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  Long antisense non-coding RNAs and the 
epigenetic regulation of gene expression    
  Abstract:   Shortly after the completion of the human 

genome project in 2003, the Encode project was 

launched. The project was set out to identify the func-

tional elements in the human genome, and unexpectedly 

it was found that   >  80% of the genome is transcribed. The 

Encode project identified those transcribed regions of the 

genome to be encoded by non-coding RNAs (ncRNAs). 

With only 2% of the genome carrying gene-encoding pro-

teins, the conundrum was then, what is the function, if 

any, of these non-coding regions of the genome? These 

ncRNAs included both short and long RNAs. The focus 

of this review will be on antisense long non-coding RNAs 

(lncRNAs), as these transcripts have been observed to 

play a role in gene expression of protein-coding genes. 

Some lncRNAs have been found to regulate protein-cod-

ing gene transcription at the epigenetic level, whereby 

they suppress transcription through the recruitment 

of protein complexes to target loci in the genome. Con-

versely, there are lncRNAs that have a positive role in 

gene expression with less known about mechanism, and 

some lncRNAs have been shown to be involved in post-

transcriptional processes. Additionally, lncRNAs have 

been observed to regulate their own expression in a posi-

tive feedback loop by functioning as a decoy. The biolog-

ical significance of lncRNAs is only just now becoming 

evident, with many lncRNAs found to play a significant 

role in several human diseases.  
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  High-throughput studies have contributed to uncover-

ing the complexity of the human transcriptome and the 

pervasive genome-wide transcription. The Encode project 

revealed that   >  80% of the human genome is transcribed, 

and that the majority of the transcripts do not encode pro-

teins. These newly discovered ncRNAs are functionally 

different from the canonical ncRNAs, such as transfer RNA 

and ribosomal RNA, which are involved in general cellu-

lar processes. Notably, many of these new ncRNAs are not 

as ubiquitously expressed as the housekeeping ncRNAs 

and do not appear to be translated  (1) . The new ncRNAs 

are classified into small ncRNAs (  <  200 nucleotides), such 

as microRNAs, small interfering RNAs, PIWI-interacting 

RNAs, and long ncRNAs (lncRNAs), which are at least 200 

nucleotides in length  (2, 3) . This review focuses on anti-

sense lncRNAs and their regulatory roles. 

 LncRNAs can be categorized into several groups. For 

example, one type of lncRNA can be characterized with 

respect to its complimentary protein-coding gene, which 

can be orientated in a sense and/or antisense direction. 

The lncRNAs and the protein-coding genes can therefore 

be in a head-head, tail-tail, or head-tail orientation. Other 

lncRNAs can be localized in introns (intronic) and within 

two genes (intergenic). Moreover, lncRNAs are expressed 

in a cell-/tissue-specific manner and under developmen-

tal stages, which highlights their functions in regulat-

ing gene expression  (4, 5) . LncRNAs have been found to 

modulate gene expression by various mechanisms, and 

a well-studied mechanism by which lncRNAs exert their 

functions is through their epigenetic regulation  (6) . This 

mechanism includes genetic imprinting and dosage com-

pensation. In case of imprinting, the expression of either 

paternal or maternal allele is silenced. Imprinted lncRNAs, 

such as  Kcnqot1  and  Air , which are expressed from pater-

nal alleles, repress a cluster of protein-coding genes on 

maternal alleles, for instance,  Air  silences  Igf2r ,  Slc22a2 , 

and  Slc22a3.  The epigenetic mechanisms by which these 

imprinted lncRNAs suppress gene expression are DNA 

methylation of promoters and the formation of repres-

sive chromatin state by the histone methyltransferase G9a 

 (7 – 10) . 
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 In dosage compensation, one maternal X-chromo-

some is silenced by the lncRNA Xist, which interacts 

and recruits histone-modifying complexes to target sites, 

and this, in turn, results in the formation of repressive 

chromatin marks, such as H3K9me3 and H3K27me3  (11, 

12) . Moreover, lncRNAs can modulate the chromatin 

state by functioning as a structural scaffold, whereby 

they provide the platform for the formation of chroma-

tin remodeling complexes. The lincRNA HOTAIR forms 

such a scaffold to gather the histone methyltransferase 

polycomb repressive complex 2 (PRC2) and the histone 

demethylase LSD1. Through these interactions and 

complex formations, HOTAIR represses the expression of 

the  HOXD  gene  (13) . 

 At the epigenetic level, lncRNAs repress transcrip-

tion by interacting and recruiting histone and chromatin 

remodeling proteins to target sites ( Figure 1 ). These 

antisense lncRNAs can be expressed in a  cis-  or  trans-
 based manner from RNA polymerase II promoters  (14)  

and can be differentially localized within the cell  (15) . 

Some of the first such examples of antisense lncRNAs 

regulating protein-coding genes by targeting epigenetic 

complexes to the promoters of particular protein-coding 

genes were observed with antisense lncRNAs for tumor 

suppressor genes  (16, 17) . These lncRNAs were observed 

to epigenetically modulate the promoter of the targeted 

protein-coding gene, specifically altering the chromatin 

to a more compacted state ( Figure 1 ). It is interesting to 

note that most of the tumor suppressor genes reported to 

date have been found to exhibit some level of antisense 

lncRNA expression associated with them. These tumor 

suppressor genes are also often the ones found to be 
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 Figure 1      Antisense lncRNA-directed epigenetic regulation in human cells. 

 Antisense lncRNAs can be expressed in  trans  (A) or  cis  (B). The lncRNAs can then interact with various protein components (C): Ezh2, 

DNMT3a, PRC2, and G9a are shown schematically, as all have been observed to be involved in lncRNA-mediated function, although not as 

one complete complex  (8, 9, 19, 20) . The antisense lncRNA protein complex can then target epigenetic remodeling of the homology contain-

ing loci (D), resulting ultimately in compaction of the target loci (E) and epigenetic silencing.    
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epigenetically silenced in human cancers [reviewed in 

ref.  (18) ].  

 More recent observations have begun to suggest that 

pseudogenes, which are non-protein-coding transcripts 

containing sequence homology to known protein-coding 

genes, are active epigenetic modulators of their respective 

protein-coding counterpart  (19, 20) . In one study, the Oct4 

transcription factor, which is a dominant player in stem 

cell control as well as transcriptional fidelity, was found 

to be under epigenetic regulation of an antisense lncRNA 

emanating from a pseudogene  (19) . In a more recent body 

of work, the PTEN tumor suppressor gene was found to 

be bimodally regulated by its pseudogene, PTENpg1, 

whereby both PTEN protein translation and transcrip-

tion appear to be controlled by one pseudogene network 

node  (20, 21) . Such bimodal regulation raises the level 

of lncRNA regulatory complexity to a state that has not 

before been observed and suggests that a vast regulatory 

network of interesting functions remains to be determined 

with regard to lncRNA-directed epigenetic regulation. 

 Higher-ordered RNA:RNA complexes forming from 

lncRNAs have also been observed in the control of gene 

clusters. In mouse testis, tubulin and the assembly of 

microtubule structures appear regulated by sense and 

antisense lncRNAs forming higher-ordered RNA:RNA 

complexes  (22) . In another study, the antisense lncRNA 

AS1DHRS4, which emanates in a head-head manner from 

the  DHRS4  gene, regulates the gene cluster in both a  cis-  
and  trans- directed manner  (23) . AS1DHRS4 pairs with the 

sense counterpart in  cis  to mediate deacetylation of the 

 DHRS4  gene, whereas the antisense lncRNA in  trans  is 

involved in epigenetic-mediated regulation of the locus 

through interactions with G9a and enhancer of zeste 2 

(Ezh2)  (23) . These studies illustrate the vast complexity of 

antisense lncRNAs in both form and function with regard 

to control of gene expression. 

 Some lncRNAs can be sense oriented relative to 

protein-coding genes, emanating across the promoters 

of genes  (22, 24) , and function in an allosteric blocking-

based manner. While previous studies have found that 

promoter-associated RNAs are required for RNA-directed 

transcriptional gene silencing  (25) , these promoter-asso-

ciated lncRNAs have been found to obstruct epigenetic 

activation by binding the translocated in liposarcoma 

(TLS) protein, which is an RNA-binding protein that is also 

known to bind CREB (cAMP response element binding 

protein)-binding protein CBP/adenovirus p300. The ulti-

mate effect of this lncRNA-binding TLS is the inhibition of 

histone acetyltransferase activity  (26) . 

 Other lncRNAs can regulate gene expression inde-

pendently of changing the chromatin state, and by 

directly binding to transcriptional machinery and DNA 

elements within the protein-coding genes. The human 

dihydrofolate reductase  DHFR  gene encodes an lncRNA, 

which binds to the promoter and the transcription factor 

IIB, forming a complex. Through these interactions, 

the lncRNA disassembles the complex, which in turn 

leads to suppression of DHFR expression  (27) . Interest-

ingly, lncRNAs can have a transcriptional activator role, 

for instance, the lncRNA EVF-2 forms a complex with 

the transcription factor Dlx-2, which then binds to the 

homeo box bicluster genes  Dlx-5  and  Dlx-6  and induces 

the activation and expression of the genes  (28) . Addition-

ally, lncRNAs can have a regulatory function at the post-

transcriptional level. The lncRNA ZEB2NAT modulates 

alternative splicing of the protein-coding gene  ZEB2 ; in 

one case, the lncRNA splices an mRNA that evades the 

translational machinery and prevents the translation of 

ZEB2 protein, and in another instance ZEB2NAT inter-

feres with the spliceosome and generates an alterna-

tively spliced mRNA, which then can be translated  (29) . 

The lncRNA MALTA-1 is also involved in regulating the 

splicing by influencing the phosphorylation state of the 

splicing factors  (30) . 

 In addition to their role as transcriptional regula-

tors of protein-coding genes, lncRNAs can modulate 

their own expression by interacting with other ncNRAs. 

For example, the lncRNA HULC binds to miRNA-372 and 

inhibits the expression of the miRNA target genes. One 

of these genes is a cAMP-dependent protein kinase cata-

lytic subunit  β  (Prkacb), which, when inhibited, promotes 

the phosphorylation of the CREB domain of HULC. Then, 

phosphorylation of HULC leads to upregulation of its own 

expression  (31) . 

 LncRNAs elicit their functions both at the transcrip-

tional and post-transcriptional levels; therefore, it is not 

surprising that the deregulation of lncRNAs has been 

implicated in diseases, such as cancers. For instance, aber-

rant expression of HOTAIR has been observed in breast, 

colon, and pancreatic cancers  (32 – 34) . Additionally, dys-

regulation of MALTA-1 has been linked to breast, colon, 

liver, lung, ovary, pancreas, and prostate cancers  (35, 36) . 

Moreover, some lncRNAs have been shown to become bio-

marker tools for cancer diagnosis. For instance, prostate 

cancer-related lincRNA PCA3 has been detected in urine 

samples of patients  (37) , and HULC in blood samples of 

hepatocellular cancer  (38) . The overexpression of lncRNAs 

in many cancers, and the growing evidence that lncRNAs 

are detected in cell-free environments, can shed more 

light on our understanding of the regulatory role of the 

lncRNAs in human diseases, and potentially can provide 

the therapeutic tools to target those diseases.  
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