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Aggregation and fusion of low-density 
lipoproteins in vivo and in vitro

Abstract: Low-density lipoproteins (LDLs, also known 
as ‘bad cholesterol’) are the major carriers of circulat-
ing cholesterol and the main causative risk factor of 
atherosclerosis. Plasma LDLs are 20- to 25-nm nanopar-
ticles containing a core of cholesterol esters surrounded 
by a phospholipid monolayer and a single copy of apoli-
poprotein B (550 kDa). An early sign of atherosclerosis 
is the accumulation of LDL-derived lipid droplets in the 
arterial wall. According to the widely accepted ‘response-
to-retention hypothesis’, LDL binding to the extracel-
lular matrix proteoglycans in the arterial intima induces 
hydrolytic and oxidative modifications that promote LDL 
aggregation and fusion. This enhances LDL uptake by 
the arterial macrophages and triggers a cascade of path-
ogenic responses that culminate in the development of 
atherosclerotic lesions. Hence, LDL aggregation, fusion, 
and lipid droplet formation are important early steps in 
atherogenesis. In vitro, a variety of enzymatic and non-
enzymatic modifications of LDL can induce these reac-
tions and thereby provide useful models for their detailed 
analysis. Here, we summarize current knowledge of the 
in vivo and in vitro modifications of LDLs leading to their 
aggregation, fusion, and lipid droplet formation; outline 
the techniques used to study these reactions; and propose 
a molecular mechanism that underlies these pro-athero-
genic processes. Such knowledge is essential in identify-
ing endogenous and exogenous factors that can promote 
or prevent LDL aggregation and fusion in vivo and to help 
establish new potential therapeutic targets to decelerate 
or even block these pathogenic reactions.
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Introduction

Atherosclerosis claims more than 600 lives annually in 
the USA and is the leading cause of death in the devel-
oped world (1). In atherosclerosis, cholesterol deposits 
accumulate in the arterial intima, leading to the gradual 
thinning of the blood vessel lumen, thus impeding blood 
flow and increasing the risk of coronary artery disease, 
heart attack, and stroke. Low-density lipoproteins (LDLs, 
also known as ‘bad cholesterol’) are the strongest causa-
tive risk factor for atherosclerosis (2). LDLs are the major 
plasma carriers of cholesterol in the form of cholesterol 
esters. An LDL particle (average diameter 22 nm) con-
tains a hydrophobic core consisting of apolar lipids, 
mainly cholesterol esters and up to 20% triacylglycerol 
(3). This core is surrounded by an amphipathic surface 
containing a single copy of apolipoprotein B (apoB), a 
glycosylated 550-kDa protein, which is one of the largest 
known proteins, and a monolayer of polar lipids, mostly 
phosphatidylcholine (PC) and sphingomyelin (Figure 1). 
The physiological function of plasma LDLs is to deliver 
cholesterol to peripheral tissues via whole-particle endo-
cytosis mediated by low-density lipoprotein receptor 
(LDLR) (4). LDL uptake by cells via LDLR is non-ather-
ogenic because it down-regulates cholesterol biosynthe-
sis (5). In the alternative pro-atherogenic pathway, LDLs 
are taken up by arterial macrophages via the scavenger 
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receptors, leading to macrophage conversion into foam 
cells (6, 7).

According to the ‘response-to-retention hypothesis’ 
(8), atherogenesis is initiated upon LDL binding and 
retention by extracellular matrix components such as pro-
teoglycans in the arterial wall. The retained lipoproteins 
undergo various modifications, including oxidation, lipo
lysis, and proteolysis by resident hydrolytic and oxida-
tive enzymes. These modifications cause LDL fusion that 
further augments LDL retention in the arterial wall, trig-
gering a cascade of inflammatory and apoptotic responses 
that contribute to atherogenesis.

The initial sign of atherogenesis is the appearance of 
cholesterol-rich extracellular lipid droplets up to 400 nm 
in size in the subendothelial space (9). Biochemical and 
morphological analysis of such droplets from human ath-
erosclerotic lesions suggests that they are derived mainly 
from the entrapped LDLs (10, 11). Animal model studies 
strongly support this conclusion and show that accumula-
tion of extracellular lipid droplets can be experimentally 
reproduced in rabbit arterial intima hours upon injection 

of large amounts of human LDL in circulation, as well as 
in isolated rabbit cardiac valves upon incubation with 
human LDL (12, 13).

Although the molecular mechanism of LDL retention 
and lipid droplet formation in the arterial subendothelium 
is not fully understood, it is increasingly clear from studies 
by the groups of Kovanen, Camejo and Hurt-Camejo, 
Sanchez-Quesada, Parasassi, and others that aggregation 
and fusion of modified LDLs prevent their exit from the 
arterial wall and contribute to atherogenesis (11, 14–20). 
Several lines of evidence support the presence of LDL 
aggregates in the arterial wall (21, 22) and their involve-
ment in LDL retention by arterial proteoglycans during 
atherogenesis. For example, Frank and Fogelman (23) 
used freeze-etch electron microscopy (EM) to show that 
the aortic intima in Watanabe heritable hyperlipidemic 
and cholesterol-fed rabbits contained aggregated lipo-
proteins bound to subendothelial matrix. Steinbrecher 
and Lougheed (24) reported that LDL aggregates isolated 
from atherosclerotic lesions induced macrophage foam 
cell formation in a process independent of LDL uptake by 
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Figure 1 LDL aggregation, fusion, and lipid droplet formation.
(Top) Cartoon representations of intact, aggregated, and fused LDLs in cross section. Lower panels show negative stain electron micro-
graphs of intact, aggregated, and fused LDLs, and of LDL-derived lipid droplets (29). An intact LDL is a spheroidal particle (d∼22 nm) com-
prised of a core of apolar lipids, mainly cholesterol esters and triacylglycerides (gray), surrounded by a phospholipid monolayer (yellow) 
and one copy of apoB (blue and red arc). LDL aggregation probably involves changes in the conformation of the protein and lipid moieties 
(29) but not necessarily in the particle size. Fusion merges the contents of two or more LDL particles to form an enlarged lipoprotein. 
Rupture involves lipoprotein disintegration and release of the apolar core lipids that coalesce into droplets. Both fused and ruptured LDLs 
tend to aggregate. Enhanced uptake of aggregated and fused LDLs and lipid droplets by macrophages leads to formation of foam cells and 
initiates atherosclerosis.
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scavenger receptors. In addition, aggregated LDLs have 
been reported to induce cholesterol accumulation in coro-
nary vascular smooth muscle cells and turn them into 
foam cells, possibly by upregulating the level of LDLR-
related protein (25). These and other studies convincingly 
showed that LDL aggregation, fusion, and coalescence 
into lipid droplets are important triggering events in early 
atherosclerosis (Figure 1).

In contrast to modified LDLs, native LDLs do not readily 
aggregate or fuse under physiological conditions, suggest-
ing that lipoprotein modifications drive these transitions 
(26). The accepted view is that such major modifications 
in vivo include apoB proteolysis, LDL lipolysis, oxidation, 
and glycation. Many aspects of these reactions remain 
unclear, e.g., how do the apparently disparate chemical or 
physical modifications exert similar structural responses 
in LDL? Is there a synergy among numerous factors that 
influence LDL fusion? Which enzymatic or nonenzymatic 
modifications are particularly important in promoting or 
preventing LDL fusion in vivo? What are specific steps in 
LDL aggregation, fusion, and lipid droplet formation, and 
what therapeutic agents can block these pathogenic pro-
cesses? These and other unanswered questions reflect the 
fact that atherosclerosis is a very complex chronic disease 
that can be influenced by an immense number of factors, 
many of which are not well understood.

In a complementary approach, in vitro studies can 
provide tractable experimental models to determine how 
individual factors, alone or in combination, influence LDL 
fusion. A number of different in vitro modifications can 
induce LDL aggregation, fusion, and coalescence into lipid 
droplets. These modifications include brief vortexing (27) or 
prolonged exposure to elevated temperatures (28) or acidic 
pH (29). Although such in vitro treatments do not neces-
sarily mimic physiological conditions, they provide useful 
model systems to study the immensely complex process 
and elucidate its molecular mechanism. The results of such 
in vitro studies can provide sharper insights into the struc-
tural basis underlying LDL aggregation, fusion, and lipid 
droplet formation upon various biophysical and biochemi-
cal modifications, quantify the rate and the extent of these 
LDL reactions, and help design strategies aimed to deceler-
ate or even block these pathogenic processes.

In this review, we summarize current knowledge of 
the in vivo and in vitro processes leading to LDL aggrega-
tion, fusion, and coalescence into lipid droplets; outline 
the techniques used to study them; and propose a molecu-
lar mechanism that underlies these pro-atherogenic pro-
cesses. Whenever possible, we try to differentiate among 
lipoprotein aggregation, fusion, and coalescence into 
lipid droplets (Figure 1). However, many experimental 

studies do not make this distinction; in these instances, 
we use the term preferred by the authors or refer to it as 
‘aggregation and fusion’.

Biochemical modifications

Lipolysis

Sphingomyelinase (SMase) hydrolyzes sphingomyelin 
to phosphocholine and ceramide. Secretory SMase is a 
zinc-dependent acidic metalloenzyme secreted by mac-
rophages and smooth muscle cells that is found in the 
arterial intima (30). This enzyme hydrolyzes LDL sphingo-
myelin that accounts for 20%–25% of the phospholipids 
on LDL surface (31). Upon hydrolysis, water-soluble phos-
phocholine is released from the surface, whereas water-
insoluble ceramide is retained in the core of the LDL. 
This leads to the increase in the apolar core lipids at the 
expense of the polar surface lipids, resulting in a hydro-
phobic mismatch between the core and surface, which 
is expected to cause lipoprotein fusion. In fact, ceramide 
accumulation leads to LDL fusion (described below). 
LDL fusion upon SMase reaction in vivo is supported by 
the observation that aggregated LDLs in atherosclerotic 
lesions are enriched in ceramide (32). Moreover, treatment 
of isolated LDLs with SMase can induce lipoprotein aggre-
gation and fusion in vitro (18, 33). These observations 
suggest that secretory SMase can contribute to atherogen-
esis by mediating LDL fusion.

Phospholipase A2 (PLA2) superfamily enzymes hydro-
lyze sn-2 acyl bond in PC to generate free fatty acids (FFAs) 
and lyso-PC, which are important mediators of inflamma-
tion (34). Secretory nonpancreatic PLA2, which is secreted 
by endothelial cells and macrophages, is found in the arte-
rial intima of atherosclerotic and healthy subjects and is 
associated with extracellular matrix and lipid droplets 
(35). Lipoprotein-associated PLA2, which is secreted by 
leucocytes, is associated with circulating lipoproteins and 
macrophages in atherosclerotic plaques (36). Importantly, 
type II secretory nonpancreatic PLA2 and lipoprotein-asso-
ciated PLA2 preferentially hydrolyze oxidized PC in lipo-
proteins and serve as biomarkers of atherosclerosis (36).

Earlier studies reported that LDL lipolysis by PLA2 in 
the presence of serum albumin, which removes FFAs from 
LDLs, results in lipoprotein aggregation but not fusion (33). 
Later studies showed that if FFAs produced by PLA2 are 
not removed, lipoprotein coalescence into lipid droplets 
is greatly enhanced (37). Furthermore, lipolysis by secre-
tory nonpancreatic PLA2 was reported to induce fusion 
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of the proteoglycan-bound lipoproteins, thereby enhanc-
ing their retention in the arterial wall (38). Thus, multiple 
lines of evidence indicate that LDL hydrolysis by PLA2 
family enzymes contributes to atherogenesis by inducing 
LDL aggregation, fusion, and retention by arterial pro-
teoglycans. Notably, several studies reported that PLA2 is 
preferentially enriched in small, dense LDLs (14) and in 
electronegative LDLs (16); the latter probably reflects the 
negative charge on the FFAs accumulated in LDLs upon 
PLA2 hydrolysis. These findings suggest that PLA2 poten-
tially contributes to the enhanced pro-atherogenic proper-
ties of small, dense LDLs and electronegative LDLs.

Phospholipase C (PLC) hydrolyzes PC to generate 
phosphocholine and diacylglycerol. Polar phosphocho-
line is released while apolar diacylglycerol is redistrib-
uted between the lipoprotein surface and the core. This 
lipid redistribution from the surface to the core generates 
hydrophobic mismatch that is expected to promote lipo-
protein aggregation and fusion. In fact, LDL aggregation 
and fusion upon PLC hydrolysis, which was first observed 
in 1989 (39), became a standard technique to induce these 
LDL transitions in vitro. Notably, the authors also found 
that aggregated and fused LDLs were taken up much faster 
by macrophages as compared with normal LDLs, which 
helped establish the link among LDL aggregation, fusion, 
and atherogenesis (39). Recent report suggests that, similar 
to PLA2, PLC is preferentially associated with electronega-
tive LDLs in plasma, which may potentially contribute to 
the enhanced pro-atherogenic properties of these parti-
cles (16, 40). Other studies showed that PLC-induced LDL 
aggregation and fusion can be prevented by the exchange-
able (water-soluble) apolipoproteins that have high affin-
ity for lipid surface (41). This observation supports the idea 
that lipoprotein fusion upon PLC hydrolysis results from 
the surface exposure of hydrophobic lipid moieties.

Cholesterol esterase hydrolyzes cholesterol esters, 
the most abundant lipids in LDL core. In contrast to LDLs, 
which contain mainly esterified cholesterol, biochemical 
analysis of lipid droplets isolated from atherosclerotic 
lesions detected mainly unesterified cholesterol (42). To 
understand the precursor-product relationship between 
LDLs and lesional lipid droplets, Kruth and colleagues 
hydrolyzed LDLs using cholesterol esterase (43). For 
hydrolysis to proceed, the enzyme needs to gain access 
to the lipoprotein core. Native LDLs did not provide such 
access and hence were not readily hydrolyzed by cho-
lesterol esterase. However, core lipids became accessi-
ble to hydrolysis upon apoB proteolysis on LDL surface. 
Upon completion of hydrolysis, LDLs were converted to 
liposome-like structures that were chemically and mor-
phologically similar to the extracellular lipid droplets 

in atherosclerotic lesions. This supports the precursor-
product relationship between LDLs and extracellular lipid 
droplets (43).

Lipoprotein lipase exerts both enzymatic and nonen-
zymatic effects that contribute to lipoprotein remodeling 
in vivo. In its catalytically active dimeric form, lipopro-
tein lipase hydrolyzes triacylglycerol into diacylglycerol, 
monoacylglycerol, and FFAs. This reaction is key to the 
metabolism of triglyceride-rich lipoproteins such as very-
low-density lipoproteins (VLDLs), which are metabolic pre-
cursors of LDLs (44). The enzymatic action of lipoprotein 
lipase on VLDL is an obligatory early step in VLDL matura-
tion to LDL and is largely anti-atherogenic. Notably, lipid 
core hydrolysis depletes the core and expand the surface, 
generating excess surface material that dissociates from 
VLDL in the form of small particles that join the plasma 
pool of high-density lipoproteins (HDLs) (45). This con-
trasts with the hydrolysis by PLA2, PLC, or SMase, which 
depletes the surface lipids and promotes lipoprotein fusion. 
Therefore, in contrast to PLA2, PLC, or SMase, which induce 
lipoprotein fusion, enzymatic action of lipoprotein lipase is 
expected to promote lipoprotein fission rather than fusion.

Endothelial lipoprotein lipase that is anchored to the 
arterial endothelium via a flexible linker hydrolyzes VLDL 
triglycerides in vivo. As a structural anchor, the enzyme can 
bind lipoproteins and link them to subendothelial proteo-
glycans and various cell surface receptors, enhancing LDL 
retention in the subendothelial space (46). In contrast to 
the anti-atherogenic properties of its enzymatic function, 
the anchoring function of lipoprotein lipase on LDL, which 
enhances LDL retention in the arterial wall, is pro-ather-
ogenic. Furthermore, LDL affinity for lipoprotein lipase 
was reported to increase upon LDL oxidation (47) probably 
because native LDLs preferentially bind to the monomeric 
catalytically inactive enzyme, whereas oxidized LDLs bind 
to the dimeric catalytically active form (48). Structural 
studies suggested that LDL binding to lipoprotein lipase is 
mediated entirely by the lipids and does not involve apoB 
(48). In vitro study showed that lipoprotein lipase can 
induce LDL aggregation at higher than equimolar ratios 
of the enzyme to LDL (49). This suggests that lipoprotein 
aggregation in these experiments was due to the nonenzy-
matic anchoring action of lipoprotein lipase.

Proteolysis

A single copy of apoB comprises over 95% of LDL protein 
content and covers more than 20% of LDL surface (50). 
This large multidomain protein of 4536 amino acids 
directs LDL metabolism and serves as a structural scaffold 
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and an important functional ligand for LDL interactions 
with LDLR and with arterial proteoglycans. Therefore, 
even partial loss of apoB upon proteolysis can influence 
functional interactions of LDL and cause conformational 
changes in their protein and lipid moieties, leading to the 
reorganization of the entire particle. This can influence 
interactions between LDL particles and augment their 
aggregation, fusion, and lipid droplet formation. There-
fore, apoB proteolysis is a potential mechanism for gener-
ating extracellular lipid droplets.

Kovanen and Kokkonen (51) observed that incubation 
with exocytosed rat mast cell granules can convert LDLs 
into lipid droplets whose morphology resembles that of 
the extracellular lipid droplets found in atherosclerotic 
lesions (10). Two neutral proteases, chymase and car-
boxypeptidase A, were responsible for apoB degradation 
and lipid droplet formation in these experiments. Tests of 
additional proteases that cleave apoB revealed two dis-
tinct effects. Plasmin, kallikrein, and thrombin, whose 
action on LDLs led to apoB fragmentation without release 
of proteolytic fragments, did not cause LDL fusion; in 
contrast, trypsin, α-chymotrypsin, and pronase, whose 
action led to apoB fragmentation followed by release of 
proteolytic fragments from LDL surface, triggered LDL 
fusion (52). The authors concluded that LDL fusion after 
proteolysis occurs only upon dissociation of proteolytic 
fragments from the lipoprotein surface (18).

Oxidation

Oxidative modification hypothesis of atherosclerosis origi-
nated 30 years ago from observations that oxidized LDLs 
are toxic to cultured cells (53–56) and are readily ingested 
via the scavenger receptors by macrophages, converting 
them into foam cells (6, 57, 58). The latter was attributed to 
oxidative modifications in apoB, which impair its interac-
tions with LDLR and enhance LDL binding to macrophage 
scavenger receptors. Later studies showed that LDLs can 
be oxidized in circulation and in the arterial wall (59–61). 
The pathogenic properties of oxidized LDLs have been 
attributed to their ability to support foam cell formation 
as well as aid the recruitment of circulating monocytes to 
the arterial initima, induce platelet aggregation, and other 
pro-inflammatory and pro-thrombotic effects [reviewed 
in ref. (62)]. The molecular basis underlying these effects 
is difficult to establish because of the complexity of LDL 
oxidation, which involves an immense number of pos-
sible modifications to various lipid and protein moieties. 
The problem is further compounded by the heterogeneity 
of plasma LDLs and the products of their oxidation. These 

products depend upon the oxidants used, the extent of 
oxidation, the biochemical composition of intact LDLs that 
can vary from batch to batch (e.g., the amount of antioxi-
dants such as carotenoids in LDL core), and many other 
factors that are beyond the scope of this review. As a result 
of this extreme biochemical complexity, the topic remains 
controversial, which is further compounded by the clinical 
trials that failed to show beneficial effects of antioxidants 
such as vitamin E in cardiovascular disease (63). Excellent 
reviews of this topic can be found in refs. (64–66). Here, 
we briefly outline the role of oxidation in the aggregation 
and fusion of LDLs, which is also not free from controversy.

One of the mechanisms responsible for the enhanced 
uptake by macrophages of oxidized LDLs is their increased 
tendency to aggregate (11). LDL aggregation and enhanced 
uptake by macrophages were consistently observed in cell 
culture upon action of various oxidative agents such as 
copper, a radical oxidant whose primary target is lipids, and 
hypochlorite, a nonradical oxidant whose primary target is 
proteins (67–70). In contrast to aggregation, evidence for 
LDL fusion upon oxidation is limited to a report that after 
days of LDL incubation with 5 μm Cu2+ at 37°C, extensive 
LDL oxidation led to complete lipoprotein disintegration 
(18, 70), which may or may not involve LDL fusion.

Studies from our laboratory were aimed to quantify 
the effects of oxidation on the extent of the heat-induced 
LDL fusion (71). Single-donor LDLs were isolated from 
human plasma and were modified to various degrees by 
several radical or nonradical oxidants including copper, 
hypochlorite, and myeloperoxidase, which produces 
hypochlorite and contributes to lipoprotein oxidation 
in vivo. In this system, LDL oxidation caused no significant 
changes in the particle size or morphology at ambient 
temperatures, as observed by nondenaturing polyacryla-
mide gel electrophoresis (PAGE) and negative stain EM. 
Surprisingly, the extent of the heat-induced LDL fusion 
and lipid droplet formation [monitored by circular dichro-
ism (CD), turbidity, and EM] gradually decreased upon 
progressive oxidation by various agents (71). Biochemical 
analysis of LDLs at various stages of oxidation suggested 
that apoB fragmentation and cross-linking were partially 
responsible for this effect. To reconcile these observa-
tions with numerous in vivo and cell culture studies, we 
note that these studies provided a clear evidence for the 
aggregation but not necessarily fusion of oxidized LDLs. 
Moreover, different studies used different experimental 
systems that could contain additional factors such as 
PLA2 that acts synergistically with oxidation in vivo. In 
fact, our later studies showed that FFAs produced by PLA2 
or other means are potent fusion-inducing agents in lipo-
proteins (37). This suggests that enhanced in vivo lipolysis 
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of oxidized PC by PLA2 family enzymes generates FFAs 
whose accumulation greatly enhances LDL fusion.

In summary, oxidation produces numerous chemi-
cal modifications in the protein and lipid moieties, which 
often occur in parallel. Some of these modifications 
enhance LDL remodeling by other factors. For example, 
oxidized PCs are avidly hydrolyzed by PLA2, followed 
by removal of most lipolytic products by albumin. This 
leads to complex structural changes that can increase 
solvent exposure of the apolar groups on LDL surface and 
promote aggregation, fusion, and ultimate disintegration 
of LDLs (59, 72, 73).

Glycation

Glycation, which covalently links a sugar molecule to a 
protein or lipid moiety, is a ubiquitous LDL modification 
that contributes to atherogenesis. In contrast to enzymatic 
glycosylation, which occurs at specific sites, is subject to 
tight enzymatic control, and is often functionally impor-
tant, nonenzymatic glycosylation (also known as glyca-
tion) is not well regulated and often results in impaired 
macromolecular function. In vivo LDL glycation is often 
linked to oxidation, and the combined effects, termed gly-
coxidation, are deleterious to LDL function (74, 75).

LDL glycation in vivo occurs both in diabetic and in 
nondiabetic patients (76) and principally affects lysines 
(Lys), which are abundant in apoB. Typically, in LDLs iso-
lated from human plasma, 2%–17% of all Lys are glycated 
(77). As expected, LDLs isolated from plasma of diabetic 
patients contain higher proportion of glycated Lys as 
compared with nondiabetic controls (78). This increased 
Lys glycation in apoB potentially contributes to the link 
between diabetes and cardiovascular disease. Interest-
ingly, small, dense LDLs, which are proposed to form a 
particularly pro-atherogenic subclass, are preferentially 
glycated in vitro and in vivo as compared with larger parti-
cles (76, 79). This difference in glycation, which may result 
from different apoB conformations on the large and small 
particles (50), potentially contributes to the enhanced 
pathogenic properties of small, dense LDLs.

LDL glycation is linked to several pro-atherogenic 
events, including increased LDL binding to proteogly-
cans, increased susceptibility to oxidation, and impaired 
binding to LDLR [ref. (80) and references therein]. The 
latter is probably due to the modifications in the Lys-rich 
LDLR-binding sites of apoB. As a result, LDL glycation pro-
motes LDL clearance by macrophage scavenger receptors, 
leading to foam cell formation (75, 80). In addition, LDL 
glycation reportedly promotes LDL aggregation in vitro 

(18). Although the molecular mechanism responsible for 
aggregation of glycated LDLs is unknown, we speculate 
that changes in the surface charge distribution on apoB 
upon Lys glycation probably contribute to this effect.

Prolonged storage

Storage, or LDLs ‘aging’ in vitro, involves various hydro-
lytic and oxidative modifications to the protein and lipid 
moieties, which promote LDL aggregation and fusion. 
These changes can be decelerated, but not completely 
abolished, by storing LDLs at 4°C in the dark under anaer-
obic conditions in the presence of EDTA. An even safer 
way of LDL storage is flash-freezing with 20% sucrose 
as a cryoprotectant to prevent LDL fusion and rupture 
at low temperatures (unpublished data). Spontaneous 
changes that occur during LDL storage include lipid per-
oxidation and apoB fragmentation, which is attributed in 
part to its weak autoproteolytic activity. These deleterious 
changes can increase LDL susceptibility to other hydro-
lytic modifications. For example, minimal lipolytic activ-
ity of secretary PLA2 was observed when freshly isolated 
plasma LDLs were used as substrates; however, lipolytic 
activity increased up to 25-fold upon LDL storage at 6°C 
for 8 weeks or at 37°C for 15 h, which was probably due 
to PC oxidation (81). In another study, plasma incuba-
tion at 37°C produced a subpopulation of LDLs that were 
prone to aggregation, fusion, and lipid droplet formation 
as detected by dynamic light scattering and atomic force 
microscopy (82). Kinetics analysis suggested that particle 
aggregation in these experiments was driven by interac-
tions between a limited number of specific surface sites on 
LDLs (82). This mechanism differed from massive aggrega-
tion and fusion observed upon other LDL modifications 
such as copper-induced oxidation. Our own studies using 
nondenaturing PAGE, size-exclusion chromatography 
(SEC), and negative stain EM showed that during storage 
of lipoproteins isolated from human plasma, a subpopula-
tion of LDLs was converted into enlarged particles whose 
size (∼40 nm) was consistent with LDL dimerization (29). 
In addition, we observed gradual formation of larger parti-
cles (  ≥  100 nm) resulting from LDL fusion and coalescence 
into lipid droplets and their aggregates (29).

Other biochemical modifications

In vitro, LDLs can be chemically modified in numerous 
ways, some of which result in aggregation and fusion, 
which invariably enhance LDL uptake by macrophages 

Q2:
Lysine was 
abbrevi-
ated as Lys. 
Please check 
and confirm 

Q3:
Please 
confirm 
change from 
“acelytion” 
to 
“acetylation”.



M. Lu and O. Gursky: LDL aggregation, fusion, and lipid droplet formation      507

and foam cell formation in cell culture studies (83). 
Such chemical modifications include acetylation and 
maleylation (26); acetoacetylation (84); carbamylation, 
malondialdehyde, or glutaraldehyde treatment (85, 86); 
desialylation (87); and treatment with certain flavonoids 
(88). Similar effects of these diverse modifications on lipo-
protein morphology suggest that LDL aggregation and 
fusion provide a general structural response to a broad 
range of biochemical perturbations.

Proteins, lipids, small molecules, 
and polymers that promote or 
prevent LDL aggregation and  
fusion
Aggregation and fusion of lipoproteins are initiated by 
their surface contacts. Because the LDL surface is com-
posed of a phospholipid monolayer and apoB, reagents 
that promote [FFA, polyethylene glycol (PEG)] or prevent 
(amphipathic molecules) fusion of phospholipid bilayers 
are expected to have similar effects on LDL fusion. In addi-
tion, changes in apoB conformation and in the core lipid 
composition can also contribute to LDL fusion. Below we 
discuss some agents, natural or engineered, that have 
been observed to promote or prevent LDL fusion. The latter 
are of particular interest because they may help develop 
novel therapeutics aimed to inhibit LDL fusion in vivo.

Ceramide

Ceramide is the product of sphingomyelin hydrolysis by 
SMase, an enzyme that promotes LDL aggregation and 
fusion in vivo as described above (18, 33). LDLs from ather-
osclerotic lesions contain 10–50 times more ceramide than 
plasma LDLs from healthy donors (11, 32). Furthermore, 
in lesional tissues, aggregated LDLs contain ceramide, 
whereas native nonaggregated LDLs do not (32). These 
data suggest that ceramide is directly involved in LDL 
aggregation and fusion in vivo and probably contributes to 
the development of atherosclerosis. Quantitative studies 
support this notion and show that increasing ceramide 
concentration increases the size of LDL aggregates (89). 
The physical basis for the ceramide-induced LDL aggre-
gation and fusion appears straightforward, as conver-
sion of polar PC into apolar ceramide molecules shifts the 
balance between the polar surface and the apolar core of 
LDLs and promotes solvent exposure of the apolar surface 

moieties. In summary, ceramide is a potent inducer of LDL 
fusion in vivo and in vitro.

Free fatty acids

FFAs are produced in vivo by PLA2-family enzymes that 
hydrolyze PC, by lipoprotein lipase that hydrolyses tria-
clylglycerides, and by hepatic lipase that hydrolyses both 
triacylglycerides and PC. Elevated levels of plasma FFAs 
are observed in inflammation (where excess FFAs are pro-
duced upon clearance of lipid membranes from the dying 
cells) and in metabolic syndrome and diabetes (which are 
characterized by hypertriglyceridemia) (90–92); all these 
conditions are associated with an increased risk of cardio-
vascular disease (93). Notably, FFAs are potent promoters 
of cell membrane fusion because they perturb molecular 
packing in phospholipid monolayers (94). This prompted 
us to test whether incorporation of additional FFAs into 
the PC monolayer on the lipoprotein surface promotes 
lipoprotein fusion. The results clearly showed that heat-
induced aggregation, fusion, and lipid droplet formation 
are greatly enhanced upon FFA incorporation into LDLs 
or other lipoproteins; this effect could be achieved either 
via the enzymatic action of PLA2 or hepatic lipase on PC 
or via lipoprotein enrichment with exogenous oleic acid 
(37). Importantly, FFA removal by albumin reversed the 
effect and hampered lipoprotein fusion, indicating that 
FFAs play a direct role in LDL fusion. We concluded that 
similar to lipid bilayer fusion, lipoprotein fusion is greatly 
enhanced upon increasing the FFAs in the surface mon-
olayer. In vivo, such an increase in lipoprotein-associated 
FFAs can result from impaired action of albumin in the 
acidic environment of deep atherosclerotic lesions as well 
as from elevated plasma FFAs in inflammation, metabolic 
syndrome, and diabetes (90–92, 95). Consequently, the 
ability of FFAs to promote LDL fusion may contribute to 
the well-established association of these diseases with 
atherosclerosis (93).

Albumin

Albumin is the most abundant protein in human plasma 
that acts as a carrier of FFA, lyso-PC, and other endoge-
nous hydrophobic molecules as well as drugs. Khoo et al. 
(41) showed that albumin reduced LDL aggregation upon 
vortexing. Talbot et al. (96) showed that at physiological 
concentrations, albumin reduced flow-induced LDL aggre-
gation. Notably, heat-denatured and fatty acid-stripped 
albumin was particularly effective in protecting LDLs 
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from aggregation. This protective effect was attenuated 
upon progressive oxidation of LDLs (97). In our studies of 
the heat-induced lipoprotein fusion and lipid droplet for-
mation, only FFA-free albumin showed a protective effect 
that could be fully attributed to FFA removal from LDLs 
(37). Taken together, these results suggest that albumin 
can serve as an important modulator of lipoprotein fusion 
in vivo and that the albumin’s ability to protect LDLs from 
fusion depends, at least in part, on its ability to effectively 
remove FFAs from LDLs.

Exchangeable apolipoproteins

In contrast to the nonexchangeable apoB that is perma-
nently associated with its host particle, exchangeable 
apolipoproteins can transfer among the lipoproteins via 
the water-soluble globular form. These proteins are rela-
tively small (6–32 kDa) as compared with apoB (550 kDa) 
and are comprised almost exclusively of amphipathic 
α-helices whose large apolar faces are optimized for 
lipid surface binding (98). One example is the major HDL 
protein, apolipoprotein A-I (apoA-I, 28 kDa). Plasma levels 
of HDL (also known as ‘good cholesterol’) and apoA-I cor-
relate inversely with the risk of atherosclerosis (99, 100). 
This cardioprotective action of HDL is thought to result 
from their role in removing excess cell cholesterol via the 
reverse cholesterol transport as well as their antioxidant, 
antithrombolytic, and anti-inflammatory effects (101, 
102). In addition, apoA-I helps prevent LDL aggregation in 
vitro and, potentially, in vivo. Studies of isolated lipopro-
teins have shown that LDL aggregation induced by vortex-
ing or by PLC lipolysis is inhibited in the presence of HDL 
or apoA-I (41). This inhibitory effect persists in high salt, 
suggesting the importance of hydrophobic interactions 
between apoA-I and LDLs. The authors proposed that 
amphipathic α-helices in apoA-I can bind to the exposed 
hydrophobic moieties on LDL surface and thereby block 
the intermolecular interactions leading to LDL aggrega-
tion and fusion. Our unpublished studies showed that 
apoA-I and HDL help protect LDLs from the heat-induced 
fusion via a similar mechanism.

This protective effect is not limited to apoA-I but 
extends to other exchangeable apolipoproteins. One 
example is apolipoprotein E (apoE, 32 kDa) that circulates 
on VLDL and HDL and is important for the metabolism of 
the triglyceride-rich lipoproteins in plasma and for lipid 
transport in the brain (103). Similar to apoA-I, apoE can 
inhibit LDL aggregation and fusion upon lipolysis (41). 
Similarly, PLC-treated LDLs did not aggregate in the pres-
ence of apolipophorin, an exchangeable apolipoprotein 

of insect origin (104). In sum, LDL aggregation and 
fusion upon various biochemical (hydrolytic) or physical 
(thermal, mechanical) perturbations can be inhibited by 
the exchangeable apolipoproteins in vitro and, possibly, 
in vivo. This effect may contribute to the cardioprotective 
action of apoA-I, apoE, and related proteins.

Estradiol

Epidemiological studies show that premenopausal 
women are protected from cardiovascular disease, which 
is attributed to estrogens (105, 106). The anti-atherogenic 
action of estrogens is thought to result from their anti-
oxidant effects on LDLs (107–109). Specifically, Parasassi 
and colleagues reported that 17-β-estradiol binds to apoB 
on LDLs, rendering the particle more compact and more 
resistant to copper-induced oxidative modifications (110). 
The authors hypothesized that by inhibiting LDL oxida-
tion, estradiol can also inhibit LDL fusion. They tested 
this idea by determining the effects of 17-β-estradiol on 
electronegative LDLs, a pro-atherogenic subclass that 
was proposed to trigger aggregation of total LDLs. They 
reported that estradiol-stabilized LDLs were resistant to 
aggregation in the presence of electronegative LDLs and 
proposed that estradiol binding to specific sites on apoB 
was responsible for this effect (110).

Amphipathic polymers

The endogenous inhibitors of LDL aggregation and fusion, 
such as apoA-I, apoE, and estradiol, are amphipathic mol-
ecules whose protective effects apparently result from 
their ability to bind to the solvent-exposed hydrophobic 
moieties on LDL surface. Similarly, other amphipathic 
molecules that bind to LDL surface may potentially block 
LDL aggregation and fusion. Such molecules potentially 
provide new therapeutic agents for atherosclerosis.

To this end, pluronic block copolymers were tested 
for their ability to prevent LDL aggregation and fusion 
(111). These polymers are nanomaterials consisting of 
hydrophilic poly-(ethylene oxide) and hydrophobic poly-
(propylene oxide) blocks arranged in A-B-A tri-block struc-
ture. These polymers can incorporate into cell membranes 
and translocate in the cells where they affect various 
cellular functions (112). A series of pluronic copolymers 
was tested for their ability to inhibit LDL fusion (111). 
LDL aggregation, which was induced by incubation at 
37°C with constant stirring, was greatly diminished in a 
manner that was proportional to the hydrophobicity of the 
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copolymer. This further supports the central role of hydro-
phobic interactions in LDL aggregation and fusion.

Physical perturbations
LDL aggregation and fusion can also result from physical 
perturbations, including mechanical or thermal stress, 
chemical denaturants such as guanidinium hydrochloride 
(Gdn HCl) that interacts with the protein moiety, solutes 
that promote fusion of lipid membranes and lipoproteins 
such as PEG (113, 114), reduction in pH, increase in solvent 
ionic strength, divalent metal ions, LDL crowding, etc. 
(29). Some of these factors and their effects on LDL fusion 
in vitro, in silico, and, potentially, in vivo are outlined 
below.

Mechanical stress

In 1988, the pioneering studies by Steinberg and col-
leagues showed that even brief 30-s vortexing of LDL 
solutions at room temperature caused irreversible aggre-
gation, as indicated by increased turbidity and sedi-
mentation coefficients (27). These aggregated LDLs were 
avidly ingested and degraded by macrophages, converting 
them into cholesterol ester-rich foam cells. Later studies 
using fluid stress model confirmed time-dependent LDL 
aggregation, which was monitored by light attenuation 
and sedimentation (96, 97). Notably, LDL aggregation 
was partially inhibited in total plasma, apparently due 
to the protective effects of other apolipoproteins that are 
also expected to inhibit LDL aggregation in circulation 
(described above).

Thermal and chemical denaturation

Protein unfolding upon heating or addition of denatur-
ants such as Gdn HCl is a method of choice for measur-
ing structural stability of globular proteins, water-soluble 
apolipoproteins, and lipoproteins in solution. Our studies 
during the last decade showed that thermal or chemi-
cal denaturation of all major lipoprotein classes, includ-
ing LDLs, involves irreversible lipoprotein aggregation, 
fusion, and coalescence into lipid droplets (28, 29, 115, 
116). This is not surprising because even partial protein 
denaturation should disrupt lipid-protein interactions, 
leading to dissociation of a portion of the protein from the 
lipoprotein surface; this is expected to increase solvent 

exposure of the hydrophobic ‘sticky patches’ that promote 
lipoprotein aggregation and fusion. In our studies, 
thermal or Gdn HCl-induced LDL aggregation, fusion, 
and lipid droplet formation have been detected by nega-
tive stain EM, nondenaturing PAGE, SEC, turbidity, CD 
spectroscopy (Figures 1 and 2), and calorimetric methods 
(28, 29). These studies showed that, similar to membrane 
fusion, lipoprotein fusion is thermodynamically irrevers-
ible and involves a high activation energy that is particu-
larly high for LDLs (Ea = 100 kcal/mol as compared with 
∼50 kcal/mol measured for HDL and VLDL) (29, 115, 116). 
We postulated that this unusually high activation energy, 
together with the sigmoidal reaction kinetics, which is 
also unique to LDLs (Figure 2A), reflects the large size 
of apoB domains whose conformational changes prime 
LDLs for fusion (29). Further, the high activation energy 
of LDL fusion reflects the steep temperature dependence 
of the reaction rate; this limits the range of temperatures 
at which one can accurately measure this reaction rate. 
In addition, the rate of LDL fusion also depends strongly 
on solvent composition, pH, LDL concentration (29), and 
other factors described below. The combined effects of 
these factors limit the range of experimental conditions 
allowing quantitative kinetic analysis of LDL fusion. Nev-
ertheless, in vitro kinetic analysis of LDL fusion provides 
a useful quantitative tool to determine how individual 
factors, alone or in combination, influence the rate of this 
pathogenic reaction.

Solvent ionic conditions

In atherosclerotic lesions, the extracellular pH varies 
from near-neutral to acidic, reaching as low as pH 5.5 
in deep hypoxic areas (117, 118). LDL fusion at acidic pH 
can be augmented via two independent mechanisms. 
First, many hydrolytic and oxidative enzymes that 
modify LDLs in the arterial intima have optimal activ-
ity at acidic pH (118–121). Second, reduction in pH from 
near-neutral to acidic greatly enhances LDL fusion in 
vitro (29) and, probably, in vivo. This strong pH effect 
indicates the importance of electrostatic interactions in 
LDL fusion.

In addition to pH, salt ions also importantly influence 
LDL fusion. Our in vitro studies showed that increasing 
NaCl concentration from 0 to 150 mm greatly acceler-
ates heat-induced LDL fusion (29), probably due to elec-
trostatic screening of repulsive interactions between the 
particles or their specific sites. Moreover, LDLs sponta-
neously fuse and form lipid droplets at room tempera-
ture upon addition of low-millimolar concentrations of 
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divalent metal ions such as Ca2+ or Mg2+, which is likely 
due to divalent metal binding by acidic groups in apoB 
(unpublished data). This effect probably underlies a fast 
laboratory method in which Mg-induced precipitation of 
total plasma LDLs is used to estimate the fraction of small, 
dense LDLs that are diagnostic markers of atherosclerosis 
(122, 123). Because small LDLs are more resistant to fusion 
than their larger counterparts, we proposed that small, 
dense LDLs remain in solution at Mg2+ concentrations that 
cause fusion and coalescence of larger LDLs into lipid 
droplets (29).

Lipoprotein crowding

Elevated concentration of plasma LDLs is the strong-
est causative risk factor of atherosclerosis (124, 125). The 
higher the concentration of LDLs in plasma, the higher 
the pro-atherogenic LDL uptake by arterial macrophages. 
In addition, LDL crowding at elevated concentrations 
may contribute to atherogenesis via two independent 
mechanisms. First, in the ‘lattice model’ proposed for 
LDL binding to LDLR, steric hindrance produced by the 
receptor-bound LDL decreases the binding of additional 
LDL particles to the adjacent receptors (126). Second, our 

experimental studies of isolated plasma LDL revealed that 
increasing LDL concentration in physiologically relevant 
range greatly accelerates heat-induced fusion and lipid 
droplet formation (Figure 3). Kinetic analysis of the reac-
tion rate as a function of LDL concentration indicated a 
high-order reaction (Figure 3C) (29). This suggests that 
LDL crowding in the arterial subendothelium, together 
with the steric effects of the receptor-bound LDLs, poten-
tially contributes to atherogenesis.

Detection of LDL aggregation, 
fusion, and lipid droplet formation
Conversion of intact LDLs (∼22 nm) into lipid droplets 
(100–400 nm) is a complex process whose individual 
steps are difficult to discern experimentally, in part, due to 
particle heterogeneity. Some of these steps include (i) LDL 
aggregation, which may involve conformational changes in 
the protein and lipid but little or no changes in the particle 
size; (ii) LDL fusion, which produces enlarged lipoprotein-
like particles that can undergo additional rounds of aggre-
gation and fusion; (iii) lipoprotein disintegration (rupture) 
and release of the apolar core lipids, which coalesce into 
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Figure 2 Integrated approach for the analysis of morphological LDL transitions [modified from ref. (29)].
Single-donor human LDLs (0.5 mg/ml apoB, 20 mm Na phosphate, pH 7.5) were incubated at 85°C, and the time course of the increase in 
the particle size was monitored by turbidity (A). Aliquots taken at various stages, from 0 (intact LDLs) to 6 (fully denatured), were analyzed 
by (A) native PAGE, (B) SEC, and (C) negative-stain EM. SEC identified three peaks: I, intact size LDLs (∼22 nm); II, enlarged lipoproteins (∼40 
nm); III, much larger particles (  ≥  100 nm). Native PAGE resolved bands corresponding to peaks I and II, and EM of isolated peak II suggested 
LDL dimerization (A). Negative-stain EM showed progressive increase in the number of fused (violet arrows, stage 2) and ruptured LDLs 
(orange arrows, stages 5 and 6) and their aggregates. Similar changes in the particle size and morphology were observed upon lipolysis, 
sample aging, prolonged ultracentrifugation, or chemical denaturation of LDLs (18, 29).



M. Lu and O. Gursky: LDL aggregation, fusion, and lipid droplet formation      511

lipid droplets, often forming large aggregates (Figure 1). 
Dissecting this complex process is necessary to elucidate 
its underlying molecular basis and key determinants and 
to establish therapeutic targets to block its specific steps. 
Experimental techniques that are used to determine the 
lipoprotein size and morphology, differentiate between 
the aggregated and fused LDLs and lipid droplets, assess 
changes in the particle size distribution, and monitor these 
changes in real time are outlined below.

Methods to distinguish between lipoprotein 
aggregation and fusion

Transmission EM is a method of choice to visualize par-
ticle morphology and distinguish between the fused and 
aggregated lipoproteins and lipid droplets (Figures 1 and 
2). For example, Guyton and colleagues used negative 
stain EM to detect aggregated and fused LDLs in human 
atherosclerotic lesions and to compare their size and 
morphology to those of similar particles formed upon 
LDL vortexing or aging in vitro [ref. (10) and references 
therein]. Another example is our negative stain EM analy-
sis of LDL subfractions isolated by SEC from total LDLs 
upon various perturbations, which enabled us to identify 
LDL dimerization as a novel early step in aggregation and 
fusion (Figure 2) (29). As an alternative to EM, atomic force 
microscopy has been used to assess LDL aggregation and 
fusion (82). Although the resolution of the lipoprotein 
images attainable by negative stain EM (Figures 1 and 2) 

is superior to those obtained by atomic force microscopy, 
a potential drawback of negative stain preparation is that 
it can induce lipoprotein aggregation on the EM grids. 
This artifact can be eliminated by optimizing the stain-
ing technique (127). Still, negative-stain EM and atomic 
force microscopy are low-resolution techniques that can 
only resolve relatively large ( > 1 nm) structural features. 
Cryo-EM, which was used to determine LDL structure at 
up to 16-Å resolution (128, 129), can potentially provide a 
more detailed view of the aggregated and fused LDLs. The 
application of this technique to lipoproteins is restricted, 
in part, by sample heterogeneity. Furthermore, a general 
drawback of EM applications to heterogeneous samples is 
that the field views do not always represent the broader 
particle population. This necessitates the use of comple-
mentary techniques for accurate analysis of the particle 
size distribution in aggregated and fused LDLs, which are 
described below.

In addition to EM, proton nuclear magnetic resonance 
(NMR) has been used by Kovanen’s group to differentiate 
between LDL aggregation and fusion (130). The method is 
based upon the observation that 1H NMR resonances from 
the CH2 groups in lipoprotein lipids shift to higher frequen-
cies upon increasing particle size; this effect apparently 
results from anisotropy in the magnetic susceptibility of 
the oriented molecules in the phospholipid monolayer 
of the lipoproteins surface (131). Although the interpreta-
tion of the data obtained by this indirect method involves 
approximations that may not strictly hold for lipopro-
teins, the method holds potential promise, as the results 
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is the midpoint, and k is the rate constant of the reaction. The plot of k versus apoB concentration is nonlinear (C); polynomial fitting sug-
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obtained in the studies of LDL aggregation and fusion 
using 1H NMR and EM were in good agreement (131).

Kovanen’s team developed another interesting 
approach to analyze fusion of LDLs in solution or bound 
to proteoglycans (132). Cholesterol esters labeled with 
fluorescence donor (pyrene) or acceptor (BODIPY) were 
incorporated into LDL core, and LDL fusion kinetics 
was monitored by fluorescence energy transfer (132). 
The advantage of the method is that it can differentiate 
between LDL aggregation and fusion and is applicable 
to lipoproteins both in fluid and in immobilized phase 
that mimics LDL binding to arterial matrix proteogly-
cans. The disadvantage is the necessity to label core 
lipids.

A promising label-free approach to directly visualize 
lipid assemblies is infrared imaging techniques based on 
coherent anti-Stokes Raman scattering (133). This novel 
approach utilizes strong infrared band from CH2 groups 
in lipid acyl chains, which eliminates the need for labe-
ling. The method has been successfully applied for real-
time imaging of cell organelles and lipid droplets (133). 
However, the diffraction limit in this and other infrared-
based imaging techniques restricts their resolution to 100 
nm. Therefore, optical advances will be needed before this 
novel technique can be used for imaging of lipoproteins 
(which range in size from about 10 to 100 nm) and their 
morphological transitions.

Methods to determine the size distribution 
in lipoproteins in solution

SEC and nondenaturing PAGE are the methods of choice 
to determine particle size distribution in lipoproteins in 
solution. Although these methods cannot differentiate 
between the aggregated and fused particles and are not 
suitable to discern large aggregated lipid droplets, they 
are extremely useful to monitor changes in the particle 
size during lipoprotein aggregation and fusion (Figure 2). 
In addition to providing an excellent analytical tool, SEC 
also provides a noninvasive preparative tool for isolat-
ing lipoproteins by size. The lipoproteins and their sub-
fractions isolated by SEC can then be analyzed by other 
methods such as EM (Figure 2) (29).

As an alternative to SEC, preparative ultracentrifu-
gation is the method of choice to isolate lipoproteins 
by size and density, whereas analytical ultracentrifu-
gation is useful to determine particle size distribution. 
This method is more invasive than SEC and should be 
used with caution, as prolonged ultracentrifugation can 
mechanically perturb and remodel lipoproteins. For 

example, in our work, the total LDLs were isolated from 
human plasma by ultracentrifugation, followed by an 
additional round of ultracentrifugation to isolate large 
and small LDLs. This additional round led to particle size 
increase in a subset of LDLs, which was apparently due to 
LDL dimerization upon mechanical perturbation (unpub-
lished data).

Because the size range of aggregated and fused LDLs 
and lipid droplets (100–400 nm) is commensurate with 
the wavelengths of UV-visible light, methods using UV-
visible light scattering are useful in monitoring LDL aggre-
gation and fusion. Dynamic light scattering is one of such 
methods that has been used to monitor lipoprotein size 
(82). In principle, measurements of dynamic light scat-
tering can provide particle size distribution, especially 
in dilute solutions of spherical particles. In practice, the 
results are exquisitely sensitive to trace amounts of large 
particles such as dust, have limited accuracy in size analy-
sis of nonuniformly shaped particles such as lipoprotein 
aggregates, and cannot differentiate between the aggre-
gated and fused lipoproteins. Still, dynamic light scatter-
ing remains useful for monitoring changes in lipoprotein 
size.

Monitoring lipoprotein aggregation, fusion, 
and lipid droplet formation in real time

Static light scattering or turbidity measurements (i.e., 
attenuation in light intensity due to scattering) in the UV-
visible range are useful in monitoring real-time changes 
in the lipoprotein size upon aggregation, fusion, and 
lipid droplet formation (41). We developed a method to 
record turbidity and right-angle light scattering in CD 
experiments (134) to monitor the time course of lipo-
protein aggregation, fusion, and lipid droplet formation 
(Figures 2 and 3). The results are used for quantitative 
kinetic analysis to determine the Arrhenius activation 
energy (29, 116) or access the reaction order (Figure 3). 
Although such measurements alone cannot differentiate 
among aggregation, fusion, and lipid droplet formation, 
they can be combined with other methods such as SEC 
or EM to dissect these steps. Together with light scatter-
ing or turbidity, we also monitor near-UV CD that reports 
on lipoprotein rupture and release of core lipids that coa-
lesce into droplets. We demonstrated that repacking of 
apolar lipids in this transition leads to a large negative 
induced CD peak centered circa 320  nm (Figure 4) (28, 
116). Thus, this near-UV CD signal provides a convenient 
way to selectively monitor lipoprotein coalescence into 
lipid droplets.
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Expert opinion
LDL aggregation, fusion, and lipid droplet formation are 
general structural responses to a wide variety of chemi-
cal and physical perturbations in the protein and lipid 
moieties. Numerous lines of evidence in vivo and in vitro 
directly link this process to atherogenesis. Therefore, elu-
cidating the molecular mechanism involved in this patho-
genic process and the factors that promote or prevent its 
specific steps may help establish new biomarkers and 
therapeutic targets for atherosclerosis. Analysis of lipol-
ytic (PLA2, PLC, SMase) and proteolytic enzymes (trypsin, 
α-chymotrypsin, pronase) that promote LDL aggregation, 
fusion, and lipid droplet formation, as well as the amphi-
pathic molecules (apoA-I, apoE, estradiol) and synthetic 
nanomaterials (pluronic copolymer) that hamper these 
reactions suggests that solvent exposure of hydrophobic 
moieties on LDL surface is a major driving force for parti-
cle aggregation and fusion (18, 33, 39, 41, 52, 110, 111). The 
strong effects of solvent ionic conditions (pH, monovalent 
and divalent cations) indicate that electrostatic interac-
tions are also critically involved (29). Electrostatic effects 
probably also contribute to several important processes 
in vivo, such as LDL fusion and coalescence into lipid drop-
lets at acidic pH in deep atherosclerotic lesions or during 
lysosomal degradation (117, 118, 122, 135) or to the effects of 
coronary artery calcium as a risk factor for atherosclerosis 
(136). Electrostatic effects in LDL aggregation, fusion, and 

lipid droplet formation also underlie laboratory methods 
such as LDL precipitation by magnesium salt, which is a 
useful tool to assess the patients’ risk of atherosclerosis 
(117, 118, 122, 135).

Outlook
Various chemical and structural changes in the protein 
and lipid moieties promote LDL aggregation, fusion, and 
lipid droplet formation. It remains unclear which of these 
changes or their combinations are particularly important 
during atherogenesis. Once these changes have been 
identified, they may provide viable therapeutic targets to 
hamper or even block this pathogenic process before it 
occurs and thereby complement the existing LDL-lower-
ing drugs such as statins.

Highlights
–– LDL aggregation, fusion, and coalesce into lipid 

droplets are directly linked to atherogenesis.
–– Various in vivo and in vitro modifications can trigger 

this pathogenic process, including phospholipid 
hydrolysis, apoB proteolysis, oxidative modifications, 
mechanical and thermal stress, etc.
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Figure 4 LDL rupture and lipid droplet formation monitored by CD and turbidity.
Near-UV-visible CD spectra (A) and turbidity (B) were recorded from human LDLs after incubation at 20°C, 60°C, or 90°C. EM revealed that 
LDL exposure to 90°C leads to irreversible rupture and release of apolar core lipids that coalesce into droplets. Lipid droplet formation 
induced a large negative CD signal centered at 320 nm (A), reflecting repacking of apolar moieties such as cholesterol esters, triacylglyc-
erides, and carotenoids in LDL core. This induced CD was accompanied by increased turbidity reflecting increase in the particle size (B). In 
(B), the peak at 430–500 nm is characteristic of light absorption by carotenoids that are antioxidants in LDL core. We used CD at 320 nm to 
monitor LDL rupture and lipid droplet formation, together with turbidity to monitor increase in the particle size due to aggregation, fusion, 
and rupture of LDL [modified from ref. (28)].
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–– Many of these modifications deplete the polar surface 
and/or expand the apolar core of LDL, creating 
hydrophobic packing defects on the LDL surface.

–– Such hydrophobic mismatch between the 
amphipathic surface and the apolar core is a major 
driving force for LDL aggregation, fusion, and lipid 
droplet formation.

–– Strong pH and salt dependence indicates that 
electrostatic effects are also key to this process.

–– Amphipathic molecules that bind to LDL surface and 
protect it from aggregation, fusion, and lipid droplet 
formation may provide potentially viable treatments 
for atherosclerosis.
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