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Review
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Mesencephalic GABA neuronal development: 
no more on the other side of oblivion

Abstract: Midbrain GABA neurons, endowed with  multiple 
morphological, physiological and molecular character-
istics as well as projection patterns are key players inter-
acting with diverse regions of the brain and capable of 
modulating several aspects of behavior. The diversity of 
these GABA neuronal populations based on their location 
and function in the dorsal, medial or ventral midbrain has 
challenged efforts to rapidly uncover their developmental 
regulation. Here we review recent developments that are 
beginning to illuminate transcriptional control of GABA 
neurons in the embryonic midbrain (mesencephalon) and 
discuss its implications for understanding and treatment 
of neurological and psychiatric illnesses.
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Introduction
The midbrain – an important relay center for sensory 
inputs and motor outputs networking with the forebrain, 
hindbrain and spinal cord – is a hub of constant activity 
(1–10). Gamma-aminobutyric acid (GABA) neurons are key 
players in midbrain neuronal circuitry, robustly network-
ing with glutamatergic and dopaminergic (DA) neurons 
to shape multiple aspects of behavior. Midbrain GABA 
neurons function not only as local inhibitory interneu-
rons but also as projection neurons with targets in various 
brain regions. Along their developmental path, midbrain 
GABA neurons acquire molecular and functional diversity 

and can be divided into three categories based on anatomy 
and function: (1) dorsally located GABA neurons in the 
superior colliculus (SC) and inferior colliculus (IC); (2) 
medially located GABA neurons in the midbrain reticular 
formation (MRF) and periaqueductal gray (PAG); (3) ven-
trally located GABA neurons in substantia nigra (SN), 
ventral tegmental area (VTA) and retrorubral field (RRF), 
(Figure 1A).

The functional diversity of midbrain GABA neurons 
based on their location is fascinating. Dorsal midbrain 
GABA neurons together with glutamatergic neurons are 
involved in processing and incorporation of sensorimotor, 
visual, auditory, and defensive behavior (11–16). Although 
GABA neurons are present in all of the seven layered SC, 
an abundance of GABA neurons is found in the super-
ficial layers when compared to deep and intermediate 
layers (17–20). The SC is noteworthy for its high GABA 
content next only to the SN, globus pallidus and hypo-
thalamus in the central nervous system (CNS) (21, 22). 
Medial midbrain GABA neurons of PAG regulate vocaliza-
tion, endogenous control of pain sensation, fear, anxiety 
and aggression (23–25) while those in the MRF have been 
implicated with sleep-wake state control (26, 27). Ventral 
midbrain GABA neurons regulate DA neuron activity in 
the SN and VTA (6, 7, 28–31) and have projection targets 
similar to DA neurons, to the prefrontal cortex, basal 
ganglia and other limbic areas (6–10). Additionally, a con-
siderable number of ascending projections from midbrain 
dopaminergic nuclei are GABAergic in nature (7). Ventral 
midbrain GABA neurons are thus critical for the function 
of dopaminergic pathways; have important functional 
roles in control of voluntary movements, emotion, mood, 
motivation, processing of appetite and aversive stimuli, 
addiction and reward behaviors (6, 29, 32–35) and may 
be involved in the etiology of several neurological and 
psychiatric disorders including schizophrenia, depres-
sion, mood disorders, addiction and Parkinson’s disease. 
Midbrain GABA neurons can therefore serve as important 
targets for treatment of neuropsychiatric disorders and for 
drugs of abuse. Recent evidence reveals that midbrain SN 
and VTA DA neurons co-release GABA although they do 
not synthesize it, by using GABA reuptake transporters 
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(mGATs) to recycle extracellular GABA for release (36). 
Another study examining mechanisms of nicotine addic-
tion shows that activation of midbrain GABA neurons 
in the VTA controls nicotine elicited burst firing of DA 
neurons and points to a concerted role for GABA neurons 
and DA neurons in mediating nicotine reinforcement (35). 
Thus, mechanisms adopted by DA neurons to locally regu-
late GABAergic transmission (36) or GABAergic regulation 
of DA neuron activity (35) illustrates the complexity of 
midbrain GABA-DA neuron interactions.

Despite the functional significance of GABA neurons 
in the adult midbrain, progress made in identifying the 
mechanisms underlying GABA neuron development has 
been relatively slow. Compared with the embryonic fore-
brain (37–40) and developing dorsal spinal cord (41–46) 
in which tremendous advances have been made in under-
standing GABA neuron development, in the embryonic 
midbrain, we are a decade behind. In the mesencephalon, 
DA neurons have been in the spotlight due to discovery 
of consequences of midbrain DA neurons degeneration in 
Parkinson’s disease (PD) and dopamine related neuropsy-
chiatric disorders (47–54). Therefore the molecular mech-
anisms that define DA neuron development – generation, 
specification and differentiation of DA neurons have 
been extensively studied to generate cell replacement 
and pharmacological intervention strategies to alleviate 
some of the disease symptoms. However, proper migra-
tion of GABA neurons to their final location in the ventral 
mesencephalon during embryonic development seems to 
be dependent on the complete DA neuron architecture in 
the ventral mesencephalon, signifying important inter-
actions between them for final location and connectivity 
(55). Thus the embryonic developmental period offers a 
favorable milieu when mesencephalic GABA-DA neuron 

interactions form and establish. Clearly it is a very exciting 
time to bring mesencephalic GABA neuron development 
for study onto a common platform with DA neuron devel-
opment. In this mini-review we discuss current knowl-
edge about origin of mesencephalic GABA neurons and 
molecular mechanisms involved in their specification, 
proliferation, differentiation and migration and empha-
size missing links where more work is needed. Genera-
tion of detailed maps of key regulators of mesencephalic 
GABA neuron fate and function will initiate new studies 
to screen for their failure in mouse and human pathology 
and help develop new therapeutic strategies that focus on 
co-ordinate rescue of GABA-DA neuron interactions and 
novel pharmacological intervention paradigms.

Origin of mesencephalic GABA 
neurons
The embryonic mesencephalon is patterned along the 
dorso-ventral axis into roof plate (RP), alar plate (AP), 
basal plate (BP) and floor plate (FP) by BMP/Wnt signals 
from the RP and Shh signals from the FP/BP (56–59) and 
further divided into seven dorso-ventral subdivisions 
(m1–m7) with specific gene expression codes (60–62) to 
ensure cellular diversity (Figure 1B). Domains m1–m3 are 
structured into layers and domains m4–m7 are organized 
into distinct nuclei. For spatial patterning at dorso-ventral 
levels of the mesencephalon, several GABAergic progeni-
tor domains have been identified, defined by expression 
of transcription factors such as Nkx6-1, Nkx2-2 and Pax3/7 
(63). GAD expression, starting at E10.5 has been reported 
in BP and AP (64, 65). Both ventro-lateral and dorsal 

Figure 1  
(A) Schema of location of mature midbrain GABA neuronal populations in the superior colliculus (SC), inferior colliculus (IC), midbrain 
reticular formation (MRF), periaqueductal gray (PAG), substantia nigra (SN) and ventral tegmental area (VTA). Midbrain GABA neuronal 
populations regulate several brain functions, for instance, they are involved in the SC and IC for sensory integration, in the MRF for sleep, 
PAG for nociception and defensive behavior, SN for motor activity and in the VTA for motivated behavior. (B) Coronal schematic section of 
the embryonic mesencephalon depicting its patterning along the dorso-ventral axis into roof plate (RP), alar plate (AP), basal plate (BP) and 
floor plate (FP) on the left side along with dorso-ventral subdivisions on the right (m1–m7). Aq, aqueduct.
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regions of the mesencephalon produce GABA neurons at 
E10.5–E14.5 (61, 66) and laminar organization develops 
during E13–E17 (67). The ventral mesencephalon at E13 is 
still completely devoid of GABA neurons, but by E17, GABA 
neurons are found robustly intermingled with DA neurons 
(55, 68).

GABA neurons originate from five of the seven mesen-
cephalic progenitor domains (m1, m2, m3, dorsal half of 
m4 and m5). GABA neurons of the dorsal midbrain arise 
from the m1 and m2 domains. Domains m3–m5 may give 
rise to GABA neurons of the medial midbrain, MRF and 
PAG. GABA neurons in the ventral midbrain seem to have 
two developmental origins: 1) outside the midbrain and 
2) from BP region. An early study has reported that all SN 
neurons in the rat brain originate from the midbrain-hind-
brain border known as the isthmus (rostral most rhom-
bomere 1) (69). More recent fate mapping studies have 
shown that midbrain VTA and SN pars reticulata (SNpr) 
GABA neurons originate from rhombomere 1 (r1), whereas 
the most anterior part of SNpr has a distinct origin outside 
the midbrain, possibly in the diencephalon (68). We have 
observed many GFP-positive GABA neurons in GAD65-GFP 
mesencephalon oriented ventrally in BP region at E13 and 
a stream of these neurons coursing from BP region to the 

ventral mesencephalon by E17. BrdU birthdating experi-
ments additionally revealed that many E11-labeled neu-
ronal progenitors migrated to contribute to GABA neurons 
of the ventral mesencephalon by E17 (55). The origin of 
these migrating cells remains to be better clarified.

Specification of GABAergic neuronal 
fate in the mesencephalon
Combinations of multiple transcription factors act as first 
selectors of neuronal fate (Figures 2 and 3) and contribute 
to neuronal diversity. In the mesencephalon, GABA neu-
ronal fate determination is primarily associated with two 
basic helix-loop-helix (bHLH) genes: Helt (also known as 
Megane or Heslike) and Ascl1 (also known as Mash1) (61, 
65, 70–72).

Helt is co-expressed with Ascl1 in the ventricular 
zone of the alar-basal mesencephalic boundary from 
E9.5 onwards. Subsequently the Helt- Ascl1 co-expression 
domain expands dorsally as well. Gain of function studies 
in which transgenic mice were generated mis-expressing 
Helt from the nestin promoter-enhancer resulted in ectopic 

Figure 2 Overview of the molecular codes essential for generation of mesencephalic GABA neurons in relation to their specific position in 
the ventricular zone (VZ), intermediate zone (IZ) and mantle zone (MZ).
Beginning with inductive signals, a specific cascade of molecular instruction follows in the VZ, IZ and MZ to ensure GABAergic fate specifi-
cation, neurogenesis, fate maintenance and differentiation into mature GABA neuronal populations.
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Figure 3 Summary of the signaling pathway of key molecular players identified up until now and their interplay that is essential for effi-
cient generation of mesencephalic GABA neurons.

GABA neurons in the mantle layer outside the Helt/Ascl1 +  
zone (70). As the effect of mis-expression of Helt was 
specific to the mesencephalon and no ectopic cells were 
observed in other brain regions (dorsal telencephalon 
and thalamus) which do not express Ascl1, Helt was 
 initially believed to specify the GABA neuronal fate only 
when Ascl1 was co-expressed (70). Interestingly, although 
ectopic Helt expression induced GABA neurons, it also 
suppressed the generation of glutamatergic neurons (61). 
Loss of function studies revealed that in homozygous Helt-
null mice GABAergic progenitors were generated (61, 71) 
but they failed to become GABA neurons specifically in 
the dorsal mesencephalon. Ventral GABA neurons formed 
only from the m5 domain in Helt-null mesencephalon 
whereas in the dorsal domains there was a complete loss 
of GABA neurons and instead, glutamatergic neurons, 
induced by neurogenin (Ngn) genes emerged (61). Helt 
is now recognized as a key determinant of the GABAer-
gic fate in dorsal mesencephalon by direct repression of 
Ngn genes (Ngn1 and Ngn2) in GABAergic progenitors, and 
induction of Lim1/2 and Gata2 (60, 61). Helt is required for 

Gata2 expression in the embryonic mesencephalon except 
in the ventro-lateral m5 domain (60). Loss of function of 
Helt did not affect dopaminergic and cholinergic neurons. 
Thus the essential role of Helt for regulating GABA neuron 
fate specification in the dorsal midbrain and for develop-
ment of the SC was confirmed.

Ascl1, expressed by neural progenitors in all mes-
encephalic progenitor domains is another GABAergic 
fate determinant that is not regulated by Helt or other 
proneural genes such as Ngns. Ascl1 was unaffected in the 
Helt-null mice and may have also compensated for loss 
of Helt in ventral but not dorsal mesencephalon (70). In 
Ascl1-null mice, virtually no GABA neurons formed in the 
mesencephalon up until E11.5 while Helt continued to be 
expressed and other neurons were generated. From E13.5 
onwards, GABA neurons were produced in the ventrome-
dial mesencephalon (m3–m5), but not dorsally (m1–m2). 
By E18.5, GABA neurons were completely lost in Ascl1-null 
dorsal mesencephalon including SC, IC and dorsal PAG. 
Although GABA neurons were reduced in medial mesen-
cephalon including ventral PAG and MRF, GABA neurons 
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of the ventral mesencephalon in SN and VTA were not 
affected and do not seem to require Ascl1 (72).

Thus ventral mesencephalic GABA neurons represent 
an intriguing population of GABA neurons that develop 
independently of regulation by Helt and Ascl1.

Mesencephalic GABA neurogenesis
GABAergic neurogenesis is completed first in the MRF by 
E12.5, next in the SNpr by E13.5, followed by SC at E14.5 
(68) and has been associated mostly with transcription 
factor combinations Helt and Ascl1 (Figures 2 and 3). The 
Helt-Ascl1 co-expression domain in the mesencephalon is 
co-ordinate with GABA neurogenesis, decreasing rapidly 
as neuronal differentiation proceeds (70). However, 
Ascl1’s requirement for neurogenesis seems to be highly 
region-specific. In Ascl1-null mesencephalon, a loss of 
neurogenic and neural stem cell specific expression with 
markers Delta1 (Notch ligand) and Hes5 (Notch target) was 
observed at early embryonic stages. This delay at the start 
of neurogenesis is believed to cause reduced GABA neuron 
numbers in the ventromedial midbrain of Ascl1-null mice 
(72). Ascl1 has been reported to promote GABAergic neuro-
genesis in in vitro cultured mesencephalic neural progeni-
tors (73). Co-expression of both Ascl1 and Helt seems to 
significantly promote GABA neurogenesis in neural pre-
cursor cell cultures (70).

Mesencephalic GABA neuron 
 differentiation and fate maintenance
After the cell cycle exit, the GABA neuron precursors acti-
vate genes typical for functional GABA neuron precur-
sors. This role is assigned to C4 zinc-finger transcription 
factor Gata2, bHLH transcription factors Tal1/2, paired-
like homeodomain transcription factor Pitx2 and homeo-
box transcription factor Lhx1 (Lim1) (Figures 2 and 3). 
Gata2 is expressed in m1–m5 domains in the embryonic 
mesencephalon and expression is activated in GABAergic 
progenitors as they exit the cell cycle, become postmitotic 
precursor cells and begin to differentiate (60). Selective 
loss of Gata2 in the mouse midbrain and rhombomere 
1 (Gata2cko mutant) resulted in a specific loss of GABA 
neuron precursors at early embryonic stages and trans-
formation from GABAergic to glutamatergic phenotype 
in all mesencephalic GABA neuron subpopulations in the 
Gata2cko mutant during embryonic development except 
for the GABA neurons associated with DA neurons in the 

SNpr and VTA that were unaffected (60, 63). Tal1/2 are 
expressed in m1–m4 dorsal half and m5 mesencephalic 
domains and co-operatively activate genes necessary for 
GABA neuronal differentiation (74). Tal2 is co-expressed 
with Gata2 in the ventricular zone (VZ) and intermediate 
zone (IZ) and regulates selection of GABAergic over gluta-
matergic neuronal fate. An ectopic upregulation of gluta-
matergic gene expression was observed in Tal2cko mutants 
in m3 and m4 dorsal domains (74). Similar to Gata2cko 
mutant, in Tal2cko mutant, GABAergic markers were com-
pletely lost in the dorsal mesencephalon including SC. 
Again, both Gata2 and Tal2 are dispensable for ventral 
mesencephalic GABA neurons (74).

Pitx2, is expressed in m1–m4 and m6 domains with 
highest expression in the intermediate layer of the SC (75) 
and works downstream of Gata2 in the transcription factor 
cascade (60, 75). Loss of Pitx2 disrupts GABAergic neuronal 
differentiation and axonal outgrowth in the dorsal mesen-
cephalon, specifically SC (76). In the ventral mesencepha-
lon Pitx2 lineage neurons are mostly glutamatergic (75). 
Lhx1 (or Lim1) is expressed in postmitotic precursors of 
all mesencephalic GABA neurons in domains m1–m5 (60) 
and is an important marker of GABAergic differentiation.

Migration of mesencephalic GABA 
neurons
Neuronal migration is a key event during brain develop-
ment as neurons and/or neuronal progenitors originating 
in VZs navigate along diverse courses to eventually find 
their destination and integrate into specific brain circuits. 
In the pallial telencephalon, pyramidal neurons follow 
radial migratory routes using radial glial guides to the cor-
tical plate (40, 77). GABA neurons of the subpallial telen-
cephalon, conversely, take long tangential paths into the 
cortex (78, 79) along vascular guides (80) to become inter-
mingled with excitatory neurons. Unlike in the embryonic 
telencephalon where neuronal migration has been well 
elucidated, this vital event has been little explored in the 
embryonic mesencephalon. In the dorsal mesencephalon, 
majority of GABA neurons have been reported to migrate 
radially from the dorsal VZ to their final location in super-
ficial layers through deep and intermediate layers in an 
inside-out manner (81) followed by slight tangential dis-
persion within the superficial layer (Figure 4A). Few cells 
here (81) show direct tangential migration from VZ to 
the superficial layer of the SC (Figure 4A). Three types of 
inhibitory neurons – stellate cells, pyriform cells and hor-
izontal cells with tangentially oriented dendrites – thus 
come to reside in the multilayered SC (20).
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In the ventral mesencephalon, GABA neuronal migra-
tion seems to be more complex with contributions from 
both outside and within. Recent genetic fate mapping 
studies have uncovered a separate origin of VTA and 
SNpr GABA neurons outside the mesencephalon (68). 
The findings unveil a new migratory pathway of GABA 
neurons originating in r1 compartment and crossing the 
r1-mesencephlon boundary to migrate to the VTA and 
SNpr as postmitotic neuronal precursors at E14.5–E15.5 
(Figure 4B). Guidance mechanisms for this form of migra-
tion remain to be elucidated. The anterior SNpr GABA 
neurons in the diencephalon however do not arrive from 
the r1 region; they are speculated to come from the dien-
cephalon although contribution from the mesencephalon 
is not excluded (68). These results were further supported 
by analysis of Tal1 mutant mice in which GABAergic pre-
cursors are normal in the mesencephalon, but failure 
in GABA neuron production in r1 correlated with loss of 
mature VTA and SNpr GABA neurons (68). Additionally, 
as Gata2 regulates GABA neuronal differentiation in the 
mesencephalon but not r1, in Gata2 mutants, although 
mesencephalic precursors failed to activate GABAergic 
neuron-specific gene expression, the VTA and SNpr GABA 
neurons appeared largely unaffected (60), supporting 
their outside origin and border migration across r1-mesen-
cephalon compartments.

Our studies have shown that both DA and GABA 
neurons occupy ventral mesencephalon in a temporally 
sequential manner during embryonic development and 
depicted GABA neuronal silhouette oriented from BP 
region to ventral mesencephalon in GAD65-GFP embryos 
(55). It emphasized the importance of perpendicular 
migration, a novel mode of neuronal migration that 
seems to be unique to the mesencephalon (Figure 4A) and 

essential for proper set up of the anatomical architecture 
of ventral mesencephalic structures (55). BrdU birthdat-
ing experiments revealed that E10 and E11 labeled neu-
ronal progenitors migrated ventrally (from FP) as well 
as perpendicular (from BP) to the aqueduct to form the 
distinct anatomical architecture of the boat shaped SN 
and VTA by E17 (55). Pitx3 represents a critical regulator 
of mesencephalic DA neuron development (49, 51, 82–85) 
and there is selective and early loss of A9 DA neurons in 
the SN of ak/ak mice (49, 84–86). The cells affected in the 
ak/ak mice are known to be very sensitive to neurotoxins 
such as 6-OHDA and MPTP (54, 87) and are the same cells 
that degenerate first in Parkinson’s disease (PD) patients 
(83–85). Our findings have revealed that loss of SN DA 
neurons in ak/ak mesencephalon is a result of defective 
perpendicular migration that resulted in cells which were 
stuck or trailing in the middle of their migratory trajec-
tory and distributed abnormally in the red nucleus area. 
Interestingly, coordinate with this loss of DA neurons 
there was also a significant loss of ventral mesencephalic 
GABA neurons that persisted in the adult ak/ak midbrain 
(55). Pre-existing DA neurons seem to modulate the migra-
tion of BP GABA neurons to ventral mesencephalon along 
perpendicular migration routes suggestive of important 
interactions between both neuronal populations for final 
location and connectivity and the earliest signs of inter-
dependence that arises during embryonic development 
(55). Identification of the anatomical/ cellular substrate 
for perpendicular  neuronal migration will help model 
future investigations to induce this intriguing  population 
of GABA neurons to migrate successfully in cell trans-
plantation experiments  coordinate with DA neurons.

At a mechanistic level, neuronal migration overall in 
the mesencephalon suffers greatly from lack of insights. 

Figure 4
(A) Coronal view of embryonic mesencephalon showing different patterns of neuronal migration. Black arrows depict radial migration of 
GABA neurons from the VZ to their final location. Green arrows indicate slight tangential dispersion within the superficial layer of the SC. 
Red arrow depicts that few cells show direct tangential migration from VZ to the superficial layer of the SC. Blue arrows highlight perpendic-
ular migration of GABA neurons from basal plate region to ventral mesencephalon. (B) Sagittal view of embryonic mesencephalon depicting 
migration of postmitotic GABA neuronal precursors that cross the specific mesencephalon-rhombomere1 (r1) boundary to enter from r1 into 
the ventral mesencephalon (vm). The mode of migration of these neurons with origins outside the mesencephalon is currently unknown. 
tel, Telencephalon; mes, Mesencephalon; SC, superior colliculus.
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Mesencephalic axon guidance and/or ventral migration 
of DA neurons has been linked only to a small number of 
molecules [netrin 1 (88) and its receptor DCC (89), reelin 
(90), proteoglycan phosphacan 6B4 (91), L1CAM (92), 
neural cell adhesion molecule (93) and polysialic acid 
(93)]. Transcription factors, primary mechanisms con-
trolling neuronal migration, remain unidentified in the 
embryonic mesencephalon. For perpendicular migra-
tion to occur from the BP to the ventral mesencephalon, 
neurons need to perfectly synchronize multiple actions 
and respond appropriately to guidance cues encountered 
during their trajectory. Transcriptional regulation is inevi-
tably a key determinant of this process. In the vertebrate 
spinal cord, for instance, expression of specific combina-
tions of transcription factors in postmitotic motorneurons 
encodes axon trajectories (94–96) and similar transcrip-
tion factors carry on different functions depending on the 
cellular context (97–99). Another example is that of post-
mitotic Nkx2.1 expression, which has to be down-regulated 
for interneurons to migrate to the cortex, whereas Nkx2.1 
expression is required for interneuron migration to the 
striatum (100). Similar possibilities lie in the embryonic 
mesencephalon and much work lies ahead with respect to 
elucidating mechanisms of neuronal migration.

Conclusion and perspectives
The generation of several mouse models with abnormal 
development and function of cortical GABA interneurons, 
which recapitulated defective behavior similar to those 
seen in conditions like schizophrenia, autism, epilepsy, 
mood and anxiety disorders, was a major step that asso-
ciated forebrain GABA neurons with the pathobiology of 
several neuropsychiatric illnesses (101–107). Thus, the 
identification of the molecular components involved in 
forebrain GABA neuron development in both mouse and 
human triggered efficient generation of GABA neuron 
populations based on ES cell engineering. ES-derived 
GABA interneurons today have remarkable potential – 
they are functional, survive well, migrate and integrate 
into desired regions in both embryonic and adult brains 
post-transplantation and are attractive candidates for cell-
based therapies (108–112). In the midbrain, ES cell tech-
nology today focuses selectively to generate DA neurons 
(113–116). This is possible because the molecular cascade 
of DA neuron development has been well studied. A 
missing link in the midbrain field is our current incapabil-
ity for efficient generation of GABA neurons from ES cells, 
as the molecular mechanisms underlying mesencephalic 

GABA neuron fate and function are just beginning to be 
elucidated and furthermore the transcriptional machinery 
identified here, except for Ascl1 is different from that of 
the forebrain.

The quest to unravel the transcriptional cascade in the 
embryonic midbrain is however no easy task. It is particu-
larly daunting given the intricate diversity of GABA neurons 
found in the mesencephalon based on location and func-
tion and transcriptional factor networks, with overlapping 
function for GABAergic vs. glutamatergic fate, or GABAer-
gic vs. serotonergic/dopaminergic fate depending on their 
domain. Table 1 summarizes expression stages, domains 
of expression and function of key molecular players reg-
ulating mesencephalic GABA neuron development. As 
most of these candidates are broadly expressed in several 
brain regions as well as other organs, systemic knockouts 
die prenatally or at birth (Table 1). There is a great need for 
gain and loss of function assays, including generation of 
more mouse mutants with deletion of GABA neuron-spe-
cific genes selectively in the embryonic mesencephalon 
and subsequent analysis of brain development and post-
natal behavior to be able to fully understand the devel-
opmental significance of mesencephalic GABA neurons in 
the CNS. Helt, Gata2 and Tal1/2 are transcription factors 
that have been best studied in this regard (Table 1). Given 
Helt’s unique expression pattern in the mesencephalon 
and prosomere1-2 in the diencephalon, isolation of Helt 
served as a vital key to unlock the mysteries of mesen-
cephalic GABA neuronal development. Helt deletion 
resulted in loss of weight and postnatal lethality in mice 
around 3–5 weeks of age with behavioral defects such as 
fore/hindlimb clenching and seizure-like phenotype from 
P14 onward (71). Elegant work demonstrating conditional 
inactivation of Gata2 and Tal1/2 in mouse midbrain and r1 
have provided several new insights into the specific role 
of these transcription factors for GABA neuron develop-
ment in the embryonic midbrain, although postnatal phe-
notypes have not yet been reported (60, 74).

The VTA and SNpr GABA neurons are particularly dis-
tinct and interesting because they develop independently 
of the known regulators of midbrain GABAergic fate speci-
fication and maintenance: Helt, Ascl1, Gata2 and Tal2 
(60, 61, 65, 71, 72, 74). Given the functional importance of 
GABA-DA neuron associations in the adult midbrain, it 
has become critical to decode transcriptional regulation 
of ventral mesencephalic GABA neurons as well as delin-
eate development of GABA-DA neuron interactions and 
connectivity. Additionally, as GABA neurons were also 
affected in addition to DA neurons as a result of loss of 
Pitx3 (55), a crucial transcriptional regulator of DA neuron 
development, there lies the possibility of overlapping 
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molecular pathways and shared mechanisms mediat-
ing GABA-DA neuron development in the ventral mesen-
cephalon. Many vital goals remain to be achieved before 
we can explore and combine the distinctive features of 
both GABA neurons and DA neurons so as to understand 
complex neurological and psychiatric illnesses and to 
test novel therapies that can ultimately become a clinical 
reality. Clearly, the field of mesencephalic GABA neuron 
development is poised for several exciting discoveries in 
the future.
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