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Podocytes: recent biomolecular developments

Abstract: Podocytes are postmitotic renal glomerular cells 
with multiple ramifications that extend from the cell body. 
Processes departing from a podocyte interdigitate with 
corresponding projections from neighboring cells and 
form an intricate web that enwraps the glomerular capil-
lary completely. Podocyte processes are interconnected by 
the slit diaphragm, an adhesion junction mostly formed 
by Ig-like molecules, cadherins/protocadherins, ephrin/
eph, and neurexin molecules organized in an assembly 
that resembles synaptic junctions. Podocyte failure is pri-
marily or secondarily implicated in all forms of proteinuric 
glomerular diseases, as confirmed by the morphological 
changes of their elaborate cell architecture detectable 
by electron microscopy. Importantly, mutations of podo-
cyte proteins are responsible for the most severe forms of 
congenital nephrotic syndrome. In the last 15 years, pro-
gressive technological advances have aided the study of 
podocyte biology and pathology, confirming the relevance 
of podocyte molecules and signaling pathways for the 
function of the glomerular filter. This review will examine 
the most important and newest discoveries in the field, 
which is rapidly evolving, hopefully leading to a detailed 
knowledge of this fascinating cell and to the development 
of specific therapeutic options for proteinuric diseases.
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Introduction
Proteinuria, i.e., the presence of proteins in the urine, is 
a common symptom of kidney diseases and is caused by 
leakage of proteins from the glomerulus. When the protein 
level is  > 3 g/day, the proteinuria is defined as nephrotic. 
Histologically, nephrotic proteinuria in primary glomer-
ular diseases can present with multiple features, from 
minimal changes to mesangial expansion; however, the 
most common picture is that of focal segmental glomeru-
losclerosis (FSGS), i.e., the presence of a segmental con-
densation of the glomerular tuft.

The glomerular filtration barrier is composed of a 
convoluted capillary sustained by the mesangium. The 
capillary possesses a fenestrated endothelium that lies 
on the glomerular basement membrane and is externally 
covered by specialized cells called podocytes. Podocytes 
are extremely ramified cells; the cell body gives rise to 
multiple primary, secondary and tertiary (foot) processes 
that intertwine among themselves and those departing 
from neighboring cells (Figure 1). By this organization, 
podocyte ramifications form a close net that completely 
enwraps the glomerular capillary, with the primary func-
tion of avoiding loss of nutrients and permitting the elimi-
nation of toxins produced by the body daily.

Work from the last 15 years has progressively empha-
sized the role of podocytes in the maintenance of a 
healthy glomerulus, owing to the discovery that muta-
tions of single podocyte proteins are sufficient to cause 
the most severe forms of proteinuria (1). The critical role 
of these proteins has been confirmed by the appearance 
of proteinuria and glomerular damage in mice carrying 
podocyte-specific deletion of these molecules, and cell-
based approaches have further delineated their functional 
aspects.

While a full understanding of the podocyte remains 
to be achieved, research is demonstrating that podocytes 
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govern glomerular intercellular signaling and have a key 
function in renal biology; thus, the term ‘podocytopathy’ 
has been coined to better specify glomerular diseases with 
prominent podocyte involvement (2).

Technological advances
The development of novel technologies has been rapidly 
advancing the field of podocyte biology, overcoming 
several difficulties related to the convoluted structure 
of the glomerulus and its profound location in the body. 
Among these techniques, confocal microscopy and mul-
tiphoton microscopy coupled to the use of transgenic 
animals specifically expressing fluorescent markers in the 
podocytes are not only generating high-quality images of 
podocyte details but are also providing novel information 
on podocyte behavior in healthy and disease states. For 
instance, confocal microscopy applied to preparations 
of freshly isolated glomeruli taken from mice with green 
fluorescent protein (GFP)-expressing podocytes allowed 
Höhne et  al. (3) to detect and analyze periodic contrac-
tions of the glomerular structure.

A stochastic multicolor Cre-reporter mouse, ran-
domly encoding four different fluorescent proteins in 
podocytes, was generated and analyzed by Tao et al. (4). 
The method enabled to show the structure of healthy 
podocytes and compare them with those altered by 
Adriamycin injection, a largely adopted mouse model 

of human FSGS. In the disease model, the authors con-
firmed a generalized alteration of foot process morphol-
ogy, but observed a high degree of heterogeneity between 
podocytes, with only some of them of enlarged size while 
others maintained a normal dimension. This heterogene-
ity may well be the basis for explaining the focal and seg-
mental nature of the lesion that characterizes the disease 
in humans.

The application of multiphoton microscopy is by far 
the best method to obtain in vivo images of the kidney 
glomerulus in living animals, with exceptional spatial 
and temporal resolution (5). By using a mouse express-
ing a fluorescent calcium sensor exclusively in podocytes, 
Burford et al. (6) were recently able to show intracellular 
calcium ([Ca2+]i) changes specifically in these cells. The 
authors compared steady-state conditions with stimu-
lation by angiotensin 2 and models of focal podocyte 
damage. They showed that podocyte injury induced in a 
few podocytes triggered a robust and sustained elevation 
of podocyte [Ca2+]i around the injury site and promoted 
cell-to-cell propagating podocyte [Ca2+]i waves along the 
capillary loops, which resulted in contraction of the glo-
merular tuft and increased albumin permeability.

The zebrafish (Danio rerio) pronephros is more and 
more used by the nephrology community because it con-
stitutes a simple and accessible system to study in vivo the 
numerous aspects of renal cell biology. The major advan-
tages are the transparency of zebrafish larvae; the rapid 
maturation of the pronephros; the similarity of the glo-
merular structure to the mammalian glomerulus (7); and 
the conserved expression of molecules such as nephrin, 
podocin, and Wilms tumor 1 (wt1), which are relevant to 
podocyte health in mammals (8, 9).

As an example, translucent zebrafish larvae (casper) 
expressing enhanced GFP (eGFP) specifically in podocytes 
(wt1a:eGFP larvae) were used by Endlich et  al. (10) and 
observed during a period of up to 23 h by intravital two-
photon microscopy. The authors were able to show that 
podocytes do not seem to migrate or modify the branch-
ing pattern of their major processes during the observa-
tion period, suggesting that movement is not a common 
feature of mature, healthy podocytes.

Our group recently developed a model of zebrafish 
podocyte damage (11) by the addition of low doses (10–
20  μm) of Adriamycin to 9 hpf (hours postfertilization) 
old embryos for 48 h. This was enough to cause profound 
podocyte changes with loss of glomerular permeability, 
without inducing systemic or cardiac damage. Being the 
selective podocyte changes obtained in the embryo, this 
simple model can be instrumental for developmental 
studies and for drug-screening purposes.

Figure 1 Podocyte structure.
Scanning electron micrograph illustrating the complex ramifications 
of podocytes completely covering the external side of the glo-
merular capillary. From the cell body (B) depart primary processes 
(P) further dividing into tiny ramifications that intertwine with 
processes coming from neighboring cells.
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An additional, as yet underdeveloped, novel tech-
nique is the derivation of podocytes from induced pluripo-
tent stem cells (iPS) (12). The technology holds interesting 
and multiple research and therapeutic implications; iPS 
can be obtained from patients’ accessible cells, such as 
fibroblasts or cells from the urinary sediment, and studied 
to elucidate disease mechanisms. The therapeutic poten-
tial of iPS, as well as of stem/precursor cells, has enor-
mously increased with the first successful repopulations 
of organ scaffolds, including the kidney (13).

The contribution of high-throughput techniques, such 
as expression microarrays and proteomics, has been essen-
tial in discovering novel molecules expressed by develop-
ing and mature podocytes (14), and to compare healthy 
and diseased cells to identify the molecular pathways 
activated during disease processes. Nonetheless, major 
advances in podocyte biology have been driven thus far 
by genetic discoveries. In this field, technology is rapidly 
boosting the detection of molecules that are mutated in 
glomerular diseases, and the use of DNA microarrays and 
next-generation sequencing are revolutionizing the diag-
nosis of podocytopathies and are revealing the complex 
podocyte molecular network critical for cell development 
and behavior in healthy and disease states.

Essential role of nephrin
The first podocyte molecule uncovered by genetic analysis 
was nephrin, encoded by the gene NPHS1 and mutated in 
the most severe form of proteinuric disease, i.e., congeni-
tal nephrotic syndrome of the Finnish type (15). Nephrin 
is a transmembrane protein of the immunoglobulin super-
family, formed by an N-terminal signal peptide, an extra-
cellular domain containing eight Ig-like modules and one 
fibronectin type III-like module, a single transmembrane 
domain, and an intracellular C-terminal domain.

Nephrin expression in podocytes is regulated by 
several transcription factors (16), including WT1, which 
is a demonstrated key factor in renal development and 
in the adult glomerulus (17). Starting from the capillary 
stage of glomerular maturation, WT1 expression becomes 
restricted to podocytes and activates the nephrin gene 
by binding to a conserved region of the human nephrin 
promoter (18). In the mouse, the WT1 binding region is 
approximately 600 bp more upstream than the homolo-
gous site in humans (19).

Nephrin synthesis is further regulated by epigenetic 
mechanisms. Direct regulation by DNA methylation was 
uncovered by Ristola et al. (20), who identified three CpG 

islands within the intergenic region between the nephrin 
and Neph3 genes and their coding regions. More recently, 
the transcription factor KLF4 was described as a regulator 
of nephrin DNA methylation (21); overexpression of KLF4 
was able to demethylate nephrin DNA and induce nephrin 
transcription.

Furthermore, indirect posttranscriptional regulation, 
through the suppression of transcription of WT1, can be 
ascribed to miRNA193a, as recently described by Gebeshu-
ber and colleagues (22). The authors observed overexpres-
sion of miR-193a in patients with FSGS and demonstrated 
that WT1 is the main target of this microRNA (miRNA). 
miRNA binding was found to reduce WT1 translation, with 
important consequences on the expression of nephrin 
that result in podocyte damage.

An additional level of nephrin regulation is achieved 
by SUMOylation. SUMO (small ubiquitin-like modifier) 
is an ubiquitin-like protein. SUMO modification of the 
lysine residues of target proteins blocks ubiquitination, 
ensuring protein stabilization (23). SUMO seems to target 
lysines 1114 and 1224 of the intracellular domain of murine 
nephrin and lysine 1100 of human nephrin, contributing 
to the fine tuning of nephrin turnover (24).

Nephrin appears to be part of a raft domain of the 
slit diaphragm, where it colocalizes with other proteins, 
including podocin and the calcium channel TRPC6 (tran-
sient receptor potential calcium channel 6) (25, 26). In this 
raft domain, nephrin acts as a signaling platform, sending 
messages from outside the cell to the actin cytoskeleton 
(27). Signals are conveyed through tyrosine phospho-
rylation of the intracellular domain of nephrin, which is 
mainly due to the activity of the Src family kinase Fyn (28).

Phosphorylation is important for raft-mediated 
nephrin internalization (29) and is an event needed for 
podocyte foot process development and maintenance, as 
demonstrated by the finding that phosphorylated nephrin 
recruits adaptor proteins such as Nck1/2, Grb2, and Crk1/2, 
resulting in the assembly of protein complexes that reg-
ulate actin polymerization (30). Additionally, Jin and 
coworkers (31) recently discovered that nephrin phospho-
rylation can be triggered by the binding of sFlt1, a soluble 
form of the VEGF receptor fms-related tyrosine kinase 1 
(Flt1) produced by podocytes and acting in a paracrine 
fashion to regulate podocyte intracellular signaling.

Either increased or decreased nephrin phospho-
rylation has been alternatively found in rodent models 
of podocyte damage and in human glomerular disease 
(32–34). In vitro, clustering of nephrin and its tyrosine 
phosphorylation were shown to induce lamellipodia for-
mation, contributing to a motile podocyte phenotype that 
has been linked to pathological states (35). Collectively, 
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these data confirm the importance of a tight balance of 
nephrin phosphorylation, which constitutes a powerful 
example of the highly regulated equilibrium needed by 
podocytes to preserve their function.

The extracellular domain of nephrin is suspected to be 
highly glycosylated; it contains binding sites for heparan 
sulfate and free cysteines that serve to form disulfide 
bonds with adjacent molecules. Cis and trans homophilic 
and heterophilic interactions of nephrin with itself and 
with Neph family proteins (Neph1, Neph2, and Neph3) 
are required to provide stability to the slit diaphragm and 
maintain the filtering function of the glomerular barrier 
(36–38).

Among the proteins that constitute the slit dia-
phragm, the prominent role of nephrin is confirmed by 
the lethal phenotype of nephrin-null mice and by the con-
stant reduction in nephrin expression that occurs in both 
experimental and human glomerular diseases. Nephrin 
appears to be altered or downregulated at the very first 
stages of podocyte damage, preceding morphological 
alterations detectable by electron microscopy and largely 
preceding the development of proteinuria (39).

Nephrin is an expression-restricted protein and, 
besides glomerular podocytes, is expressed by a few other 
mammalian cell types, such as neuronal cells, lympho-
cytes, testis cells, pancreatic β cells, and developing epi-
cardium and coronary vessels (40–44). The expression of 
nephrin in neuronal cells is of particular interest because 
the nephrin orthologues in Caenorhabditis elegans (Syg-2) 
and Drosophila melanogaster (Hibris) are crucial players 
in synapse targeting and positioning (45, 46), suggest-
ing that, evolutionarily speaking, the original function of 
nephrin is that of a synaptic adhesion molecule.

Since its discovery, the neuronal expression of 
nephrin has been repetitively acknowledged (15, 40, 47). 
During development, nephrin mRNA was observed in the 
hindbrain and spinal cord. From embryonic day 13 (E13) 
to E17, nephrin mRNA was detected in the neuroepithe-
lium of the cerebellar primordium at the roof of the fourth 
ventricle. In newborn mice, β-galactosidase expression 
driven by the nephrin promoter (40) was observed in the 
cerebellum, along the midline of the mesencephalon, and 
in some glomeruli of the main olfactory bulb; at postnatal 
day 16, it was visible in some of the glomeruli of the main 
olfactory bulb and in the dentate gyrus molecular layer of 
the hippocampus.

In the adult rodent central nervous system (48), the 
expression of endogenous nephrin was diffusely identi-
fied in the motor cortex, whereas the somatosensory cortex 
appeared completely negative. Sparse positive cells were 
present in the corpus callosum, and a diffuse expression 

was found in the choroid plexus. Stronger nephrin stain-
ing was detected in the pons, medulla oblongata, and 
olfactory bulb. Expression was also observed in the dorsal 
striatum (caudate nucleus and putamen) and thalamus. 
Within the hippocampus, nephrin was expressed by some 
pyramidal neurons of the CA3 region. A mild scattered 
immunostaining was found in the CA1 region, whereas the 
‘ilo’ was completely negative. In the cerebellum, nephrin 
was expressed by Purkinje cells and by granule cells of the 
nuclear layer.

The presence of nephrin in basal ganglia and motor 
cortex, and the complete negativity of the sensory cortex, 
suggest the involvement of nephrin in distinct brain net-
works related to movement. The association of nephrin 
with movement activities is further confirmed by its pres-
ence in the Purkinjie cells of the cerebellum (48), and 
helps explain the ataxic symptoms of nephrin-deficient 
mice, when their survival is prolonged by reexpressing 
nephrin only in the kidney (49).

Neuronal-like signaling
The presence of nephrin in the central nervous system is 
one of the multiple molecular links between podocytes 
and neuronal cells. Interestingly, a distinctly neuronal 
character has been repetitively detected in mRNA and 
protein expression studies of freshly isolated podocytes, 
during both development and adulthood (14, 50, 51).

Although a number of renal progenitors possess neu-
ronal features (52) or can differentiate into cells express-
ing neuronal markers (53–55), the kidney and the nervous 
system do not derive from the same embryonic leaflets; 
the kidney develops from the mesoderm (56), whereas the 
nervous system has an ectodermal origin (57). Nonethe-
less, during developmental phases, factors involved in 
neuronal pathfinding, such as GDNF (58), slit and ROBO 
(59), plexins and semaphorins (60), have been shown 
to guide renal and podocyte maturation. Furthermore, 
axon guidance molecules such as ROBO and neuritin 
were found highly enriched in a glomerular gene expres-
sion dataset (61), supporting a regulatory function during 
adulthood.

Podocytes and neuronal cells are both postmitotic, 
polarized, and highly ramified. They display the same 
cytoskeletal organization (62), with actin and some 
expression-restricted actin-binding molecules, such as 
synaptopodin (63), densin (64), and drebrin (65), respec-
tively localized in podocyte foot processes and neuronal 
dendritic spines, where actin dynamics are essential for 
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maintaining and regulating shape and function (66, 67). 
In addition, the very same protein network – essentially 
based on dynamin, synaptojanin, and endophilin – that 
operates at the interface between endocytosis and actin 
at neuronal synapses, appears critical in regulating the 
process of endocytosis in podocytes and seems relevant 
to both the formation and maintenance of the glomerular 
filtration barrier (68). 

The most relevant example of analogies between 
podocytes and neurons are the highly specialized cell-
cell contacts, the slit diaphragm of podocytes, and the 
synaptic cleft of neuronal cells. These are narrow extra-
cellular spaces characterized by electron-dense material 
that tightly links opposing membranes, and is composed 
by extracellular matrix components and the extracellular 
domains of adhesion molecules (66).

Notably, adhesion molecules at the slit diaphragm 
and the synaptic cleft belong to the same families, such 
as cadherins/protocadherins (69, 70), Ig-like proteins 
(71, 72), and neurexin (73). Podocalyxin, which was first 
described as a protein specifically expressed at the podo-
cyte surface and is indispensable for foot process forma-
tion (74), was then identified as an adhesion molecule 
involved in neurite growth, branching, and axonal fascic-
ulation (75). Furthermore, podocytes have been shown to 
express ephrin-eph family members. Among them, Efnb1 
localizes at the slit diaphragm of mature podocytes, and 
its expression has been found decreased in a rat model of 
glomerulonephritis (76).

Loss of Fat1, which encodes a giant protocadherin, 
leads to foot-process effacement, massive proteinuria, 
and early perinatal lethality (77). Fat1 indeed seems to be 
important for planar cell polarity and actin-dependent 
cell motility (78), making this molecule relevant in setting 
and maintaining the structural organization of the slit dia-
phragm. As for their function, apart from promoting the 
stability of synapses, many data support the role of syn-
aptic adhesion molecules in target recognition, to help in 
choosing the right partners from a network of processes 
(79). In this respect, the highly conserved Ig-like mole-
cules nephrin and Neph1 are crucial for both the assembly 
of functional neuronal circuits (72) and the formation of 
the podocyte slit diaphragm (80).

Podocytes are exposed to a wide variety of chemi-
cal and mechanical stimuli, both from the bloodstream 
and the urinary space. To constantly maintain proper 
glomerular filtration, they need to communicate among 
themselves and with the other glomerular cells to rapidly 
identify and properly discriminate between physiological 
and pathological changes. To this purpose, they appear 
to use a rapid, highly informative, neuron-like system of 

communication. Indeed, podocytes express a wide variety 
of neurotransmitter receptors and contain synaptic-like 
vesicles that undergo cycles of spontaneous and highly 
regulated endocytosis/exocytosis, with release of neuro-
transmitters, including glutamate (81).

Imbalances of glutamate receptor activity, either the 
blockade or an excessive activation, are harmful to neu-
ronal cells (82, 83). In podocytes, sustained activation of 
the NMDAR results in oxidative stress leading to apoptotic 
cell death (84), and NMDAR antagonists cause profound 
remodeling of the actin-myosin podocyte cytoskeleton 
and disappearance of nephrin from podocyte cell pro-
cesses (85). Similarly, mice lacking the metabotropic glu-
tamate receptor 1 (Grm1) display proteinuria and podocyte 
changes, with major reduction of nephrin expression and 
actin remodeling (86). Concordantly, the metabotropic 
glutamate group 1 receptor agonist dihydroxyphenylgly-
cine (DHPG) was able to attenuate proteinuria in rodent 
models of podocyte damage (87).

Interestingly, the glutamate receptors NMDAR and 
Grm1 were shown to coimmunoprecipitate with nephrin, 
the kinase Fyn, and the scaffolding molecule PSD95 
in both podocytes and neuronal cells (48). These find-
ings point to a common function for nephrin that seems 
to behave as a synaptic adhesion molecule in both cell 
types, by recruiting and positioning glutamate receptors, 
and linking them to intracellular signaling pathways that 
ultimately act on the actin cytoskeleton (Figure 2).

Podocyte signaling pathways 
ultimately converge on the actin 
cytoskeleton
All cells contain actin, a globular protein that polymerizes 
into filaments with different types of organization: branched 
and cross-linked networks, parallel bundles, and antipar-
allel contractile structures, which are differentially located 
in various subcellular compartments. The final assembly 
of these structures is responsible for the cell shape, which 
constitutes the basis for specific cell functions.

The actin cytoskeleton is not immobile; on the con-
trary, it is highly dynamic owing to the constant assembly 
and disassembly of actin monomers as a consequence of 
the information flow received through intracellular sign-
aling pathways (88). These processes are relevant to the 
behavior of every cell, but become especially important in 
cells with complex morphology, i.e., ramified cells. Cells 
with ramifications, such as neuronal cells, osteocytes, 
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and podocytes, share a common cytoskeletal organiza-
tion, with actin mainly concentrated in the arborized cell 
processes. Furthermore, ramifications are also the loca-
tion of specialized intercellular junctions, i.e., synaptic 
junctions in neuronal cells, gap junctions in osteocytes, 
and slit diaphragms in podocytes, which are also sign-
aling centers that transfer intercellular information and 
convey messages from outside the cell.

Disease states are characterized by morphological 
changes of these junctional contacts, as well as cytoskel-
etal changes of the ramified processes, confirming that 
the preservation of the arborized cytoskeletal organiza-
tion and specific intercellular contacts means preserva-
tion of the function of these cell types. In neurological 
diseases, such as Alzheimer’s disease, the number and 
shape of synapses are profoundly modified (89). In bone 
diseases, such as osteoarthritis, osteocyte morphology is 
altered, with fewer and disorganized dendrites (90). Sim-
ilarly, in proteinuric diseases, podocytes lose the peri-
odic assembly of their processes and the slit diaphragms 
disappear or are apically relocated in a phenomenon 
termed foot process effacement (91). Therefore, it is not 
surprising that mutations of actin-binding and actin-
related molecules are causative of nephrotic syndrome 
in humans.

One of the first actin-related molecules to be uncov-
ered by genetic studies was α-actinin4, an actin-bundling 
protein required for normal podocyte adhesion (92). 
α-Actinin4 is essential for maintaining cell spreading, 
motility, and contractility. Mutations reported in patients 
with FSGS involve the actin-binding domain of the protein, 
resulting in increased binding affinity for actin, which 
disrupts the equilibrium of actin dynamics (93). Further-
more, the molecule can shuttle between the nucleus and 
the cytoplasm, suggesting a potential involvement in the 
regulation of transcription (94).

More recently, mutations of ARHGDIA and anillin 
were found in families of subjects with FSGS. ARHGDIA 
is the gene encoding the Rho GDP dissociation inhibitor 
α, a regulator of the Rho family of small GTPases known 
to control the dynamics of actin remodeling. ARHGDIA 
and the Rho small GTPases RhoA, Rac1, and Cdc42 form 
an interactive complex that is disrupted by mutations, 
with the final result of increasing Rac1 and Cdc42 activ-
ity (95). Anillin, an actin-binding molecule important for 
cytokinesis and cell growth, was shown to interact with 
Rho GTPase, F-actin, and myosin II, all of which regulate 
podocyte structure and function. When anillin is knocked 
down, active Rho (Rho-GTP), F-actin, and myosin II are 
consequently altered at the intercellular junctions (96).

Figure 2 Schematic overview of the slit diaphragm.
(A) Transmission electron micrograph of podocyte foot processes. Scale bar, 1 μm. (B) Schematic illustration of podocyte processes, lying 
on the glomerular basement membrane (GBM) and laterally connected by the slit diaphragm (SD). (C) According to our data (48), nephrin 
behaves in podocytes as a synaptic adhesion molecule that clusters glutamate receptors and connect them through scaffolding molecules, 
such as PSD95, to the actin cytoskeleton of the foot processes.



S. Armelloni et al.: Podocyte physiopathology      325

It is presently believed that the stability of foot pro-
cesses is represented by a stationary phenotype, whereas 
their instability corresponds to a motile phenotype. Con-
firmatory evidences come from studies in which pro-
teinuria is present in animals null for Cdc42 or bearing 
a dominant-negative Rho-a mutant (97, 98), or a consti-
tutively active Rac1 (99), all of which lead toward motile 
podocytes. However, imbalances in both senses are 
harmful, as a decreased podocyte migratory ability is 
the consequence of mutations of the non-muscle class I 
myosin MYO1E causative of FSGS in humans (100).

Members of the formin family of proteins have 
essential roles in coordinating both actin and microtu-
bule assembly and dynamics (101). Among the formins, 
inverted formin 2 (INF2) has been found mutated in auto-
somal dominant forms of FSGS (102) and in FSGS occurring 
in Charcot-Marie-Tooth disease (103). Mutations associ-
ated with both syndromic and non-syndromic forms are 
clustered in exons encoding the diaphanous inhibitory 
domain (DID) of INF2. Most syndromic mutations are local-
ized between two putative DID-binding pockets, affecting 
DID function more severely than mutations related to the 
non-syndromic disease. The DID mediates the autoinhi-
bition of INF2 through its interaction with the C-terminal 
diaphanous autoregulatory domain, and allows INF2 to 
accelerate actin polymerization/depolymerization and 
to regulate protein targeting to the plasma membrane by 
forming complexes with Rho-GTPases, CDC42, and myelin 
and lymphocyte (MAL) protein, or MAL2 in podocytes and 
Schwann cells (104, 105).

Signaling to the cytoskeleton, as well as most intra-
cellular signaling, is conveyed by calcium. This has been 
known for years, although interest in calcium signaling 
in podocytes increased after gain-of-function mutations 
of TRPC6 were found in patients with familial FSGS (106, 
107) and increased glomerular expression of TRPC6 was 
observed in renal biopsies from patients with acquired 
forms of proteinuric diseases (108), sustaining the hypoth-
esis that increased activity of the channel, by increasing 
intracellular calcium, damaged podocytes and caused 
proteinuria. Novel findings are now emerging showing 
that mice with podocyte-specific overexpression of TRPC6 
seem less susceptible to nephrotoxic serum nephritis, and 
the opposite occurs in mice null for the channel (109), 
therefore confirming the need for a tight balanced control 
in channel regulation.

Podocytes possess at least another channel of the 
same family, TRPC5, which is highly expressed in the brain, 
where its loss is responsible for deficits in gait and motor 
coordination (110). In podocytes, TRPC5 seems to activate 
Rac1 and induce a pathologically motile phenotype (111), 

and additional work has found that TRPC5 is a prominent 
mediator of acute events leading to proteinuria (112).

Expert opinion and outlook

Development of targeted therapy

Increased knowledge of podocyte biology and of mecha-
nisms leading to podocyte dysfunction has the potential 
to lead to better drugs, directed against relevant molecular 
targets. Importantly, in the last years, several evidences 
are supporting a direct action of immunosuppressive 
drugs on podocytes.

Podocytes have been shown to express glucocorti-
coid receptors; corticosteroids, which are widely used in 
glomerular diseases, are able to directly induce transcrip-
tional and posttranscriptional events in murine podocytes 
(113). Dexamethasone has been shown to increase nephrin 
phosphorylation, which can be blocked by a glucocorticoid 
receptor antagonist but not by a mineralocorticoid receptor 
antagonist (114). Similarly, cyclosporine A seems to directly 
block calcineurin in podocytes, resulting in protection of 
synaptopodin and dynamin from the enzyme cathepsin-L 
(115), with the effect of stabilizing the actin cytoskeleton. 
More recently, a molecular target for rituximab (anti-CD20) 
has been found in podocytes, supporting a possible direct 
activity of the antibody. Binding of rituximab to sphingo-
myelin phosphodiesterase acid-like 3b (SMPDL-3b) causes 
acid sphingomyelinase (ASMase) translocation from the 
intracellular compartment to the external leaflet of the 
plasma membrane. The change induces ASMase activation 
and increase in ceramide content in membrane raft micro-
domains, with a stabilizing effect on the cell (116).

Importantly, abatacept has been shown to reduce 
proteinuria in subjects with recurrent or primary FSGS 
by acting on the costimulatory molecule B7-1, which is de 
novo expressed on the podocyte surface during disease 
(117). B7-1 blockade has profound effects on integrin β1 
activation, with amelioration of podocyte adhesion and 
function. In addition, integrin β1 activation can result 
from activated Rap1, a small G protein with 53% amino 
acid identity to Ras (118). From recent results, it appears 
that podocytes need integrin β1 activation to remain 
attached to the basement membrane after injury. Reduced 
Rap1 activation, as it occurs during human and experi-
mental podocyte damage, can be due to increased activity 
of Rap1GAP, a GTPase-activating protein that accelerates 
the hydrolysis of bound GTP to GDP, blocking the activity 
of small G proteins (119).
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Another emerging possibility of directly address-
ing the podocyte with therapy is by acting on the Notch 
pathway, either by blocking Notch1, as recently reviewed 
by Kato and Susztak (120), or by activating Notch2, as 
recently described by Tanaka and coworkers (121). Several 
compounds have been produced that are influencing the 
Notch pathways, and human trials are already being con-
ducted in the oncology field (https://clinicaltrials.gov). 
However, these interventions have to be considered with 
caution in kidney diseases, because of potentially con-
comitant but different expression and pathway activation 
in glomeruli as compared with the tubulointerstitial com-
partment (122).

Nonetheless, these studies support the notion that 
podocytes can be directly targeted by drugs, suggesting 
that future therapies will be personalized, on the basis of 
molecular findings detected in the single subject.

Highlights
–– Podocytes are highly ramified cells mainly responsi-

ble for glomerular filtration.
–– Among the molecules expressed specifically by podo-

cytes, nephrin has a prominent role in establishing 
and maintaining podocyte function.

–– By using signaling modules similar to those of neu-
ronal cells, podocytes direct intercellular communica-
tion in the glomerulus.

–– Intracellular signals ultimately converge on the actin 
cytoskeleton. Actin dynamics regulate cell shape and 
function.

–– Better knowledge of podocyte pathophysiology is 
leading to the development of novel drugs directly 
targeting molecular pathways.
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