic potential of miRNAs
Antisense oligonucleotides and their modified counter-
parts can be used in gain-of-function or loss-of-function 
approaches by specific targeting of mRNAs. Antisense 
miR oligonucleotides are usually complementary to target 
miRs, and abolish miR action. Antisense oligonucleotides 
when chemically modified to produce antagomirs have 
been noted to be more effective in suppressing target 
genes than the unmodified oligonucleotides. An antago-
mir is a tagged oligonucleotide that has a cholesterol base 
at its 3′ end. The difference in effectiveness can be attrib-
uted to the lipid modification, which allows binding to 
apolipoproteins, facilitating systemic delivery and also 
allows easier cellular uptake through the LDL scavenger 
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1) receptor. Once inside the cell, they bind to mature miRs, 
interfere with RNA-induced silencing complex loading, 
and therefore initiate miR degradation. Specific silenc-
ing has been demonstrated in murine models (44, 46, 68). 
Another intelligent design has been to target all members 
of an miR seed family through a series of tandem-binding 
sites for a seed into the 3′-untranslated region of a reporter 
gene. Such ‘sponges’ are spatially designed so that miR-
binding sites have a bulge at the argonaute 2 cleavage 
site. This design allows targeting of miRs while protecting 
the sponges themselves from being degraded. When miR 
sponges are transfected into cells, the level of targeted 
miRs is more strongly suppressed than when using sepa-
rate inhibitors because an entire miR family is affected. 
Mir sponges have been shown to more effectively repress 
(68, 69).

Current challenges
Although challenges exist, successful therapeutic devel-
opments have emerged in other disease states. In pros-
tate cancer cells, mir-34a was found to be downregulated. 
Hence, transfection of mir-34a showed inhibition of tumo-
rigenesis, whereas expression of antagomirs to mir-34a 
promoted tumorigenesis in a murine model (70). Another 
area that has shown success is antiviral therapy against 
hepatitis C. In chronically infected chimpanzees, hepatitis 
C viremia was abolished with no essential adverse effects 
by an LNA-modified oligonucleotide (SPC3649) comple-
mentary to miR-122. This is relevant because mir-122 binds 
to two closely spaced target sites in the 5′ non-coding 
region of the hepatitis C viral genome, resulting in its 
upregulation and leading to pathological consequences 
of the disease process (71).

Nucleic-acid-based therapies are challenging because 
of the difficulties in targeting therapies. With ongoing 
investigations showing that miRNAs play a substantial 
role as extracellular messengers, new avenues for efficient 
systemic delivery of therapeutic miRNAs may open. Non-
viral basic strategies currently being explored for delivery 
of therapeutic oligonucleotides are lipid-based delivery 
systems and polymer-based carriers for oligonucleotide 
delivery. Carrier-encapsulating oligonucleotides based on 
ionizable lipids as stabilized antisense lipid particles or 
stable nucleic acid lipid particles have provided an impor-
tant advancement in the field. Polymeric micro- and nano-
structured platforms are another area of investigation (72).

A recent review by van Rooij and Kauppinen (73) high-
lights the specific successes in the treatment of hepatitis C, 
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atherosclerosis, diabetes, and heart failure. However, 
challenges remain in the safe delivery and targeting of 
these molecules. Restoring miRNA in diseases where it is 
depleted is very much possible through double-stranded 
mimics as evidenced in cancer therapeutics (74–76). 
However, the challenges are to avoid reaching suprath-
erapeutic levels and to target these molecules in a guided 
fashion to avoid adverse effects. Inhibition of miRNA can 
be done using either miRNA sponges or antisense oligo-
nucleotides (antimirs). Antimirs have been considered 
more effective, especially when they are modified to have 
better binding affinity, biostability, and pharmacokinetic 
properties. One of the important chemical modifica-
tions is to increase nuclease resistance by substituting 
the phosphodiester backbone with a phosphorothioate 
linkage (77). In addition, phosphothiorate linkages confer 
enhanced binding to plasma proteins, leading to reduced 
clearance by glomerular filtration and urinary excretion. 
Another modification is the PNA (peptide nucleic acid) or 
morpholino linkage studied in vitro and in animal models 
(78–80).

Delivery of miRNA modulators has always been an 
extraordinary challenge. It has been shown that in vivo 
delivery of anti-miR oligonucleotides through choles-
terol conjugation or by modification of the phosphate 
backbone with phosphothiorate linkages could be effec-
tive. Intravenous administration of antagomers has been 
shown to be effective in a mouse pancreatic cancer model 
(81). However, local delivery appears to be more effective 
than systemic. Regional LNA-92a delivery reduced miR-92a 
levels and infarct size in a porcine model (82). The exact 
mechanisms underlying cellular uptake and distribution 
are still not well understood. Generating tissue specific-
ity is an ongoing area of investigation. Targeted delivery 
to specific cell types using conjugation or encapsulation 
strategies appear to have success (73).

In the last decade, there has been an explosion of 
studies on the role of miRNAs in regulating gene expres-
sion. MiRNAs have definitely evolved as major players 
in the development of molecular therapeutics; however, 
challenges still remain. Further investigations are needed 
to tailor specificity and determine the extent of reversibil-
ity and potential toxicity of these molecules in different 
microenvironments.

This review highlights the current literature on some 
of the successes achieved, especially in PPCM, there-
fore rendering hope to the concept of using miRNAs as 
therapeutics. However, more studies are needed before 
it evolves into a true reality in routine medical practice 
to tailor heart failure therapy depending on molecular 
etiology.
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